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Necklacelike Solitons in Optically Induced Photonic Lattices
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We report the first observation of stationary necklacelike solitons. Such necklace structures were
realized when a high-order vortex beam was launched appropriately into a two-dimensional optically
induced photonic lattice. Our theoretical results obtained with continuous and discrete models show that
the necklace solitons resulting from a charge-4 vortex have a � phase difference between adjacent
‘‘pearls’’ and are formed in an octagon shape. Their stability region is identified.
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A necklace beam is a ring-shaped beam with a periodic
intensity change along the azimuthal direction. Since the
effective radius of the ring is much larger than its thickness,
the intensity spots within the ring look like pearls in a
necklace. It has been found that such a beam can exhibit
self-trapping in a focusing Kerr medium [1], although it is
well-known that in general �2� 1�-dimensional ��2�
1�D� solitons in such a medium are inherently unstable
[2]. For a necklace beam, it is the interaction between
‘‘pearls’’ that stabilizes the structure as a whole, while
each pearl alone cannot form a stable soliton [3].
Importantly, a self-trapped necklace-ring beam represents
a soliton cluster in nonlinear optics, which can carry zero
or nonzero angular momentum [3–5], and this type of
soliton structure may also exist in other nonlinear systems
[including Bose-Einstein condensates (BECs) trapped in a
two-dimensional optical lattice [6] ]. However, the self-
trapped necklace beams found thus far are not stationary
soliton configurations in a strict sense, as they either
gradually expand in the radial direction [1] or rotate in
the angular direction [3,4]. A similar object is the necklace
pattern of vortex pairs predicted theoretically in a 2D BEC
model [7]. Other types of 2D soliton complexes have also
been found recently in various continuum [8] and discrete
[9] systems. In spite of all these theoretical studies, the
experimental observation of necklacelike soliton propaga-
tion remains a challenge.

Recently, there has been increasing interest in the study
of solitons and localized states in nonlinear periodic sys-
tems [10]. The collective behavior of wave propagation in
a periodic structure exhibits many intriguing phenomena
that cannot be found in homogeneous media (such as
discrete diffraction, Peierls barriers, and lattice vortices
[10]). When a waveguide array is embedded in a nonlinear
medium, a balance between discrete diffraction and non-
linear self-focusing leads to the formation of lattice sol-
itons [10–14]. During the last few years, lattice solitons
have been demonstrated in fabricated AlGaAs waveguide
05=94(11)=113902(4)$23.00 11390
arrays [11] and in optically induced photorefractive (PR)
waveguide lattices [12–14]. In addition, lattice vortex
solitons [15,16], lattice dipole solitons [17], and lattice
soliton trains [18] have been successfully observed experi-
mentally in 2D photonic lattices created by optical induc-
tion. Such soliton structures cannot exist with self-focusing
nonlinearity should the lattice potential be removed. Thus,
it is natural to inquire whether more complicated bound
states such as necklace-shaped solitons can be observed in
a 2D photonic lattice.

In this Letter, we report the first observation of station-
ary necklacelike solitons. Such necklace structures are
generated by launching a vortex beam with a topological
charge m � 4 into a 2D square lattice created in a PR
crystal with partially coherent light. Inspired by the recent
theoretical work on vortex solitons in lattices [19–21], we
corroborate the experimental results by detailed computa-
tions in theoretical models. Our theoretical results obtained
from a continuous model with a periodic lattice potential as
well as a relevant discrete model indicate that such
necklace solitons with an octagon shape and � phase
difference between adjacent pearls exist and are stable
under certain conditions—in good agreement with the
experimental observations. These results may pave the
way for observation of similar phenomena in other discrete
or periodic nonlinear systems.

