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Stable Embedded Solitons
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Stable embedded solitons are discovered in the generalized third-order nonlinear Schrödinger
equation. When this equation can be reduced to a perturbed complex modified Korteweg–de Vries
equation, we developed a soliton perturbation theory which shows that a continuous family of sech-
shaped embedded solitons exist and are nonlinearly stable. These analytical results are confirmed by
our numerical simulations. These results establish that, contrary to previous beliefs, embedded solitons
can be robust despite being in resonance with the linear spectrum.
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whether the initial energy is higher or lower than that in the perturbed CMKdV Eq. (3) can be studied by a
Pulse propagation in optical fibers attracts a lot of
attention these days. Picosecond pulses are well described
by the nonlinear Schrödinger (NLS) equation which
accounts for the second-order dispersion and self-
phase modulation. But for femtosecond pulses, other
physical effects such as the third-order dispersion and
self-steepening become non-negligible. The physical
model which incorporates these additional effects is [1,2]

i� z � �j j2 � ���j j2�� � �
1

2
 ���

j j2 � i ��� � 0: (1)

Here  is the envelope of the electric field, z is the
distance, � is the retarded time, � and � are the self-
steepening coefficients [1]. All quantities have been nor-
malized. For optical pulses, � � � [1,2]. In this Letter,
we allow � and � to be different for the sake of mathe-
matical analysis. The Raman effect, which is dissipative
in nature, is also non-negligible [1,2]. It is not included in
the model (1) because we want to focus our attention on
the other physical effects in this Letter.

The third-order dispersion term in Eq. (1) is significant
because it qualitatively changes the linear dispersion
relation of Eq. (1). Its effect on the NLS soliton is to
generate continuous-wave radiation and causes the soliton
to decay [1–5]. However, solitary waves of Eq. (1) which
are embedded inside the linear spectrum do exist in
certain parameter regimes [6–9], and such waves are
called embedded solitons [10,11]. To see why a solitary
wave of Eq. (1) has to be an embedded soliton, we sub-
stitute solitary waves of the form ���� Vz�ei
z into (1),
where velocity V and frequency 
 are constants. We read-
ily find that for any frequency 
, the linear equation for �
allows oscillatory solutions. Thus, all 
 lies in the con-
tinuous spectrum of Eq. (1); hence the solitary wave must
be an embedded soliton. The stability of these embedded
solitons is clearly an important issue. Previous analytical
studies have shown that if embedded solitons are isolated
in a conservative system, they are at most semistable; i.e.,
the perturbed soliton persists or decays depending on
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of the embedded soliton [10,12,13]. A physical explana-
tion for it is as follows [10]. If the initial state has energy
higher than the embedded soliton, it just sheds extra
energy through tail radiation and asymptotically ap-
proaches this embedded soliton; but if the initial state
has lower energy than the embedded soliton, the energy
loss (through radiation) drives the solution away from the
embedded soliton, resulting in instability. However, em-
bedded solitons in Eq. (1) are not isolated: they exist as a
continuous family, parametrized by their energy [8,9].
Thus, the above physical argument for semistability does
not apply. Numerical results suggest that the families of
double-hump embedded solitons in Eq. (1) are still semi-
stable [9], but the family of single-hump embedded soli-
tons is fully stable [14].

In this Letter, we show that single-hump embedded
solitons in Eq. (1) are fully stable when j�� 6j 	 1 and
j�j 	 1. To our knowledge, this is the first time stable
embedded solitons are rigorously established in the lit-
erature. This result indicates that embedded solitons can
be as robust as conventional (nonembedded) solitons,
contrary to the previous belief. The method we will use
is to develop a soliton perturbation theory for the (inte-
grable) complex modified Korteweg–de Vries (CMKdV)
equation, supplemented by numerical simulations.

We first employ the variable transformation

 � e�1=6�i����1=18�z�

����
6

�

s
u�z; ��; � 
 ��

1

12
z; (2)

upon which Eq. (1) becomes

uz � u��� � 6juj2u� � i�juj2u� ��juj2��u; (3)

where � � �6� ��=�, and � � 6�=�. If � � � � 0,
the above equation is the CMKdV equation which is
completely integrable by the inverse scattering method
[15]. It admits sech-shaped soliton solutions whose am-
plitudes and velocities are free parameters (see below).
In this Letter, we consider the case j�j; j�j 	 1, i.e.,
j�� 6j 	 1 and j�j 	 1. In this limit, soliton evolution
2003 The American Physical Society 143903-1



