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For the one-dimensional nonlinear Schrödinger equation with a complex potential, it is shown that if
this potential is not parity-time (PT ) symmetric, then no continuous families of solitons can bifurcate
out from linear guided modes, even if the linear spectrum of this potential is all real. Both localized and
periodic non-PT -symmetric potentials are considered, and the analytical conclusion is corroborated by
explicit examples. Based on this result, it is argued that PT -symmetry of a one-dimensional complex
potential is a necessary condition for the existence of soliton families.
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1. Introduction

Nonlinear wave systems used to be divided into two main cat-
egories: conservative systems and dissipative systems. In the for-
mer category, the system has no energy gain or loss, and solitary
waves (or solitons in short) exist as continuous families, parame-
terized by their propagation constants. A well known example is
the nonlinear Schrödinger equation with or without a real poten-
tial [1,2]. In the latter category, the system has energy gain and
loss, and solitons generally exist as isolated solutions at certain
discrete propagation-constant values, where the energy gain and
loss on the soliton are exactly balanced (such solitons are often
referred to as dissipative solitons in the literature) [3]. A typical
example in this latter category is the Ginzburg–Landau equation
or short-pulse lasers (see also [4,5]).

However, a recent discovery is that, in dissipative but parity-
time (PT ) symmetric systems [6], solitons can still exist as con-
tinuous families, parameterized by their propagation constants
[7–24]. This exact balance of continually deformed wave profiles
in the presence of gain and loss is very remarkable.

The existence of soliton families in conservative and PT -sym-
metric systems can be intuitively understood as follows. In both
cases, the linear spectrum of the system is all-real or partly-real
[6,25]. This means that the system supports linear guided modes.
Then under nonlinearity, these linear guided modes can bifurcate
out, leading to continuous families of solitons. In typical dissipa-
tive systems (such as the Ginzburg–Landau equation), however, the
linear spectrum is all complex. Since there are no linear guided
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modes, soliton-family bifurcation from linear modes then is not
possible. As a result, it is understandable that only isolated soli-
tons can exist in such typical dissipative systems.

It turns out that non-PT -symmetric dissipative systems can
also possess all-real or partly-real linear spectra. Indeed, for
the one-dimensional (1D) linear Schrödinger operator, various
non-PT -symmetric complex potentials with all-real spectra have
been constructed by the supersymmetry method [26–28]. Other
non-PT -symmetric dissipative systems with partly-real spectra
have been reported as well [4,29,30]. In such non-PT -symmetric
dissipative systems, since linear guided modes exist, then an im-
portant question is: can continuous families of solitons bifurcate
out from them? If they do, then the underlying non-PT -sym-
metric dissipative system would allow much more flexibility in
steering nonlinear localized modes (such as optical solitons) with
continuous ranges of intensities, and this flexibility could have po-
tential physical applications.

In this article, we investigate the existence of soliton fam-
ilies in the 1D nonlinear Schrödinger (NLS) equation with a
non-PT -symmetric complex potential. This NLS system gov-
erns paraxial nonlinear light propagation in a medium with
non-PT -symmetric refractive-index and gain-loss landscape [2,7],
as well as Bose–Einstein condensates with a non-PT -symmetric
trap and gain-loss distribution [31]. In this NLS model, we show
that no soliton families can bifurcate out from localized linear
modes of a non-periodic potential or Bloch-band edges of a pe-
riodic potential. This means that no soliton families can bifurcate
out from linear guided modes (if such modes exist). This result
suggests that 1D non-PT -symmetric potentials do not support
continuous families of solitons. In other words, PT -symmetry of
a 1D complex potential is a necessary condition for the existence
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of soliton families (although it is not necessary for all-real linear
spectra).

2. Preliminaries

The model equation we consider is the following 1D NLS equa-
tion with a linear non-PT -symmetric complex potential

iUt + Uxx − V (x)Ψ + σ |Ψ |2Ψ = 0, (2.1)

where V (x) is complex-valued and non-PT -symmetric, i.e.,

V ∗(x) �= V (−x), (2.2)

the asterisk represents complex conjugation, and σ = ±1 is the
sign of nonlinearity. This equation governs paraxial light transmis-
sion as well as Bose–Einstein condensates in non-PT -symmetric
media. In this model, the nonlinearity is cubic. But extension of
our analysis to an arbitrary form of nonlinearity is straightforward
without much more effort [32].

