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Symmetry breaking is reported for continuous families of solitons in the nonlinear Schrodinger equation
with a two-dimensional complex potential. This symmetry breaking is forbidden in generic complex potentials.
However, for a special class of partially parity-time-symmetric potentials, it is allowed. At the bifurcation point,
two branches of asymmetric solitons bifurcate out from the base branch of symmetry-unbroken solitons. Stability
of these solitons near the bifurcation point are also studied, and two novel properties for the bifurcated asymmetric
solitons are revealed. One is that at the bifurcation point, zero and simple imaginary linear-stability eigenvalues
of asymmetric solitons can move directly into the complex plane and create oscillatory instability. The other is
that the two bifurcated asymmetric solitons, even though having identical powers and being related to each other
by spatial mirror reflection, can possess different types of unstable eigenvalues and thus exhibit nonreciprocal

nonlinear evolutions under random-noise perturbations.
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I. INTRODUCTION

Parity-time (P7)-symmetric systems are dissipative sys-
tems with balanced gain and loss. The name of P7 symmetry
was derived from non-Hermitian quantum mechanics with
complex potentials [1]. This concept has since been applied
to optics [2,3], Bose-Einstein condensation [4], electric cir-
cuits [5], mechanical systems [6], and other settings. P7 -
symmetric systems have some remarkable properties, such
as all-real linear spectra [1,7-9] and existence of continuous
families of solitons [8§-27], which set them apart from other
dissipative systems and make them resemble conservative
systems. In multidimensions, the concept of P7 symmetry
has been generalized to include partial-parity-time (PP7)
symmetry, and it is shown that PP7-symmetric systems
share most of the properties of P7 systems [28]. Even
some non-P7 -symmetric systems have been found to possess
certain properties of P7 systems, such as all-real linear
spectra [29-31] and/or existence of soliton families [32,33].

Symmetry-breaking bifurcation for continuous families of
solitons in symmetric systems is a fascinating phenomenon.
In conservative systems with real symmetric potentials,
such symmetry breaking occurs frequently [34—43]. That
is, branches of asymmetric solitons can bifurcate out from
the base branch of symmetric solitons when the power of
symmetric solitons is above a certain threshold. But in P7 -
symmetric complex potentials, such symmetry breaking is
generically forbidden [44]. Mathematically the reason for
this forbidden bifurcation is that this bifurcation requires
infinitely many nontrivial conditions to be satisfied simul-
taneously, which is generically impossible. Intuitively this
forbidden bifurcation can be understood as follows. Should
it occur, continuous families of asymmetric solitons would be
generated. Unlike in conservative systems, these asymmetric
solitons in P7 systems would require not only dispersion-
nonlinearity balancing but also gain-loss balancing, which
is generically impossible. Surprisingly for a special class of
one-dimensional (1D) P7 -symmetric potentials of the form
V(x) = g%(x) + ag(x) +ig'(x), where g(x) is a real even
function and « a real constant, symmetry breaking of solitons
was reported very recently [45]. This invites a natural question:
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can this symmetry breaking occur in 2D complex potentials? If
s0, what types of 2D complex potentials admit such symmetry
breaking?

In this article, we study symmetry-breaking bifurcations
of continuous families of solitons in 2D complex potentials.
We show that in a special class of PP7 -symmetric separable
potentials, symmetry breaking can occur. Specifically, from a
base branch of PP7 -symmetric solitons and above a certain
power threshold, two branches of asymmetric solitons with
identical powers can bifurcate out. At the bifurcation point,
the base branch of PP7 -symmetric solitons changes stability,
analogous to conservative systems. However, the bifurcated
asymmetric solitons can exhibit new stability properties
which have no counterparts in conservative systems. One
novel property is that at the bifurcation point, the zero and
simple imaginary eigenvalues in the linear-stability spectra of
asymmetric solitons can move directly into the complex plane
and create oscillatory instability. Another novel property is
that the two asymmetric solitons can possess different types
of linear-instability eigenvalues. As a consequence, these two
asymmetric solitons, which are related to each other by spatial
mirror reflection, can exhibit nonreciprocal evolutions under
random-noise perturbations.

