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An integrable nonlocal nonlinear Schrödinger (NLS) equation with clear physical motivations is proposed.
This equation is obtained from a special reduction of the Manakov system, and it describes Manakov solutions
whose two components are related by a parity symmetry. Since the Manakov system governs wave propagation in
a wide variety of physical systems, our nonlocal equation has clear physical meanings. Solitons and multisolitons
in this nonlocal equation are also investigated in the framework of Riemann-Hilbert formulations. Surprisingly,
symmetry relations of discrete scattering data for this equation are found to be very complicated, where
constraints between eigenvectors in the scattering data depend on the number and locations of the underlying
discrete eigenvalues in a very complex manner. As a consequence, general N -solitons are difficult to obtain in
the Riemann-Hilbert framework. However, one- and two-solitons are derived, and their dynamics investigated. It
is found that two-solitons are generally not a nonlinear superposition of one-solitons, and they exhibit interesting
dynamics such as meandering and sudden position shifts. As a generalization, other integrable and physically
meaningful nonlocal equations are also proposed, which include NLS equations of reverse-time and reverse-
space-time types as well as nonlocal Manakov equations of reverse-space, reverse-time, and reverse-space-time
types.
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I. INTRODUCTION

Integrable systems have been studied for over 50 years
[1–5]. The most familiar integrable systems are local equa-
tions, i.e., the solution’s evolution depends only on the local
solution value and its local space and time derivatives. The
Korteweg–de Vries equation and the nonlinear Schrödinger
(NLS) equation are such examples.

In the past few years, nonlocal integrable equations started
to attract a lot of attention. The first such equation, as proposed
by Ablowitz and Musslimani [6] as a special reduction of the
Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy [7], is the
NLS equation of reverse-space type,

iqt (x, t ) + qxx (x, t ) + 2σq2(x, t )q∗(−x, t ) = 0, (1)

where σ = ±1 is the sign of nonlinearity, and the asterisk *
represents complex conjugation. This equation is distinctive
because solution states at distant locations x and −x are di-
rectly coupled, reminiscent of quantum entanglement between
pairs of particles.

Following the introduction of this equation, its properties
have been extensively investigated [6,8–19]. In addition, other
nonlocal integrable equations have been reported [20–40]. A
transformation between many nonlocal and local equations
has been discovered as well [35].

From a mathematical point of view, studies of these nonlo-
cal equations is interesting because these equations often fea-
ture distinctive types of solution behaviors, such as finite-time
solution blowup [6,17], the simultaneous existence of solitons
and kinks [32], the simultaneous existence of bright and
dark solitons [6,13], and distinctive multisoliton patterns [18].
However, the physical motivations of these existing nonlocal
equations are rather weak. Indeed, none of these equations

was derived for a concrete physical system [even though the
nonlocal equation (1) above was linked to an unconventional
system of magnetics [41], it is not clear whether such an
unconventional magnetics system is physically realizable].
This lack of physical motivation dampens the interest in these
nonlocal equations from the broader scientific community. It
is noted that another way to introduce nonlocality into wave
equations is through integral terms. Nonlocal NLS equations
with integral terms have been derived for a number of physical
systems, such as the motion of a thin vortex filament in a
quantum fluid [42], and optical waves in nonlocal media of
thermal or diffusive type [43]. However, those integral-type
nonlocal equations are nonintegrable.

In this article, we propose an integrable nonlocal NLS
equation which has clear physical meanings. This equation is

iut (x, t )+uxx (x, t )+2σ [|u(x, t )|2+|u(−x, t )|2]u(x, t ) = 0,

(2)

where σ = ±1. Here, the nonlocality is also of reverse-space
type, where solutions at locations x and −x are directly
coupled, similarly to Eq. (1). The difference from Eq. (1) is
that the nonlinear terms are different. Here the nonlinearity-
induced potential 2σ [|u(x, t )|2 + |u(−x, t )|2] is real and
symmetric in x, which contrasts the previous equation (1),
where the nonlinearity-induced potential 2σq(x, t )q∗(−x, t )
is generally complex and parity-time-symmetric [44].

Our equation (2) will be derived from a special reduction
of the Manakov system [45]. It is well known that the Man-
akov system governs nonlinear wave propagation in a great
variety of physical situations, such as the interaction of two
incoherent light beams in crystals [46–48], the transmission
of light in a randomly birefringent optical fiber [49–52], and
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the evolution of two-component Bose-Einstein condensates
[53,54]. Thus, our nonlocal equation governs nonlinear wave
propagation in such physical systems under a certain con-
straint of the initial conditions, where the two components of
the Manakov system are related by a parity symmetry. This
physical interpretation can help us understand the solution
behaviors in this nonlocal equation.

For this integrable nonlocal equation, we will further study
its bright solitons and multisolitons in the framework of
Riemann-Hilbert formulation (which is a modern treatment
of the inverse scattering transform) [2,3,5]. In this Riemann-
Hilbert framework, the key to deriving general soliton so-
lutions is to determine symmetry relations of the discrete
scattering data. For the previous nonlocal NLS equation (1)
and two others of reverse-time and reverse-space-time types
[6,28], it was found in Ref. [18] that those symmetry relations
were very simple, and thus the general N -solitons in those
equations were very easy to write down. However, for the
present nonlocal equation (2), we will show that its symmetry
relations of discrete scattering data are very complicated,
because the constraints between eigenvectors in the scattering
data depend on the number and locations of the underlying
discrete eigenvalues in a very intricate way. Even though
we do succeed in deriving these symmetry relations for one-
and two-solitons, derivation of such relations for the general
N -solitons is apparently very difficult, at least in the Riemann-
Hilbert and inverse scattering framework. We are not aware
of other integrable equations whose symmetry relations of
the scattering data are so complicated, which makes this
nonlocal equation mathematically interesting and challenging.
From the derived one- and two-soliton solutions, we find that
two-solitons are generally not a nonlinear superposition of
one-solitons, and they exhibit interesting dynamical patterns
such as meandering and sudden position shifts. As a general-
ization of these results, we also propose other integrable and
physically meaningful nonlocal equations, such as the NLS
equations of reverse-time and reverse-space-time types, as
well as nonlocal Manakov equations of reverse-space, reverse-
time, and reverse-space-time types.