Regarding the non-PT -symmetric potential V (x), a remark
is in order. If this V (x) is non-PT -symmetric, but becomes
PT -symmetric after a certain spatial translation x0, i.e., V (x − x0)

is PT -symmetric, then wave dynamics in this non-PT -symmetric
potential V (x) is equivalent to that in the PT -symmetric poten-
tial V (x − x0) and is thus not the subject of our study. Hence, in
this article we require that the non-PT -symmetric potential V (x)
in Eq. (2.1) remains non-PT -symmetric under any spatial transla-
tion.

For non-PT -symmetric complex potentials, their linear spectra
may or may not contain real eigenvalues. In this article, we will
consider those potentials that admit real eigenvalues in their lin-
ear spectra. Non-PT potentials with all-real spectra are special but
important examples of such potentials.

We seek solitons in Eq. (2.1) of the form

U (x, t) = eiμt u(x), (2.3)

where u(x) is a localized function satisfying the equation

uxx − V (x)u − μu + σ |u|2u = 0, (2.4)

and μ is a real-valued propagation constant. The question we will
investigate is, does this equation admit soliton families for a con-
tinuous range of propagation-constant values when the potential
V (x) is non-PT -symmetric?

It is noted that Eq. (2.4) is phase-invariant. That is, if u(x) is a
solitary wave, then so is u(x)eiα , where α is any real constant. In
this article, solitons that are related by this phase invariance will
be considered as equivalent.

3. Non-existence of soliton families bifurcating from localized
linear modes

In this section, we consider non-PT -symmetric potentials that
are not periodic (for instance, localized potentials). Such potentials
can admit discrete real eigenvalues, i.e., linear guided modes [4,
26–30]. If this potential were real or PT -symmetric, soliton fam-
ilies would always bifurcate out from those linear guided modes
(see the last section of this article). However, when the potential
is non-PT -symmetric, we will show that such soliton-family bi-
furcations are forbidden.

Suppose V (x) is a non-PT -symmetric potential which admits
a simple discrete real eigenvalue μ0, with the corresponding local-
ized eigenfunction ψ(x), i.e.,

Lψ = 0, (3.1)

where
L ≡ d2

dx2
− V (x) − μ0. (3.2)

Since μ0 is a simple eigenvalue, the equation Lψg = ψ for the
generalized eigenfunction ψg should not admit any solution. This
means that the solvability condition of this ψg equation should not
be satisfied, i.e., its inhomogeneous term ψ should not be orthog-
onal to the adjoint homogeneous solution ψ∗ , or〈
ψ∗,ψ

〉 �= 0, (3.3)

where

〈 f , g〉 ≡
∞∫

−∞
f ∗(x)g(x)dx (3.4)

is the standard inner product.
If a soliton family in Eq. (2.4) bifurcates out from this localized

linear eigenmode, then we can expand these solitons into a pertur-
bation series. We will show that this perturbation series requires
an infinite number of nontrivial conditions to be satisfied simul-
taneously, which is impossible in practice due to lack of spatial
symmetries in the 1D potential V (x).

To proceed, let us expand these solitons into a perturbation se-
ries

u(x;μ) = ε1/2[u0(x) + εu1(x) + ε2u2(x) + · · ·], (3.5)

where ε ≡ μ − μ0 is small. Substituting this expansion into
Eq. (2.4), at O (ε1/2) we get

Lu0 = 0, (3.6)

hence

u0 = c0ψ, (3.7)

where c0 is a certain non-zero constant.
At O (ε3/2), we get the equation for u1 as

Lu1 = c0
(
ψ − σ |c0|2|ψ |2ψ)

. (3.8)

Here the u0 solution (3.7) has been utilized. The solvability condi-
tion of this u1 equation is that its right hand side be orthogonal
to the adjoint homogeneous solution ψ∗ . This condition yields an
equation for c0 as

|c0|2 = 〈ψ∗,ψ〉
σ 〈ψ∗, |ψ |2ψ〉 . (3.9)

Here we have assumed that the denominator 〈ψ∗, |ψ |2ψ〉 �= 0. If
it is zero, perturbation expansions different from (3.5) would be
needed, but the qualitative result would remain the same as that
given below.

Since |c0| is real and σ = ±1, Eq. (3.9) then requires that

Q 1 ≡ 〈ψ∗,ψ〉
〈ψ∗, |ψ |2ψ〉 must be real. (3.10)

In a non-PT -symmetric complex potential, Q 1 is generically com-
plex, thus this condition is generically not satisfied.