II. SYMMETRY BREAKING OF SOLITONS

Nonlinear beam propagation in an optical medium with
gain and loss can be modeled by a nonlinear Schrodinger
equation [46],

iV, + VU 4+ V(x, )V + o |V ?¥ =0, .1

where z is the propagation distance, (x,y) is the transverse
plane, V2 =9y + dyy, V(x,y) is a complex potential, and
o = =1 is the sign of nonlinearity.

Solitons in Eq. (2.1) are sought of the form

W(x,y,z) = e P (x,y),

where p is a real propagation constant, and ¥ (x,y) is a
localized function solving the equation

VY + V)Y + o[y Py = ny.

2.2)

(2.3)
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If the complex potential V(x,y) is P7 symmetric or
PPT symmetric, continuous families of P7 -symmetric or
PPT -symmetric solitons are admitted [18,28], but symmetry
breaking of such solitons is generically forbidden [44].
However, for certain special forms of 1D P7 potentials,
symmetry breaking of 1D solitons has been reported very
recently [45].

In this article, we show that symmetry breaking of 2D
solitons is also possible in the model (2.1) for a special class
of complex potentials,

V(x,y) = g2 (x) + ag(x) +ig'(x) + h(y),

where g(x) is a real even function, i.e.,

(2.4)

g(—=x) = gx),

h(y) is an arbitrary real function, and « is a real constant.
This potential is separable in (x,y), and its imaginary part is
y independent. In addition, this potential is PP7 symmetric,
i.e.,

Vix,y) = V(=x.y), 2.5

where the asterisk represents complex conjugation. Due to
separability of this potential, it is easy to see that its linear
spectrum can be all real [28]. Note that a potential of the form
in Eq. (2.4) but with x and y switched is equivalent to Eq. (2.4)
and thus does not deserve separate consideration.

The x component of the separable potential (2.4) is the same
as the 1D complex potential for symmetry breaking as reported
in Ref. [45], but the y component of this separable potential is
real and quite different. Should this y component be complex
and also take the form of its x component, we have found that
symmetry breaking would no longer occur. This indicates that
symmetry breaking in the special 2D potential (2.4) is by no
means obvious and cannot be anticipated from the 1D potential
for symmetry breaking in Ref. [45].

Below we use two explicit examples of the potential (2.4)
to demonstrate symmetry breaking of 2D solitons and reveal
their unique linear-stability properties.

Example 1. In our first example, we take the potential (2.4)
with

gx) = 0.3)‘[6_(’“’1'2)2 + e—(x—l.2)2:|7 (2.6)

a=10, h(y)=0.

This is a y-independent stripe potential which is illustrated
in Fig. 1. The spectrum of this potential is all real, and all
eigenvalues lie in the continuous spectrum of (—00,2.0569].
Solitons in Eq. (2.3) under this potential will be computed
by the Newton-conjugate-gradient method. This method fea-
tures high accuracy as well as fast speed. The application of this
method for solitons in conservative systems has been described
in Refs. [47,48]. In those cases, the linear Newton-correction
equation was self-adjoint and thus could be solved directly
by preconditioned conjugate gradient iterations. However, the
present Eq. (2.3) is dissipative; hence the resulting Newton-
correction equation is non-self-adjoint. In this case, direct
conjugate gradient iterations on this equation would fail, and
it is necessary to turn this equation into a normal equation and
then solve it by preconditioned conjugate gradient iterations.

2.7)

PHYSICAL REVIEW E 91, 023201 (2015)

7 7
(@) (b) 0
Yo Yo 0
-0.2
-7 -7
-7 0 7 -7 0 7
T

FIG. 1. (Color online) A stripe complex potential (2.4) with
Egs. (2.6) and (2.7) in Example 1. (a) Re(V); (b) Im(V).

In the Appendix, this Newton-conjugate-gradient method for
Eq. (2.3) is explained in more detail.

Using this Newton-conjugate-gradient method, we find that
from the edge of the continuous spectrum py = 2.0569, a
continuous family of solitons ,(x,y; i), localized in both x
and y directions, bifurcates out. The power curve of this soliton
family is displayed in Fig. 2 (blue curve in the first row). Here
the power is defined as

P(p) = / / [ (x,y; w)|*dxdy.