P H Y S I C A L R E V I E W L E T T E R S week ending
3 OCTOBER 2003VOLUME 91, NUMBER 14
soliton perturbation theory. For this purpose, we denote
� � ��0; � � ��0, where j�j 	 1. When � � 0, Eq. (3)
has the following soliton solutions:

u0�z; �� � U0���ei
z; � 
 �� Vz; (4)

where

U0��� � rsechr�eik�; V � r2 � 3k2;


 � �2k�r2 � k2�:
(5)

Here amplitude r and frequency k are free parameters.
When 0 � j�j 	 1, these solitons will deform due to
perturbations on the right-hand side of Eq. (3), and their
amplitudes and frequencies will undergo slow evolution
with respect to z. Below, we use the soliton perturbation
theory to derive this evolution.

First, we write the solution in the form

u�z; �� � ei
R
z

0

dzU�z; ��; � � ��

Z z

0
Vdz: (6)

Substituting this form into (3), we find the equation for
U�z; �� as

Uz � i
U� VU� �U��� � 6jUj2U� � �F�U�; (7)

where

F�U� � �i�0jUj
2 � �0�jUj

2���U: (8)

Next, we expand the solution U into a perturbation series

U�z; �� � U0��� � �U1�z; �� � �2U2�z; �� � . . . ; (9)

where U0 is given in (5). When this series is substituted
into Eq. (7), at order 1, the equation is satisfied automati-
cally. At order �, we obtain the linear inhomogeneous
equation for U1 as�

@
@z

�L

��
U1

U�
1

�
�

�
F�U0�

F��U0�

�
; (10)

where L is the linearization operator of Eq. (7), and
superscript ‘‘*’’ denotes the complex conjugation. At ini-
tial distance z � 0,U1 � 0; when z� 1,U1 approaches a
steady state with continuous-wave tails at infinity.
Generation of continuous-wave tails is a distinctive fea-
ture of embedded solitons under perturbations [10]. These
tails have the form he�2ik�, where h is the tail amplitude.
Because of the Sommerfeld radiation condition, these
tails can only appear at �	 �1, not at �� 1. In other
words,

lim
z!1; �	�1

U1 � he�2ik�; lim
z!1; ��1

U1 � 0: (11)

One of the key steps in the soliton perturbation theory is
to determine the amplitude h of continuous-wave tails in
U1. This can be done by solving Eq. (10) directly, starting
with the zero initial condition [13]. The way to do it is to
expand the solution into the complete set of eigenfunc-
tions for the linearization operator L, which are just the
squared eigenstates of the Zakharov-Shabat system with
the soliton potential [16]. This we have done. But a much
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simpler way to derive h is to just consider the steady-state
solution U1. This allows us to drop the z derivative in
Eq. (10), and use only solvability conditions to obtain h.
This idea has been used before [12].

To pursue this latter approach, we need the bounded
eigenfunctions of the adjoint linearization operator LA

with zero eigenvalue. Here the inner product used to
define an adjoint operator is

hf���; g���i �
Z 1

�1
f���Tg���d�; (12)

where the superscript ‘‘T’’ represents the transpose of a
vector. Under this inner product, the adjoint operator LA

can be readily obtained. Eigenfunctions of LA are simply
a different set of squared Zakharov-Shabat eigenstates
[16]. With this in mind, we can easily show that LA has
four bounded eigenfunctions for zero eigenvalue —two
localized and two nonlocalized. The localized (discrete)
eigenfunctions are

�1 �

�
U�

0�
�U0�

�
; �2 �

�
U�

0

U0

�
: (13)

They are associated with the translational and phase
invariances of solitons in the CMKdVequation. The non-
localized (continuous) eigenfunctions are

�3 �

�
r2sech2r�e�4ik�

�r tanhr�� 3ik�2e�2ik�

�
; (14)

�4 �

�
�r tanhr�� 3ik�2e2ik�

r2sech2r�e4ik�

�
: (15)

Now we take the inner product between Eq. (10) (with no
z derivative) and each of the above four eigenfunctions. In
view of the asymptotics (11), we see that the first two
innerproduct equations are simply	

�1;
�
F�U0�

F��U0�

�

�

	
�2;

�
F�U0�

F��U0�

�

� 0; (16)

which are satisfied automatically when the form (8) for
F�U� is utilized. The last two innerproduct equations are
equivalent. After simple calculations, these equations
give a formula for the amplitude h as

h � �
1

4
i���0 � 2�0k�

r� 3ik
r� 3ik

sech
3�k
2r

: (17)

When the tail amplitude h has been derived, we can
proceed to order �2. Again, by applying the solvability
conditions for solution U2, the dynamical equations for
soliton parameters r and k will be obtained (see [12] for
an example). An alternative way to derive these dynami-
cal equations, which is simpler and physically more in-
sightful, is by using conservation laws [12]. In this latter
way we will proceed.