Our experiments were performed in a 2D square lattice
optically induced by passing a laser beam (with wave-
length � � 488 nm) through a rotating diffuser, an ampli-
tude mask, and a biased PR crystal, as introduced in
Ref. [22]. The amplitude mask provides periodic spatial
modulation on the beam after the diffuser and thus results
in a partially coherent lattice beam. The biased crystal
(20 mm long SBN:60) provides a self-focusing noninstan-
taneous nonlinearity. Because of the anisotropic property
of the PR crystal, the ordinarily polarized lattice beam
experiences only a weak nonlinearity and forms a stable
2D waveguide array nearly invariant during propagation in
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the crystal, as first proposed in Ref. [23]. The principal
axes of the square lattice are oriented in the diagonal
directions. To facilitate the formation of a necklacelike
soliton, a ring vortex beam is launched into the lattice
such that the ring covers 8 lattice sites, with the center of
the ring located in an empty site (off site) as shown in
Fig. 1(a). The ring vortex is created with a charge-4 heli-
coidal phase mask, and the phase singularity of the vortex
is shown in the interferograms of Figs. 1(b) and 1(c). The
vortex beam is coherent (without going through the dif-
fuser) and extraordinarily polarized. Thus, it experiences a
much higher nonlinearity while propagating collinearly
with the lattice beam through the biased crystal [14]. In
addition, a uniform incoherent beam is used as background
illumination for fine-tuning the nonlinearity.

Typical experimental results of the high-order vortex
propagation with and without the 2D optically induced
lattice are presented in Fig. 2, where a stable square lattice
(with 40 �m lattice spacing ) is first created in the crystal.
A vortex beam with charge-4 and intensity about 5 times
weaker than that of the lattice is then launched into the
lattice, with the vortex ring covering 8 sites in a necklace or
octagon shape as shown in Fig. 1(a). The vortex beam at
the crystal input is shown in Fig. 2(a), and it exhibits
significant diffraction after linear propagation through a
20 mm long crystal [Fig. 2(b)]. Without the lattice, the
charge-4 vortex breaks up into many filaments in the self-
focusing nonlinear crystal, leading to disordered patterns
driven by noise and modulation instability [24].
Figures 2(c) and 2(d) show two such output patterns at
different levels of nonlinearity as controlled by the bias
field. In the presence of the lattice, however, the behavior
of the vortex is dramatically different, characterized by the
confinement of the filaments at about the location of the
initial vortex ring. This is shown in the bottom panel of
Fig. 2, where the vortex beam exhibits discrete diffraction
when the nonlinearity is low [Fig. 2(e)] but evolves into a
necklacelike structure at an appropriate level of high non-
linearity [Fig. 2(f)]. Such a soliton cluster is stationary and
quite stable during the period of observation (typically
more than 30 min), so the soliton structure is observed in
steady state. Furthermore, following the procedure in
Refs. [14,15], it is concluded that the observed self-
FIG. 1 (color online). Left: a 2D photonic lattice (40 �m
spacing) created by optical induction, where the circle indicates
the off-site vortex location. Middle and right: interferograms of a
charge-4 vortex with a spherical and a plane wave, respectively.
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trapping is due to the nonlinear self-action of the vortex-
ring beam, as the waveguide lattice is nearly the same in
Figs. 2(e) and 2(f). When the center of the initial vortex
ring is moved from the off-site position to an on-site one,
the octagon structure disappears [Fig. 2(g)]. But when the
vortex ring is lined up again with 8 octagon-shaped lattice
sites (at a different off-site location), the necklace structure
is restored in a new steady state [Fig. 2(h)]. Thus the off-
site excitation favors the formation of the necklace soliton,
possibly due to that in such a configuration the circular
symmetry of the necklace beam can be maintained in the
lattice. The experiment was repeated with vortices of
different topological charges. When a ring vortex beam
with charge lower than 4 is launched into the same
octagon-shaped lattice sites, less confined necklace struc-
tures are observed. Even for the case of a charge-4 vortex
where the robust necklace structure is observed, we could
not achieve sufficiently high visibility to determine the
entire phase structure of the necklace soliton by the inter-
ference technique, as was done for charge-1 lattice vortex
solitons [15,16]. This is simply due to the imperfection of
the vortex mask that results in unequal intensities for the
pearls in the necklace and the strong sensitivity to the
background noise.