At two points, a and b, of this power curve, soliton profiles are
shown in Fig. 2 (the second and third rows). These solitons
respect the same PP7 symmetry of the potential, i.e.,

K[f;k(x’Y) = l/fs(_x’y)-

The existence of this soliton family respecting the same
symmetry of the potential is anticipated.

What is surprising is that, when the power of this soliton
family reaches a critical value P. =~ 8.60, two branches
of asymmetric solitons bifurcate out through a pitchfork
bifurcation. These asymmetric solitons do not respect the
PPT symmetry (2.8). At the same u value, they have
identical powers and are related to each other through a spatial
reflection:

2.8)

Y, y) = P (=x,y). (2.9)

The power curve of these two branches of asymmetric solitons
is plotted in Fig. 2 (red curve in the first row). Notice that
unlike the symmetric (base) branch, the power slope of these
asymmetric branches is negative at the bifurcation point. At
point c of the asymmetric branches, the profile for one of the
two asymmetric solitons is displayed in Fig. 2 (the bottom
row). Asymmetry in its profile can clearly be seen. These
solitons have lost the PP7 symmetry of the underlying
potential; thus symmetry breaking has occurred.

Next we analyze linear stability of these symmetric and
asymmetric solitons. To determine linear stability, we perturb
these solitons as

W(x,y,2) = MW (x,y) + @(x,y) € + B (x,y) 7],

where |ii|, || < |y|. After substitution into Eq. (2.1) and
linearizing, we arrive at the eigenvalue problem

((5)-+(2)

(2.10)
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FIG. 2. (Color online) Symmetry breaking of solitons in Exam-
ple 1. First row: Power curves of symmetric (blue) and asymmetric
(red) solitons; the right panel is an amplification of the left panel
around the bifurcation point. Second to fourth rows: Soliton profiles
at points a, b, and c of the power curve. Left panels: Amplitude fields.
Right panels: Phase fields.

where
Ly L
L=
l<£21 1122)

Li1=VP4+V —u+20y,
Lo =0y? Ly =—-0?,
L =—(V*+V —pu+20y)"

If eigenvalues with positive real parts exist, the soliton is
linearly unstable; otherwise it is linearly stable.
Linear-stability eigenvalues exhibit important differences
for symmetric and asymmetric solitons. For symmetric soli-
tons ¥ (x,y), it is easy to show from soliton symmetry (2.8)
and potential symmetry (2.5) that, if {X,a(x,y), w(x,y)}

and
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is an eigenmode, then so are {A*, W*(x,y),7*(x,y)},
{_)"7 w(_-xvy)v ﬁ(_)ﬁ)’)}’ and {_)"*7 ﬁ*(_-xvy)v w*(_-xvy)}
Thus for symmetric solitons, real and imaginary eigenvalues
appear as pairs (A, — 1), and complex eigenvalues appear as
quartets {A,A*, — A, — A*}.

For asymmetric solitons, however, the situation is different.
While it is still true that if A is an eigenvalue, so is A*, but
due to the lack of soliton symmetry (2.8), —A and —A* are no
longer eigenvalues. In other words, for asymmetric solitons,
complex eigenvalues appear as conjugate pairs (A,A*), not as
quartets, and real eigenvalues appear as single eigenvalues,
not as (A, — ) pairs. These differences on eigenvalue sym-
metry between symmetric and asymmetric solitons will have
important implications, as we will see later in this section.

For the two branches of asymmetric solitons, their linear-
stability eigenvalues are related. Indeed, from the mirror sym-
metry (2.9) between these two bifurcated soliton branches, it is
easy to see that if A is an eigenvalue of the soliton ¥V (x, y; w),
then —1* will be an eigenvalue of the companion soliton
¥ D(x,y; u). In other words, the linear-stability spectrum of
the soliton ¥{"(x,y; w) is a mirror reflection of that spectrum
of the companion soliton ¥(*(x,y; ) around the imaginary
axis.

