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Fractal Structure in the Collision of Vector Solitons
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We study the collision of two orthogonally polarized and equal-amplitude vector solitons in the nonin-
tegrable coupled nonlinear Schrödinger equations. We show that the separation velocity versus collision
velocity graph has a fractal structure. When we zoom into this graph, we get a structure qualitatively
identical to the original one. In addition, collision dynamics in the zoomed-in windows is intimately
related to that in the original graph. We explain this fractal dependence of the collision by a resonance
mechanism between the translational motion of vector solitons and internal oscillations inside a vector
soliton.

PACS numbers: 42.65.Tg, 05.45.Df, 05.45.Yv, 42.81.Dp
The coupled nonlinear Schrödinger (NLS) equations
arise in a great variety of physical situations. In fiber
communication systems, such equations have been shown
to govern pulse propagation along orthogonal polarization
axes in nonlinear optical fibers [1], and in wavelength-
division-multiplexed systems [2]. These same equations
also model beam propagation inside crystals or photo-
refractives [3] as well as water wave interactions [4]. Soli-
tary waves in the coupled NLS equations are often called
vector solitons in the literature as they generally contain
two components. In all the above physical situations, colli-
sion of vector solitons is an important issue. This question
has been studied intensively in the past ten years [3,5]. It
has been shown that, in addition to passing-through colli-
sion, vector solitons can also bounce off each other or trap
each other. However, what is still unknown so far is that
this collision can be much more complex and regular at
the same time. In this paper, we will study the collision of
vector solitons and reveal that the separation velocity ver-
sus collision velocity graph could have a fractal structure,
i.e., when we zoom into this graph, we will get a quali-
tatively identical copy of the original one. Collision dy-
namics in the zoomed-in windows is closely related to that
in the original window as well. We will explain the exis-
tence of this fractal by a resonance mechanism between the
translational motion of vector solitons and internal oscilla-
tions inside a vector soliton. These internal oscillations are
caused by radiation modes, not true internal (shape) modes.

We cast the coupled NLS equations in the birefringent
fiber context as [1]
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where A and B are envelopes of the electrical fields in the
two orthogonal polarizations of the fiber, T is the time
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in the frame moving at the average group velocity of the
two polarizations, Z is the propagation distance, V0 is the
inverse-group-velocity difference between the two polar-
izations, and b is the cross-phase modulational coefficient.
All of these variables have been nondimensionalized. In
this paper, we consider only collisions of two orthogonally
polarized, equal-amplitude vector solitons, as that is the
simplest collision configuration, and such collisions arise
in applications as well. The initial conditions for such vec-
tor solitons can be taken as
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where the soliton amplitudes have been normalized to be
one, and T0 is the initial pulse separation. For these initial
conditions, phase differences between the two pulses can
be removed. Thus it is not introduced here. We also note
that, for these initial conditions, solutions of Eqs. (1) and
(2) possess a symmetry: B�Z, 2T � � A�Z, T �. If there
is no cross-phase coupling (b � 0), each pulse is a NLS
soliton which moves at inverse velocity V0�2 or 2V0�2.
For convenience, we call V0 the “collision velocity” in this
paper. If b � 1 (Manakov model), the two solitons (3)
will also preserve their original velocities, amplitudes, and
polarizations after collision as they are orthogonally po-
larized (if not, amplitudes and polarizations could change
after collision) [6]. But when b fi 0 or 1 (nonintegrable
case), the collision would be very intricate (see below).

We simulated the coupled NLS equations (1) and (2)
extensively for b �

2
3 , using V0 as the control parame-

ter. The value 2
3 is significant as it is the coupling coef-

ficient in linearly birefringent fibers [1]. The initial pulse
separation T0 should be large enough so that the initial
pulse overlap is negligible. In our simulations, we used
T0 � 20. We employed two different numerical schemes:
(1) a third-order split-step method; (2) the pseudospectral
method coupled with the 4th order Runge-Kutta integra-
tion along the Z direction. Results of these two schemes
© 2000 The American Physical Society
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were compared closely to guarantee consistency. We also
took a large T -interval and used damping conditions at its
boundaries. These measures were to ensure that radiation
emitted into the far field does not interfere with pulse colli-
sions in the center field. In our simulations, the T interval
was 160 units wide. The T -grid points were 1024, and
the step size DZ was 0.01 (split-step method) and 0.004
(pseudospectral method). We also ran our simulations on
selective V0 values with longer T intervals, wider initial
pulse separations, more grid points, and smaller step size
DZ, and were assured that the results did not change. All
our simulations used double precision (about 16 significant
digits).