The above experimental results are corroborated by our
theoretical results obtained by means of two different (yet
complementary) approaches. First, we use a continuous
model with a periodic lattice potential that describes the
underlying PR crystal [12,20]:

iUz �Uxx �Uyy �
E0

1� Il � jUj2
U � 0; (1)

whereU is the slowly varying amplitude of the probe beam
normalized by the dark irradiance of the crystal Id, and
Il � I0sin2f�x� y�=

���

2
p

gsin2f�x� y�=
���

2
p

g is a square-
FIG. 2 (color online). Experimental results of charge-4 vortex
propagating without (top) and with (bottom) the 2D lattice.
(a) input, (b) linear diffraction, (c) output at a bias field of
90 V=mm, (d) output at 240 V=mm, (e) discrete diffraction at
90 V=mm, (f)–(h) discrete trapping at 240 V=mm. From (f) to
(h), the vortex was launched from off-site, to on-site, and then
back to off-site configurations. Distance of propagation through
the crystal: 20 mm; average distance between adjacent pearls in
the necklace: 48 �m.
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lattice intensity function (in units of Id) which closely
resembles the lattice created in our experiment. Here I0
is the lattice peak intensity, z is the propagation distance (in
units of 2k1D2=�2), �x; y� are transverse coordinates (in
units of D=�), E0 is the applied dc field [in units of
�2=�k20n

4
eD

2r33�], D is the lattice spacing, k0 � 2�=�0
(�0 is the wavelength), k1 � k0ne, ne is the unperturbed
refractive index, and r33 is the electro-optic coefficient of
the crystal for the extraordinarily polarized light beam.
Consistent with our experiment, we choose the lattice
intensity I0 � 3Id. In addition, we choose other physical
parameters as D � 20 �m, �0 � 0:5 �m, ne � 2:3, and
r33 � 280 pm=V. Thus, in these computations, one unit of
x or y corresponds to 6:4 �m, one unit of z corresponds to
2.3 mm, and one unit of E0 corresponds to 20 V=mm.

Necklace solitons in the shape of octagons in Eq. (1) are
sought in the form of U � u�x; y�e�i�z, where u is a real-
valued function, and � is the propagation constant. The
solution u can be determined by an iteration method (see
[25] for a detailed description of this method). These
solitons have 8 pearls forming an octagon-shaped structure
inside the lattice-induced waveguides, and adjacent pearls
have � phase difference. Such a necklace soliton at E0 �
6:5, I0 � 3, and � � 3 is shown in Fig. 3(b), and the
corresponding lattice pattern is shown in Fig. 3(a). One
can view this necklace soliton as a few diagonal and non-
diagonal dipole solitons pieced together [17]. The peak
intensity diagram of these necklace solitons versus the
propagation constant � is displayed in Fig. 3(c). This
peak intensity is a decreasing function of �. The power
(not shown) is a decreasing function of � as well. Below a
critical value of�, which is about 2.1 at E0 � 6:5 and I0 �
3, this family of necklace solitons disappears. We have
(a) (b)
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FIG. 3 (color online). (a) Lattice intensity pattern; (b) field
u�x; y� of a necklace soliton with peak intensity 5Id; side bar:
color map of the field; (c) intensity diagram; dashed parts
indicate unstable solitons; (d) leading unstable eigenvalues �
versus �; solid line: Re���; dashed line: Im���. Here E0 � 6:5
and I0 � 3.
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determined the linear stability properties of these solitons
as well, and their leading unstable eigenvalues versus� are
shown in Fig. 3(d). We see that these solitons are stable
when � falls within a certain interval ��1; �2�, or equiv-
alently, when their peak intensities I fall within a corre-
sponding interval �I1; I2�, but are unstable otherwise. At
E0 � 6:5 and I0 � 3, �1 � 2:74, �2 � 3:31, or equiva-
lently, I1 � 3:69, I2 � 7:43 [see Fig. 3(d)]. As the voltage
E0 increases, necklace solitons get more stabilized. These
behaviors are similar to those of dipole and vortex solitons
reported before [17,20].