Equation (3) admits the following two conservation
laws:

I1 �
Z 1

�1
juj2d�; (18)
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FIG. 1. Phase portrait of the dynamical system (21) and (22)
for physical parameters � � �0:1 and � � 0:1.

P H Y S I C A L R E V I E W L E T T E R S week ending
3 OCTOBER 2003VOLUME 91, NUMBER 14
I2 �
Z 1

�1

�
1

2
i��u�u� � uu��� � �ju�j2

� �
�
1�

1

3
�
�
juj4

�
d�: (19)

When Eq. (6) and the perturbation series (9) are substi-
tuted into these conservation laws and terms up to order
�2 retained, the first conservation law becomes

d
dz

Z 1

�1
fjU0j

2 � ��U0U
�
1 �U�

0U1�

� �2�U0U
�
2 �U�

0U2� � �2jU1j
2g � 0: (20)

To proceed further, the following facts are noted: (i) jU0j
2

changes slowly (on the distance scale �2z); (ii) the U1

field is driven by the inhomogeneous term in Eq. (10) and
quickly becomes stationary in the soliton (U0) region; the
U2 field is similar; (iii) theU1 field develops a continuous-
wave tail of amplitude h on the left-hand side of the
soliton [see Eq. (11)]; this tail travels at its group velocity
vg � �12k2; in the moving coordinate �, its relative
velocity is vg � V � ��r2 � 9k2� [see Eq. (5)]. The fact
(ii) means that the z derivatives of the integrals of the
second and third terms in Eq. (20) are zero and can be
dropped. The fact (iii) means that the z derivative of the
integral of the last term in (20) is �2�r2 � 9k2�jhj2. When
these results and the U0 formula (5) are utilized, the first
conservation law (20) gives the dynamical equation for
the soliton amplitude r. Similar calculations for the sec-
ond conservation law produces the dynamical equation
for the soliton frequency k. When the h formula (17) is
substituted, and (��0; ��0) replaced by the physical pa-
rameters (�; �), the dynamical equations for r and k
finally take the form

dr
dz

� �
1

32
�2��� 2�k�2�r2 � 9k2�sech2

3�k
2r

; (21)

dk
dz

�
1

32r
�2��� 2�k��3�k� ��r2 � 3k2��

� �r2 � 9k2�sech2
3�k
2r

; (22)

and they govern the soliton evolution under small pertur-
bations j�j; j�j 	 1 in Eq. (3). These two equations are
the main analytical results of this Letter.

Dynamical equations (21) and (22) admit a continuous
family of fixed points:

k � �
�
2�
; r is arbitrary: (23)

These fixed points correspond to a continuous family of
embedded solitons (4) in the original wave equation (3).
Their amplitudes r are arbitrary, while their speeds V
depend on r according to Eq. (5). It is easy to check that
these embedded solitons are precisely the ones reported
in [8]. We have further determined the linear and non-
linear stabilities of these fixed points in Eqs. (21) and
(22), and found that they are all stable, both linearly and
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nonlinearly. This means that these sech-shaped embedded
solitons in the perturbed CMKdV equation (3) are both
linearly and nonlinearly stable, despite the fact that such
solitons reside inside the continuous spectrum of the
wave system and are in resonance with the continuous
waves. They mark a distinct contrast with isolated em-
bedded solitons and the continuous family of double-
hump embedded solitons in other physical systems, which
were shown to be semistable [9,10,12,13].

The simplest way to demonstrate the linear and non-
linear stabilities of fixed points (23) is by drawing a phase
portrait in the �r; k� plane. Such a phase portrait with � �
�0:1 and � � 0:1 is shown in Fig. 1. At these parameter
values, the fixed points are the k � 1

2 line (dashed).
Clearly, we see that these points are nonlinearly stable,
and they attract a large region of initial parameters. At
other � and � values where �� < 0, the phase portraits
are qualitatively similar. If �� > 0, the phase portrait is
just the one of �� < 0 with k replaced by �k.

