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Solitary waves bifurcated from edges of Bloch bands in two-dimensional periodic media are determined
both analytically and numerically in the context of a two-dimensional nonlinear Schrödinger equation with a
periodic potential. Using multiscale perturbation methods, the envelope equations of solitary waves near Bloch
bands are analytically derived. These envelope equations reveal that solitary waves can bifurcate from edges of
Bloch bands under either focusing or defocusing nonlinearity, depending on the signs of the second-order
dispersion coefficients at the edge points. Interestingly, at edge points with two linearly independent Bloch
modes, the envelope equations lead to a host of solitary wave structures, including reduced-symmetry solitons,
dipole-array solitons, vortex-cell solitons, and so on—many of which have not been reported before to our
knowledge. It is also shown analytically that the centers of envelope solutions can be positioned at only four
possible locations at or between potential peaks. Numerically, families of these solitary waves are directly
computed both near and far away from the band edges. Near the band edges, the numerical solutions spread
over many lattice sites, and they fully agree with the analytical solutions obtained from the envelope equations.
Far away from the band edges, solitary waves are strongly localized, with intensity and phase profiles char-
acteristic of individual families.
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I. INTRODUCTION

Nonlinear wave propagation in periodic media is attract-
ing a lot of attention these days. This was stimulated in part
by rapid advances in optics, Bose-Einstein condensates, and
related fields. In optics, various periodic and quasi-periodic
structures �such as photonic crystals, photonic crystal fibers,
periodic waveguide arrays, and photonic lattices� have been
constructed by ingenious experimental techniques, with ap-
plications to light routing, switching, and optical information
processing �1–8�. These periodic media create a wide range
of new phenomena for light propagation, even in the linear
regime. For instance, the diffraction of light in a periodic
medium exhibits distinctively different patterns from homo-
geneous diffraction �3�. If the periodic medium has a local
defect, this defect can guide light by a totally new physical
mechanism called repeated Bragg reflections �1,2,9–13�.
When the nonlinear effects become significant, as with high-
power beams or strongly nonlinear materials, the physical
phenomena are even richer and more complex, and their un-
derstanding is far from complete yet. In Bose-Einstein con-
densates, one direction of recent research is to load the con-
densates into periodic optical lattices �14–16�. This problem
and the above nonlinear optics problems are closely related,
and are often analyzed together.

Solitary waves play an important role in nonlinear wave
systems. These waves are nonlinear localized structures that
propagate without change of shape. In the physical commu-
nities, they are often just called solitons, which we do occa-
sionally in this paper as well. In one-dimensional �1D� peri-
odic media, solitary waves �called lattice solitons� have been
predicted and observed in optical experiments �3,8,17–20�.
But in two and higher dimensions, periodic media can sup-
port a much wider array of solitary wave structures, many of
which have no counterparts in 1D systems. So far, several

types of 2D lattice solitons in the semi-infinite band gap
�such as fundamental, dipole, and vortex solitons�, as well as
the first band gap �such as fundamental, vortex, and reduced-
symmetry gap solitons�, have been reported �5,15,21–31�.
Solitons in Bessel-ring lattices and 2D quasiperiodic lattices
have been reported as well �32–34�. All these works were
either numerical or experimental, and an analytical under-
standing of these solitons is still lacking. Some of these soli-
tons bifurcate from edges of Bloch bands. For instance, the
gap vortex solitons reported in �27� bifurcate from the two
X-symmetry points of the second Bloch band, and the
reduced-symmetry solitons reported in �30� bifurcate from a
single X-symmetry point of the second Bloch band �both
under focusing nonlinearity�. This raises the following im-
portant questions: Are there other types of solitary waves
bifurcated from Bloch bands in 2D periodic media? How can
such solitary waves be analytically predicted and classified?

In this paper, we determine all possible solitary-wave
structures bifurcated from edges of Bloch bands in 2D peri-
odic media both analytically and numerically, using the two-
dimensional nonlinear Schrödinger equation with a periodic
potential as the mathematical model. By multiscale perturba-
tion methods, we derive the envelope equations of these soli-
tary waves near band edges. We find that these envelope
equations admit solutions that lead not only to solitons re-
ported before �see �27,30� for instance�, but also to additional
solitary-wave structures such as dipole-array solitons bifur-
cated from the second Bloch band under focusing nonlinear-
ity, and vortex-cell solitons bifurcated from the second Bloch
band under defocusing nonlinearity. We also show analyti-
cally that the centers of envelope solutions can be positioned
at only four possible locations at or between the potential
peaks. We further determine directly using numerical meth-
ods whole families of these solitons both near and far away
from band edges �35�. Near the band edges, the numerical
solutions spread over many lattice sites, and they fully agree
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with the analytical solutions obtained from the envelope
equations. Far away from the band edges, solitary waves are
strongly localized, and their intensities and phase profiles
carry signatures of individual soliton families. These studies
provide a rather complete understanding of solitary waves
bifurcated from Bloch bands in 2D periodic media.

II. THE MATHEMATICAL MODEL

The mathematical model we use for the study of solitary
waves in 2D periodic media is the 2D nonlinear Schrödinger
�NLS� equation with a periodic potential:

iUt + Uxx + Uyy − V�x,y�U + ��U�2U = 0, �2.1�

where U�x ,y , t� is a complex function, V�x ,y� is the periodic
potential �also called the lattice potential�, and �= ±1 is the
sign of the nonlinearity. This model arises in Bose-Einstein
condensates trapped in a 2D optical lattice �where t is time�
�14,15�, as well as in light propagation in a periodic Kerr
medium under the paraxial approximation �where t is the
distance of propagation�. In certain optical materials �such as
photorefractive crystals�, the nonlinearity is of a different
�saturable� type. But it is known that those different types of
nonlinearities give qualitatively similar results to those for
the Kerr nonlinearity above �21,24,25,36�.

In this paper, we take the lattice potential as

V�x,y� = V0�sin2 x + sin2 y� , �2.2�

whose periods L along the x and y directions are both equal
to �. This square-lattice potential can be readily engineered
in Bose-Einstein condensates �15,16� and optics �5,7�. This
potential is separable, which makes our theoretical analysis a
little easier. A similar analysis can be repeated for other types
of periodic potentials and nonlinearities �such as saturable
nonlinearities in photorefractive crystals �5,36�� with mini-
mal changes. Without loss of generality, when we carry out
specific computations, we always set V0=6 in the potential
�2.2�.

Solitary waves in Eq. �2.1� are sought in the form

U�x,y,t� = u�x,y�e−i�t, �2.3�

where amplitude function u�x ,y� is a solution of the follow-
ing equation:

uxx + uyy − �F�x� + F�y��u + �u + ��u�2u = 0, �2.4�

F�x� = V0 sin2 x , �2.5�

and � is a propagation constant.
In this paper, we determine solitary waves in Eq. �2.4�

which are bifurcated from the Bloch bands �i.e., continuous
spectrum� of that equation. To do this, information about the
Bloch bands of Eq. �2.4� is essential. Such Bloch bands will
be analyzed first below.

III. BLOCH BANDS AND BAND GAPS

When the function u�x ,y� is infinitesimal, Eq. �2.4� be-
comes a linear equation:

uxx + uyy − �F�x� + F�y��u + �u = 0. �3.1�

Solutions of this linear equation are the Bloch modes, and
the corresponding propagation constants � form Bloch
bands. Since the potential in �3.1� is separable, Bloch solu-
tions and Bloch bands of this 2D equation can be constructed
from solutions of a 1D equation. Specifically, the 2D Bloch
solution u�x ,y� of Eq. �3.1� and its propagation constant �
can be split into the following form:

u�x,y� = p�x;�a�p�y ;�b�, � = �a + �b, �3.2�

where p�x ;�� is a solution of the following 1D equation:

pxx − F�x�p + �p = 0. �3.3�

This 1D equation is equivalent to Mathieu’s equation. Its
solution is

p�x;�� = eikxp̃�x;�� , �3.4�

where p̃�x ;�� is periodic with the same period � as the
potential F�x�, and �=��k� is the 1D dispersion relation.
This dispersion diagram is shown in Fig. 1�a� �for V0=6�.
The band gap structure of this 1D equation �3.3� at various
values of V0 is shown in Fig. 1�b�. Notice that, in the 1D
case, at any nonzero value of V0, band gaps appear; in addi-
tion, the number of band gaps is infinite. The first five Bloch
waves p�x ;�k�, 1�k�5, at the lowest five edges of Bloch
bands �=�k are displayed in Fig. 2. These Bloch waves
have been normalized to have unit amplitude. Notice that
these solutions at band edges are all real valued.

