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No stability switching at saddle-node bifurcations of solitary waves in generalized nonlinear
Schrödinger equations
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Saddle-node bifurcations arise frequently in solitary waves of diverse physical systems. Previously it was
believed that solitary waves always undergo stability switching at saddle-node bifurcations, just as in finite-
dimensional dynamical systems. Here we show that this is not true. For a large class of generalized nonlinear
Schrödinger equations with real or complex potentials, we prove that stability of solitary waves does not switch at
saddle-node bifurcations. This analytical result is confirmed by numerical examples where both soliton branches
are stable at saddle-node bifurcations.
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Saddle-node bifurcation is a well known phenomenon in
finite-dimensional dynamical systems [1]. In this bifurcation,
there are two fixed-point branches on one side of the bifurca-
tion point and no fixed points on the other side, and the stability
of these two fixed-point branches switches at the bifurcation
point (one branch stable and the other branch unstable). In
nonlinear partial differential equations (which can be viewed
as infinite-dimensional dynamical systems), this bifurcation
exists as well (it is also called fold bifurcation in the literature).
For instance, solitary waves in nonlinear physical systems
often exhibit this type of bifurcation. Examples include the
Boussinesq equations and the fifth-order Korteweg–de Vries
equation in water waves [2–4], the Swift-Hohenberg equation
in pattern formation [5], the nonlinear Schrödinger (NLS)
equations with localized or periodic potentials in nonlinear
optics and Bose-Einstein condensates [6–9], and many others.
Motivated by stability switching of saddle-node bifurcations
in finite-dimensional dynamical systems, it is widely believed
that in nonlinear partial differential equations, stability of soli-
tary waves also always switches at saddle-node bifurcations
(see [5–8] for examples). This belief is very pervasive since
no counterexample has been reported yet.

In this paper, we show that this belief of universal stability
switching at saddle-node bifurcations in nonlinear partial
differential equations is incorrect. Specifically, we show that in
a wide class of generalized NLS equations with real or complex
potentials, stability of solitary waves actually does not switch
at saddle-node bifurcations. This fact is proved analytically
by using general conditions of saddle-node bifurcations and
eigenvalue-bifurcation analysis. It is also verified numerically
by several examples, where both branches of solitary waves
are stable at saddle-node bifurcations.

We consider general nonlinear Schrödinger-type equations
with arbitrary forms of nonlinearity and external potentials in
multidimensions,

iUt + ∇2U + F (|U |2,x)U = 0, (1)

where ∇2 is the Laplacian in the N -dimensional space x =
(x1,x2, . . . ,xN ), and F (.,.) is a general function which contains
nonlinearity as well as external potentials. These equations in-
clude the Gross-Pitaevskii equation in Bose-Einstein conden-
sates and nonlinear light-transmission equations in localized
or periodic potentials as special cases [10–12]. Below, we will

first focus on the case where the function F is real valued,
which applies when the system (1) is conservative. Extension
to the nonconservative case of complex functions of F will be
considered afterward.

When the function F is real, Eq. (1) admits stationary
solitary waves of the form

U (x,t) = eiμtu(x), (2)

where u(x) is a localized real function satisfying

∇2u − μu + F (u2,x)u = 0, (3)

and μ is a real propagation constant which is a free parameter.
Under certain conditions, these solitary waves undergo saddle-
node bifurcations at special values of μ [6–9]. A signature of
these bifurcations is that on one side of the bifurcation point
μ0, there are no solitary wave solutions, but on the other side
of μ0, there are two distinct solitary-wave branches which
merge with each other at μ = μ0. To derive conditions for
these bifurcations, we introduce the linearization operator of
Eq. (3),

L1 = ∇2 − μ + ∂u[F (u2,x)u]. (4)

We also introduce the standard inner product of functions
〈f,g〉 = ∫ ∞

−∞ f ∗(x)g(x)dx, where the superscript “*” repre-
sents complex conjugation. Our analysis starts with the basic
observation that, if a bifurcation occurs at μ = μ0, by denoting
the corresponding solitary wave and the linearization operator
as

u0(x) = u(x; μ0), L10 = L1|μ=μ0, u=u0 , (5)

then the linear operator L10 should have a discrete zero
eigenvalue. This is a necessary condition for all types of
bifurcations. To derive sufficient conditions for saddle-node
bifurcations, let us assume that this zero eigenvalue of L10

is simple, which is the case for generic bifurcations in one
spatial dimension as well as for many bifurcations in higher
spatial dimensions. Under this assumption, we denote this
unique discrete (localized) real eigenfunction of L10 at the
zero eigenvalue as ψ(x), i.e.,

L10ψ = 0. (6)

We also denote

G(u; x) = F (u2; x)u, G2(x) = ∂2
uG|u=u0 . (7)
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Then the sufficient condition for saddle-node bifurcations of
solitary waves is given by the following theorem.