It turns out that Eq. (3.10) is only the first condition for soliton-
family bifurcations. As we pursue the perturbation expansion (3.5)
to higher orders, infinitely more conditions will also appear. This
will be demonstrated below.

If condition (3.10) is met, then the u1 equation (3.8) is solvable.
Its solution is

u1 = û1 + c1ψ, (3.11)
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where û1 is a particular solution to Eq. (3.8), and c1 is a constant
coefficient of the homogeneous solution ψ .

At O (ε5/2), the u2 equation is

Lu2 = u1 − σ
(
u2

0u∗
1 + 2|u0|2u1

)
. (3.12)

Substituting the above u1 solution into this equation, we get

Lu2 = c1
(
1 − 2σ |u0|2

)
ψ − c∗

1σu2
0ψ

∗ + h2, (3.13)

where

h2 ≡ (
1 − 2σ |u0|2

)
û1 − σu2

0û∗
1.

The solvability condition of this u2 equation is that its right hand
side be orthogonal to the adjoint homogeneous solution ψ∗ . Re-
calling the u0 solution (3.7) and utilizing the solvability condition
of the u1 equation (3.8), the solvability condition of the above u2
equation then reduces to

c1 + c∗
1 = 〈ψ∗,h2〉

〈ψ∗,ψ〉 . (3.14)

In order for this equation to admit c1 solutions, we need to require
that

Q 2 ≡ 〈ψ∗,h2〉
〈ψ∗,ψ〉 must be real. (3.15)

This is the second condition that must be satisfied in order for
the perturbation series solution (3.5) of u(x;μ) to exist. In a
non-PT -symmetric complex potential, this condition is generically
not satisfied either.

Carrying out this perturbative calculation to higher orders, we
can show that infinitely more conditions of the type (3.15) will
appear. Due to lack of symmetry of the involved functions, it is
practically impossible for these infinite conditions to be met si-
multaneously. Thus soliton families cannot bifurcate out from a
localized linear eigenmode in a non-PT -symmetric potential.

4. Non-existence of soliton families bifurcating from Bloch-band
edges

In this section, we consider periodic non-PT -symmetric po-
tentials. According to the Bloch–Floquet theory, these potentials
do not admit discrete eigenvalues, but they possess Bloch bands
which can be partially-real or all-real [7,12]. In periodic real or
PT -symmetric potentials, soliton families can bifurcate out from
edges of Bloch bands [2,12]. However, when the periodic poten-
tial is non-PT -symmetric, we will show that these soliton-family
bifurcations from band edges are also forbidden.

Suppose V (x) is a periodic non-PT -symmetric complex poten-
tial that possesses a real segment of Bloch bands, and μ0 is a
real-valued edge of this Bloch band with the corresponding Bloch
mode p(x), i.e.,

Lp = 0, (4.1)

where L is as defined in Eq. (3.2). According to the Bloch–
Floquet theory, the Bloch mode p(x) at edge μ0 is either T - or
2T -periodic, where T is the period of the potential V (x). In addi-
tion, at the band edge, the eigenvalue μ0 is simple, i.e., Lpg = p
does not admit generalized eigenfunctions pg . This means that the
inhomogeneous term p should not be orthogonal to the adjoint
homogeneous solution p∗ , i.e.,〈
p∗, p

〉 �= 0, (4.2)

where the inner product here (and throughout this section) is de-
fined as
〈 f , g〉 ≡
T∫

0

f ∗(x)g(x)dx. (4.3)

Now we consider bifurcations of soliton families from this real
band edge μ0. If the potential V (x) is real, this soliton-family
bifurcation has been studied in great detail in [2,33–35], and it
was shown that two soliton families could bifurcate out from each
Bloch-band edge. In a non-PT -symmetric complex potential, how-
ever, we will show below that for this soliton-family bifurcation to
occur, an infinite number of nontrivial conditions would have to be
satisfied simultaneously, which is impossible in practice.

Suppose a soliton family bifurcates out from the band edge μ0.
Then near this edge, we can expand this soliton family and its
propagation constant μ into perturbation series

u(x;μ) = ε
(
u0 + εu1 + ε2u2 + · · ·), (4.4)

μ = μ0 + μ2ε
2 + μ4ε

4 + · · · , (4.5)

where ε is a small real parameter,

u0 = A(X)p(x) (4.6)

is a Bloch-wave packet, X = εx is the slow spatial variable of the
packet envelope A(X), and μ2,μ4, . . . are real constants.