Using these 1D dispersion results and the above connec-
tion between 1D and 2D Bloch solutions, we can construct
the dispersion surfaces and band gap structures of the 2D
problem �3.1�. The 2D Bloch-mode solution is of the form

u�x,y� = eikxx+ikyyp̃�x;��kx��p̃�y ;��ky�� , �3.5�

where

� = ��kx� + ��ky�, − 1 � kx,ky � 1, �3.6�

is the 2D dispersion relation, and −1�kx ,ky �1 is the first
Brillouin zone. This 2D dispersion relation �at V0=6� is
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FIG. 1. �Color online� �a� Dispersion curves of the 1D equation
�3.3� with V0=6; �b� Bloch bands �shaded regions� and band gaps at
various values of potential levels V0 in Eq. �3.3�. The circle points
in �a� correspond to edges of Bloch bands marked by numbers 1–5
in �b�. Bloch modes at these locations are displayed in Fig. 2.
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shown in Fig. 3�a�. The 2D band gap structure at various
values of V0 is shown in Fig. 3�b�. Unlike the 1D case, for a
given V0 value, there are only a finite number of band gaps in
the 2D problem. The first band gap appears only when V0
�1.40, the second band gap appearing when V0�4.13, etc.
As V0 increases further, more band gaps will be found. At the
potential strength V0=6 as used in this paper, two band gaps
exist. The edges of Bloch bands at this V0 value are marked
in Fig. 3�b� as A, B, C, D, E, respectively.

The locations of Bloch-band edges in the first Brillouin
zone are important, as these locations reveal the symmetry
properties of Bloch modes. To clearly mark such locations,
we plotted the first Brillouin zone in Fig. 3. In the literature,
the center of this Brillouin zone is called the � point, the four
corners are called the M points, and points �kx ,ky�
= �1,0� , �0,1� are called the X and X� points, respectively
�27�. These points are marked in the Brillouin zone of Fig. 3.
Note that the four corner �M� points correspond to the same
Bloch mode, but points X and X� lead to different �linearly
independent� Bloch modes. In this first Brillouin zone, the
Bloch-band edges A and B in Fig. 3�b� are located at the �
and M symmetry points, respectively. At band edge C, there
are two points on the dispersion surfaces which are located at
the X and X� symmetry points. The same goes for the band
edge D. The band edge E is located at the � symmetry point.

Now we examine 2D Bloch solutions at band edges. To
illustrate, we consider the edge points A, B, C, D, and E in
Fig. 3�b�, where V0=6. At both points A and B, there is a
single Bloch solution. The Bloch solution at point A �located
at the � point of the Brillouin zone� is u�x ,y�
= p�x ;�1�p�y ;�1�, where p�x ;�1� is shown in Fig. 2�1�. This
solution is displayed in Fig. 4�a�. Its propagation constant is
�=2�1. Notice that this solution has the symmetry u�x ,y�
=u�y ,x�. For convenience, we denote point A as 1+1, and it
is so indicated in Fig. 3�b�. Similarly, the Bloch solution at
point B �located at the M point of the Brillouin zone� is
u�x ,y�= p�x ;�2�p�y ;�2�, where p�x ;�2� is shown in Fig.
2�2�. This solution is displayed in Fig. 4�b�, and its propaga-
tion constant is �=2�2. This solution has the symmetry
u�x ,y�=u�y ,x� as well. Point B is 2+2 in our notations.
Points C, D, and E are different from A and B and are more
interesting. At these points, there are two linearly indepen-
dent Bloch solutions, u�x ,y� and u�y ,x�. At point C, these
two solutions are u�x ,y�= p�x ;�1�p�y ;�3� and u�y ,x�
= p�y ;�1�p�x ;�3�, with the same propagation constant �
=�1+�3. Here p�x ;�3� is shown in Fig. 2�3�. These solu-
tions correspond to the X and X� points in the Brillouin zone.
Point C is thus 1+3. Its u�x ,y� solution is displayed in Fig.
4�c�; the u�y ,x� solution is just a 90° rotation of u�x ,y� in
Fig. 4�c� and thus not shown. Point D is 2+4, where the two
linearly independent Bloch solutions are u�x ,y�
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FIG. 2. �Color online� One-dimensional Bloch waves of Eq.
�3.3� at the lowest five edges of the Bloch bands marked by circles
in Fig. 1�a� and by numbers in Fig. 1�b�. �1� �1=2.063 182; �2�
�2=2.266 735; �3� �3=5.165 940; �4� �4=6.814 29; �5� �5

=7.746 78.
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FIG. 3. �Color online� �a� Dispersion surfaces of the 2D problem �3.1� at V0=6; the small figure at its side is the first Brillouin zone; �b�
the 2D band gap structure for various values of V0. Letters A, B, C, D, E mark the edges of Bloch bands at V0=6. Insets like A:1+1 are
explained in the text.
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= p�x ;�2�p�y ;�4� and u�y ,x�= p�y ;�2�p�x ;�4�, the former
of which is displayed in Fig. 4�d�. These solutions also cor-
respond to the X and X� points in the Brillouin zone. Point E
is 1+5, and the two Bloch solutions are u�x ,y�
= p�x ;�1�p�y ;�5� and u�y ,x�= p�y ;�1�p�x ;�5� �the former
is shown in Fig. 4�e��. These solutions correspond to the �
symmetry point in the Brillouin zone. It is interesting that, at
point E, the two different Bloch modes are both located at
the same � point, while at points C and D, the two Bloch
modes are located at different symmetry points �X and X�� in
the Brillouin zone. This difference between points E and �C,
D� will manifest itself later in solitary-wave bifurcations. Be-
cause of the existence of two linearly independent Bloch
solutions at band edges C, D, and E, their linear superposi-
tions remain a solution. These superpositions can give rise to
interesting solution patterns, some of which �such as vortex
arrays� have been pointed out before �12,27�, while many
others have not, to our knowledge. Solitary waves bifurcated
from these linearly superimposed Bloch modes represent one
of the subjects we will focus on in the remainder of the
paper.

The above Bloch solutions exist on band edges with in-
finitesimal amplitudes. When the amplitudes of these solu-
tions increase, these Bloch solutions may localize and form
solitary-wave structures. The corresponding propagation
constant � then moves from band edges into band gaps. In
the next section, we analyze how solitary waves bifurcate
from Bloch solutions of band edges using multiscale pertur-
bation methods.

IV. ENVELOPE EQUATIONS OF BLOCH MODES

In this section, we develop an asymptotic theory to ana-
lyze small-amplitude solitary waves bifurcating from Bloch
waves near band edges in Eq. �2.4�, and derive their enve-
lope equations. We know that at an edge of a Bloch band
there may be either one or two linearly independent Bloch
modes. The bifurcation analyses for these two cases are simi-
lar; thus we will present detailed calculations only for the
latter case �which is a little more complex�, and just give the
results for the former case.

A. Derivation of envelope equations

Let us consider a 2D band edge �0=�0,1+�0,2, where
�0,n �n=1,2� are 1D band edges, �0,1��0,2, and the two
linearly independent Bloch modes are p1�x�p2�y� and
p1�y�p2�x� with pn�x�= p�x ;�0,n�. Notice that

pn�x + L� = ± pn�x� �4.1�

since �0,n is a 1D band edge. Here L=� is the period of the
1D potential F�x�. When the solution u�x ,y� of Eq. �2.4� is
infinitesimally small, this solution on the band edge is then a
linear superposition of these two Bloch modes in the general
case. When u�x ,y� is small but not infinitesimal, we can
expand the solution u�x ,y� of �2.4� into a multiscale pertur-
bation series:

u = �u0 + �2u1 + �3u2 + ¯ , �4.2�

� = �0 + 	�2, �4.3�

where

u0 = A1�X,Y�p1�x�p2�y� + A2�X,Y�p2�x�p1�y� , �4.4�

	= ±1, and X=�x, Y =�y are the long spatial scales of the
envelope functions A1 and A2. Substituting the above expan-
sions into Eq. �2.4�, the equation at O��� is automatically
satisfied. At order O��2�, the equation for u1 is

u1xx + u1yy − �F�x� + F�y��u1 + �0u1 = − 2� �2u0

�x�X
+

�2u0

�y�Y
	 .

�4.5�

Its homogeneous equation has two linearly independent so-
lutions, p1�x�p2�y�, and p1�y�p2�x�. In order for the inhomo-
geneous equation �4.5� to admit a solution, the Fredholm
conditions
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FIG. 4. �Color online� Upper left: the potential function
−V�x ,y�; �A�, �B�, �C�, �D�, and �E� are Bloch modes at the edge
points of Bloch bands marked by the same letters in Fig. 3�b�.
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0

2L 

0

2L � �2u0

�x�X
+

�2u0

�y�Y
	p2�x�p1�y�dx dy = 0 �4.7�

must be satisfied. Here the integration length is 2L rather
than L since the homogeneous solutions p1�x�p2�y� and
p2�x�p1�y� may have periods 2L along the x and y directions
�see Eq. �4.1��. Recalling the u0 solution �4.4�, it is easy to
check that the above Fredholm conditions are indeed satis-
fied automatically; thus, we can find a solution for Eq. �4.5�
as

u1 =
�A1

�X

1�x�p2�y� +

�A1

�X

2�y�p1�x� +

�A2

�X

2�x�p1�y�

+
�A2

�X

1�y�p2�x� , �4.8�

where 
n�x� is a periodic solution of the equation


n,xx − F�x�
n + �0,n
n = − 2pn,x, n = 1,2. �4.9�

At O��3�, the equation for u2 is

u2xx + u2yy − �F�x� + F�y��u2 + �0u2

= − �2
�2u1

�x�X
+ 2

�2u1

�y�Y
+

�2u0

�X2 +
�2u0

�Y2 + 	u0 + �u0�2u0	 .