In the experiments reported above, we launched a ring
vortex with charge-4 into a crystal. This input has an
angular momentum, but the theoretically obtained
necklace solitons in Fig. 3 do not. Thus the question arises
whether or not a vortex with an angular momentum can
evolve into a necklace soliton with no angular momentum
upon certain distance of propagation. However, in the
presence of the photonic lattice, the angular momentum
is not preserved; thus such evolution is clearly possible. To
study this evolution theoretically, we simulated Eq. (1)
starting from a ring vortex with charge-4. The input con-
ditions and physical parameters used in our simulations
resemble those in our experiments. Specifically, the center
of this ring is set off site, its radius is 1.6 times the lattice
spacing, and its peak intensity is 1=6 that of the lattice. The
background illumination is about 1=3 of the lattice’s peak
intensity. The lattice spacing is 20 �m, and the simulation
distance is 20 mm. The simulation results at low
(40 V=mm) and high (300 V=mm) applied fields are
shown in Fig. 4. At low applied fields where the nonline-
arity is weak, the vortex experiences discrete diffraction
and splits into four fragments [see Fig. 4(b)], analogous to
the experimental result [see Fig. 2(e)]. At high applied
fields, however, the vortex does evolve into a necklacelike
structure [Fig. 4(c)]. Examination of the phase field
[Fig. 4(d)] confirms that the eight pearls in the necklace
are indeed � out of phase, indicating that this is a true
necklace soliton with no angular momentum. We have
continued the simulation to much longer distances, and
found that this necklace structure is very robust, in agree-
ment with the linear stability results shown in Fig. 3(d).
With a charge-1 vortex launched at the same conditions,
FIG. 4 (color online). Theoretical results for an initial ring
vortex with charge-4 after 20 mm propagation. (a) input;
(b),(c) intensity plots at low (40 V=mm) and high (V �
300 V=mm) applied fields; (d) phase plot of (c). The dashed
lines in (d) correspond to the positions of the eight intensity
lobes. Side bar: phase color map. The lattice is as in Fig. 3(a).
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FIG. 5 (color online). Top left: the (stable) discrete octagon
profile for C � 0:1. Top right: linearization spectrum of this
octagon. The absence of eigenvalues with Re���> 0 indicates
stability. Bottom panel: amplitude and phase of the initial
charge-4 vortex at z � 500, C � 0:1.
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we have found numerically that it does not evolve into a
stable necklace structure.

We now turn to a relevant discrete nonlinear model to
which nonlinear Schrödinger equations with a periodic
potential can be reduced [26]. This model is the discrete
nonlinear Schrödinger equation of the form

i
@Um;n
@z

� C�2Um;n � jUm;nj2Um;n;; (2)

where �2Um;n is the 2D discrete Laplacian, and C is the
intersite linear coupling coefficient. Substituting
U�m; n; z� � um;ne

�i�z, we solved the steady state equa-
tion for the profile u by means of an iterative method. We
then performed full linear stability analysis, using the
linearization �m;n�e

�i�zfum;n���am;ne
�z�bm;ne

�z�g,
where � is an infinitesimal amplitude of the perturbation,
and � is its eigenvalue. The resulting eigenvalue problem
for f�; �a; b�Tg is subsequently solved to determine the
linear stability of the solution. Since varying � and C is
equivalent (modulo a rescaling), we fix� � 1 and vary the
intersite coupling C. In the anticontinuum limit [10] of
C � 0, an octagon configuration can be straightforwardly
constructed. Such solutions persist for C> 0. Regarding
their linear stability, we have found that below a critical
coupling of Ccr � 0:106, these necklace solutions are in-
deed linearly stable (an example is shown in Fig. 5 for C �
0:1). But for stronger coupling of C> Ccr, it may become
unstable with up to seven eigenvalue quartets [27]. Typical
11390
simulation results using the discrete model for evolution of
a charge-4 ring-beam into an octagon structure at C< Ccr

is shown in Fig. 5 (bottom). These results are consistent
with those from the continuous model, as the intersite
overlap (coupling) of necklace solitons in the continuous
model (1) becomes large when their peak intensities are
either very low or very high.

In summary, we have demonstrated both experimentally
and theoretically the existence, stability, and robustness of
necklace solitons in an optically induced photonic lattice.
Our results may be relevant to other periodic nonlinear
systems in optical, atomic, and condensed-matter physics.
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