Substituting expansions (4.4)–(4.5) into Eq. (2.4), the O (ε)

equation is satisfied automatically due to Eq. (4.1). At O (ε2), we
get the equation for u1 as

Lu1 = −2A X px. (4.7)

The solvability condition of this u1 equation is that its right hand
side be orthogonal to the adjoint homogeneous solution p∗(x),
which is satisfied automatically. Thus this u1 equation is solvable.
Its solution can be written as

u1 = A Xν, (4.8)

where ν(x) is a periodic solution to the equation

Lν = −2px. (4.9)

At O (ε3), we get the equation for u2 as

Lu2 = −A X X (p + 2νx) + μ2 Ap − σ |A|2 A|p|2 p. (4.10)

Its solvability condition is that its right hand side be orthogonal to
p∗(x). This condition yields the following equation for the envelope
function A(X),

D A X X + μ2 A − α|A|2 A = 0, (4.11)

where

D ≡ −〈p∗, p + 2νx〉
〈p∗, p〉 ,

α ≡ σ
〈p∗, |p|2 p〉

〈p∗, p〉 . (4.12)

Under the previous assumption of V (x) possessing a real seg-
ment of Bloch bands with μ0 as its edge, we can show by analyz-
ing the linear Bloch-wave solution of Eq. (2.4) through perturba-
tion expansions near the band edge μ0 that, the constant D in the
above equation (4.12) is related to the dispersion relation μ = μ(k)

as [2,34]

D = 1

2

d2μ

dk2

∣∣∣∣ , (4.13)

μ=μ0
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hence D is real. Then in order for the envelope equation (4.11) to
admit a localized solution, the coefficient α must be real. Thus,
bifurcation of soliton families from a band edge μ0 requires that

R1 ≡ 〈p∗, |p|2 p〉
〈p∗, p〉 must be real. (4.14)

In a non-PT -symmetric periodic potential, R1 is generically com-
plex, thus this condition is generically not satisfied.

Carrying this perturbation calculation to higher orders, we will
find that infinitely more non-trivial conditions also need to be sat-
isfied in order for soliton-family bifurcations from band edges to
occur, similar to the case of soliton bifurcations from localized lin-
ear modes in the previous section. For instance, the next condition,
which comes from the solvability condition of the u3 equation, is
that

R2 ≡ i
〈p∗, p2ν∗ − |p|2ν〉

〈p∗, |p|2 p〉 must be real. (4.15)

Due to lack of symmetry in the complex potential and its Bloch
modes, each of these infinite conditions is nontrivial and is gener-
ically not satisfied. The requirement of them all satisfied simul-
taneously is practically impossible. Thus we conclude that in a
non-PT -symmetric periodic potential, no soliton families can bi-
furcate out from Bloch-band edges either.

5. Examples

In this section, we corroborate the general analytical conclu-
sions of the previous two sections by three examples.

In these examples, non-PT -symmetric complex potentials are
obtained by the supersymmetry method so that they have all-real
spectra [26–28]. This supersymmetry method is briefly summa-
rized below.

5.1. Non-PT -symmetric potentials with all-real spectra

Suppose V 1(x) is a potential with all-real spectrum, and μ(1) is
an eigenvalue of this potential with eigenfunction ψ(1) , i.e.,[

d2

dx2
− V 1(x) − μ(1)

]
ψ(1) = 0. (5.1)

We first factorize the linear operator in this equation as

− d2

dx2
+ V 1(x) + μ(1) =

[
− d

dx
+ W (x)

][
d

dx
+ W (x)

]
. (5.2)

The function W (x) in this factorization can be obtained by requir-
ing ψ(1) to annihilate d/dx + W (x), and this gives W (x) as

W (x) = − d

dx
ln

(
ψ(1)

)
. (5.3)

It is easy to directly verify that this W (x) does satisfy the factor-
ization equation (5.2).

Now we switch the two operators on the right side of the above
factorization, and this leads to a new potential V 2(x),

− d2

dx2
+ V 2(x) + μ(1) =

[
d

dx
+ W (x)

][
− d

dx
+ W (x)

]
, (5.4)

where

V 2 = V 1 + 2W x. (5.5)

This V 2 potential is referred to as the partner potential of V 1, and
it has the same spectrum as V 1, since operators AB and B A share
the same spectrum. The only possible exception is the eigenvalue
μ(1) . Indeed, using the V 2-factorization (5.4) we can show that
μ(1) is not in the spectrum of V 2 (unless μ(1) is a degenerate
eigenvalue of V 1, i.e., its algebraic multiplicity is higher than its
geometric multiplicity in the V 1 potential).