�4.10�

Substituting the formulas �4.4� and �4.8� for u0 and u1 into
this equation, we get

− �u2xx + u2yy − �F�x� + F�y��u2 + �0u2� =
�2A1

�X2 �2
1��x� + p1�x��p2�y� +
�2A1

�Y2 �2
2��y� + p2�y��p1�x� +
�2A2

�X2 �2
2��x� + p2�x��p1�y�

+
�2A2

�Y2 �2
1��y� + p1�y��p2�x� + 2
�2A1

�X�Y
�p1��x�
2�y� + p2��y�
1�x�� + 2

�2A2

�X�Y
�p2��x�
1�y�

+ p1��y�
2�x�� + p1
3�x�p2

3�y��A1�2A1 + p1�x�p2�y�p1
2�y�p2

2�x��Ā1A2
2 + 2A1�A2�2�

+ p2
3�x�p1

3�y��A2�2A2 + p1
2�x�p2

2�y�p1�y�p2�x��Ā2A1
2 + 2A2�A1�2� + 	A1�X,Y�p1�x�p2�y�

+ 	A2�X,Y�p2�x�p1�y� . �4.11�

Here the overbar represents complex conjugation. Before ap-
plying the Fredholm conditions to this inhomogeneous equa-
tion, we notice the following identities:



0

2L

p1�x�p2�x�dx = 0, �4.12�



0

2L

p1�x�
2�x�dx = 

0

2L

p2�x�
1�x�dx , �4.13�

and



0

2L

�2
n��x� + pn�x��pn�x�dx = Dn

0

2L

pn
2�x�dx, n = 1,2,

�4.14�

where

Dn � �1

2

d2�

dk2 �
�=�0,n

. �4.15�

The identity �4.12� holds since p1�x� and p2�x� are the eigen-
functions of the self-adjoint linear Schrödinger operator with
different eigenvalues. The identity �4.13� can be confirmed
by taking the inner product between Eq. �4.9� and the func-

tions pn�x�. The identity �4.14� can be verified by expanding
the solution of Eq. �3.3� around the edge of the Bloch band
�=�0,n �see Eq. �15� in �20��. Utilizing these identities and
�4.1�, the Fredholm conditions for Eq. �4.11� finally lead to
the following coupled nonlinear equations for the envelope
functions A1 and A2:

D1
�2A1

�X2 + D2
�2A1

�Y2 + 	A1 + ����A1�2A1 + ��Ā1A2
2 + 2A1�A2�2�

+ ��A2�2A2 + Ā2A1
2 + 2A2�A1�2�� = 0, �4.16�

D2
�2A2

�X2 + D1
�2A2

�Y2 + 	A2 + ����A2�2A2 + ��Ā2A1
2 + 2A2�A1�2�

+ ��A1�2A1 + Ā1A2
2 + 2A1�A2�2�� = 0. �4.17�

Here

� =



0

2L 

0

2L

p1
4�x�p2

4�y�dx dy



0

2L 

0

2L

p1
2�x�p2

2�y�dx dy

, �4.18�
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� =



0

2L 

0

2L

p1
2�x�p2

2�x�p1
2�y�p2

2�y�dx dy



0

2L 

0

2L

p1
2�x�p2

2�y�dx dy

, �4.19�

and

 =



0

2L 

0

2L

p1
3�x�p2�x�p2

3�y�p1�y�dx dy



0

2L 

0

2L

p1
2�x�p2

2�y�dx dy

. �4.20�

Notice that � and � are always positive, but  may be posi-
tive, negative, or zero.

The coefficients in Eqs. �4.16� and �4.17� can be readily
determined from Bloch solutions of the 1D equation �3.3�. In
particular, when the 1D Bloch waves p1�x� and p2�x� have
been normalized to have unit amplitude �see Fig. 2�, we find
that at point C,

D1 = 0.434 845, D2 = 2.422 196,
�4.21�

� = 0.5821, � = 0.1325,  = 0;

at point D,

D1 = − 0.586 799, D2 = − 13.264 815,
�4.22�

� = 0.5256, � = 0.1811,  = 0;

and at point E,

D1 = 0.434 845, D2 = 15.793 172,
�4.23�

� = 0.4684, � = 0.0781,  = − 0.0261.

At band edges where a single Bloch mode exists �such as
points A and B in Fig. 3�b��, the envelope equation for this
single Bloch mode can be more easily derived. In this case,
this single Bloch mode must be of the form p1�x�p1�y�,
where p1�x�= p�x ;�0,1�, and �0,1 is a band edge in the 1D
problem �3.3�. Unlike the previous case, interchanging x and
y of this Bloch solution does not give different Bloch modes.
The leading order solution u0�x ,y� in the expansion �4.2�
now is A1�X ,Y�p1�x�p1�y�, and the envelope equation for
A1�X ,Y� can be found to be

D1� �2A1

�X2 +
�2A1

�Y2 	 + 	A1 + ��0�A1�2A1 = 0, �4.24�

where D1 is as given in Eq. �4.15�, and

�0 =



0

2L 

0

2L

p1
4�x�p1

4�y�dx dy



0

2L 

0

2L

p1
2�x�p1

2�y�dx dy

. �4.25�

In particular, when the Bloch solution p1�x� is normalized to
have unit amplitude, then at point A

D1 = 0.434 845, �0 = 0.462 815; �4.26�

and at point B,

D1 = − 0.588 073, �0 = 0.500 922. �4.27�

We note that, for this single-Bloch-mode case, an envelope
equation similar to �4.24� has been derived before in �37�.

B. Locations of envelope solitons

The envelope equations �4.16�, �4.17�, and �4.24� are
translation invariant. For instance, if �A1�X ,Y� ,A2�X ,Y�� is a
solution of Eqs. �4.16� and �4.17�, so is �A1�X−X0 ,Y
−Y0� ,A2�X−X0 ,Y −Y0��, where �X0 ,Y0� are any constants.
However, only when �X0 ,Y0� take some special values can
the perturbation series solution �4.2� truly satisfy the original
equation �2.4�. The reason is that �X0 ,Y0� must satisfy certain
additional constraints. These constraints are exponentially
small in �; thus, they cannot be captured in the power series
expansions of �4.2�, but need to be calculated using asymp-
totics beyond all orders techniques �38� or other equivalent
methods �20�. In 1D problems, it has been shown that enve-
lope solitons can be located only at two positions relative to
the periodic lattice �20� �or the underlying periodic wave
train �38��. In the present 2D problem, we will show below
that envelope solitons can be located only at four positions
relative to the 2D periodic lattice by a method similar to that
used in �20�. As we have done in the previous subsection,
detailed derivations will be presented for the �A1 ,A2� solu-
tions of Eqs. �4.16� and �4.17�. Similar results hold for the A1
solution of Eq. �4.24� as well.

First we derive two constraints for the envelope solutions.
Multiplying Eq. �2.4� by ūx or ūy, adding its conjugate equa-
tion, and integrating from −� to +�, we get the following
two constraints:



−�

+� 

−�

+�

F��x��u�x,y��2dx dy = 0, �4.28�



−�

+� 

−�

+�

F��y��u�x,y��2dx dy = 0. �4.29�

Substituting the perturbation expansion �4.2� of the solution
u�x ,y� into the above equations, these constraints at the lead-
ing order become

I1�x0,y0� = �2

−�

+� 

−�

+�

F��x��A1p1�x�p2�y�

+ A2p2�x�p1�y��2dx dy = 0, �4.30�

I2�x0,y0� = �2

−�

+� 

−�

+�

F��y��A1p1�x�p2�y�

+ A2p2�x�p1�y��2dx dy = 0. �4.31�

Here
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Ak = Ak�X − X0,Y − Y0�, k = 1,2, �4.32�

and �X0 ,Y0�= ��x0 ,�y0� is the center position of the envelope
solution �A1 ,A2�. In this paper, we consider envelope func-

tions �A1 ,A2� such that �A1�2, �A2�2, and A1Ā2+ Ā1A2 are sym-
metric in X and Y about the center position �X0 ,Y0�, i.e.,

�Ak�− X,Y��2 = �Ak�X,Y��2 = �Ak�X,− Y��2, k = 1,2,

�4.33�

and similar relations hold for A1Ā2+ Ā1A2. All solitary-wave
solutions of Eqs. �4.16� and �4.17� that we know satisfy these
assumptions �up to spatial translations�.

Now we examine the constraint �4.30�. This constraint
can be rewritten as

I1�x0,y0� = �2

−�

+� 

−�

+�

F��x���A1�2p1
2�x�p2

2�y�

+ �A2�2p2
2�x�p1

2�y� + �A1Ā2

+ Ā1A2�p1�x�p2�x�p1�y�p2�y��dx dy = 0.

