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We present a new type of soliton, found in models characterized by opposing dispersions a
competing nonlinearities at fundamental and second harmonics. They are isolated solitary wav
existing at discrete values of the propagation constantinside the system’s continuous spectrum. We
show analytically, and verify by simulations, that the fundamental solitons are linearly stable. The
can be nonlinearly stable or unstable, depending on the sign of the energy perturbation, which co
make these pulses useful for switching applications. Higher-order solitons are found, too, but they a
linearly unstable.
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We report a new type of soliton, in the form of an
isolated (codimension-one) solitary-wave solution whose
intrinsic frequency residesinside the continuous spectrum
of the radiation modes. It is a special member of a fami
of delocalized solitons, which are solitary waves with
nonvanishing oscillating tails. In terms of the dynamica
systems theory, these are trajectories homoclinic to cycle
whereas ordinary solitons are homoclinic to fixed point
Delocalized solitons are known in various models of th
hydrodynamic [1] and optical [2] origin.

We demonstrate that the amplitudes of the oscillatin
tails can exactly vanish at a discrete set of frequencie
resulting in a delocalized soliton becoming truly localized
and with finite energy. We call these solutionsembedded
(in the continuous spectra) solitons (ES). Because
the vanishing of the tail’s amplitude is an additiona
condition, these solitons (in contrast to familiar ga
solitons [3]), never exist in continuous families, but only
as isolated solutions.

A physical model giving rise to ES describes an
optical medium with quadratic (x�2�) and cubic (x �3�)
nonlinearities. Various systems of this type have bee
recently considered [4]. We start with a general one,

iuz 1 �1�2�utt 1 u�y 1 g1�juj2 1 2jyj2�u � 0 , (1)

iyz 2 �1�2�dytt 1 qy 1 �1�2�u2 1

2g2�jyj2 1 2juj2�y � 0 . (2)

Here, z and t are the propagation distance and reduce
time [5], u and y are the fundamental- and second
harmonic (FH and SH) fields,2d is the relative dis-
persion of SH,q is mismatch, andg1,2 are the Kerr
coefficients. We will consider the cased . 0, g1,2 ,

0, which occurs in two different physical situations
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(i) anomalous and normal dispersion, respectively, at F
and SH (which is the most common case in optics
combined with self-defocusing cubic nonlinearity (that
occurs in organic optical materials [6]) or (ii) the usua
self-focusing Kerr nonlinearity, while the dispersion i
normal at FH and anomalous at SH, which can b
realized, e.g., in available media with two zero-dispersio
points [5]. The recent progress in observing tempor
solitons inx �2� media [7] suggests that the ES predicte
in this work also might be observable. Typical numeric
results for the model (1),(2) are given below forg1 �
g2 � 20.05 and d � q � 1 (for other values, quite
similar results have been obtained).

Stationary solutions to Eqs. (1) and (2) are sought for
u�z, t� � U�t� exp�ikz�, y�z, t� � V �t� exp�2ikz�, where
k is a propagation constant,U andV being real functions
satisfying

�1�2�U 00 2 kU 1 U�V 1 g1�U2 1 2V 2�U � 0 , (3)

2�1�2�dV 00 1 �q 2 2k�V 1 �1�2�U2 1

g2�V 2 1 2U2�V � 0 . (4)

The linearization of Eqs. (1) and (2), with
u � exp�ikz 2 ivt� and y � exp�2ikz 2 2ivt�,
yields continuous spectra consisting of two disconnect
branches,

k � 2�1�2�v2, 2k � q 1 �1�2�dv2. (5)

If q . 0, there is agap, 0 , k , q�2, between them.
Normally, a solution withk belonging to the continuous
spectra cannot be localized, because there exist one
more modes with realv, corresponding to a solution with
© 1999 The American Physical Society
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the following form at t ! 6`: U � b exp�2
p

2k jtj�,
and

V � a sin�
p

�2�d� �2k 2 q� t 1 f� 1 . . . , (6)

where b, a, and f are constants.
For a localized solution to exist, the independent

exponential decay of the FH and SH tails in Eqs. (3)
and (4) is not the only possibility. If instead, V and U2

decayed at the same rate as jtj ! `, then the situation
could be different, since now, the x �3� nonlinearity in (4)
could be balanced against the V dispersion terms. This is
an extension of the classical description of a soliton as a
balance between dispersion and nonlinearity. Here, we
have different nonlinearities balancing against different
(FH and SH) dispersions.