II. A PHYSICALLY-SIGNIFICANT INTEGRABLE
NONLOCAL NLS EQUATION

The Manakov system

iut + uxx + 2σ (|u|2 + |v|2)u = 0, (3)

ivt + vxx + 2σ (|u|2 + |v|2)v = 0, (4)

where σ = ±1, is a ubiquitous nonlinear wave system which
governs a wide variety of physical phenomena ranging from
the interaction of two incoherent light beams in crystals
[46–48], the transmission of light in a randomly birefringent
optical fiber [49–52], and the evolution of two-component
Bose-Einstein condensates [53,54]. This system was shown
by Manakov to be integrable [45] (see also Refs. [5,55]).

Now, we impose the solution constraint

v(x, t ) = u(−x, t ). (5)

Under this constraint, it is easy to see that the two equations
in the Manakov system are consistent, and this system reduces
to a single but nonlocal equation for u(x, t ) as

iut (x, t ) + uxx (x, t )

+ 2σ [|u(x, t )|2 + |u(−x, t )|2]u(x, t ) = 0, (6)

which is the nonlocal NLS equation (2) in the previous
section.

The above derivation of this nonlocal equation also reveals
the physical interpretation of its solutions. Specifically, this
equation describes solutions of the Manakov system under
special initial conditions where v(x, 0) = u(−x, 0), i.e., the
u and v components are related by parity symmetry. In
this case, the u(x, t ) solution is governed by the nonlocal
equation (6), while the v(x, t ) solution is given in terms
of u(x, t ) as v(x, t ) = u(−x, t ). We emphasize that even
though the Manakov system has been extensively studied
before [5,45,55], its solutions with special initial conditions
v(x, 0) = u(−x, 0) have not received much attention. Since
these special solutions are governed by a single nonlocal
equation (6), this opens the door for studies of these solutions
in the framework of this nonlocal equation.

The above nonlocal equation is also integrable. To get its
Lax pair, we recall that the Lax pair of the Manakov system
(3)–(4) are

Yx = (−iζ� + Q)Y, (7)

Yt = [−2iζ 2� + 2ζQ + i�(Qx − Q2)]Y, (8)

where

� =

⎛⎜⎝1 0 0

0 1 0

0 0 −1

⎞⎟⎠, Q =

⎛⎜⎝ 0 0 u

0 0 v

−σu∗ −σv∗ 0

⎞⎟⎠. (9)

The Lax pair for the nonlocal equation (6) are simply the
above ones with v(x, t ) replaced by u(−x, t ) in view of the
reduction (5).

III. SOLITONS AND MULTISOLITONS IN OUR
NONLOCAL EQUATION

Since our nonlocal equation (6) is integrable, it is natural
to seek its general soliton and multisoliton solutions. Recall
that this nonlocal equation is a reduction of the Manakov
system. Thus, its solitons are a part of Manakov solitons. But
what Manakov solitons satisfy this nonlocal equation? This is
actually a nontrivial question. The present situation is similar
to the previous nonlocal NLS equation (1). Even though
that equation was a reduction of the well-known coupled
q-r system in the AKNS hierarchy [5–7], its solutions were
still not obvious, which prompted a lot of studies on that
equation in the past few years [6,8–19]. In this article, we only
consider bright-soliton solutions, which exist under focusing
nonlinearity; thus we set σ = 1 below.

In a previous article [18], we derived general N -solitons
in the previous nonlocal NLS equation (1) and two others
of reverse-time and reverse-space-time types, which were
reduced from the q-r system in the AKNS hierarchy [6,7,28].
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That derivation was set in the Riemann-Hilbert framework.
Starting from the general N -soliton solutions of the q-r sys-
tem and deriving symmetry relations of the discrete scattering
data for those nonlocal equations, general N -solitons of those
nonlocal equations were then obtained. In that approach,
derivation of symmetry relations of the scattering data was
the key. It turns out that those symmetry relations were simple
(as in all previous integrable systems we are aware of). Thus,
general N -solitons in those nonlocal equations were easy to
write down.

In this article, we follow a similar approach. Since our
nonlocal equation (6) is a reduction from the Manakov system,
we will start from the general soliton solutions of the Manakov
system in the Riemann-Hilbert formulation. As before, the
key to obtaining solitons in this nonlocal equation is to derive
symmetry relations of its discrete scattering data. It turns out
that these symmetry relations are surprisingly complicated for
this nonlocal equation, which makes derivations of its general
N -solitons more difficult.

A. Inverse scattering and N-solitons for the Manakov system

We begin with inverse scattering and N -solitons for the
Manakov system, formulated in the Riemann-Hilbert frame-
work [5,45,55]. In this treatment, the solutions (u, v) are as-
sumed to decay to zero sufficiently fast as x approaches ±∞.

Inverse scattering is based on the Lax pair (7) and (8).
Introducing variables

J = Y exp{iζ�x + 2iζ 2�t}, (10)

then this Lax pair for J become

Jx = −iζ [�, J ] + QJ (11)

and

Jt = −2iζ 2[�, J ] + [2ζQ + i�(Qx − Q2)]J, (12)

where [�, J ] = �J − J�.
The matrix Jost solutions J±(x, t, ζ ) are defined by the

large-x asymptotics

J±(x, t, ζ ) → I3, x → ±∞. (13)

Here I3 is the unit matrix of rank three. We also introduce the
notations

J−E = � = (φ1, φ2, φ3), (14)

J+E = � = (ψ1, ψ2, ψ3), (15)

where E = e−iζ�x . Since � and � are both fundamental
matrices of the scattering problem (7), they are related by an
x-independent scattering matrix S(t, ζ ) = [sij ] for real ζ ,

� = �S, ζ ∈ R. (16)

An important property of these Jost solutions is that some
of them can be analytically extended off the real-ζ axis into
the upper complex ζ plane C+. Specifically, one can show that
[5,45,55], Jost solutions

P + = (φ1, φ2, ψ3)eiζ�x = J−H1 + J+H2 (17)

are analytic in ζ ∈ C+, where

H1 = diag(1, 1, 0), H2 = diag(0, 0, 1). (18)

In addition, some of the inverse Jost solutions,

J−1
− = E�−1, J−1

+ = E�−1, (19)

can be analytically extended off the real-ζ axis into the lower
complex ζ plane C−. Specifically, by expressing �−1 and
�−1 as a collection of rows,