�4.34�

Since F��x� is antisymmetric and p1
2�x� , p2

2�x� both symmet-
ric, the functions F��x�p1

2�x�p2
2�y�, F��x�p2

2�x�p1
2�y�, and

F��x�p1�x�p2�x�p1�y�p2�y� have the following Fourier series
expansions:

F��x�p1
2�x�p2

2�y� = 
m=1

�


n=0

�

cm,n
�1� sin

2�mx

L
cos

2�ny

L
,

�4.35�

F��x�p2
2�x�p1

2�y� = 
m=1

�


n=0

�

cm,n
�2� sin

2�mx

L
cos

2�ny

L
,

�4.36�

F��x�p1�x�p2�x�p1�y�p2�y�

= 
m=1

�


n=0

�fty

cm,n
�3� sin

2�mx

L
cos

2�ny

L

+ 
m=0

�


n=1

�

dm,n
�3� cos

2�mx

L
sin

2�ny

L
. �4.37�

Here dm,n
�3� =0 or cm,n

�3� =0 �for all m ,n� if p1�x�p2�x� is even or
odd, respectively. When the above Fourier expansions are
substituted into Eq. �4.34�, every Fourier mode in these ex-
pansions leads to an exponentially small term in �4.34�, and
the exponential rate of decay of these terms is larger for
higher values of m+n. Keeping only the leading-order term
obtained from Fourier modes with m+n=1, Eq. �4.34� be-
comes

I1�x0,y0� = �2

−�

+� 

−�

+� ��c1,0
�1� �A1�2 + c1,0

�2� �A2�2

+ c1,0
�3��A1Ā2 + Ā1A2��sin

2�x

L

+ d1,0
�3��A1Ā2 + Ā1A2�sin

2�y

L
	dx dy .

�4.38�

Recalling Eq. �4.32� and our symmetry assumptions on �A1�2,

�A2�2, and A1Ā2+ Ā1A2 �see �4.33��, the above integral can be
simplified to be

I1�x0,y0� = W1,1 sin�2�x0/L� + W1,2 sin�2�y0/L� ,

�4.39�

where

W1,1 � �2

−�

+� 

−�

+�

�c1,0
�1� �A1�X,Y��2

+ c1,0
�2� �A2�X,Y��2 + c1,0

�3��A1�X,Y�Ā2�X,Y�

+ Ā1�X,Y�A2�X,Y���cos
2�x

L
dx dy �4.40�

and

W1,2 � �2

−�

+� 

−�

+�

d1,0
�3��A1�X,Y�Ā2�X,Y�

+ Ā1�X,Y�A2�X,Y��cos
2�y

L
dx dy . �4.41�

Notice that both integrals W1,2 and W1,2 are exponentially
small in �; thus, the constraint �4.30� is exponentially small
and hence cannot be captured by the power-series perturba-
tion expansions �4.2�. Repeating similar calculations for the
integral of I2�x0 ,y0� in Eq. �4.31�, we can get �to the leading
order�

I2�x0,y0� = W2,1 sin�2�x0/L� + W2,2 sin�2�y0/L� ,

�4.42�

where the expressions for W2,1 and W2,2 are similar to those
for W1,1 and W1,2 above. Then in order for the two con-
straints �4.30� and �4.31� to hold, we must have

sin�2�x0/L� = sin�2�y0/L� = 0. �4.43�

Thus, the envelope solution �A1 ,A2� can be centered at only
four locations:

�x0,y0� = �0,0�,�0,
L

2
	,�L

2
,0	,�L

2
,
L

2
	 . �4.44�

Note that, due to the x and y symmetry of the lattice, enve-
lope solutions centered at the second and third locations as
above are topologically the same �except for an interchange
of x and y axes�. Other possible locations of �x0 ,y0�, such as
�L ,L�, are equivalent to one of the four locations above due
to the periodicity of the lattice potential.
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V. SOLUTIONS OF ENVELOPE EQUATIONS

The envelope equations �4.16�, �4.17�, and �4.24� are
some of the key results of this paper. They have important
consequences. First, they show that solitary waves are pos-
sible only when 	D1�0 and 	D2�0. This simply means
that � must lie in the band gap of the linear system see �Eq.
�4.3��. Second, these equations show that solitary waves exist
only when the dispersion coefficients D1 ,D2 and the nonlin-
earity coefficient � are of the same sign. For instance, at
points A, C, and E in Fig. 3, where D1�0 and D2�0, soli-
tary waves exist only when ��0, i.e., for focusing nonlin-
earity, but not for defocusing nonlinearity ���0�. The situ-
ation is opposite at points B and D. This result is consistent
with our physical intuition, as well as the 2D experimental
observations in �31�.

Below, we consider soliton solutions of the envelope
equations �4.24�, �4.16�, and �4.17�. The scalar equation
�4.24� is the familiar 2D NLS equation, and it admits the
following types of solitary wave solutions: �1� A1= f�R�,
which is real and radially symmetric; here �R ,�� is the polar
coordinates of �X ,Y�; and �2� A1= f�R�ein�, where n is an
integer; this is a vortex-ring solution with charge n.

The coupled envelope equations �4.16� and �4.17� admit a
wider array of solutions. A complete classification of their
solutions is beyond the scope of the present paper. Below we
list only a few types of their solutions. If =0, these equa-
tions admit the following three simple solution reductions.

�i� A1�0, A2=0; or A1=0, A2�0. In this case, the solu-
tion is a single Bloch-wave envelope solution. Notice that A1
�or A2� satisfies a 2D NLS equation with different dispersion
coefficients D1 and D2 along the X and Y directions; thus,
these solutions are simply those described above �charge-free
or vortex solutions� except for being stretched along the X or
Y direction and hence becoming ellipse shaped.

�ii� A1 ,A2�R, where R is the set of real numbers. In this
case, the solution is a real-valued vector envelope state. Note
that, if �A1 ,A2��R is a solution, so are �−A1 ,A2�,
�A1 ,−A2�, �−A1 ,−A2�, and �iA1 , iA2�. All these solutions are
equivalent to each other and lead to the equivalent solitary
waves in the original system �2.4�.

�iii� A1�R ,A2� iR. In this case, the solution is a
complex-valued vector envelope state. Note that the other
solution of A1� iR ,A2�R is equivalent to this A1�R ,A2
� iR solution.

If �0, however, the reductions are quite different. For
instance, the first and third reductions of case =0 no longer
hold. In this case, the reduction of A1 ,A2�R is allowed.
Under this reduction, there are two subcases, A1�0, A2�0,
and A1�0, A2�0, which are not equivalent to each other.
They lead to different solitary waves in Eq. �2.4� �see the end
of this section�.

It is noteworthy that at band edges where �0, the single
Bloch-wave envelope reductions of A1�0, A2=0 and A1=0,
A2�0 are not possible. Physically, this is due to a resonance
between the two Bloch modes, which prevents the existence
of a single-Bloch-mode envelope solution. For instance, at
point E of Fig. 3 where �0 �see Eq. �4.23��, the two Bloch
modes are both located at the same � point in the first Bril-

louin zone �see Sec. III and Fig. 4�e��. These two Bloch
modes are thus in resonance, which makes �0. At points
where =0 �such as points C and D in Fig. 3�, the two Bloch
solutions are located at different symmetry points of the Bril-
louin zone and are not in resonance; thus single-Bloch-wave
reductions of A1�0, A2=0 and A1=0, A2�0 are possible
there.

To illustrate various envelope-soliton solutions admitted
by Eqs. �4.24�, �4.16�, and �4.17�, we consider points A, B,
C, D, and E of Fig. 3 in detail below. At each of these five
points, we determine solutions of the underlying envelope
equations. For each envelope solution, we also display the
corresponding leading-order analytical solution u0�x ,y�.
Since envelope solitons can have four different locations �see
the previous section�, which will lead to four different solu-
tions u0�x ,y�, for simplicity, we will display only the one
where the envelope is centered at �x0 ,y0�= �0,0� below.

First we consider point A. At this point, a single Bloch
mode exists and has been shown in Fig. 4�a�. This Bloch
wave is located at the � point of the first Brillouin zone, is �
periodic along both x and y directions, and is all positive.
The envelope equation at this point is given by �4.24� with
the coefficients D1 and �0 given in Eq. �4.26�. Since D1
�0, solitary waves will bifurcate into the semi-infinite band
gap �	�0� under a focusing nonlinearity ��=1�. If we take
the solution of �4.24� to be A1= f�R� where f�R��0 is the
ground-state envelope solution, the corresponding leading-
order analytical solution u0�x ,y� is a nodeless solitary wave.
Such solutions have been reported before �5,7,21,23�. Other
envelope solutions of �4.24�, such as A1= f�R� where f�R� is
a higher-mode solution �with nodes� or vortex-ring solutions
A1= f�R�ein�, could lead to other types of solitary wave
structures.

Next, we consider point B. At this point, a single Bloch
mode exists and has been shown in Fig. 4�b�. This Bloch
mode is located at the M point of the first Brillouin zone, is
2� periodic along both x and y directions, and its adjacent
peaks are out of phase. The envelope equation at this point is
given by �4.24� with the coefficients D1 and �0 given in Eq.
�4.27�. Since D1�0, solitary waves will bifurcate into the
first band gap �	�0� under a defocusing nonlinearity
��=−1�. If we take the solution of �4.24� to be the ground-
state envelope solution, the corresponding analytical solution
u0�x ,y� is a gap soliton with nodes. Such solutions have been
reported in �5,15,23�.