Our simulations identified three collision scenarios:
transmission, reflection, and trapping. In a transmission
scenario, most of the energy in each pulse passes through;
in a reflection scenario, most of the energy is reflected
back; in a trapping scenario, the two pulses trap each other
and form a single new pulse. If we define the “separation
velocity” V as the difference between inverse propagation
velocities of the two exit pulses, then the separation
velocity is positive in a transmissional collision, negative
in a reflectional collision, and zero in a trapping collision.
When V0 , 0.5512, we found that the two colliding
pulses always trap each other (V � 0). When 0.5512 ,

V0 , 0.575 and V0 . 0.615, they always pass through
each other (V . 0). The most interesting V0 interval
is [0.575, 0.615], where transmissional, reflectional, and
trapping collisions all occur in an intertwined way. In this
interval, the separation velocity V is plotted in Fig. 1(a).
This graph is important in this paper. Several of its features
must be noted first. At its left and right ends, there are two
“hills” where V . 0. Between these hills, there are two
prominent intervals where V , 0 (“valleys”). The left val-
ley is approximately [0.5877, 0.5966], which is wider. We
call it the “W valley.” The right valley, [0.6006, 0.6033],
is narrower. We call it the “N valley.” Between these two
valleys, there are even narrower “hills” and “valleys.”
In addition, intervals of trapping collisions (V � 0)
scatter around between these hills and valleys. This inter-
twining structure is the first sign of complexity in these
vector-soliton collisions.

The most surprising fact about Fig. 1(a) is that, when
we zoom into this graph, we get structures similar to the
original one. To show this, we zoom into the tiny V0 win-
dow [0.60366, 0.60385] lying between the N valley and
the rightmost hill. This window is marked by two verti-
cal lines in Fig. 1(a) (the two lines are so close by that
they are almost indistinguishable). This window, when
enlarged, is shown in Fig. 1(b). But Fig. 1(b) is quali-
tatively the same as Fig. 1(a). In Fig. 1(b), the graph also
has two “hills” at the left and right ends. In between, there
are also two prominent valleys which are the counterparts
of the W valley and N valley in Fig. 1(a). The W valley
here, [0.603717, 0.603745], is to the left, and the N valley,
[0.6037738, 0.6037854], is to the right, just as in Fig. 1(a).
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FIG. 1. Fractal structure and collision dynamics of vector
solitons. In the left column are graphs of separation velocity V
versus collision velocity V0. (b) and (c) are successive ampli-
fications of (a) in intervals marked by vertical solid lines. In
the right column are collision dynamics of vector solitons with
velocities V0 at the bottoms of the N valleys in the left column
(marked by vertical dashed lines). Specifically, in (I), V0 �
0.6025; in (II), V0 � 0.603 781; in (III), V0 � 0.603 790 01.
Plotted here are positions of maximum jAj and jBj amplitudes
at each distance Z (solid for jAj and dashed for jBj).

Between these valleys, narrower hills and valleys as well as
trapping intervals can be found intertwined too. Some dif-
ferences also exist between Figs. 1(a) and 1(b). The most
notable difference is that Fig. 1(b) has even narrower hills
and valleys between its W valley and N valley. Another
difference is that the vertical heights of hills and valleys
in Fig. 1(b) are generally lower than their counterparts in
Fig. 1(a). But these differences are relatively minor.

The surprise does not stop here. When we zoom into
the same relative position in Fig. 1(b) as in Fig. 1(a), we
get yet another structure which is similar to Figs. 1(a)
and 1(b). Specifically, we zoom into the narrow interval
[0.6037887, 0.6037907], which lies between the N valley
and the rightmost hill of Fig. 1(b), the same relative posi-
tion as the zoomed-in window in Fig. 1(a). This window
is marked in Fig. 1(b) by two vertical lines. The ampli-
fied window is shown in Fig. 1(c). This graph also has
two hills at the two ends of the interval. In between, a
wider valley is to the left (W valley), and a narrower val-
ley is to the right (N valley), just as in Figs. 1(a) and 1(b).
These three graphs in Fig. 1 indicate that the structure in
Fig. 1(a) is a fractal. We would like to remind the reader
3625



VOLUME 85, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 23 OCTOBER 2000
that the length of the V0 interval in Fig. 1(c) is 2 3 1026.
On such a fine scale, the collision still has a rich structure,
which is truly remarkable. Figure 1(c) can be zoomed in
even further. But numerical simulations then become more
sensitive, and greater accuracy would be required.