�−1 =

⎛⎜⎝φ̂1

φ̂2

φ̂3

⎞⎟⎠, �−1 =

⎛⎜⎝ψ̂1

ψ̂2

ψ̂3

⎞⎟⎠, (20)

then the inverse Jost solutions

P − = e−iζ�x

⎛⎜⎝φ̂1

φ̂2

ψ̂3

⎞⎟⎠ = H1J
−1
− + H2J

−1
+ (21)

are analytic in ζ ∈ C−. The large-ζ asymptotics of these
analytical solutions are

P ±(x, t, ζ ) → I3, ζ ∈ C± → ∞. (22)

Hence, we have constructed two matrix functions P + and
P − which are analytic in C+ and C−, respectively. On the real
line, they are related by

P −(x, t, ζ )P +(x, t, ζ ) = G(x, t, ζ ), ζ ∈ R, (23)

where

G = E(H1 + H2S)(H1 + S−1H2)E−1

= E

⎛⎜⎝ 1 0 ŝ13

0 1 ŝ23

s31 s32 1

⎞⎟⎠E−1, (24)

and S−1 = [ŝij ]. Equation (23) determines a matrix Riemann-
Hilbert problem under the normalization condition (22).

To solve this Riemann-Hilbert problem, in addition to the
scattering coefficients (s31, s32, ŝ13, ŝ23) for ζ ∈ R, one also
needs the locations of zeros for det P ± in C± as well as the
kernels of P ± at these zeros. From the definitions of P ±
in (17) and (21) as well as the scattering relation (16), we
see that

det P + = ŝ33, det P − = s33. (25)

Suppose ŝ33(t, ζ ) and s33(t, ζ ) have simple zeros at ζk ∈ C+
and ζ̄k ∈ C− (1 � k � N ), respectively. In this case, each of
the kernels of P +(x, t, ζk ) and P −(x, t, ζ̄k ) contains only a
single column vector wk or row vector wk:

P +(x, t, ζk )wk = 0, wkP
−(x, t, ζ̄k ) = 0, 1 � k � N.

(26)

Here, the vectors wk and wk are (x, t ) dependent. Then
the minimal scattering data for solving the Riemann-Hilbert
problem (22) and (23) is

{s31, s32, ŝ13, ŝ23, ζ ∈ R; ζk, ζ̄k, wk, wk, 1 � k � N}. (27)
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We should point out that the Riemann-Hilbert zeros ζk and
ζ̄k ) are simply the discrete eigenvalues of the scattering equa-
tion (7), when viewed as an eigenvalue problem [5]. This is
why throughout this article, we call ζk and ζ̄k ) as Riemann-
Hilbert zeros or discrete eigenvalues exchangeably.

For the Manakov system, this minimal scattering data must
satisfy certain symmetry constraints, which are induced by the
symmetry relation

Q† = −Q (28)

of the potential matrix in Eq. (9). Here, the superscript † rep-
resents the Hermitian (i.e., conjugate transpose) of a matrix.
For the discrete scattering data, these symmetry constraints
are found to be

ζ̄k = ζ ∗
k , wk = w†

k. (29)

For the continuous scattering data, the symmetry constraints
are

S†(t, ζ ∗) = S−1(t, ζ ). (30)

One distinctive property of integrable systems is that their
scattering data features simple temporal and spatial depen-
dence. For the underlying Manakov system, we can show that
the Riemann-Hilbert zeros ζk and ζ̄k are all time independent
(and are thus constants), and the eigenvectors wk (x, t ) as well
as the scattering coefficients s31(t, ζ ), s32(t, ζ ) are exponen-
tial functions of x and/or t ,

wk (x, t ) = e−iζk�x−2iζ 2
k �twk0, (31)

s31(t, ζ ) = s31(0, ζ )e4iζ 2t , (32)

s32(t, ζ ) = s32(0, ζ )e4iζ 2t , (33)

where wk0 is a constant column vector, and s31(0, ζ ), s32(0, ζ )
are initial scattering coefficients. Temporal and spatial de-
pendence of wk and ŝ13, ŝ23 can be determined through the
symmetry relations (29) and (30).

The key to the success of the inverse scattering transform
method is that, if the matrix Riemann-Hilbert problem (22)
and (23) can be solved, then the potential Q, hence the solu-
tions (u, v), can be reconstructed from the Riemann-Hilbert
solution P ±. Specifically, by expanding P ± as

P ±(x, t, ζ ) = I3 + ζ−1P ±
1 (x, t ) + O(ζ−2), (34)

inserting it into Eq. (11) and comparing terms of the same
order in ζ−1, we find that the potential Q is given by

Q = i[�, P +
1 ] = −i[�, P −

1 ]. (35)

The Manakov solutions (u, v) then can be extracted from the
above Q formula.

In general, the matrix Riemann-Hilbert problem (22) and
(23) defies explicit analytical solutions. However, if the scat-
tering coefficients (s31, s32, ŝ13, ŝ23) are all zero, so that the
Riemann-Hilbert equation (23) reduces to P −P + = I , then
this problem can be solved explicitly, and the P + solution
is [5]

P +(x, t, ζ ) = I +
N∑

j,k=1

wj (M−1)jkwk

ζ − ζ̄k

, (36)

where

Mjk = wj wk

ζ̄j − ζk

, 1 � j, k � N. (37)

The corresponding solutions (u, v) of the Manakov system
are called N -soliton solutions. Incorporating the symmetry
constraints (29) as well as the spatial-temporal formula (31)
for wk , and normalizing the column eigenvectors wk0 to

wk0 = (αk, βk, 1)T , (38)

so that their last elements are unity, then these N -soliton
solutions are(

u(x, t )

v(x, t )

)
= 2i

N∑
j,k=1

(
αj

βj

)
eθj −θ∗

k (M−1)jk, (39)

where M is a N × N matrix whose elements are given by

Mjk = 1

ζ ∗
j − ζk

[
e−(θ∗

j +θk ) + (α∗
j αk + β∗

j βk )eθ∗
j +θk

]
,

θk = −iζkx − 2iζ 2
k t, (40)

ζk are complex numbers in the upper half plane C+, αk, βk

are arbitrary complex constants, and the superscript “T ” rep-
resents transpose of a vector.