The envelope solutions at points C, D, and E are richer
and more interesting. Two of them, which are the so-called
reduced-symmetry solitons �30� and gap vortex solitons �27�,
have been reported before. But many other solutions at these
points have not been considered yet to our knowledge. They
include solutions that we call dipole-array solitons, dipole-
cell solitons, vortex-cell solitons, etc. Envelope solutions and
the corresponding leading-order analytical solutions u0�x ,y�
at these three points will be described in the next three sub-
sections, respectively.

A. Envelope solutions at point C

At point C, two Bloch modes exist. One of them is shown
in Fig. 4�c�, while the other is a 90° rotation of Fig. 4�c�.
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These Bloch modes are located at the X and X� points of the
first Brillouin zone. They are � periodic along one spatial
direction, and 2� periodic along the other spatial direction.
The envelope equations at this point are given by �4.16� and
�4.17�, with the coefficients D1 ,D2 ,� ,� given in Eq. �4.21�,
and =0. Since D1 ,D2�0 here, solitary waves will bifurcate
into the first band gap �	�0� under a focusing nonlinearity
��=1�. Since =0, we have three solution reductions �see
above�. Under these reductions, we consider the following
subclasses of solutions.

�i� A1�0, A2=0. In this case, the envelope solution is an
ellipse as shown in Fig. 5�a�. This ellipse stretches along the
Y direction. When the Bloch wave �see Fig. 4�c�� is modu-
lated by this envelope function, the resulting leading-order
analytical solution u0�x ,y� is plotted in Fig. 5�b� �with �
taken as 0.2�. This solution contains only a single Bloch
mode �since A2=0�; thus we can call it a single-Bloch-mode
soliton. This soliton is narrower along the x direction, and
broader along the y direction; thus, it is expected to be more
mobile along the y direction and less so along the x direction.
This type of solution has been observed in �30� for a differ-
ent �saturable� nonlinearity �see Sec. VI A for more details�.
In that paper, these solutions were called reduced-symmetry
solitons. One of their potential applications in optical routing
and switching has been described in �39�.

�ii� A1�0, A2�0. In this case, the envelope solutions are
both real and positive, and they are shown in Figs. 6�a� and
6�b�. They are both ellipse shaped but stretched along oppo-
site directions. The corresponding leading-order analytical
solution u0�x ,y� is plotted in Figs. 6�c� and 6�d� �with �
taken as 0.2�. The central region of this solitary wave is a
dipole array aligned along the two diagonal directions; thus,
we will call this solitary wave a dipole-array gap soliton.
The outer region of this soliton is aligned along the horizon-
tal �x� and vertical �y� directions though. Note that this
dipole-array soliton is quite different from dipole solitons
reported before �see �19,26� for instance�: previous dipole
solitons reside in the semi-infinite band gap, and their peaks
are at lattice sites; but the present dipole-array soliton resides
in the first band gap, and its peaks are off lattice sites. This
dipole-array gap soliton arises due to a superposition of two
modulated Bloch modes �see Eq. �4.4��, and has not been
reported before to our knowledge.

�iii� A1�0, A2= iÂ2, Â2�0. In this case, the envelope of
one Bloch wave is real, while that of the other Bloch wave is
purely imaginary. In the literature, two such Bloch modes are
said to have � /2 phase delay �12,27�. Envelope functions A1

and Â2 look very similar to A1 and A2 of Figs. 6�a� and 6�b�.
Indeed, it is easy to see that A1 and Â2 satisfy the same
equations as A1 and A2 of the previous reduction �ii�, except
that the � coefficient is slightly different. The leading-order
analytical solution u0�x ,y� for these envelope solutions is
displayed in Figs. 6�e� and 6�f�. This soliton looks quite dif-
ferent from the previous one in Figs. 6�c� and 6�d�. The most
significant difference is that, on winding around each lattice
center �i.e., points x=m�, y=n� with m ,n being integers�,
the phase of the present soliton increases or decreases by 2�.
In other words, the solution around each lattice center has a
vortex structure. Thus, we call this solution a vortex-array
gap soliton. This vortex-array soliton is qualitatively the

X

Y

(a)

−5 0 5
−5

0

5

x

y

(b)

−10 0 10

−10

0

10

FIG. 5. �Color online� �a� Envelope solution A1�X ,Y� at point C
with A2=0; �b� the corresponding analytical single-Bloch-mode
soliton u0�x ,y� with �=0.2.
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FIG. 6. �Color online� �a�, �b� Envelope solutions A1�X ,Y��0
�left� and A2�X ,Y��0 �right� at point C; �c�, �d� the corresponding
analytical dipole-array soliton u0�x ,y� with �=0.2: the left is the
amplitude and right the phase; �e�, �f� the analytical vortex-array
soliton u0�x ,y� at point C in the case �iii� with �=0.2: the left is the
amplitude and right the phase.
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same as the gap vortex soliton reported in �27� for a different
nonlinearity �see Sec. VI A�. However, it is quite different
from the other vortex solitons residing inside the semi-
infinite band gap, as has been reported in �21,22,24,25�
before.

For a vortex-type soliton, its angular momentum is an
important quantity. This momentum is defined as

� �
 r � Im�ū � u�dr = Im 

−�

� 

−�

�

ū�xuy − yux�dx dy .

�5.1�

Here Im�ū�u� is the linear momentum, and r is the position
vector in the �x ,y� plane. The spin of the vortex is defined as

S =
�


 �u�2dr

. �5.2�

In the absence of the periodic potential, the spin of a vortex
soliton takes an integer value equal to the phase winding
number �topological charge�. In the present case with a peri-
odic potential, the spin of a vortex-array gap soliton does not
take integer values in general. Even though this soliton has a
local vortex structure around each lattice center, the topologi-
cal charges of adjacent lattice centers are opposite; thus, the
total spin of this vortex-array soliton is finite, not infinite. In
fact, substituting the perturbation-series solution �4.2� and
�4.4�, and A1�R, A2� iR into the � and S formulas, we can
easily show that both � and S approach zero as �→0. Thus,
the spin of these vortex-array solitons is quite small.

B. Envelope solutions at point D

Point D admits two Bloch waves, one shown in Fig. 4�d�,
and the other a 90° rotation of Fig. 4�d�. These Bloch modes
are located at the X and X� points of the first Brillouin zone.
The envelope equations at this point are given by �4.16� and
�4.17�, with the coefficients D1 ,D2 ,� ,� given in Eq. �4.22�,
and =0. Since D1 ,D2�0 now, solitary waves will bifurcate
into the second band gap �	�0� under a defocusing nonlin-
earity ��=−1�. As for point C, three solution reductions are
admitted. Under these reductions, we consider the following
subclasses of solutions.

�i� A1�0, A2=0. In this case, the envelope solution is an
ellipse as shown in Fig. 7�a�, which is thinner than Fig. 5�a�
at point C. When the Bloch wave �see Fig. 4�d�� is modu-
lated by this envelope function, the resulting leading-order
analytical solution u0�x ,y� is plotted in Fig. 7�b� �with �
=0.2�. This solution is also a single-Bloch-mode soliton
since A2=0. Due to the thin envelope solution, this soliton is
much broader in the y direction than in the x direction. Thus,
we can expect it to be much more mobile along the y direc-
tion than along the x direction. Note that this solution is
under a defocusing nonlinearity, while a similar-looking so-
lution in Fig. 5�b� �see also �30�� was under a focusing non-
linearity.

�ii� A1�0, A2�0. In this case, the envelope solutions are
both real and positive and are shown in Figs. 8�a� and 8�b�.
They are both ellipse shaped, stretching along opposite di-
rections. The corresponding leading-order analytical solution
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FIG. 7. �Color online� �a� Envelope solution A1�X ,Y� at point D
with A2=0; �b� the corresponding analytical single-Bloch-mode
soliton u0�x ,y� with �=0.2.
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FIG. 8. �Color online� �a�, �b� Envelope solutions A1�X ,Y��0
�left� and A2�X ,Y��0 �left� at point D; �c�, �d� the corresponding
analytical dipole-cell soliton u0�x ,y� with �=0.2: the left is the
amplitude and the right the phase; �e�, �f� the analytical vortex-cell
soliton u0�x ,y� at point D in the case �iii� with �=0.2: the left is the
amplitude and the right the phase.
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u0�x ,y� is plotted in Figs. 8�c� and 8�d� �with �=0.2�. This
solution looks quite different from its counterpart—the
dipole-array soliton of Figs. 6�c� and 6�d� at point C. Its main
feature is that the solution inside each lattice site is a dipole
cell. Its difference from the dipole-array soliton at point C is
that here, the two humps of each dipole are completely con-
fined inside each individual lattice, while the two humps of
each dipole in Figs. 6�c� and 6�d� spread to neighboring lat-
tice sites. We will call this soliton in Figs. 8�c� and 8�d� a
dipole-cell gap soliton. Solutions of this kind have not been
reported before to our knowledge. Notice that in the central
region of the soliton, dipole cells are aligned along diagonal
directions, but in the outer region, dipole cells are dominant
and aligned along the horizontal and vertical directions.