Theorem 1. Under the above assumption and notations, if
〈u0,ψ〉 �= 0 and 〈G2,ψ

3〉 �= 0, then a saddle-node bifurcation
of solitary waves occurs at μ = μ0 in Eq. (3).

Proof. Solitary waves which exist near μ = μ0 admit the
following perturbation series expansions:

u(x; μ) =
∞∑

k=0

(μ − μ0)k/2uk(x). (8)

Inserting this expansion into Eq. (3), we get the following
equations for uk at order (μ − μ0)k/2, k = 0,1,2, . . .:

∇2u0 − μ0u0 + F
(
u2

0,x
)
u0 = 0, (9)

L10u1 = 0, (10)

L10u2 = u0 − G2u
2
1/2! , (11)

and so on. Equation (9) for u0 is satisfied automatically since
u0 is a solitary wave at μ = μ0. The u1 solution to Eq. (10) is
found from Eq. (6) as

u1 = b1ψ, (12)

where b1 is a constant. The u2 function satisfies the linear
inhomogeneous equation (11). Due to the Fredholm alternative
theorem and the fact that L10 is self-adjoint, Eq. (11) admits
a localized solution for u2 if and only if the homogeneous
solution ψ is orthogonal to the inhomogeneous term, i.e.,〈

ψ,u0 − G2u
2
1/2

〉 = 0. (13)

Inserting the solution (12) into this orthogonality condition
and recalling the conditions in Theorem 1, we find that

b1 = b±
1 ≡ ±

√
2〈u0,ψ〉
〈G2,ψ3〉 . (14)

Thus we get two b1 values b±
1 which are opposite each other.

Inserting the corresponding u1 solutions (12) into Eq. (8), we
then get two perturbation-series solutions of solitary waves
u(x; μ) as

u±(x; μ) = u0(x) + b±
1 (μ − μ0)1/2 ψ(x) + O(μ − μ0). (15)

If 〈u0,ψ〉 and 〈G2,ψ
3〉 have the same sign, then b±

1 are real.
Recalling that u0(x) and ψ(x) are both real as well, we see that
these perturbation-series solutions (15) give two real-valued
(legitimate) solitary waves when μ > μ0, but these solitary
waves do not exist when μ < μ0. On the other hand, if 〈u0,ψ〉
and 〈G2,ψ

3〉 have the opposite sign, b±
1 are purely imaginary.

In this case, the perturbation series (15) give two real-valued
solitary waves when μ < μ0 but not when μ > μ0.

The above perturbation calculations can be continued to
higher orders. We can show that the two real solitary-wave
solutions (15), which exist on only one side of μ = μ0, can be
constructed to all orders of (μ − μ0)1/2. In addition, these two
solitary waves u±(x; μ) merge with each other when μ → μ0.
We can also show that except these two solitary-wave branches,
there are no other solitary-wave solutions near the bifurcation
point. Thus a saddle-node bifurcation occurs at μ = μ0. This
completes the proof of Theorem 1.

Stability properties of solitary waves near saddle-node
bifurcations is an important issue. In finite-dimensional dy-
namical systems, the stability of fixed points always switches
at saddle-node bifurcations, and this switching is caused
by a linear-stability eigenvalue of the fixed points crossing
zero along the real axis [1]. For solitary waves in nonlinear
partial differential equations (which can be viewed as fixed
points in infinite-dimensional dynamical systems), it is widely
believed that their stability also always switches at saddle-node
bifurcations. We find that this belief is incorrect. Below, we
show that for solitary waves (2) in the generalized NLS
equations (1), there are no linear-stability eigenvalues crossing
zero at a saddle-node bifurcation point, thus stability switching
does not occur.