B. Symmetry constraints of scattering data
in the nonlocal equation

The nonlocal equation (6) is obtained from the Manakov
equations under the solution reduction (5). This solution
reduction induces an additional symmetry of the potential
matrix Q,

Q(−x, t ) = −P −1Q(x, t )P, (41)

where

P =

⎛⎜⎝0 1 0

1 0 0

0 0 −1

⎞⎟⎠. (42)

This additional potential symmetry will impose additional
constraints on the scattering data, which need to be deter-
mined and incorporated into the above Manakov-soliton for-
mulas in order to obtain solitons of the nonlocal equation (6).
Note that the Manakov solitons (39) are given in terms of
the eigenvalues ζk ∈ C+ and their corresponding eigenvectors
wk0. Thus, the additional constraints on the discrete scattering
data for the nonlocal equation (6) will be constraints for eigen-
values ζk ∈ C+ and their corresponding eigenvectors wk0.
These symmetry constraints are presented in the following
theorem.

Theorem 1. For the nonlocal NLS equation (6), if ζ ∈ C+
is a discrete eigenvalue, then so is ζ̂ ≡ −ζ ∗ ∈ C+. Thus,
eigenvalues in the upper complex plane are either purely
imaginary or appear as (ζ,−ζ ∗) pairs. Symmetry relations
on their eigenvectors depend on the number and locations of
these eigenvalues. For the one- and two-solitons (with a single
and double eigenvalues in C+ respectively), these symmetry
relations are given below.
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(1) For a single purely imaginary eigenvalue ζ1 = iη, with
η > 0, its eigenvector is of the form

w10 = [2−1/2eiγ , 2−1/2eiγ , 1]T , (43)

where γ is an arbitrary real constant.
(2) For two purely imaginary eigenvalues ζ1 = iη1

and ζ2 = iη2, with η1, η2 > 0, their eigenvectors w10 =
(α1, β1, 1)T and w20 = (α2, β2, 1)T are related as

|α1|2 + |β1|2 = |α2|2 + |β2|2, (44)

g2[(|α1|2 + |β1|2)2 − 1] = (1 − g2)(1 − |α∗
1α2 + β∗

1 β2|2),

(45)

β1 = (1 + g)(α1α
∗
2 + β1β

∗
2 )α2 − g(|α2|2 + |β2|2)α1, (46)

β2 = g(|α1|2 + |β1|2)α2 + (1 − g)(α∗
1α2 + β∗

1 β2)α1, (47)

where

g ≡ (η1 + η2)/(η2 − η1). (48)

These equations admit solutions for w10 and w20 if and only
if |α∗

1α2 + β∗
1 β2| � 1, and the admitted solutions have four

free real parameters (not counting the eigenvalue parameters
η1 and η2).

(3) For two nonimaginary eigenvalues (ζ1, ζ2) ∈ C+,
where ζ2 = −ζ ∗

1 , their eigenvectors w10 = (α1, β1, 1)T and
w20 = (α2, β2, 1)T are related as(

α2

β2

)
= S

(
α1

β1

)
, (49)

where

S =
(

1

ζ ∗
1 − ζ1

− 1

2ζ ∗
1

)

×
⎛⎝ −α∗

1 β1

2ζ ∗
1

|α1|2+|β1|2
ζ ∗

1 −ζ1
− |β1|2

2ζ ∗
1

|α1|2+|β1|2
ζ ∗

1 −ζ1
− |α1|2

2ζ ∗
1

−α1β
∗
1

2ζ ∗
1

⎞⎠−1

,

and α1, β1 are free complex constants.
Proof. The symmetry constraints on the discrete scattering

data for the nonlocal equation (6) are induced by the potential
symmetry (41). Switching x → −x in the scattering equa-
tion (7) and utilizing this potential symmetry, we get

[PY (−x)]x = [ζ� + Q(x)][PY (−x)]. (50)

This means that, if ζ is a discrete eigenvalue of the scattering
problem (7), so is −ζ . But it is known from Eq. (29) that
for the general Manakov system, discrete eigenvalues to the
scattering equation (7) come in conjugate pairs. Thus, if −ζ

is a discrete eigenvalue, so is −ζ ∗. This proves the eigenvalue
symmetry in Theorem 1.

It is important to notice that, although we can show −ζ ∗
would be an eigenvalue so long as ζ is, there is no simple
relation between their eigenfunctions, and thus one cannot
obtain a simple symmetry relation between their eigenvectors
in the scattering data. Eigenfunctions for ζ and −ζ are directly
related in view of Eq. (50). But −ζ is in the opposite half
plane of ζ . Thus, that eigenfunction relation for ζ and −ζ is
not useful for our purpose.

To prove symmetry relations of eigenvectors for one-
and two-solitons in Theorem 1, we utilize the connec-
tion between these eigenvectors and Riemann-Hilbert-based
N -soliton solutions (39) of the Manakov system. By imposing
the condition v(x, t ) = u(−x, t ) on the Manakov solitons, we
will be able to derive symmetry conditions of eigenvectors for
the nonlocal NLS equation (6).

First, we consider one-solitons, where there is a single
purely imaginary eigenvalue ζ1 = iη ∈ C+, with η > 0. In
this case, the one-Manakov-soliton from Eq. (39) can be
rewritten as(

u(x, t )

v(x, t )

)
=

(
α1

β1

)
4ηe4iη2t

e−2ηx + (|α1|2 + |β1|2)e2ηx
.

By requiring v(x, t ) = u(−x, t ), we get the conditions

β1 = α1(|α1|2 + |β1|2), α1 = β1(|α1|2 + |β1|2).

Hence,

|α1|2 + |β1|2 = 1, α1 = β1,

and |α1|2 = 1/2. Writing α1 = 2−1/2eiγ , where γ is a real
constant, the resulting eigenvector w10 is then as given in
Eq. (43).