�iii� A1�0, A2= iÂ2, Â2�0. In this case, the two Bloch
modes have � /2 phase delay, and the envelope functions

�A1 , Â2� are similar to �A1 ,A2� of Figs. 8�a� and 8�b�. The
leading-order analytical solution u0�x ,y� with these envelope
solutions is displayed in Figs. 8�e� and 8�f�. The most sig-
nificant feature of this solution is that, in the central region,
the solution inside each lattice site is a vortex cell �with
charge 1 or −1�. Thus, we call it a vortex-cell gap soliton.
The charges of adjacent cells are opposite; hence the total
angular momentum and spin of this soliton are both finite.
When �→0, the angular momentum and spin approach zero.
Notice that each vortex cell here is completely isolated and
confined inside each individual lattice, which is quite differ-
ent from the vortex-array soliton in Figs. 6�e� and 6�f�, where
neighboring vortices are connected together and do not have
clear-cut boundaries between them. In addition, this vortex-
cell soliton is under a defocusing nonlinearity, while the
vortex-array soliton of Figs. 6�e� and 6�f� was under a focus-
ing nonlinearity �see also �27��. Furthermore, this vortex-cell
soliton resides in the second band gap, while the vortex-array
soliton of Figs. 6�e� and 6�f� resides in the first band gap.
Gap vortex solitons under defocusing nonlinearity as re-
ported in �15,29� reside also inside the first band gap; they
are the counterparts of vortex solitons in the semi-infinite
band gap as reported in �21,22�, and are fundamentally dif-
ferent from the vortex-cell solitons bifurcated from point D
here. Although these vortex-cell gap solitons have not been
studied before, they do resemble the linear vortex-cell defect
modes in photonic lattices as reported in �12�.

C. Envelope solutions at point E

Point E also admits two Bloch modes, one shown in Fig.
4�e�, and the other a 90° rotation of Fig. 4�e�. These Bloch
modes are both located at the � point of the first Brillouin
zone and thus are � periodic along both spatial directions.
The envelope equations at this point are given by �4.16� and
�4.17�, with the coefficients D1 ,D2 ,� ,� , given in Eq.
�4.23�. Since D1 ,D2�0, solitary waves will bifurcate into
the second band gap �	�0� under a focusing nonlinearity
��=1�. Since �0, the reduction of A1 ,A2�R is allowed,
and we consider the following two subclasses of solutions.

�i� A1�0, A2�0. In this case, the envelope solutions are
both real and positive, and they are shown in Figs. 9�a� and
9�b�. They are both very thin ellipses stretched along oppo-

site directions. The corresponding leading-order analytical
solution u0�x ,y� is plotted in Fig. 9�c� �with � taken as 0.2�.
This solution has a pronounced cross-shaped overall struc-
ture. In the central region of the �x ,y� plane, the solution at
each lattice center is an almost circular positive spike, which
recedes to negative backgrounds away from the lattice cen-
ter. Thus, we may call this solution a spike-array gap soliton.

�ii� A1�0, A2�0. In this case, the envelope functions A1
and �A2� are similar to those of Figs. 9�a� and 9�b�, and thus
not shown. The corresponding leading-order analytical solu-
tion u0�x ,y� is plotted in Fig. 9�d� �with �=0.2�. This solu-
tion also has a pronounced cross shape. In its central region,
the solution resembles an array of quadrupoles; thus, we can
call this solution a quadrupole-array gap soliton.

VI. FAMILIES OF SOLITARY WAVES BIFURCATED
FROM BAND EDGES

The above multiscale perturbation analysis predicts vari-
ous types of low-amplitude solitary waves when the propa-
gation constant � is near edges of Bloch bands. As the
propagation constant moves away from band edges, these
solitary waves will become more localized, and their ampli-
tudes will increase. From an experimental point of view,
more localized solitary waves are often easier to observe. For
more localized solutions, the above perturbation analysis
starts to break down, and numerical methods need to be em-
ployed. In this section, we compute whole families of soli-
tary waves bifurcated from edges of Bloch bands. The nu-
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FIG. 9. �Color online� �a�, �b� Envelope solutions A1�X ,Y��0
�left� and A2�X ,Y��0 �right� at point E; �c� the corresponding ana-
lytical spike-array soliton u0�x ,y� with �=0.2; �d� the analytical
quadrupole-array soliton u0�x ,y� at point E in the case �ii� with �
=0.2.
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merical method we will use is the modified squared-operator
iteration method developed in �35�.

For illustration purpose, we determine families of solu-
tions bifurcated from points C, D, and E of Fig. 3�b�.
Leading-order analytical approximations on low-amplitude
solutions of these families have been presented in Figs. 5–9.
Note that solution families bifurcated from points A and B
have been reported before in �15,21,23�; thus, they will not
be computed in this paper.

A. Solution families bifurcated from point C

At point C, three types of solitary waves have been pre-
dicted in the previous section under a focusing nonlinearity:
single-Bloch-mode solitons, dipole-array solitons, and
vortex-array solitons �see Figs. 5�b� and 6�c�–6�f�, respec-
tively�. They all exist in the first band gap, bifurcated from
the edge point C of the second Bloch band. Numerically, we
have obtained the entire families of these three types of so-
lutions. Their power curves are displayed in Fig. 10. Here the
power is defined as

P = 

−�

� 

−�

�

�u�x,y��2dx dy . �6.1�

All the three power curves are nonmonotonic. They have
nonzero minimum values inside the band gap, below which
solitary waves of the corresponding family do not exist. This
contrasts with the 1D case where solitary waves exist at all
power levels �20�. Of these three power curves, the one for
the single-Bloch-mode family is the lowest. Thus single-
Bloch-mode solitons take the least power amount to excite.
Solitary waves of all three families at �=7.189 and 6.189,
which are 0.04 and 1.04 below the edge point C �where �0
=7.229�, are plotted in Fig. 11. Note that the shorter separa-
tion �−�0=−0.04 is chosen so that �−�0=−�2, where �

=0.2 is the value we have used when plotting all analytical
solutions u0�x ,y� in Figs. 5 and 6. The solitons at �=7.189,
shown in Figs. 11�a�, 11�c�, and 11�f�, are weakly localized
and have low amplitudes, and they are close to the band edge
C. These numerical solutions are almost identical to the ana-
lytical ones shown in Figs. 5�b�, 6�c�, and 6�e� �the phase
fields of solitons in Figs. 11�c� and 11�f� are also almost
identical to the analytical ones in Figs. 6�d� and 6�f� and thus
are not shown�. Thus, the numerical results corroborate the
analytical theory of the previous section. More significant
solutions in Fig. 11 are the three solitons at the other propa-
gation constant �=6.189, which is deep inside the first band
gap. These solutions, displayed in Figs. 11�b�, 11�d�, 11�e�,
11�g�, and 11�h�, are strongly localized. Indeed, the soliton of
the single-Bloch-mode family in Fig. 11�b� almost becomes a
single dipole aligned along the y axis at the lattice site of
origin �x ,y�= �0,0�; the soliton of the dipole-array family in
Figs. 11�d� and 11�e� almost becomes a single dipole aligned
along the y=−x direction at the lattice site of origin; and the
soliton of the vortex-array family in Figs. 11�g� and 11�h�
almost becomes a single vortex at the lattice site of origin.
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FIG. 10. �Color online� Power diagrams of the three families of
solitary waves bifurcated from the edge point C �under focusing
nonlinearity�. Bottom curve, single-Bloch-mode branch �marked by
letter “s”�; middle curve, dipole-array branch �marked by letter
“d”�; top curve, vortex-array branch �marked by letter “v”�. The
marked thick dot points are 0.04 and 1.04 below the band edge C.
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FIG. 11. �Color online� Weakly and strongly localized solutions
on the three soliton branches bifurcated from the edge point C in
Fig. 10. Propagation constants of these solutions are �=6.189 and
7.189, which are marked by thick dots in Fig. 10. Top row: single
Bloch-mode solitons; u�x ,y� is shown; �= �a� 7.189; �b� 6.189.
Middle and bottom rows: dipole-array and vortex-array solitons,
respectively; �c�, �f� amplitudes ��u�x ,y��� at �=7.189; �d�, �e� am-
plitude and phase of the dipole-array soliton at �=6.189; �g�, �h�
amplitude and phase of the vortex-array soliton at �=6.189.
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The phase structures of these strongly localized solitons,
however, still resemble those of weakly localized ones �see
Figs. 6�d�, 6�f�, 11�e�, and 11�h��. This strong localization of
solitons in these solution families makes them useful for on-
axis excitation in photorefractive crystals. Indeed, the soliton
of vortex-array family in Figs. 11�g� and 11�h� looks almost
identical to the gap vortex soliton observed in �27� with on-
axis excitation. It should be noted that reduced-symmetry
solitons observed in �30� also bifurcate from single Bloch
modes at point C. However, such solitons observed in �30� at
high powers look a little different from that in Fig. 11�b�:
their solitons are confined to three lattice sites, with the
middle-site peak intensity higher than those at the two neigh-
boring sites; while the soliton of Fig. 11�b� is confined to two
lattice sites with equal peak intensities. The reason for this
difference is the following. As we have explained in Sec.
IV B, the envelopes of Bloch modes can be centered at four
locations �see Eq. �4.44��. For the single-Bloch-mode soliton
family shown in Figs. 10, 11�a�, and 11�b�, the envelope was
centered at the origin �x0 ,y0�= �0,0�, which leads to a dipole
structure under strong localization. If the envelope is cen-
tered at �x0 ,y0�= �0,L /2�= �0,� /2� instead, solitons under
strong localizations would have a central peak shouldered by
two equal but lower-intensity peaks just like those observed
in �30�. Thus, the solitons observed in �30� belong to the
single-Bloch-mode soliton family of point C with the enve-
lope centered at �0,� /2� rather than �0,0�. From the experi-
mental point of view, dipole-array solitons as shown in Figs.
11�c�–11�e�, as well as the strongly localized single-Bloch-
mode soliton of dipole type in Fig. 11�b�, have never been
observed before to our knowledge, and they still await ex-
perimental demonstration.