The eigenvalue problem (2.10) can be computed by the
Fourier collocation method (for the full spectrum) or the
Newton-conjugate-gradient method (for individual discrete
eigenvalues) [48]. We find that near the symmetry-breaking
bifurcation point u, ~ 2.33, symmetric solitons are stable
before the bifurcation point (4 < w.) and unstable after it
(u > ), and both branches of asymmetric solitons are
unstable. This stability behavior is marked on the power curve
in Fig. 3 (upper left panel). To shed light on the origins of
these stabilities and instabilities, linear-stability spectra at
three points, a—c, of this power curve, for the three solitons
displayed in Fig. 2, are displayed in panels Figs. 3(a)-3(c),
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FIG. 3. (Color online) Linear-stability behaviors of solitons near
the symmetry-breaking point in Example 1. Upper left panel: The
power curve with stability marked (solid blue for stable and dashed
red for unstable). (a—c) Linear-stability spectra for the solitons at
points a, b, and ¢ of the power curve.
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respectively. We see from Fig. 3(a) that before the bifurcation,
the symmetric soliton has a pair of discrete eigenvalues on the
imaginary axis. At the bifurcation point, this pair of imaginary
eigenvalues coalesce at the origin. After bifurcation, these
coalesced eigenvalues split along the real axis in opposite
directions for both symmetric and asymmetric solitons. Along
the symmetric branch, the two split eigenvalues forma (A, — A)
pair [see Fig. 3(b)]. But along the asymmetric branches, the
two split eigenvalues do not form a (A, — ) pair since they
have different magnitudes [see Fig. 3(c)]. These spectra show
that the instability of symmetric and asymmetric solitons after
bifurcation is due to the zero-eigenvalue splitting along the
real axis at u© = p., and this instability is exponential (caused
by real eigenvalues).

Itis interesting to observe that the power-curve structure and
the associated stability behaviors in Fig. 3 (upper left panel)
resemble those in the conservative generalized nonlinear
Schrodinger equations with real potentials (see Fig. 2(c) in
Ref. [43]). In that conservative case, it was shown that if the
power slopes of the symmetric and asymmetric solitons at the
bifurcation point have opposite signs, then both solitons will
share the same stability or instability [43]. Figure 3 of the
present article suggests that such a statement might hold for
complex potentials as well.

The linear-stability results of Fig. 3 are corroborated
by nonlinear evolution simulations of those solitons under
random-noise perturbations. To demonstrate, we perturb the
three solitons of Fig. 2 by 1% random-noise perturbations,
and their nonlinear evolutions are displayed in Fig. 4. As can
be seen, the perturbed symmetric soliton before bifurcation
shows little change even after z = 100 units of propagation,
confirming that it is linearly stable (see top row of Fig. 4). The
perturbed symmetric soliton after bifurcation, on the other
hand, clearly breaks up and evolves into a highly asymmetric
profile after 20 units of propagation, confirming that it is
linearly unstable (see middle row of Fig. 4). The perturbed
asymmetric soliton, whose initial intensity hump is located
at the right side, also breaks up and evolves into a profile
whose intensity hump moves to the left side after 50 units of
propagation, confirming that it is linearly unstable as well (see
bottom row of Fig. 4).

Example 2. In our second example, we take the poten-
tial (2.4) with

glx) = 0.3[e_()‘+l'2)2 + e_(x_l'z)z], o = 10,

and
h(y) = 2[e" 01 4 0.8e7 0127,

This potential is illustrated in Fig. 5. Its real part is no longer a
stripe potential, nor is it symmetric in y. The spectrum of this
potential is all-real, and it consists of three discrete eigenvalues
of {2.5643,2.5689,3.2028} and the continuous spectrum of
(—00,2.0569].