Next, we consider two-solitons, where there are two com-
plex eigenvalues ζ1, ζ2 ∈ C+. In this case, the general two-
Manakov-solitons from Eq. (39) can be rewritten as

u(x, t ) = 2i

det(M )

[
A1e

θ1−θ∗
1 −(θ2+θ∗

2 ) + A2e
θ1−θ∗

1 +θ2+θ∗
2

+A3e
θ1+θ∗

1 +θ2−θ∗
2 + A4e

−(θ1+θ∗
1 )+θ2−θ∗

2
]
, (51)

v(x, t ) = 2i

det(M )

[
B1e

θ1−θ∗
1 −(θ2+θ∗

2 ) + B2e
θ1−θ∗

1 +θ2+θ∗
2

+B3e
θ1+θ∗

1 +θ2−θ∗
2 + B4e

−(θ1+θ∗
1 )+θ2−θ∗

2
]
, (52)

where

det(M ) = C1e
−(θ1+θ∗

1 +θ2+θ∗
2 ) + C2e

θ1+θ∗
1 +θ2+θ∗

2

+C3e
θ1+θ∗

1 −(θ2+θ∗
2 ) + C4e

−(θ1+θ∗
1 )+θ2+θ∗

2

+C5e
θ1−θ∗

1 −(θ2−θ∗
2 ) + C∗

5e−(θ1−θ∗
1 )+θ2−θ∗

2 ,

θk is given in Eq. (40), and coefficients Ak,Bk, Ck are certain
functions of ζ1, ζ2, α1, α2, β1, β2 whose expressions are given
below:

A1 =
(

1

ζ ∗
2 − ζ2

− 1

ζ ∗
1 − ζ2

)
α1,

A2 = α1(|α2|2 + |β2|2)

ζ ∗
2 − ζ2

− α2(α1α
∗
2 + β1β

∗
2 )

ζ ∗
2 − ζ1

,

A3 = α2(|α1|2 + |β1|2)

ζ ∗
1 − ζ1

− α1(α∗
1α2 + β∗

1 β2)

ζ ∗
1 − ζ2

,

A4 =
(

1

ζ ∗
1 − ζ1

− 1

ζ ∗
2 − ζ1

)
α2,

B1 =
(

1

ζ ∗
2 − ζ2

− 1

ζ ∗
1 − ζ2

)
β1,
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B2 = β1(|α2|2 + |β2|2)

ζ ∗
2 − ζ2

− β2(α1α
∗
2 + β1β

∗
2 )

ζ ∗
2 − ζ1

,

B3 = β2(|α1|2 + |β1|2)

ζ ∗
1 − ζ1

− β1(α∗
1α2 + β∗

1 β2)

ζ ∗
1 − ζ2

,

B4 =
(

1

ζ ∗
1 − ζ1

− 1

ζ ∗
2 − ζ1

)
β2,

C1 = 1

(ζ ∗
1 − ζ1)(ζ ∗

2 − ζ2)
+ 1

|ζ ∗
1 − ζ2|2 ,

C2 = (|α1|2 + |β1|2)(|α2|2 + |β2|2)

(ζ ∗
1 − ζ1)(ζ ∗

2 − ζ2)
+ |α∗

1α2 + β∗
1 β2|2

|ζ ∗
1 − ζ2|2 ,

C3 = |α1|2 + |β1|2
(ζ ∗

1 − ζ1)(ζ ∗
2 − ζ2)

,

C4 = |α2|2 + |β2|2
(ζ ∗

1 − ζ1)(ζ ∗
2 − ζ2)

,

C5 = α1α
∗
2 + β1β

∗
2

|ζ ∗
1 − ζ2|2 .

For two-solitons, there are two cases to consider.
(1) If the two eigenvalues ζ1 and ζ2 are purely imagi-

nary, i.e.,

ζ1 = iη1, ζ2 = iη2,

with η1, η2 > 0, then

θk = ηkx + 2iη2
k t, θk + θ∗

k = 2ηkx, θk − θ∗
k = 4iη2

k t.

In this case, when x → −x,

θk + θ∗
k → −(θk + θ∗

k ), θk − θ∗
k → θk − θ∗

k .

Thus, by cross multiplication of the ratio expressions for
u(−x, t ) and v(x, t ) from (51) and (52) and requiring expo-
nentials of the same power to match, we find that the necessary
and sufficient conditions for v(x, t ) = u(−x, t ) are

A1 = B2, A2 = B1, A3 = B4, A4 = B3, (53)

C1 = C2, C3 = C4. (54)

The requirement of C3 = C4 directly leads to Eq. (44) in
Theorem 1, and the requirement of C1 = C2 leads to Eq. (45).
Under these two requirements on Ck’s, we find that only
two of the four conditions for Ak’s and Bk’s in Eq. (53) are
independent, i.e., if two of them are satisfied, then the other
two would be satisfied automatically. When we choose the two
conditions as A2 = B1 and A3 = B4, these conditions would
lead to Eqs. (46) and (47).

In Sec. IV B, we will explicitly solve the four equa-
tions (44)–(47) and show that they admit solutions for w10

and w20 if and only if |α∗
1α2 + β∗

1 β2| � 1. In addition, the ad-
mitted solutions have four free real parameters (not counting
the eigenvalue parameters η1 and η2).

(2) If the two eigenvalues ζ1 and ζ2 are not purely imagi-
nary, then ζ2 = −ζ ∗

1 . In this case,

θ1 = −iζ1x − 2iζ 2
1 t, θ2 = iζ ∗

1 x − 2iζ ∗2
1 t ;

thus,

θ1 + θ∗
2 = −2iζ1x, θ1 − θ∗

2 = −4iζ 2
1 t.

Then, as x → −x,

θ1 + θ∗
2 → −(θ1 + θ∗

2 ), θ1 − θ∗
2 → θ1 − θ∗

2 .

Recalling the expressions of u(x, t ) and v(x, t ) in Eqs. (51)
and (52), we find that in order for v(x, t ) = u(−x, t ), the
necessary and sufficient conditions now are

A1 = B3, A2 = B4, A3 = B1, A4 = B2, (55)

and

C1 = C2, C5 = C∗
5 . (56)

The A1 = B3 and A3 = B1 conditions are

β2(|α1|2 + |β1|2)

ζ ∗
1 − ζ1

− β1(α∗
1α2 + β∗

1 β2)

2ζ ∗
1

=
(

1

ζ ∗
1 − ζ1

− 1

2ζ ∗
1

)
α1

and

α2(|α1|2 + |β1|2)

ζ ∗
1 − ζ1

− α1(α∗
1α2 + β∗

1 β2)

2ζ ∗
1

=
(

1

ζ ∗
1 − ζ1

− 1

2ζ ∗
1

)
β1,

which can be rewritten as Eq. (49) in Theorem 1. Remarkably,
we find that when (α2, β2) are related to (α1, β1) by Eq. (49),
all the other conditions in (55) and (56) are automatically
satisfied. This completes the proof of Theorem 1. �

Remark 1. Theorem 1 shows that for the nonlocal NLS
equation (6), symmetry relations of eigenvectors in the scatter-
ing data are very complicated, because such relations depend
on the number and locations of eigenvalues in a highly non-
trivial way. Given the complexity of these symmetry relations
for two-solitons, such relations for three and higher solitons
are expected to be even more complicated. This poses a
challenge for deriving general N -solitons in Eq. (6), at least
in the Riemann-Hilbert framework.