To study the linear stability of solitary waves (2) in Eq. (1),
we perturb them as [12]

U (x,t) = eiμt {u(x) + [v(x) + w(x)]eλt

+ [v∗(x) − w∗(x)]eλ∗t }, (16)

where v,w 
 1 are normal-mode perturbations, and λ is
the mode’s eigenvalue. Inserting this perturbed solution into
Eq. (1) and linearizing, we obtain the following linear-stability
eigenvalue problem:

L� = −iλ�, (17)

where

L =
[

0 L0

L1 0

]
, � =

[
v

w

]
, (18)

L0 = ∇2 − μ + F (u2,x), (19)

and L1 has been given in Eq. (4).
At a saddle-node bifurcation point μ = μ0, we denote

L00 = L0|μ=μ0, u=u0 , L0 = Lμ=μ0, u=u0 . (20)

Then in view of Eq. (3), we have

L00u0 = 0, (21)

thus zero is a discrete eigenvalue of L00. From this equation
as well as Eq. (6), we have

L0

[
0
u0

]
= L0

[
ψ

0

]
= 0, (22)

thus zero is also a discrete eigenvalue of L0. On the bifurcation
of the zero eigenvalue in L0 when μ moves away from μ0, we
have the following main result.

Theorem 2. Assuming that zero is a simple discrete
eigenvalue of L00 and L10, then at a saddle-node bifurcation
point μ0, no eigenvalues of the linear-stability operatorL cross
zero, thus no stability switching occurs.

We will give two different proofs for this theorem.
First proof. The idea of this proof is to show that, when

μ moves away from μ0, the algebraic multiplicity of the zero
eigenvalue in L does not decrease, thus the zero eigenvalue in
L cannot bifurcate out to nonzero.

At the saddle-node bifurcation point μ = μ0, (0,u0)T and
(ψ,0)T are two linearly independent eigenfunctions of the zero
eigenvalue in L0 in view of Eq. (22). Here the superscript “T ”
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represents the transpose of a vector. Under the assumption
of Theorem 2, zero is a simple discrete eigenvalue of L00

and L10. Thus it is easy to see that L0 does not admit
any additional eigenfunctions at the zero eigenvalue, which
means that the geometric multiplicity of the zero eigenvalue
in L0 is 2. To determine the algebraic multiplicity of the
zero eigenvalue in L0, we need to examine the number of
generalized eigenfunctions of this zero eigenvalue. The lowest-
order generalized eigenfunction (f1,g1)T to the eigenfunction
(0,u0)T of this zero eigenvalue satisfies the equation

L0

[
f1

g1

]
=

[
0
u0

]
, (23)

so the equation for f1 is

L10f1 = u0. (24)

From Eq. (6), we see that this inhomogeneous equation has a
homogeneous localized solution ψ . In addition, from condi-
tions of saddle-node bifurcations in Theorem 1, 〈u0,ψ〉 �= 0.
Furthermore, L10 is a self-adjoint operator. Thus, from the
Fredholm alternative theorem, the inhomogeneous equation
(24) does not admit any localized solution, which means that
the eigenfunction (0,u0)T of the zero eigenvalue in L0 does
not have any generalized eigenfunctions. Similarly, we can
show that the eigenfunction (ψ,0)T of the zero eigenvalue in
L0 does not have any generalized eigenfunctions either. Hence
the algebraic multiplicity of the zero eigenvalue in L0 is equal
to its geometric multiplicity and is 2.

Away from the bifurcation point (i.e., μ �= μ0), L always
has a zero eigenmode,

L
[

0
u

]
= 0, (25)

in view of Eq. (3). In addition, by differentiating Eq. (3) with
respect to μ, we also get

L
[

uμ

0

]
=

[
0
u

]
, (26)

thus (uμ,0)T is a generalized eigenfunction of the zero
eigenvalue in L. This means that the algebraic multiplicity
of the zero eigenvalue in L is at least 2 when μ �= μ0.

If nonzero eigenvalues bifurcate out from the zero eigen-
value in L, the algebraic multiplicity of this zero eigenvalue
must decrease. Our results above show that, when μ moves
away from μ0, the algebraic multiplicity of the zero eigen-
value in L does not decrease, thus there cannot be nonzero
eigenvalues of L bifurcating out from zero. Consequently, no
eigenvalues of L cross zero at the saddle-node bifurcation
point, thus no stability switching occurs. This completes the
proof of Theorem 2.