From the largest discrete eigenvalue of o = 3.2028, a
continuous family of PP7T-symmetric solitons bifurcates
out. The power curve of this soliton family is plotted in
Fig. 6(A) (blue curve). When the power of these solitons
reaches a threshold of P. ~ 5.24 (at u. &~ 3.56), two branches

PHYSICAL REVIEW E 91, 023201 (2015)

FIG. 4. (Color online) Nonlinear evolutions of the three solitons
in Fig. 2 under 1% random-noise perturbations (locations of these
solitons on the power curve are marked in both Figs. 2 and 3).

of asymmetric solitons bifurcate out, whose power curves are
also displayed in Fig. 6(A) (red curve). As before, these two
asymmetric solitons are related to each other by Eq. (2.9); thus
they have identical powers. Enlargement of this power curve
near the bifurcation point is shown in Fig. 6(B). At points
a—d of this amplified power diagram, the solitons’ amplitude
profiles are plotted in Fig. 6 (middle and bottom rows). Here
points ¢ and d are the same power points but on different
asymmetric-soliton branches. We can see that solitons at points
a and b of the base branch are PP7 symmetric, with point a
before bifurcation and point b after it. The solitons at points
c and d of the bifurcated branches, however, are asymmetric,
with the energy concentrated on the right and left sides of
the x axis, respectively. In this example, power slopes of the
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FIG. 5. (Color online) The PP7T-symmetric complex poten-
tial (2.4) in Example 2. (a) Re(V); (b) Im(V').
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FIG. 6. (Color online) Symmetry breaking of solitons in Exam-
ple 2. (A) power curves of PP7 -symmetric (blue) and asymmetric
(red) solitons. (B) Enlargement of the left power curves near the
bifurcation point (the solid blue line indicates linearly stable branch,
and the dashed red line indicate linearly unstable branches). Middle
and bottom rows: Profiles of soliton amplitudes at points a—d of the
power curve.

base and bifurcated soliton branches have the same sign at the
bifurcation point, which is different from Example 1.

Now we discuss linear-stability behaviors of solitons in
Example 2. For the base branch of PP7 -symmetric solitons,
they are linearly stable before the bifurcation point and linearly
unstable after it, which is similar to Example 1 and is not
surprising. To illustrate, linear-stability spectra for the two
PPT -symmetric solitons at points a and b of the power curve
in Fig. 6(B) are plotted in Figs. 7(a) and 7(b), respectively.
At point a (before bifurcation), all eigenvalues are imaginary,
indicating linear stability. At point b (past bifurcation), a pair
of real eigenvalues +0.3704 appear, which makes this PP7 -
symmetric soliton linearly unstable. What happens is that when
the power of the base branch crosses the bifurcation point, a
pair of imaginary eigenvalues collide at the origin and then
bifurcate out of the origin along the real axis, creating a A
pair of real eigenvalues and hence instability.

The most interesting new phenomena in Example 2 are the
linear stability behaviors of asymmetric solitons. We find that
both branches of asymmetric solitons are linearly unstable,
but origins of their instabilities are different. To demonstrate,
linear-stability spectra for the two asymmetric solitons at
points ¢ and d of Fig. 6(B) are plotted in Figs. 7(c) and 7(d).

PHYSICAL REVIEW E 91, 023201 (2015)
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FIG. 7. (Color online) (a—d) Linear-stability spectra for solitons
at points a—d of the power curve in Fig. 6(B).

These two spectra are related to each other by mirror reflection
around the imaginary axis, as we have pointed out earlier in
the text. In addition, eigenvalues of these asymmetric solitons
must appear in conjugate pairs (A,A*), but no other eigenvalue
symmetry exists.

The first phenomenon we notice in these spectra is
that both asymmetric solitons are linearly unstable due to
oscillatory instabilities caused by complex eigenvalues. The
second phenomenon is that, even though these spectra contain
complex eigenvalues, these eigenvalues do not appear in
quartets {A,A*, — A, — A*}. This contrasts asymmetric solitons
in real (conservative) potentials, where complex eigenvalues
must appear in quartets.