Remark 2. The symmetry relations in Theorem 1 hold only
for pure-soliton solutions. If the solution contains radiation
on top of these solitons, symmetry relations of the discrete
scattering data would be different.

IV. SOLITON DYNAMICS IN THE
NONLOCAL NLS EQUATION

In this section, we examine dynamics of one- and two-
solitons of Eq. (6) as presented in Theorem 1.

A. Single solitons

Single solitons in the nonlocal NLS equation (6) can be ob-
tained from the single Manakov-soliton (39) with one purely
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FIG. 1. The single soliton (58) in the nonlocal NLS equation (6)
with η = 1. (a) Positions of eigenvalues; (b) graph of solution
|u(x, t )|.

imaginary eigenvalue ζ1 = iη (η > 0) and with its eigenvec-
tor w10 given by Eq. (43) in Theorem 1. This soliton is

u(x, t ) =
√

2ηe4iη2t+iγ sech(2ηx), (57)

where γ is a free real parameter. Since the nonlocal NLS equa-
tion (6) is phase invariant, the above soliton is equivalent to

u(x, t ) =
√

2ηe4iη2tsech(2ηx), (58)

which is shown in Fig. 1. This soliton is stationary with
constant amplitude and is symmetric in x.

B. Two-solitons with purely imaginary eigenvalues

These solitons are obtained from the two-Manakov-
solitons (39) with two purely imaginary eigenvalues in C+,
and with eigenvectors w10, w20 satisfying Eqs. (44)–(47) in
Theorem 1. Below, we solve these four equations explicitly.

First, we introduce the notations

p ≡ |α1|2 + |β1|2, q ≡ α∗
1α2 + β∗

1 β2,

and

q ≡ r0e
iγ0 , α1 ≡ r1e

iγ1 , α2 ≡ r2e
iγ2 ,

where r0, r1, r2 (� 0) are amplitudes of complex numbers
q, α1, α2, and γ0, γ1, γ2 their phases.

Before solving Eqs. (44)–(47), we notice that they admit
two invariances, i.e., if

α1 → α1e
iγ̂1 , β1 → β1e

iγ̂1 , α2 → α2e
iγ̂2 , β2 → β2e

iγ̂2 ,

where γ̂1 and γ̂2 are arbitrary real constants, then these equa-
tions remain invariant. Thus, the phases γ1, γ2 of parameters
α1 and α2 are free real constants.

To solve Eqs. (44)-(47), it is convenient to parametrize their
solutions in terms of q, i.e., r0 and γ0, which are two additional
free real constants. We will show that solutions exist if and
only if |q| � 1.

For given q, we can get p from Eq. (45) as

p =
√

1 + (g2 − 1)|q|2
g2

.

Recall from the definition of g in Eq. (48) that g is real and
|g| > 1. Thus, the quantity under the square root in the above
expression is always positive. After the p and q values are
available, we see from Eqs. (44), (46), and (47) that β1 and β2

depend on α1 and α2 only linearly, which is a big advantage.
Now, we substitute Eqs. (46) and (47) into (44). After

simplification, we obtain a quadratic equation for the ratio
h ≡ r2/r1 as

ah2 + bh + c = 0, (59)

where the coefficients are

a = 1 − (1 + g)r2
0 , b = 2gpr0 cos(γ0 + γ1 − γ2),

c = −[
1 + (g − 1)r2

0

]
.

After this h value is obtained, we insert (46) into the equation
p = |α1|2 + |β1|2 and use it to obtain r1 as

r1 =
√

p

�
,

where

� = 1 + g2p2 + (1 + g)2r2
0 h2

− 2g(1 + g)pr0h cos(γ0 + γ1 − γ2),

and the r2 value is then

r2 = r1h.

By now, the α1 and α2 values have been obtained, with their
phases γ1, γ2 being free constants, and their amplitudes r1, r2

related to their phases and q through the above equations.
The β1, β2 values are determined subsequently from α1, α2, p,
and q through Eqs. (46) and (47). We have verified that
the α1, β1, α2, β2 values thus obtained satisfy the condition
α∗

1α2 + β∗
1 β2 = q; thus the calculations are consistent.

The existence and number of solutions to Eqs. (44)–(47)
depend on the existence and number of non-negative solutions
to the quadratic equation (59) for h. The discriminant � =
b2 − 4ac of this quadratic equation can be found to be

� = 4g2p2r2
0

[
cos2(γ0 + γ1−γ2)−1− r2

0 − 1

r2
0

[
1 + (g2 − 1)r2

0

]]
.

Without loss of generality, we let 0 < η1 < η2; hence g > 1.
Then, utilizing this discriminant and the coefficient expres-
sions of (a, b, c) above, we can easily reach the following
conclusions.

(i) If r0 > 1, then � < 0. In this case, the quadratic equa-
tion (59) for h does not admit any non-negative solution.

(ii) If r0 = 1, then p = 1, a = c = −g, and b =
2g cos(γ0 + γ1 − γ2). In this case, the quadratic equation
(59) admits a single (repeated) positive root h = 1 when
cos(γ0 + γ1 − γ2) = 1, and the corresponding w10 and w20

solutions are

w10 = [2−1/2eiγ1 , 2−1/2eiγ1 , 1]T ,

w20 = [2−1/2eiγ2 , 2−1/2eiγ2 , 1]T ,

where γ1 and γ2 are free real constants.
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FIG. 2. Three examples of two-solitons in the nonlocal NLS
equation (6) with purely imaginary eigenvalues η1 = i and η2 = 2i.
(a) Positions of eigenvalues; (b) the two-soliton with parameters
in Eq. (60); [(c) and (d)] the two solutions of two-solitons with
parameters in Eq. (61). Graphs in [(b), (c), and (d)] are the |u(x, t )|
plots.

(iii) If 1/
√

1 + g < r0 < 1, then this quadratic h-equation
admits two positive solutions when

cos(γ0 + γ1 − γ2) >

√
1 + r2

0 − 1

r2
0

[
1 + (g2 − 1)r2

0

] ,

and thus there are two (w10, w20) solutions. When the left and
right sides of the above inequality become equal, there is a
single (w10, w20) solution.