The new potential V 2, however, is only real or PT -symmetric
if V 1 is so. In order to derive non-PT -symmetric potentials, we
build a new factorization for the V 2 potential,

− d2

dx2
+ V 2(x) + μ(1) =

[
d

dx
+ W̃ (x)

][
− d

dx
+ W̃ (x)

]
. (5.6)

Using the previous V 2 factorization (5.4), the function W̃ in this
new factorization can be derived as [28]

W̃ (x) = − d

dx
ln

(
ψ̃(1)

)
, (5.7)

where

ψ̃(1)(x) = ψ(1)(x)

c + ∫ x
0 [ψ(1)(ξ)]2 dξ

, (5.8)

and c is an arbitrary complex constant. For this new V 2 factoriza-
tion, its partner potential, defined through

− d2

dx2
+ Ṽ 1(x) + μ(1) =

[
− d

dx
+ W̃ (x)

][
d

dx
+ W̃ (x)

]
, (5.9)

is then

Ṽ 1 = V 2 − 2W̃ x. (5.10)

Utilizing the V 2 and W̃ formulae (5.5) and (5.7), this Ṽ 1 potential
is then found to be

Ṽ 1(x) = V 1(x) − 2
d2

dx2
ln

[
c +

x∫
0

[
ψ(1)(ξ)

]2
dξ

]
. (5.11)

For generic values of the complex constant c, this Ṽ 1 potential is
complex and non-PT -symmetric. In addition, its spectrum is iden-
tical to that of V 1. Indeed, even though μ(1) may not lie in the
spectrum of V 2, it is in the spectrum of Ṽ 1 with eigenfunction
ψ̃(1) . Hence if V 1 has an all-real spectrum, so does Ṽ 1. Notice that
this Ṽ 1 potential, referred to as superpotential below, is actually a
family of potentials due to the free complex constant c.

If the original potential V 1 is localized, taking ψ(1) as any of
its discrete eigenmodes would lead to a localized superpotential.
However, if we want to construct a periodic superpotential from a
periodic original potential V 1, then it is easy to see from Eq. (5.11)
and the Bloch–Floquet theory that the Bloch mode ψ(1) must be
T - or 2T -periodic, and

T∫
0

[
ψ(1)(x)

]2
dx = 0, (5.12)

where T is the period of the V 1 potential. The former requirement
means that the Bloch mode ψ(1) is located at the center or edge
of the Brillouin zone. The latter requirement (5.12) means that the
Bloch mode ψ(1) must be complex, hence so is the V 1 potential.
In addition, 〈ψ(1)∗,ψ(1)〉 = 0, thus this Bloch mode is degenerate.
At such a degenerate point, the local dispersion curve is two lines
crossing each other like ‘×’. Due to this degeneracy, when the V 1
potential is perturbed, complex eigenvalues will bifurcate out from
μ(1) [12]. Thus if the V 1 potential is PT -symmetric, then it must
be at the phase-transition point (also known as PT -symmetry-
breaking point) [6,7,12].
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Fig. 1. (Color online.) (a) Superpotential (5.15) with c = 1 + i; (b) imaginary part of
Q 1 in Eq. (3.10) for various complex values of c with Im(c) = 1.

5.2. Three examples

Now we consider three examples of non-PT -symmetric super-
potentials with all-real spectra, and show that the conditions for
soliton-family bifurcations in them are not satisfied. Of these three
examples, the first one pertains to an unbounded superpotential,
the second one to a localized superpotential, and the third to a
periodic superpotential.

Example 1. In our first example, the superpotential (5.11) is created
from the harmonic potential

V 1(x) = x2 (5.13)

and its first eigenmode of μ(1) = −1 with

ψ(1) = e−x2/2. (5.14)

In other words, the superpotential (5.11) is

V (x) = x2 − 2
d2

dx2
ln

[
c +

x∫
0

e−ξ2
dξ

]
, (5.15)

where c is a complex constant. When c is real, so is V (x).
When c is purely imaginary, V (x) is complex and PT -symmetric.
For all other c values, the superpotential (5.15) is complex and
non-PT -symmetric. An example of this non-PT -symmetric su-
perpotential with c = 1 + i is illustrated in Fig. 1(a). The spectrum
of this superpotential (for all c values) is {−1,−3,−5, . . .}, which
is the same as that of the harmonic potential (5.13).