B. Solution families bifurcated from point D

At point D, three types of solitary waves were predicted
in Sec. V under a defocusing nonlinearity: single-Bloch-
mode solitons, dipole-cell solitons, and vortex-cell solitons
�see Figs. 7�b� and 8�c�–8�f� respectively�. They all exist in
the second band gap, bifurcated from the edge point D of the
second Bloch band. Numerically, we have obtained the entire
families of these three types of solutions. Their power curves
are displayed in Fig. 12. These power curves are also non-
monotonic and have nonzero minimum values inside the
band gap. Solitary waves of these three families at �
=9.121 and 9.621, which are 0.04 and 0.54 above the edge
point D �where �0=9.081�, are plotted in Fig. 13. The soli-
tons at �=9.121, shown in Figs. 13�a�, 13�c�, and 13�f�, are
weakly localized and have low amplitudes. They are located
close to the band edge D. These numerical solutions are al-
most indistinguishable from the analytical ones shown in
Figs. 7�b�, 8�c�, and 8�e� where �=0.2 �the phase fields of
solitons in Figs. 13�c� and 13�f� are also almost indistin-
guishable from the analytical ones in Figs. 8�d� and 8�f� and
thus are not shown�; thus, numerical and analytical solutions
near the band edge D are in agreement. Solutions at �
=9.621 away from the edge point D are more localized.
These solutions are displayed in Figs. 13�b�, 13�d�, 13�e�,
13�g�, and 13�h�, respectively. The single-Bloch-mode soli-

ton in Fig. 13�b� is confined to only one lattice site along the
x direction, but occupies quite a few lattice sites along the y
direction. Thus, this soliton will be highly mobile along the y
direction and strongly trapped along the x direction. The
dipole-cell soliton in Figs. 13�d� and 13�e� is largely confined
to the single lattice site at the origin as a dipole aligned along
the y=−x direction, with long tails stretching along the hori-
zontal and vertical �i.e., lattice� directions in a cross pattern.
The vortex-cell soliton in Figs. 13�g� and 13�h� is also
largely confined to the single lattice site at the origin in the
form of a vortex ring with charge −1, with long tails along
the horizontal and vertical axes as well. None of these soli-
tary wave structures in Fig. 13 was theoretically predicted or
experimentally observed before to our knowledge. These
structures exist under a defocusing nonlinearity. Such non-
linearity can be obtained in photorefractive crystals with a
negative bias charge or in Bose-Einstein condensates for cer-
tain types of atoms such as 87Rb and 23Na �14�.

C. Solution families bifurcated from point E

At point E, two types of solitary waves were predicted in
Sec. V under a focusing nonlinearity: spike-array solitons
and quadrupole-array solitons �see Figs. 9�c� and 9�d��. They
exist in the second band gap, bifurcated from the edge point
E of the third Bloch band. Numerically, we have obtained
families of these two types of solutions. Their power curves
are displayed in Fig. 14. These power curves are also non-
monotonic and have nonzero minimum values inside the
band gap. Solitary waves of these families at �=9.77 and
9.33, which are 0.04 and 0.48 above the edge point E �where
�0=9.81�, are plotted in Fig. 15. The solitons at �=9.77,
shown in Figs. 15�a� and 15�c�, are weakly localized and
have low amplitudes. They are almost the same as the ana-
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FIG. 12. �Color online� Power diagrams of the three families of
solitary waves bifurcated from the edge point D �under a defocusing
nonlinearity�. Bottom curve, single-Bloch-mode branch �marked by
letter “s”�; middle curve, dipole-cell branch �marked by letter “d”�;
top curve, vortex-cell branch �marked by letter “v”�. The marked
thick dot points are 0.04 and 0.54 above the band edge D.
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lytical solutions in Figs. 9�c� and 9�d� where �=0.2, which is
expected. The solutions at �=9.33 away from the edge point
E are more localized. These solutions are displayed in Figs.
15�b� and 15�d�. The localized solution of the spike-array
soliton family in Fig. 15�b� is now confined to only a few
lattice sites on the x and y axes, with a dominant circular
spike in its center. The localized solution of the quadrupole-
array soliton family in Fig. 15�d� is confined also to only a
few lattice sites on the x and y axes, with a quadrupole in its
center. These types of solitary waves have not been reported
before to our knowledge.

VII. TIME-DEPENDENT ENVELOPE EQUATIONS

In the previous sections, our focus was to obtain solitary
waves in Eq. �2.1�; thus, our envelope equations �4.16�,
�4.17�, and �4.24� were time independent. If we look beyond
solitary waves, we can further study how slowly modulated
low-amplitude Bloch-wave packets evolve with time under
nonlinear effects. In such a study, envelope equations of
Bloch modes will be time dependent. Such time-dependent

envelope equations are essential not only for the tracking of
Bloch-wave packet movements, but also for the stability
analysis of stationary envelope solutions obtained in Sec. V.
This is analogous to the role the nonlinear Schrödinger equa-
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FIG. 13. �Color online� Weakly and strongly localized solutions
on the three soliton branches bifurcated from the edge point D in
Fig. 12. Propagation constants of these solutions are �=9.121 and
9.621, which are marked by thick dots in Fig. 12. Top row: single
Bloch-mode solitons; u�x ,y� is shown; �= �a� 9.121; �b� 9.621.
Middle and bottom rows: dipole-cell and vortex-cell solitons re-
spectively; �c�, �f� amplitudes ��u�x ,y��� at �=9.121; �d�, �e� ampli-
tude and phase of the dipole-cell soliton at �=9.621; �g�, �h� am-
plitude and phase of the vortex-cell soliton at �=9.621.
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solitary waves bifurcated from the edge point E �under focusing
nonlinearity�. Upper curve, the spike-array branch �marked by letter
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FIG. 15. �Color online� Weakly and strongly localized solutions
on the two soliton branches bifurcated from the edge point E in Fig.
14. Upper row, spike-array solitons; lower row, quadrupole-array
solitons. Propagation constants of these solutions are �=9.77 �left
column� and 9.33 �right column�, which are marked by thick dots in
Fig. 14.
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tion played in the study of water wave packets and light
pulses in nonlinear optics �40,41�. The derivation of time-
dependent envelope equations is a simple extension of the
analysis in Sec. IV and will be performed briefly below. As
before, the derivation will be carried out for the slightly more
complicated case where the solution is near band edges with
two different Bloch modes. Results for the simpler case of
the solution being near band edges with a single Bloch mode
will be given without elaboration.

Consider the evolution of low-amplitude Bloch-wave
packets in Eq. �2.1� near a band edge �=�0 with two differ-
ent Bloch modes p1�x�p2�y� and p2�x�p1�y�. The solution can
be expanded into the following perturbation series:

U�x,y,t� = e−i�0t��U0 + �2U1 + �3U2 + ¯ � , �7.1�

where

U0 = A1�X,Y,T�p1�x�p2�y� + A2�X,Y,T�p2�x�p1�y� ,

�7.2�

��1, X=�x, Y =�y are slow spatial variables, and T=�2t is
the slow time variable. When this expansion is substituted
into Eq. �2.1�, we find at O��2� that the equation for U1 is
simply Eq. �4.5� with uk �k=0,1� replaced by Uk, and with
an additional term i�U1 /�t added onto its left-hand side. The
solution for U1 is still given by Eq. �4.8�. At O��3�, we find
that the equation for U2 is Eq. �4.11� with uk �k=0,1 ,2�
replaced by Uk, with an additional term i�U2 /�t added onto
its left-hand side, and with 	u0 replaced by i�U0 /�T. Requir-
ing the U2 solution to not grow linearly with time t �suppres-
sion of secular terms�, the following time-dependent equa-
tions will be derived for the envelope functions A1�X ,Y ,T�
and A2�X ,Y ,T�:

i
�A1

�T
+ D1

�2A1

�X2 + D2
�2A1

�Y2 + ����A1�2A1 + ��Ā1A2
2 + 2A1�A2�2�

+ ��A2�2A2 + Ā2A1
2 + 2A2�A1�2�� = 0, �7.3�

i
�A2

�T
+ D2

�2A2

�X2 + D1
�2A2

�Y2 + ����A2�2A2 + ��Ā2A1
2 + 2A2�A1�2�

+ ��A1�2A1 + Ā1A2
2 + 2A1�A2�2�� = 0. �7.4�

Here all coefficients D1, D2, �, �, and  are the same as
those given in Eqs. �4.15� and �4.18�–�4.20�.