Second proof. In this proof, we directly show nonexistence
of nonzero eigenvalues near the bifurcation point. First, by
taking the inner products of equations (17) with u and uμ,
we find that for nonzero eigenvalues λ, eigenfunctions (v,w)
satisfy the following orthogonality constraints [12]:

〈u,v〉 = 〈uμ,w〉 = 0. (27)

Now suppose at a saddle-node bifurcation point μ0, nonzero
eigenvalues λ bifurcate out from the origin, i.e., λ → 0 as

μ → μ0. Then in view of Eq. (17) and our assumption in
Theorem 2,

(v,w) → (c1ψ,c2u0), as μ → μ0, (28)

where c1 and c2 are certain constants which cannot be zero
simultaneously. In addition, we see from Eq. (15) that when
μ → μ0, uμ ∝ ψ . Upon substituting these expressions into the
orthogonality conditions (27) and taking the limit of μ → μ0,
we find that

c1〈u0,ψ〉 = c2〈ψ,u0〉 = 0. (29)

Since at a saddle-node bifurcation, 〈u0,ψ〉 �= 0 (see
Theorem 1), the above relations then give c1 = c2 = 0, which
contradicts our earlier requirement of c1 and c2 not being zero
simultaneously. Thus there cannot be eigenvalues bifurcating
out from the origin at a saddle-node bifurcation. This also
proves Theorem 2.

Now we discuss the case when Eq. (1) is nonconservative,
i.e., the function F (.,.) in Eq. (1) is complex valued. In this
case, if F admits parity-time (PT) symmetry F ∗(|U |2,x) =
F (|U |2,−x), then solitary waves (2) can still exist over a
continuous range of real μ values [13], and saddle-node
bifurcations can also occur (see later text). By slightly
modifying the analysis above, we can show that there is
no stability switching at saddle-node bifurcations in these
nonconservative systems either. Next we use two examples
to confirm the above analytical findings.

Example 1. Consider Eq. (1) with a symmetric double-well
potential and cubic-quintic nonlinearity, i.e.,

iUt + Uxx − V (x)U + |U |2U − |U |4U = 0, (30)

where the double-well potential

V (x) = −3[sech2(x + 1.5) + sech2(x − 1.5)] (31)

is shown in Fig. 1(a). We have computed solitary waves (2)
in this system by the Newton-conjugate-gradient method [12],
and their power curve is plotted in Fig. 1(b). Here the soliton
power P is defined as

∫ ∞
−∞ |u|2dx. It is seen that a saddle-

node bifurcation occurs at μ0 ≈ 2.16. Two solitary waves on
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FIG. 1. (Color online) (a) Potential (31) in Example 1; (b) power
curve of solitons; (c),(d) soliton profiles at points marked by the same
letters in (b); (e),(f) stability spectra of solitons in (c) and (d).
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FIG. 2. (Color online) (a) Power curve of solitons in Example 2;
(b) soliton profile at point “b” in (a) (solid and dashed lines for real
and imaginary parts); (c),(d) stability spectra of solitons at points “b”
and “d” in (a).

the lower and upper branches near this bifurcation point are
displayed in Figs. 1(c) and 1(d).

To determine the linear stability of these solitary waves,
we have computed their whole linear-stability spectra by the
Fourier collocation method [12]. These spectra for the two
solitary waves in Figs. 1(c) and 1(d) are shown in Figs. 1(e)
and 1(f), respectively. It is seen that none of the spectra contain
unstable eigenvalues, indicating that these solitary waves on
both lower and upper branches are linearly stable. We have
also performed this spectrum computation for other solitary
waves on the power curve of Fig. 1(b), and found that they are
all linearly stable. Thus there is no stability switching at the
saddle-node bifurcation point. Additionally, we have found
that the zero eigenvalue for all these solitons has algebraic
multiplicity 2, in agreement with our analytical result.

Example 2. We still consider Eq. (30) but now with a
complex PT-symmetric potential

V (x) = −3[sech2(x + 1.5) + sech2(x − 1.5)]

+ 0.25i[sech2(x + 1.5) − sech2(x − 1.5)]. (32)

This nonconservative system still admits solitary waves (2)
for continuous real ranges of μ, but u(x) is complex valued
now. We have numerically obtained a family of these solitons,
whose power curve is plotted in Fig. 2(a). Again a saddle-node
bifurcation can be seen at μ0 ≈ 2.02. For solitary waves
on the lower and upper branches near this bifurcation point
[see Fig. 2(b)], their stability spectra lie entirely on the
imaginary axis [see Figs. 2(c) and 2(d)], indicating that they
are all linearly stable. Hence no stability switching occurs at
saddle-node bifurcations in this nonconservative system either.

In summary, we have shown that for solitary waves in the
generalized NLS equations (1) with real or complex potentials,
stability does not switch at saddle-node bifurcations. This
disproves a widespread belief that such stability switching
should always occur in nonlinear partial differential equations.
Since the generalized NLS equations (1) arise frequently
in nonlinear optics, Bose-Einstein condensates, and other
physical disciplines, our finding could have broad impact.
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