For this superpotential (5.15), we consider the bifurcation of
soliton families from its first eigenmode of μ0 = −1, whose eigen-
function is that given in Eq. (5.8), i.e.,

ψ = e−x2/2

c + ∫ x
0 e−ξ2 dξ

. (5.16)

Substituting this eigenmode into the Q 1 condition (3.10), we find
that this condition is never satisfied for any complex c value that
is not real or purely imaginary. For instance, if the imaginary part
of c is fixed as one, then the imaginary part of Q 1 versus the real
part of c is plotted in Fig. 1(b). One can see that Im(Q 1) �= 0 when
Re(c) �= 0, indicating that Q 1 is never real when the superpotential
(5.15) is non-PT -symmetric; thus condition (3.10) is not satis-
fied. As a consequence, bifurcation of soliton families from the first
eigenmode of the non-PT -symmetric superpotential (5.15) cannot
take place.

Example 2. In our second example, the superpotential (5.11) is cre-
ated from a PT -symmetric double-well potential

V 1(x) = −3
[
sech2(x + 1) + sech2(x − 1)

]
+ 0.5i

[
sech2(x + 1) − sech2(x − 1)

]
. (5.17)
Fig. 2. (Color online.) (a) Superpotential (5.11) built from a double-well potential
(5.17) and its first discrete eigenmode with c = 4 − i; (b) imaginary part of Q 1 in
Eq. (3.10) for various complex values of c with Im(c) = −1.

This V 1 potential has an all-real spectrum that contains three pos-
itive discrete eigenvalues and a continuous spectrum of (−∞,0].
Its first discrete eigenvalue is μ(1) ≈ 2.3687, and the eigenfunction
ψ(1) of this first eigenvalue will be used to build the superpoten-
tial (5.11).

This superpotential is always complex, and is non-PT -sym-
metric if c is not purely imaginary. When c = 4 − i, this super-
potential is illustrated in Fig. 2(a).

For this superpotential (with arbitrary c), we also consider the
bifurcation of soliton families from its first eigenmode ψ̃(1) , whose
eigenvalue μ(1) is as given above. In the notations of our analysis
in Section 3, we choose

μ0 = μ(1), ψ = ψ̃(1). (5.18)

Here the formula for ψ̃(1) is provided by Eq. (5.8), where ψ(1) is
the first eigenmode of the original double-well potential V 1, which
can be obtained numerically.

Substituting eigenmode ψ of (5.18) into the Q 1 formula (3.10),
we find that in the complex c-plane, this Q 1 is non-real every-
where except on the imaginary axis and on a certain quasi-ellipse.
The c values on the imaginary axis only yield PT -symmetric su-
perpotentials and are not our concern. For c values on that quasi-
ellipse, the superpotential is non-PT -symmetric and Q 1 is real,
thus the first condition (3.10) for soliton-family bifurcations is sat-
isfied. However, we have found that on that c-ellipse, the second
condition (3.15) is not met, thus this soliton-family bifurcation can-
not occur.

To illustrate, we fix Im(c) = −1. Then Im(Q 1) versus Re(c)
is plotted in Fig. 2(b). For non-PT -symmetric superpotentials,
Re(c) �= 0. Then we see that at Re(c) ≈ ±1.2918 (marked by red
dots in that figure), Im(Q 1) = 0, i.e., Q 1 is real. These two c val-
ues, ±1.2918 − i, are on that c-ellipse mentioned above. But at
these two c values, we have checked that Q 2 is not real, thus the
second condition (3.15) for soliton-family bifurcations is not met.

Example 3. Our third example pertains to a periodic superpoten-
tial. In view of the discussions in the end of the previous sub-
section, this periodic superpotential (5.11) can be built from the
original PT -symmetric periodic potential

V 1(x) = −V 2
0 e2ix, (5.19)

and its Bloch mode

ψ(1) = I1
(

V 0eix) (5.20)

with eigenvalue μ(1) = −1. Here V 0 is a real constant, and In is
the modified Bessel function. It is known that this V 1 potential
is at the phase transition point [7,12], and its Bloch mode ψ(1)

is located at the edge of the first Bloch band with a ‘×’-shaped
local dispersion curve [36,37]. The resulting periodic superpotential
(5.11) is
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Fig. 3. (Color online.) (a) Periodic superpotential (5.21) with c = 0.5−2i and V 0 = 1;
(b) imaginary part of R1 in Eq. (4.14) for various complex values of c with Im(c) =
−2 and V 0 = 1.