Although solutions of (3) and (4) have been ob-
tained numerically, there are analytically tractable systems
demonstrating ES’s. An example is the limit of Eqs. (1)
and (2) when SH is much weaker than FH:

iuz 1 �1�2�utt 1 u�y 1 g1juj
2u � 0 , (7)

iyz 2 �1�2�dytt 1 qy 1 �1�2�u2 1 4g2juj
2y � 0 ,

(8)

which has the same continuous spectra as before. Exact
single-humped soliton solutions to Eqs. (7) and (8) are

u � Aeikz sech�
p

2k t�, y � Be2ikz sech2�
p

2k t� ,

(9)

k � �1�2� �1 1 2d�21�q 2 �3d�2� �4g2 1 3dg1�21� ,

(10)

where B � 2k�1 1 3dg1�4g2� and A2 � 23dk�2g2.
It is easy to show that for d . 0 and g1,2 , 0, this is
an ES solution (i.e., k belongs to the continuous spec-
tra) if �3d�2� �4g2 1 3dg1�21 , q , 2�3�4� �4g2 1

3dg1�21.
Solutions of (3) and (4) were found numerically by

the shooting method and Newton’s iteration method. At
certain discrete values of k, such that k . q�2 . 0 (i.e.,
inside the continuous spectra), the amplitude, a, of the tail
(6) vanished, allowing the delocalized soliton to become
a true ES. Two such values are k1 � 0.6963 (see the
corresponding ES in Fig. 1a) and k2 � 0.7136, which
gives rise to a double-humped ES (not shown here). If U
and V components are both single humped, as in Fig. 1a,
we call ES fundamental. Multihumped ES’s were also
found at other discrete values of k. Although the values of
k which give rise to the exactly localized ES are found with
a finite accuracy, their existence can be proved rigorously,
because the continuous curve a�k� crosses the zero axis.
In the vicinity of any one of these values, say k � k1, we
may expand the amplitude of the tail as (a0 is a constant)

a�k� � a0�k 2 k1� 1 O����k 2 k1�2��� . (11)

Note that ES’s exist where ordinary solitons cannot
occur. Hence the ES concept can considerably expand
the region of applicability of modern “soliton physics,” in-
cluding its promising applications to photonics. A crucial
issue is the stability of an ES. A fundamental ES has no
linear instability, while all ordinary solitons of (3) and (4),
for the same parameters, are linearly unstable. These lat-
ter facts simply and clearly show the potential importance
of an ES.

Before presenting the numerical results, it will be
instructive to do a simple general analysis of ES stability.
Since the ES is a member of a family of delocalized
solitons, a generic small perturbation tends to move
any ES over into an adjacent state, which always is
a delocalized soliton with a nonzero tail. However,
in this process, the solution’s energy, E �

R1`
2`�juj2 1

2jyj2� dt, is conserved. The energy of an ES is finite,
while any delocalized soliton has an infinite energy.
Therefore, if the energy of the unperturbed ES, E1,
plus the perturbation energy give a net initial energy
E0 , E1, the energy lost in an attempt to build the infinite
tail drives the soliton still farther away from the initial
state. As a result, the perturbed ES can be expected to
eventually decay into radiation. However, this is a slow
subexponential decay (see below). On the other hand, if
the perturbed state has energy E0 . E1, we can expect
the energy lost through tail generation to drag the pulse
back toward the unperturbed ES. Thus, the ES is subject
to a subexponential one-sided instability, and we call such
an object semistable.

To describe the semistability analytically, we note that
the energy loss rate for a perturbed ES, as it attempts to
build the tails of a small amplitude a, is

dE�dz � 2Ca2V , (12)

where E is the energy of the pulse’s central body, V is
the inverse SH group velocity at given k, and C is a
constant. We assume that, as the tail forms, the remaining
central core of the soliton is the same as that of the
delocalized one, allowing us to take k to be a function
of its central core’s energy E [in any particular model,
k�E� can be easily found numerically]. Thus, we may
expand k 2 k1 � k0 ? �E 2 E1� [cf. Eq. (11)], where k0

is a constant, and k1 � k�E1�. Substituting this into
Eq. (11), we obtain d�E 2 E1��dz � 2CV �a0k0�2�E 2

E1�2 1 . . . . The solution of this equation shows that the
decay is indeed subexponential,

E�z� � E1 1 �E0 2 E1� �1 1 CV �a0k0�2�E0 2 E1�z�21,

(13)

where E0 is the initial energy of the perturbed pulse.
When E0 . E1, E�z� ! E1 as z ! `, i.e., the perturbed
pulse approaches the fundamental ES. If E0 , E1, E�z�
at first slowly decays, then more rapidly, and finally
disintegrating in a finite time.