The third and probably most noteworthy phenomenon
in these spectra is that unstable eigenvalues in these two
asymmetric solitons have different origins. Indeed, before
the bifurcation, PP7 -symmetric solitons on the base branch
have two pairs of simple discrete imaginary eigenvalues [see
Fig. 7(a)]. At the bifurcation point, the smaller pair of simple
imaginary eigenvalues coalesce at the origin, while the larger
pair remain on the imaginary axis. When asymmetric solitons
bifurcate out from the base branch, for the one with energy
concentrated on the right side (see Fig. 6, at point c), the pair
of simple eigenvalues on the imaginary axis moves directly
to the right half plane, creating oscillatory instability [see
Fig. 7(c)]. The coalesced zero eigenvalues at the origin, on the
other hand, move leftward into the complex plane, creating a
conjugate pair of stable complex eigenvalues [see Fig. 7(c)].
For the asymmetric soliton with energy concentrated on the left
side, the situation is just the opposite [see Fig. 7(d)]. Thus the
origin of instability for one branch of asymmetric solitons is
due to a pair of simple imaginary eigenvalues moving directly
off the imaginary axis, while the origin for the other branch of
asymmetric solitons is due to the zero eigenvalue moving to
the complex plane.

The above phenomenon of zero and simple imaginary
eigenvalues moving directly into the complex plane and
creating oscillatory instability in solitons is very novel, since
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it contrasts conservative systems with real potentials. In real
potentials, linear-stability complex eigenvalues of solitons
appear as quartets {A,A*, — X, — A*"}. Partly because of it,
bifurcation of complex eigenvalues off the imaginary axis
typically occurs through collision of imaginary eigenvalues
of opposite Krein signatures (a bifurcation referred to as
Hamiltonian-Hopf bifurcation in the literature [49]). In addi-
tion, complex eigenvalues (not on the real and imaginary axes)
cannot bifurcate from the origin when two simple eigenvalues
collide there. But in complex potentials, the situation can be
very different as is explained above.

The fourth phenomenon in the spectra of Fig. 7 is
that, the maximal growth rates of perturbations in these
two asymmetric solitons are different. Indeed the unstable
eigenvalues in Fig. 7(c) are 0.0067 £ 0.7721i, giving a growth
rate of 0.0067; while the unstable eigenvalues in Fig. 7(d)
are 0.0090 + 0.2692i, giving a larger growth rate of 0.0090.
The fifth phenomenon is that these oscillatory instabilities in
asymmetric solitons are rather weak due to these small growth
rates. This means that these oscillatory instabilities will take
long distances to develop.

Of the five phenomena mentioned above, the third and
fourth ones are the most fundamental, and they are rarely
seen (if ever) for asymmetric solitons arising from symmetry-
breaking bifurcations.

Since the two branches of asymmetric solitons have
different origins of instability and different growth rates, small
perturbations in these solitons will grow differently, leading
to nonreciprocal developments of instability. To demonstrate,
evolutions of the two asymmetric solitons in Fig. 6 under 1%
random-noise perturbations are displayed in Fig. 8. We see
that even though these two asymmetric solitons are related
to each other by a mirror reflection (2.9) and are reciprocal,
their evolutions under weak perturbations are not reciprocal.
Indeed, after 1000 distance units of propagation, they reach
similar asymmetric states. This nonreciprocal evolution is most
visible in Figs. 8(c) and 8(d), where amplitude evolutions at
spatial positions (x,y) = (—1.2, — 1.2) and (1.2, — 1.2) for
the two perturbed asymmetric solitons are plotted respectively.
These amplitude evolutions vividly confirm that (a) the two
asymmetric solitons are linearly unstable, (b) their instabilities
are caused by different unstable modes with different growth
rates, and (c) the nonlinear evolutions are nonreciprocal even
though the asymmetric solitons are.

In Example 2, when asymmetric solitons bifurcate out,
the coalesced zero eigenvalue and the pair of imaginary
eigenvalues move in opposite directions in the complex
plane, causing instability to both asymmetric solitons [see
Figs. 7(c) and 7(d)]. For other potentials and/or nonlinearities,
if those eigenvalues bifurcate in the same direction, then one
asymmetric soliton would be linearly stable and the other
unstable. Such a scenario would be very remarkable. Whether
such scenarios exist or not is an open question.