V (x) = −V 2
0 e2ix − 2

d2

dx2
ln

[
c +

x∫
0

I2
1

(
V 0eiξ )dξ

]
, (5.21)

where c is a complex constant.
This superpotential (5.21) is π -periodic, and is non-PT -sym-

metric as long as c is not purely imaginary. When c = 0.5 − 2i and
V 0 = 1, this superpotential is illustrated in Fig. 3(a).

The dispersion relation of this superpotential (for all c values)
is the same as that of the original potential (5.19), i.e.,

μ = −(k + 2m)2, (5.22)

where k is in the Brillouin zone [−1,1], and m is any non-negative
integer [37]. From this dispersion relation, we see that Bloch bands
of this superpotential cover the entire interval of −∞ < μ < 0.
Thus the only possible band edge for soliton bifurcations is μ0 = 0
(upper edge of the first Bloch band with k = 0). At this band edge,
the Bloch mode in the original V 1 potential is

p(1)(x) = I0
(

V 0eix). (5.23)

Then the corresponding Bloch mode in the superpotential (5.21)
can be derived from Eqs. (5.2), (5.4), (5.6) and (5.9) as [28]

p =
(

− d

dx
+ W̃

)(
d

dx
+ W

)
p(1), (5.24)

where W and W̃ are given by Eqs. (5.3) and (5.7).
Substituting this Bloch mode p(x) into the R1 formula (4.14),

we find that this R1 is non-real everywhere in the complex
c-plane, except for the imaginary axis and a certain quasi-circle.
The c values on the imaginary axis lead to PT -symmetric su-
perpotentials which are irrelevant for our study. For c values on
that quasi-circle, R1 is real, but R2 in Eq. (4.15) is non-real, thus
the second condition (4.15) is not met. As a consequence, soliton-
family bifurcations from this Bloch-band edge μ0 = 0 cannot occur.
This situation is similar to that in Example 2.

For demonstration purpose, we fix Im(c) = −2 and V 0 = 1.
Then Im(R1) versus Re(c) is plotted in Fig. 3(b). We see that on
this line of c values, Im(R1) �= 0 when Re(c) �= 0, indicating that R1
is non-real when the superpotential (5.21) is non-PT -symmetric,
hence the first condition (4.14) for soliton-family bifurcations is
not met.

6. Summary and discussion

In this article, we have shown that for the 1D NLS equation
with a non-PT -symmetric periodic or non-periodic potential, no
continuous families of solitons can bifurcate out from linear modes
of the potential, even if this potential has an all-real spectrum. This
analytical finding is also corroborated by several specific examples
containing complex superpotentials with all-real spectra. This re-
sult suggests that PT -symmetry of a 1D complex potential is a
necessary condition for the existence of soliton families. This con-
clusion highlights the importance of PT -symmetry for the study
of nonlinear soliton states, even though it is not necessary for all-
real linear spectrum.

If a complex potential is PT -symmetric, then repeating the
perturbative calculations in Sections 3 and 4 of this article, we
will find that those infinite conditions, such as (3.10), (3.15), (4.14)
and (4.15), are all automatically satisfied due to PT -symmetry
of the potential and other involved functions. For instance, for
PT -symmetric non-periodic potentials, the linear eigenmode ψ

and solutions u0, û1 in Section 3 can be made PT -symmetric
through phase invariance. Thus quantities Q 1, Q 2 in Eqs. (3.10),
(3.15) are automatically real, making conditions (3.10) and (3.15)
automatically fulfilled. As a consequence, soliton families can be
successfully constructed from perturbation expansions. This ana-
lytical result is consistent with earlier numerical reports of soliton
families in various PT -symmetric potentials [8,9,12,13]. Combin-
ing this result with the finding of this article, we argue that in
the 1D NLS equation with a complex potential, PT -symmetry of
the potential is both necessary and sufficient for the existence of
soliton families (assuming that this potential admits real discrete
eigenvalues or real Bloch bands). Soliton families that exist in a 1D
PT -symmetric potential are always PT -symmetric, as was shown
recently in [38].
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