To verify the predictions, we numerically simulated
Eqs. (1) and (2). The numerical scheme used the pseu-
dospectral method in the t direction and Runge-Kutta in
1959
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FIG. 1. (a) A typical example of a fundamental embedded soliton generated by Eqs. (3) and (4) at d � 1, q � 1, g1 � g2 �
20.05, and k � 0.6963; the solid and dashed curves show U and V . (b), (c), and (d): Evolution of the same soliton [only the SH
component is shown except in (d)] whose initial energy was increased by the perturbation (14) with c1 � c2 � 0.1.
the z direction. The initial condition was

u�0, t� � U�t� 1 c1 sech�2t� ,

y�0, t� � V �t� 1 c2 sech�2t� ,
(14)

where �U, V � is the ES solution, and c1,2 are small
disturbance amplitudes. We first take the perturbation
with c1 � c2 � 0.1, which yields E0 . E1. The result
is shown in Fig. 1b. We see that, as z increases, the pulse
slowly readjusts itself back to the original ES. Closer
consideration shows that the perturbed y component tries
to build tiny tails with a dominant frequency (relative to
the variable t) v � 0.88. The dispersion relation (5) for
SH yields k � 0.6936 for v � 0.88, which is very close
to the above-mentioned wave number k1 � 0.6963 of the
unperturbed embedded soliton.

Next, we take the initial condition (14) with c1 � c2 �
20.1, which gives E0 , E1. The numerical evolution in
this case is shown in Fig. 2. The perturbed ES initially
decays slowly due to energy loss into the very small tails
of the y component. The decay nonlinearly accelerates
as the tail amplitudes grow. Eventually, the perturbed
soliton perishes as predicted. After the decay, the u
component completely disperses, while the y one evolves
1960
into solitary pulses and radiation. This can be easily
understood since Eq. (2) with u � 0 is the nonlinear
Schrödinger equation that has its own solitons.

We stress that this semistability of the fundamental
ES is different from and is weaker than a linear insta-
bility. As it follows from Eq. (13), an ES persists over
the propagation distance zst � 1��CV �a0k0�2�E0 2 E1��,
that can be transformed into zst � zD�E1��E1 2 E0��,
where zD is the soliton’s dispersion length (z� a few
zD , which may be as small as a few cm [7], is suffi-
cient to shape an arbitrary pulse into the soliton), and
the second multiplier is the inverse of an initial relative
energy disturbance. Obviously, one has zst ¿ zD for a
sufficiently small initial disturbance; hence it should be
possible to experimentally observe an ES (for instance,
in a closed-loop system). Furthermore, our simulations
have demonstrated that all ordinary (gap) solitons, for
the same parameters in (3) and (4), are exponentially un-
stable. We have also numerically investigated the lin-
earization of Eqs. (1) and (2) around the fundamental ES,
finding no linearly unstable eigenmodes. Thus, the in-
stability is indeed only nonlinear. Simulations of the
higher-order (multihumped) ES verify that they quickly
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FIG. 2. Evolution of the perturbed fundamental embedded soliton from Fig. 1, whose initial energy was reduced by the
perturbations (14) with c1 � c2 � 20.1.
break up, while the linearization about them reveals
linearly unstable eigenmodes.

ES pulses may find applications as optical switches,
since, if a pulse initially has an energy below E1, it
decays, and in the opposite case, it stabilizes into an ES.
Note also that, since the net energy crucially depends
on the relative phase between the ES and the small
perturbation, one can sense the phase of an ES pulse by
means of a much weaker perturbing pulse, while the phase
of ordinary optical solitons is unobservable.

The existence of the embedded solitons in Eqs. (1) and
(2) is by no means a singular phenomenon. In fact, pulses
found in the recent work [8] for the dispersive massive
Thirring model are also ES. Very recently, a rich variety
of ES solutions has been found in a three-component
model with a purely quadratic nonlinearity [9].

The ES solutions considered here can be generalized
to have a nonzero velocity, similar to what was done for
ordinary solitons [10]. In particular, a very recent analysis
of the above-mentioned dispersive Thirring model has
demonstrated that one of the static-ES branches indeed
bifurcates into a moving-ES one [9].

In conclusion, we have shown that a new class of
isolated solitons will exist in models which contain mixed
nonlinearities and dispersions. These solitons are linearly
stable, and nonlinearly semistable. The sensitivity of
this semistable soliton to a test wave’s phase may have
potential for switching in optical devices.
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part by NSF, ONR, and AFOSR.
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