If the solution of Eq. �2.1� is a low-amplitude Bloch-wave
packet near a band edge �=�0 where a single Bloch mode
p1�x�p1�y� exists, the perturbation expansion for the solution
U is still Eq. �7.1�, except that

U0 = A1�X,Y,T�p1�x�p1�y� �7.5�

now. In this case, the equation for the envelope function
A1�X ,Y ,T� reduces to

i
�A1

�T
+ D1� �2A1

�X2 +
�2A1

�Y2 	 + ��0�A1�2A1 = 0, �7.6�

where the coefficients D1 and �0 are given in Eqs. �4.15� and
�4.25�.

Using the above time-dependent envelope equations, one
can study the time evolution of Bloch-wave packets. In ad-
dition, one can analyze linear and nonlinear stabilities of
stationary Bloch-wave packet solutions �i.e., solitary waves
in Eqs. �7.3�, �7.4�, and �7.6��. Such studies lie outside the
scope of the present paper.

VIII. SUMMARY AND DISCUSSION

In this paper, we systematically studied various families
of solitary waves which are bifurcated from Bloch-band
edges in the two-dimensional NLS equation with a periodic
potential. Near the band edges, we analytically derived en-
velope equations for low-amplitude Bloch-wave packets.
Based on these envelope equations, many types of solitary
waves inside band gaps were predicted, including dipole-
array solitons, dipole-cell solitons, vortex-cell solitons, etc.
Away from the band edges, solitary waves were traced nu-
merically, and strongly localized solitary waves of the corre-
sponding families were obtained. These solitary waves have
distinctive intensity and phase patterns such as cross-shape
intensity distributions and vortex-cell phase profiles. Certain
solitary waves previously reported in 2D photonic lattices
such as reduced-symmetry solitons �30� and gap vortex soli-
tons �27� were found to be special cases of our general
classes of solutions.

In this paper, the relatively simple and obvious types of
solutions in envelope equations were determined, and their
induced solitary wave families computed. Whether other so-
lutions of envelope equations would generate additional
families of solitary waves is still an open question. For in-
stance, the single-envelope equation �4.24� also admits
vortex-ring solutions of the type f�R�ein�. Whether such so-
lutions would lead to new families of vortex-type lattice soli-
tons remains to be seen. For the coupled envelope equations
�4.16� and �4.17�, it is not even clear what kind of additional
solutions they admit beyond the ones we presented in this
paper. Thus, a classification of solutions in the coupled en-
velope equations �4.16� and �4.17� is highly desirable. The
linear and nonlinear stability of solitary waves reported in
this paper is another open question which merits careful in-
vestigation. From the experimental point of view, the chal-
lenge is to experimentally demonstrate the types of solitary
waves obtained in this paper, such as dipole-array solitons
and vortex-cell solitons. These open questions are beyond
the scope of the present paper, and will be left for future
studies.

ACKNOWLEDGMENTS

The authors appreciate helpful discussions with Dr. Zhi-
gang Chen. This work was partially supported by the Air
Force Office of Scientific Research under Grant No. USAF
9550-05-1-0379.

SOLITARY WAVES BIFURCATED FROM BLOCH–BAND EDGES… PHYSICAL REVIEW E 75, 056602 �2007�

056602-15



�1� J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic
Crystals: Molding the Flow of Light �Princeton University
Press, Princeton, NJ, 1995�.

�2� P. Russell, Science 299, 358 �2003�.
�3� H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and

J. S. Aitchison, Phys. Rev. Lett. 81, 3383 �1998�.
�4� Z. Chen and K. McCarthy, Opt. Lett. 27, 2019 �2002�.
�5� J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N.

Christodoulides, Nature �London� 422, 147 �2003�.
�6� M. Petrovic, D. Trager, A. Strinic, M. Belic, J. Schröder, and

C. Denz, Phys. Rev. E 68 055601�R� �2003�.
�7� H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoul-

ides, Phys. Rev. Lett. 92, 123902 �2004�.
�8� R. Iwanow, R. Schiek, G. I. Stegeman, T. Pertsch, F. Lederer,

Y. Min, and W. Sohler, Phys. Rev. Lett. 93, 113902 �2004�.
�9� U. Peschel, R. Morandotti, J. S. Aitchison, H. S. Eisenberg,

and Y. Silberberg, Appl. Phys. Lett. 75 1348 �1999�.
�10� F. Fedele, J. Yang, and Z. Chen, Opt. Lett. 30, 1506 �2005�.
�11� F. Fedele, J. Yang, and Z. Chen, Stud. Appl. Math. 115, 279

�2005�.
�12� I. Makasyuk, Z. Chen, and J. Yang, Phys. Rev. Lett. 96,

223903 �2006�.
�13� X. Wang, J. Young, Z. Chen, D. Weinstein, and J. Yang, Opt.

Express 14, 7362 �2006�.
�14� F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev.

Mod. Phys. 71, 463 �1999�.
�15� E. Ostrovskaya and Y. S. Kivshar, Opt. Express 12, 19 �2004�.
�16� Th. Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eiermann, A.

Trombettoni, and M. K. Oberthaler, Phys. Rev. Lett. 94,
020403 �2005�.

�17� D. N. Christodoulides and R. I. Joseph, Opt. Lett. 13, 794
�1988�.

�18� J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D.
N. Christodoulides, Phys. Rev. Lett. 90, 023902 �2003�.

�19� D. Neshev, E. Ostrovskaya, Yu. S. Kivshar, and W. Kro-
likowski, Opt. Lett. 28, 710 �2003�.

�20� D. E. Pelinovsky, A. A. Sukhorukov, and Y. S. Kivshar, Phys.
Rev. E 70, 036618 �2004�.

�21� J. Yang and Z. H. Musslimani, Opt. Lett. 23, 2094 �2003�.
�22� B. B. Baizakov, B. A. Malomed, and M. Salerno, Europhys.

Lett. 63, 642 �2003�.

�23� N. K. Efremidis, J. Hudock, D. N. Christodoulides, J. W. Fleis-
cher, O. Cohen, and M. Segev, Phys. Rev. Lett. 91, 213906
�2003�.

�24� D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S.
Kivshar, H. Martin, and Z. Chen, Phys. Rev. Lett. 92, 123903
�2004�.

�25� J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J.
Hudock, and D. N. Christodoulides, Phys. Rev. Lett. 92,
123904 �2004�.

�26� J. Yang, I. Makasyuk, A. Bezryadina, and Z. Chen, Stud. Appl.
Math. 113, 389 �2004�.

�27� G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Se-
gev, Phys. Rev. Lett. 95, 053904 �2005�.

�28� H. Buljan, G. Bartal, O. Cohen, T. Schwartz, O. Manela, T.
Carmon, M. Segev, J. W. Fleischer, and D. N. Christodoulides,
Stud. Appl. Math. 115, 173208 �2005�.

�29� H. Sakaguchi and B. A. Malomed, J. Phys. B 37, 2225 �2004�.
�30� R. Fischer, D. Trager, D. N. Neshev, A. A. Sukhorukov, W.

Krolikowski, C. Denz, and Y. S. Kivshar, Phys. Rev. Lett. 96,
023905 �2006�.

�31� D. Trger, R. Fischer, D. N. Neshev, A. A. Sukhorukov, C.
Denz, W. Krlikowski, and Y. S. Kivshar, Opt. Express 14,
1913 �2006�.

�32� Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Phys. Rev.
Lett. 93, 093904 �2004�.

�33� X. Wang, Z. Chen, and P. G. Kevrekidis, Phys. Rev. Lett. 96,
083904 �2006�.

�34� M. J. Ablowitz, B. Ilan, E. Schonbrun, and R. Piestun, Phys.
Rev. E 74, 035601�R� �2006�.

�35� J. Yang and T. I. Lakoba, Stud. Appl. Math. 118, 153 �2007�.
�36� J. Yang, New J. Phys. 6, 47 �2004�.
�37� B. B. Baizakov, V. V. Konotop, and M. Salerno, J. Phys. B 35,

5105 �2002�.
�38� T. S. Yang and T. R. Akylas, J. Fluid Mech. 330, 215 �1997�.
�39� D. N. Christodoulides and E. D. Eugenieva, Phys. Rev. Lett.

87, 233901 �2001�.
�40� D. J. Benney and G. J. Roskes, Stud. Appl. Math. 48, 377

�1969�.
�41� A. Hasegawa and Y. Kodama, Solitons in Optical Communi-

cations �Clarendon, Oxford, 1995�.

ZUOQIANG SHI AND JIANKE YANG PHYSICAL REVIEW E 75, 056602 �2007�

056602-16