Finally, we confirm the above analytical results by
direct numerical simulations of Eq. (3). Our numerical
scheme is the pseudospectral method along the � direc-
tion, and the fourth-order Runge-Kutta method along the
z direction. Damping boundary conditions have also been
used to filter out the energy radiation emitted into the far
field. A number of numerical simulations of Eq. (3),
starting with the soliton solution (4) at z � 0, have been
performed for various small � and � values. Good agree-
ment between the numerics and the analysis has been
observed. In addition, as � and � approach zero, the
difference between the leading-order perturbation results
[Eqs. (21) and (22)] and numerical values approaches
zero, meaning that our perturbation theory is asymptoti-
cally accurate. For illustration purposes, we fix the physi-
cal parameters � � �0:1 and � � 0:1, and choose two
sets of initial amplitude and frequency values, �r0; k0� �
�1:5; 1� and (1.5, 0), which are on the opposite sides of the
line of fixed points in Fig. 1. The simulation results are
displayed in Fig. 2. For �r0; k0� � �1:5; 1�, the pulse evo-
lution is plotted in Fig. 2(a). Because of perturbations in
143903-3
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FIG. 2 (color online). Numerical evolution of initial solitons
(4) with r0 � 1:5, k0 � 1 [in (a),(b)] and 0 [in (c)] under
perturbations of � � �0:1 and � � 0:1 in Eq. (3). In (d),
numerical and analytical results are compared in the phase
plane for both cases of k0 � 1 and 0; solid lines: analytical;
dots: numerical.
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Eq. (3), the speed of the pulse slowly increases. Thus the
pulse turns around and eventually approaches a steady
positive speed. In Fig. 2(b), the field profiles at two
distances are plotted. As predicted, a continuous-wave
tail develops on the left of the embedded soliton. Note
that the tail amplitude decreases with distance z, meaning
that the embedded soliton is stabilizing [10]. A direct
comparison between the numerics and the leading-order
perturbation theory in the phase plane is shown in
Fig. 2(d). We see that the numerical pulse frequency k
indeed approaches the theoretical value 1

2 .
When �r0; k0� � �1:5; 0�, the numerical pulse evolution

is displayed in Fig. 2(c). In this case, the soliton slows
down under perturbations, contrary to the previous case.
Examination of the radiation field indicates that the
continuous-wave tails emitted to the left of the soliton
are also lessening, indicating that the embedded soliton is
stabilizing again as the theory predicts. Comparison in
Fig. 2(d) between the numerics and the theory for this
case also shows good agreement.

Physically, why are embedded solitons in Eq. (3) fully
stable? There are two major reasons. First, these solitons
exist as a continuous family. In other words, in the neigh-
borhood of each embedded soliton, there are other em-
bedded solitons nearby which have higher or lower
energy. Thus when perturbed, an embedded soliton may
always relax into an adjacent one, similar to the NLS
solitons. The second reason is that these embedded soli-
tons are single humped. Recall that double-humped em-
bedded solitons in Eq. (1) also exist as a continuous
family, but they are not stable [9]. This is not surprising,
as the instability of multihump solitons is well docu-
mented in the literature. Embedded solitons in Eq. (3),
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however, are single humped. Thus they could be fully
stable as we have shown in this Letter.

We note that for ultrashort pulses, � � �; while in this
Letter, j�j; j�j 	 1, i.e., j�� 6j 	 1 and j�j 	 1. In the
physical case � � �, a continuous family of single-hump
embedded solitons also exists [8]. In addition, Gromov
et al.’s numerical computations show that a sech pulse
tends to one or a few single-hump embedded solitons [14].
This numerical evidence, together with the above ana-
lytical results and physical arguments, strongly suggests
that embedded solitons in this physical case are also
stable. A rigorous proof of this full stability in this
physical case can be provided by an elaborate internal-
perturbation method [13], which we will pursue in the
near future. It is also noted that for ultrashort pulses, the
Raman effect is non-negligible. But since embedded soli-
tons without the Raman effect are robust and stable, we
can expect that the Raman effect on embedded solitons
would be also a frequency downshift, similar to that on
NLS solitons [1,2].

In summary, we have discovered fully stable embedded
solitons in a physical model relevant for ultrashort pulse
propagation in optical fibers. This finding dispels previous
skepticism about the observability of embedded solitons.
We expect this work to have important implications to
ultrashort pulse propagation. It would also stimulate fur-
ther search for stable embedded solitons in other physical
systems.
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