What is described above is the geometrical structure
of the separation velocity graph. Dynamically, we have
found that collisions in Figs. 1(a) and its zoomed-in
windows [Figs. 1(b) and 1(c)] are intimately related.
Specifically, collisions at the same relative positions in
these figures follow simple and clear patterns. To demon-
strate, we select the bottom points of N valleys in these
graphs, i.e., V0 � 0.6025, 0.603 781, and 0.603 790 01,
respectively [marked in Figs. 1(a)–1(c) by dashed vertical
lines]. In each case, the collision is reflectional (V , 0).
When we plot the positions of maximum jAj and jBj
amplitudes at each distance Z (solid for jAj and dashed
for jBj), we get Figs. 1(I)–1(III), respectively. In the first
graph, Fig. 1(I), the colliding pulses first pass through
each other, reach finite separation, stop, return, and pass
through each other the second time, and then separate.
In Fig. 1(II), the colliding pulses first pass through each
other, reach finite separation, stop, oscillate around its
position once, then return and pass the second time and
separate. In Fig. 1(III), the collision is similar to Figs. 1(I)
and 1(II) except that the two pulses oscillate twice around
their positions between the two passes. The clear patterns
in these collisions are amazing. At other points of the
same relative position in Figs. 1(a)–1(c), collisions show
similar patterns. Specifically, collision in the zoomed-in
window is that, after the first pass, the pulses oscillate
one more time around their positions than in the original
window. The rest of the collision pattern remains the
same. These patterns indicate that collisions in the fractal
structure of Fig. 1(a) can be classified and understood
according to the relative positions of V0 in this fractal.
This is analogous to the quadratic map f�z� � z2 1 c,
where the shape of its Julia set can be predicted and
classified by the location of parameter c in the Mandelbrot
set [7]. We have also observed that distances between
two passes in Figs. 1(I)–1(III) are roughly 43.6, 84.7,
and 124.6, respectively. Collision of the same nature
as Figs. 1(I)–1(III) but with four “bumps” occurs at
V0 � 0.603 790 109 1. This point would be the bottom of
the next N valley when we zoom into the narrow window
between the N valley and rightmost hill of Fig. 1(c). The
distance between two passes at this velocity is about
162.2. An interesting fact is that these collision distances
Zc can be fit nicely by the formula

vZc � d 1 2pn , (4)

where v � 0.158, d � 0.68, and n is the number of
bumps. The relative error of this fit is less than 1%. Simi-
lar relations have been found in kink-antikink collisions
as well [8,9]. In that context, v was the internal-mode
frequency for the kink�antikink.
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An important question is how to theoretically explain
the fractal structure and collision dynamics in Fig 1. Here
it is instructive to recall that a similar fractal structure
has been discovered in kink-antikink collisions in nonin-
tegrable sine-Gordon type equations [8,9]. In such sys-
tems, the fractal was explained by a resonance between
the translational motion of the kink�antikink and the inter-
nal (shape) mode of the kink�antikink. This internal mode
is a discrete eigenfunction with nonzero eigenvalue in the
linearized system around a kink�antikink. Could a similar
mechanism be responsible for the present fractal?

To answer this question, we first discuss the internal dy-
namics of a perturbed vector soliton. This subject has been
studied in great detail in [10,11]. It has been shown that
this dynamics is dominated by two oscillations: one is the
oscillation of position separation between two components
of the vector soliton; the other one is an in-phase width
oscillation (the third, out-of-phase width oscillation is
unstable and rearranges itself into the in-phase width
oscillation mode [10]). For 0 , b , 1 and the polariza-
tion angle of a vector soliton falling in a certain interval
centered at 45±, the oscillation of position separation is
caused by a true internal mode which lies in the gap of
the continuous spectrum in the linearized system around
the vector soliton. In that case, the frequency of position
oscillation is the eigenvalue of the internal mode, and
this oscillation is the most persistent. In other cases, the
internal mode merges into the edge of the continuous
spectrum of the linearized system. In this situation, the
positional oscillation is caused by radiation modes. It is
less persistent, but still fairly robust. The frequency of
this position oscillation is just the edge point value of the
continuous spectrum. This fact is not obvious. But it can
be inferred from the work [12] for the single NLS equa-
tion, from the work [11] on positional oscillations inside
a vector soliton, and from our numerical experiments.
This fact highlights the importance of this edge point of
the continuous spectrum for positional oscillations. The
in-phase width oscillation of a vector soliton is always
caused by radiation modes, and its frequency is the edge
point of the continuous spectrum for the larger-amplitude
component (this is analogous to the width oscillation of a
single NLS soliton [12]). This oscillation is even less ro-
bust. All the above facts have been verified independently
by our own numerics.