(iv) If r0 < 1/
√

1 + g, then c/a < 0. In this case, the
quadratic equation (59) admits a single positive root h for ar-
bitrary γ0, γ1, and γ2 values. Thus, there is a single (w10, w20)
solution for arbitrary free parameters γ0, γ1, γ2.

To summarize, the above results reveal that Eqs. (46) and
(47) admit solutions for w10 and w20 if and only if |α∗

1α2 +
β∗

1 β2| � 1, and the admitted solutions have four free real
parameters, which can be chosen as the amplitude and phase
of parameter q = α∗

1α2 + β∗
1 β2, and the phases of complex

numbers α1, α2.
Next, we illustrate the dynamics of these two-solitons with

imaginary eigenvalues. We will fix η1 = i and η2 = 2i and
vary the free parameters q and phases γ1, γ2 of α1, α2. For
these η1 and η2 values, g = 3.

First, we choose

q = 0, γ1 = 1, γ2 = 2. (60)

For this q value, r0 < 1/
√

1 + g. Thus, it belongs to the case
(iv) above, and there is a single solution for (α1, β1, α2, β2),
which is found to be

α1 = 1√
6
ei, α2 = 1√

6
e2i , β1 = −α1, β2 = α2.

The corresponding u(x, t ) solution from Eq. (39) is dis-
played in Fig. 2(b). It is seen that this two-soliton meanders
periodically, which is an interesting and distinctive pattern.

Physically, this meandering can be understood through the
connection of the nonlocal NLS equation (6) with the Man-
akov system (3) and (4). Specifically, the evolution in Fig. 2(b)
corresponds to an interaction between this u(x, t ) component
and its opposite-parity wave u(−x, t ) in the v component
in the Manakov system. Thus, this interesting meandering
of the u(x, t ) solution is caused by the interference of its
opposite-parity wave u(−x, t ). Note that this meandering in
Fig. 2(b) resembles internal oscillations of vector solitons in
the coupled NLS equations [56]. However, in contrast with the
internal oscillations reported in [56], the present meandering
does not emit any radiation and thus lasts forever. In addi-
tion, the present meandering is described by exact analytical
formulas.

Next, we choose

q = 0.6e3i , γ1 = 1.5, γ2 = 5. (61)

For this q value, 1/
√

1 + g < r0 < 1. Thus, it belongs to
case (iii) above. It is easy to check that the inequality condition
in case (iii) is met. Hence, there are two sets of (α1, β1, α2, β2)
values. The corresponding two u(x, t ) solutions from Eq. (39)
are displayed in Figs. 2(c) and 2(d), respectively. The solution
in Fig. 2(c) looks like a periodic wave drifting and recovering,
while the solution in Fig. 2(d) looks like asymmetric mean-
dering.

C. Two-solitons with nonimaginary eigenvalues

Now we consider two-solitons with nonimaginary eigen-
values, which are obtained from the two-Manakov-solitons
(39) with a pair of nonimaginary eigenvalues (ζ1,−ζ ∗

1 ) in
C+, and with eigenvectors w10, w20 satisfying Eqs. (49) in
Theorem 1. In these solutions, α1 and β1 are free complex
parameters. To illustrate, we take

ζ1 = 0.1 + 0.5i, β1 = −0.43.

Then, for three choices of the α1 values of 0.08–0.12i, 0.04,
and 0, the corresponding u(x, t ) solutions are displayed in
Fig. 3. The solution in the upper right panel looks like a
refection of two moving waves of different amplitudes. The
solution in the lower left panel looks like the annihilation of
the left-moving wave by the right-moving one on collision.
The solution in the lower right panel looks like a single right-
moving wave, with its position abruptly shifted near x = 0.
Again, these interesting behaviors can be understood physi-
cally through the connection of the nonlocal NLS equation (6)
with the Manakov system (3) and (4). For instance, the abrupt
position shift of the single right-moving wave in the lower
right panel is caused by a collision of this right-moving wave
u(x, t ) with its opposite-parity wave u(−x, t ) in the v com-
ponent, which occurs near x = 0. It is interesting to note that
for the original nonlocal defocusing NLS equation proposed
in Ref. [6], single moving dark solitons with abrupt position
shifts were reported in Ref. [8]. Although such dark solitons
with abrupt position shifts were derived mathematically, they
were difficult to understand physically. In view of the moving
bright solitons with abrupt position shifts in Fig. 3, those dark
solitons with abrupt position shifts are now a little easier to
understand.
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FIG. 3. Three examples of two-solitons in the nonlocal NLS
equation (6) with complex eigenvalues ζ1 = −ζ ∗

2 = 0.1 + 0.5i and
β1 = −0.43. (a) Positions of eigenvalues; (b) α1 = 0.08–0.12i;
(c) α1 = 0.04; (d) α1 = 0. Graphs in (b), (c), and (d) are the |u(x, t )|
plots.

Recall from Sec. IV A that one-solitons in the underly-
ing nonlocal equation (6) are stationary. Thus, these two-
solitons in Fig. 3 definitely are not nonlinear superpositions
of those stationary one-solitons. This behavior resembles that
in the previous nonlocal NLS equation (1) as we revealed in
Ref. [18].

V. OTHER PHYSICALLY SIGNIFICANT INTEGRABLE
NONLOAL EQUATIONS

Extending ideas of previous sections, we can derive other
nonlocal equations of physical relevance.

Starting from the Manakov system (3) and (4), when we
impose the solution constraint

v(x, t ) = u∗(x,−t ), (62)

we get

iut (x, t ) + uxx (x, t )

+ 2σ [|u(x, t )|2 + |u(x,−t )|2]u(x, t ) = 0, (63)

which is our nonlocal NLS equation of reverse-time type.
When we impose the solution constraint

v(x, t ) = u∗(−x,−t ), (64)

the Manakov system reduces to

iut (x, t ) + uxx (x, t )

+ 2σ [|u(x, t )|2 + |u(−x,−t )|2]u(x, t ) = 0, (65)

which is our nonlocal NLS equation of reverse-space-time
type. These two equations differ from the previous nonlocal
NLS equations of reverse-time and reverse-space-time types
in [28] in the nonlinear terms. Both of our nonlocal equations
(63) and (65) are also integrable, and their Lax pairs are (7)
and (8) with v(x, t ) replaced by u∗(x,−t ) and u∗(−x,−t ),
respectively.