In the above two examples, symmetry breaking was
observed for complex potentials of the form (2.4). We have
also tried a related class of complex potentials,

V(x,y) = g°(x) + ag(x) +ig'(x) + h*(y) + Bh(y) + ik (y),
(2.11)
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FIG. 8. (Color online) Nonreciprocal evolutions of two recipro-
cal asymmetric solitons in Fig. 6 under 1% random-noise pertur-
bations in Example 2. First and second rows: Initially perturbed
asymmetric solitons and their evolved solutions at z = 1000. (c,d)
Evolutions of solution amplitudes || versus z at two spatial positions
(x,y) =(—1.2, — 1.2) (blue) and (1.2, — 1.2) (red) for the two
asymmetric solitons of Fig. 6 under perturbations.

where g(x) and h(y) are real even functions, and « and 8 are
real constants. This potential is P7 symmetric, i.e., V*(x,y) =
V(—x, —y), and it admits P7 -symmetric solitons. But we
did not find symmetry breaking here; i.e., we did not find
branches of asymmetric solitons bifurcating from the branch
of PT -symmetric solitons.

Why does symmetry breaking occur in potentials of the
formin Eq. (2.4) but not in some others such as Eq. (2.11)? This
question is not clear yet. In fact, even for the one-dimensional
symmetry-breaking bifurcations reported in Ref. [45], the
reason for that symmetry breaking was not entirely clear
either. In the 1D case, the forms of potentials for symmetry
breaking in P7 -symmetric potentials and for soliton families
in asymmetric potentials are the same [32,45]. For those
potentials, there is a conserved quantity which, when combined
with a shooting argument, helps explain the existence of
soliton families in asymmetric complex potentials [33]. That
conserved quantity may prove useful to explain symmetry
breaking in those 1D potentials as well.
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For the present class of 2D potentials, Eq. (2.4), we have
found that Eq. (2.1) also admits a conservation law,

Q1+Jx+Ky =0, (2.12)

where
0= i\IJ(lIf;Ck — gy,
J=WWr 4|V, +igV)> — vy
0[2 o
h—— | |V)>+ = |,
+( 1 )I |+ 2| |
K = W,(WF —igW™) — W(WF —igw"),,

and

800 = 50+ 3.
For solitons (2.2), substituting their functional form into the
above conservation law, a reduced conservation law for the
soliton function ¥ (x,y) can also be derived. For the other
class of potentials, Eq. (2.11), however, we could not find
such a conservation law. This suggests that there is indeed a
connection between the existence of a conservation law and the
presence of symmetry breaking of solitons. But this connection
in the 2D case would be harder to establish since shooting-type
arguments would break down.

In 1D, symmetry breaking in symmetric potentials and
existence of soliton families in asymmetric potentials occur
in complex potentials of the same form [32,45]. This invites a
natural question: for the class of 2D complex potentials (2.4)
which admits symmetry breaking, if these potentials are not
PPT symmetric, i.e., if g(x) is real but not even, can they
support continuous families of solitons? The answer is positive
as our preliminary numerics have shown.

III. SUMMARY AND DISCUSSION

In this article, we reported symmetry breaking of solitons
in the nonlinear Schrodinger equation with a class of two-
dimensional PP7 -symmetric complex potentials (2.4). At
the bifurcation point, two branches of asymmetric solitons
bifurcate out from the base branch of PP7T-symmetric
solitons, and this bifurcation is quite surprising. Stability of
these solitons near the bifurcation point was also studied. In the
two examples we investigated, we found that the base branch
of symmetric solitons changes stability at the bifurcation
point, and the bifurcated asymmetric solitons are unstable.
For the asymmetric solitons, two novel stability properties
were further revealed. One is that, at the bifurcation point,
the zero and simple imaginary linear-stability eigenvalues
of asymmetric solitons can move directly into the complex
plane and create oscillatory instability. The other is that
the two bifurcated asymmetric solitons, even though having
identical powers and being related to each other by spatial
mirror reflection, can have different origins of linear instability
and thus exhibit nonreciprocal nonlinear evolutions under
random-noise perturbations.