Could the fractal structure in Fig. 1 be caused by a reso-
nance between the translational motion of a vector soliton
and internal oscillations described above? Let us exam-
ine a representative case shown in Fig. 1(II) in detail be-
low. After the first pass, the two solitons reach maximum
separation 6.8 when Z0 � 52 [this Z0 location is shown
in Fig. 1(II) as a vertical dash-dotted line]. At this instant,
we found that the solutions A and B could be approximated
by a superposition of two vector solitons with zero veloci-
ties, nearly zero phase differences, and component ampli-
tudes (0.774, 0.501) and (0.501, 0.774), respectively. The
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polarizations of these vector solitons are 33± and 57±. We
note that when the soliton separation in Fig. 1(II) is not
maximal, the two-vector-soliton approximation would not
be as good. It has been shown in [11] that, when b � 2�3,
only vector solitons with polarizations between 41.1± and
48.9± allow internal modes. Thus, the two vector solitons
above do not support true internal modes. The propagation
constants (wave numbers) for the larger and smaller com-
ponents of these vector solitons were found to be 0.388 and
0.314, respectively. Thus the edge points of the continuous
spectrum for the linearized system around such a vector
soliton are 60.314, and the edge points of the continu-
ous spectrum for the larger wave component are 60.388.
In view of the discussions in the previous paragraph, we
see that the frequency of positional oscillation in each vec-
tor soliton is the continuum edge point 0.314, while the
in-phase width oscillation has frequency 0.388. Since the
two vector solitons are almost in-phase, they attract each
other. This causes the translational motion of vector soli-
tons seen in Fig. 1(II). The frequency of this translational
motion is v � 0.158 [see Eq. (4)].

A fact we notice is that the positional oscillation fre-
quency, 0.314, is almost exactly twice the translational
frequency v. This suggests that there is indeed a reso-
nance present in this collision. This resonance appears to
be between the translational motion of vector solitons and
positional oscillations of two components inside each vec-
tor soliton. In the present case, this position oscillation
is caused by radiation modes, not internal modes. But it
is analogous to the oscillation caused by internal modes
when such modes do exist [11]. We also detected signs
of in-phase width oscillations at frequency 0.388 during
this collision. This frequency is close to 2v. Thus width
oscillations may also play a significant role in resonant
collisions.

The above discussion was made for Fig. 1(II). When
we examined Figs. 1(I) and 1(III), we found the same
resonance mechanism operating. This shows that colli-
sion dynamics in Fig. 1 could be explained by a resonance
mechanism between the translational motion of vector soli-
tons and internal oscillations inside each vector soliton.

In Figs. 1(a)–1(c), we zoomed into the position between
the N valley and the rightmost hill. If we zoom into cer-
tain other positions of the fractal (but not any position),
we will obtain other types of fine structures. Collision dy-
namics in these zoomed-in windows is also closely related
to that in the original structure, but in a way different from
Figs. 1(I)–1(III). A detailed report of these results will be
given elsewhere.

As we have mentioned above, a similar fractal structure
has been reported for kink-antikink collisions in the f4

model [9]. However, the resonance in the present model
is between the translational motion and radiation modes,
while the resonance in f4 is between the translational
motion and a true localized internal mode. Since radiation
modes exist for all conservative evolution equations, while
internal modes exist only for some of them, we see that
the present resonance mechanism for fractal structures is
more universal. Recently, an interesting Cantor fractal was
reported for soliton breakups due to a sequence of abrupt
changes in the dispersion coefficient [13]. That fractal is of
a different nature as the underlying mechanism is different.

In conclusion, we have reported a fractal structure in
solitary-wave collisions for the coupled NLS equations.
This structure lies in the separation velocity versus col-
lision velocity graph. We have explained this structure
by a resonance between the translational motion of vec-
tor solitons and internal oscillations inside a vector soliton.
These results could have important applications to physi-
cal systems where vector-soliton collisions arise. They
also have direct ramifications to solitary wave collisions
in other physical systems. The experimental verification
of these results is quite feasible.
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