Physically, the reverse-time NLS equation (63) describes
the solutions of the Manakov system under special initial
conditions where v(x, 0) = u∗(x, 0). In this case, the solu-
tion u(x, t ) of the reverse-time equation (63) for negative
time gives the v(x, t ) solution of the Manakov system for
positive time through v(x, t ) = u∗(x,−t ). The reverse-space-
time NLS equation (65) describes the solutions of the Man-
akov system under special initial conditions where v(x, 0) =
u∗(−x, 0). In this case, the solution u(x, t ) of the reverse-
space-time equation (65) for negative time gives the v(x, t )
solution of the Manakov system for positive time through
v(x, t ) = u∗(−x,−t ).

The above ideas can be generalized further. For instance,
let we consider the four-component coupled NLS equations

iUt + Uxx + 2σ (U †U )U = 0, (66)

where U = [u, v,w, s]T and σ = ±1. These coupled equa-
tions govern the nonlinear interaction of four incoherent light
beams [46–48] as well as the evolution of four-component
Bose-Einstein condensates [53,54]. These equations are also
integrable [5,55]. If we impose the solution constraints

w(x, t ) = u(−x, t ), s(x, t ) = v(−x, t ), (67)

then these equations reduce to

iut (x, t ) + uxx (x, t ) + 2σ [|u(x, t )|2 + |u(−x, t )|2
+ |v(x, t )|2 + |v(−x, t )|2]u(x, t ) = 0, (68)

ivt (x, t ) + vxx (x, t ) + 2σ [|u(x, t )|2 + |u(−x, t )|2
+ |v(x, t )|2 + |v(−x, t )|2]v(x, t ) = 0, (69)

which are a system of nonlocal Manakov equations of reverse-
space type. If we impose the solution constraints

w(x, t ) = u∗(x,−t ), s(x, t ) = v∗(x,−t ), (70)

then we get

iut (x, t ) + uxx (x, t ) + 2σ [|u(x, t )|2 + |u(x,−t )|2
+ |v(x, t )|2 + |v(x,−t )|2]u(x, t ) = 0, (71)

ivt (x, t ) + vxx (x, t ) + 2σ [|u(x, t )|2 + |u(x,−t )|2
+ |v(x, t )|2 + |v(x,−t )|2]v(x, t ) = 0, (72)

which are a system of nonlocal Manakov equations of reverse-
time type. If we impose the solution constraints

w(x, t ) = u∗(−x,−t ), s(x, t ) = v∗(−x,−t ), (73)

then we get

iut (x, t ) + uxx (x, t ) + 2σ [|u(x, t )|2 + |u(−x,−t )|2
+ |v(x, t )|2 + |v(−x,−t )|2]u(x, t ) = 0, (74)

ivt (x, t ) + vxx (x, t ) + 2σ [|u(x, t )|2 + |u(−x,−t )|2
+ |v(x, t )|2 + |v(−x,−t )|2]v(x, t ) = 0, (75)

which are a system of nonlocal Manakov equations of reverse-
space-time type. These three nonlocal Manakov systems are
also integrable, and they describe the solution behaviors of the
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physical model (66) under special initial conditions of (67),
(70), and (73) with t = 0.

VI. SUMMARY AND DISCUSSION

In this paper, we proposed an integrable nonlocal NLS
equation (2) which has concrete physical meanings. This
equation was derived from a reduction of the Manakov sys-
tem, and it describes physical situations governed by the
Manakov system under special initial conditions. Solitons and
multisolitons in this nonlocal equation were also investigated
in the framework of Riemann-Hilbert formulation. We found
that symmetry relations of discrete scattering data for this
nonlocal equation are very complicated, which makes the
derivation of its general N -solitons challenging. From
the one- and two-solitons we obtained. it was observed
that the two-solitons are not a nonlinear superposition of one-
solitons, and the two-solitons exhibit interesting dynamical
patterns such as meandering and abrupt position shifts. As a
generalization of these results, we also proposed other inte-
grable and physically meaningful nonlocal equations, such as
NLS equations of reverse-time and reverse-space-time types,
as well as nonlocal Manakov equations of reverse-space,
reverse-time, and reverse-space-time types.

The results in this paper are significant in two different
ways. From a mathematical point of view, we presented an in-
tegrable nonlocal equation which has clear physical meanings.
In addition, we showed that this integrable equation exhibits
some unusual mathematical properties, such as intricate sym-
metry relations of its discrete scattering data. From a physical
point of view, we derived one- and two-solitons in this non-
local equation, which correspond to Manakov solutions under
the initial parity symmetry between the two components, and
these solitons feature interesting physical patterns such as
symmetric and asymmetric meandering.

An important question about these soliton solutions is
their stability. It is easy to see that these solitons are stable
under perturbations in the nonlocal NLS equation (2). This
means that in the Manakov framework, the corresponding

Manakov solitons with parity symmetry v(x, t ) = u(−x, t )
between their two components are stable under perturbations
with the same parity symmetry. But are these solitons stable
in the Manakov system (3) and (4), when perturbations do
not possess the v(x, t ) = u(−x, t ) symmetry? To address
this question, we numerically simulated the evolutions of
solitons in Figs. 1–3 under 1% non-parity-symmetric initial
perturbations in the Manakov system. We found that for
colliding solitons of Fig. 3, the perturbed solutions |u(x, t )|
are visually indistinguishable from the unperturbed ones. For
bound states in Figs. 1 and 2, the perturbed solutions still stay
close to the unperturbed ones for a long time. This behavior
is understandable, since Manakov solitons are known to be
stable, and the solitons we derived for the nonlocal NLS
equation (2) are special types of Manakov solitons.

From the point of view of integrable systems, the highly
complex symmetry relations of discrete scattering data for
the nonlocal NLS equation (2) are very surprising. This fact
implies that general N -solitons in this equation will be very
difficult to derive in the inverse scattering and Riemann-
Hilbert framework. Whether they can be derived more easily
in other frameworks such as the Darboux transformation and
bilinear methods remains to be seen.

In this paper, we only studied bright solitons in the nonlocal
NLS equation (2). Other types of solutions such as rogue
waves and dark solitons in this equation are desirable, too,
which merit studies in the future. In addition, we proposed
a number of other nonlocal equations of physical relevance,
such as NLS equations of reverse-time and reverse-space-
time types, and nonlocal Manakov equations of reverse-space,
reverse-time, and reverse-space-time types. Bright solitons,
dark solitons, and rogue waves in those systems are also open
questions for further studies.
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