We should point out that the complex potentials (2.4)
possess a single (PP7) symmetry; thus they must be in that
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special form in order for symmetry breaking to occur. If a
complex potential exhibits more than one spatial symmetry,
say double PP7T symmetries,

V*(xvy)z V(_an), V*(-xay)z V(-xv _y)1
or one P7 and one PP7 symmetry, say
Vi) =Vi=x, —y), Vix,y)=V(=xy),

then this potential can admit symmetry breaking without
the need for special functional forms (this prospect has
been mentioned in Ref. [44] and confirmed by our own
numerics). When symmetry breaking occurs in such double-
symmetry potentials, the base branch of solitons respects both
symmetries of the potential, while the bifurcated solitons lose
one symmetry but retain the other. The simple mathematical
reason for symmetry breakings in double-symmetry potentials
is that the infinitely many analytical conditions for symmetry
breaking in Ref. [44] are all satisfied automatically due
to the remaining symmetry of the bifurcated solitons. That
situation is fundamentally different from symmetry breakings
in potentials of special forms such as Eq. (2.4), which
admit a single spatial symmetry. The mathematical reason for
symmetry breaking in single-symmetry potentials of special
functional forms such as Eq. (2.4) is still not clear.

ACKNOWLEDGMENTS

This work was supported in part by the Air Force Office
of Scientific Research (Grant No. USAF 9550-12-1-0244) and
the National Science Foundation (Grant No. DMS-1311730).

APPENDIX: NUMERICAL METHOD FOR COMPUTING
SOLITONS IN COMPLEX POTENTIALS

In this Appendix, we describe the Newton-conjugate-
gradient method for computing solitons in Eq. (2.3) with a
complex potential.

The general idea of the Newton-conjugate-gradient method
is that, for a nonlinear real-valued vector equation,

Lo(u) =0, (AL)
its solution u is obtained by Newton iterations
U, =u, + Au,, (A2)

where the updated amount Au, is computed from the linear
Newton-correction equation

Lln Aun = _LO(un)v (A3)

where Ly, is the linearization operator L; of Eq. (A1) evaluated
at the approximate solution u,. If L; is self-adjoint, then
Eq. (A3) can be solved directly by preconditioned conjugate-
gradient iterations [47,48,50]. But if L; is non-self-adjoint, we
first multiply it by the adjoint operator of L; and turn it into a
normal equation,
LA

LA, = —Lj Lo(u,), (A4)

which is then solved by preconditioned conjugate gradient
iterations.
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For Eq. (2.3), we first split the complex function v and the
complex potential V into their real and imaginary parts:

Y=y +ivy, V=V +iV,.

Substituting these equations into Eq. (2.3), we obtain two real
equations for (Yr1,¥»):

V32U + (Vi — v — Vavn + o (¥ + y3) ¥ =0,

V2 + (Vi = s + Vo + o (¥ + ¥3) 92 = 0.
These two real equations are the counterpart of Eq. (A1) for
the vector function u = [v,¥»]7, where the superscript T

represents the transpose of a vector. The linearization operator
of the above nonlinear equations is

Ly Ly
L, = ,
: |:L21 L22i|
where

Liy = V*+ Vi —pu+o(3yf +¥3),
Ly =201y — V2,
Ly =201y + Vo,
Ly = V>4 Vi — p+0 (393 + v7).
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This linearization operator is non-self-adjoint; thus the Newton
correction is obtained from solving the normal equation (A4),
where the adjoint operator of L; is

L L
LA — LT — 11 21 )
! |:L12 Ly

For Eq. (2.3), the preconditioner in conjugate-gradient
iterations for solving the normal equation (A4) is taken as

M = diag[(V? + ¢)%,(V* + ¢)*],

where c is a positive constant (which we take as ¢ = 3 in our
computations).

While the above numerical algorithm is developed for real
functions (1, y,), during computer implementation, it is more
time-efficient to recombine (1,v,) into a complex function
¥, so that the derivatives of (1 ,1,) can be obtained simultane-
ously from i by the fast Fourier transform. Correspondingly,
linear operators L; and L{' acting on real vector functions are
combined into scalar complex operations as well. Due to this
recombination, the code also becomes more compact.

In the Supplemental Material of this article [51], a sample
MATLAB code is provided for the computation of an asymmetric
soliton in Example 1 at u = 2.4 (see Fig. 2, at point c¢). On
a desktop PC (Dell Optiplex 990 with CPU speed 3.3 GHz),
this code takes 192 conjugate-gradient iterations and under
1.5 s to finish with solution accuracy below 1072,
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