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Abstract 

In this paper, the solitary waves in coupled nonlinear Schrodinger equations are classified into infinite families. For each 
of the first three families, the parameter region is specified and the parameter dependence of its solitary waves described 
and explained. We found that the parameter regions of these solution families are novel and irregular, and the parameter 
dependence of the solitary waves is sensitive. The stability of these families of solitary waves is also determined. We showed 
that only the family of symmetric and single-humped solitary waves is stable. 

Keywords: The coupled nonlinear Schrijdinger equations; Solitary waves 

1. Introduction 

In recent years the system of two coupled nonlinear Schrijdinger equations has attracted a great deal of attention. 

These equations were first derived 30 years ago by Benney and Newell [I] for two interacting nonlinear wave 

packets in a dispersive and conservative system. Under some simplifications and variable resealing, these equations 

can be written as 

iAt + A,, + (IA]* + filBl*>A = 0, (l.la) 

i& + &X + WI2 + /3lA[*)B =o, (l.lb) 

where A and B represent the complex amplitudes of two wave packets, and j3 is a real-valued cross-phase modulation 

coefficient [2]. In the late 198Os, it was realized that Eqs. (1.1) also govern the interaction between waves of different 

frequencies and between orthogonally polarized components in nonlinear optical fibers [3,4]. The experimental and 

theoretical investigations on the optical-soliton based telecommunication systems called for a thorough study of 
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the solution behaviors in these equations. Numerous analytical and numerical work has been done on this problem 

since then (see [4] and the references therein). 

Solitary waves play a special role in the coupled nonlinear Schrodinger equations (1.1). These waves are localized 

pulses that propagate without change of shape. We have found that they often dominate the long time solution 

evolution [5,6]. These waves and their stability have been investigated by Mesentsev and Turitsyn [8], Kaup et al. 

[9], Haelterman and Sheppard [ 10,111, Haelterman et al. [ 121, Silberberg and Barad [ 131, Yang and Benney [5] and 

Yang [7] among others. The work in [g-10] showed that there exists a family of symmetric, single-humped and 

stable solitary waves with an arbitrary polarization. The work in [ 11,121 revealed two more solution families, one 

of which was numerically shown to be unstable in [ 131. In joint work with D. Benney, we found infinite families 

of solitary waves, three of which are those just mentioned above. Based on some analytical results and numerical 

evidence, we conjectured that only the family of symmetric single-humped solitary waves is stable. In [7], we studied 

multi-hump permanent waves in general nonlinear systems. Under some assumptions, we developed simple criteria 

for constructing such permanent waves. We then applied these results to Eqs. (1.1) and established the existence of 

countably infinite multi-hump solitary waves in certain parts of the parameter region. 

The findings of infinite families of solitary waves in Eqs. (1.1) necessitate a classification of these families in 

the parameter space. This work will systematically summarize the types of solitary waves that exist and how they 

depend on the parameters. More importantly, this classification can be used to conclusively determine the stability 

of the solitary waves. Two solitary waves belong to one family if they can continuously change from one to the other 

when the parameters vary. Due to continuity, the solitary waves in the same family generally have the same stability 

behaviors. This enables us to determine the stability of a whole family of solitary waves if the stability of one wave 

is known. Lastly from the dynamical systems point of view, a solitary wave is a homoclinic orbit connecting the 

origin to itself in the phase space. The information we obtain from this classification can be used as the basis to 

further study the homoclinic chaos and spatial complexity of solutions in Eqs. (1.1). 

In the remainder of this paper, we will classify the solitary waves in Eqs. (1.1) into various families. As we will see 

later in the paper, there are infinite families of solitary waves. We will focus on the first three of them. For each family, 

we will determine its parameter region, which is often highly irregular, and describe the parameter dependence of its 

solitary waves, which is often very sensitive. We will use a combination of numerical, perturbation and variational 

principle methods in our investigation. These three methods will reinforce each other and offer information as well 

as insight into the problem at hand. In the end of this paper, we will discuss the stability of these families of solitary 

waves. 

It should be mentioned that the solitary waves in a nonlinear wave system can also be studied by dynamical 

systems methods. This has been done for Benney’s equation [ 141. Such methods have also been used to find the 

homoclinic and heteroclinic orbits of some Hamiltonian systems [ 16-181. It will be interesting to see how the results 

in this paper can be reproduced by such methods. But those methods are largely qualitative. They may be unable to 

provide the quantitative information on the parameter region and the parameter dependence of the solitary waves, 

which can be supplied by the methods used in this paper. 

2. Solitary waves 

The solitary waves in Eqs. (1.1) have the following general form: 

A = ,iUx/2+i(+Uz/4)r 
rl (x - Ut), 

B = ei~x/2+i(+~2/4)f r2(x _ ut), 

(2.la) 

(2.lb) 
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where U is the velocity of the wave. Let us denote X = x - Ut and w2 = o?j/of. Then after a resealing of 

variables 

i=w:t, fl =rl/ol, !2=r2/WI, (2.2) 

and the bars dropped, we obtain the following ordinary differential equations for r-1 (x) and t-z(x): 

rh - r-1 + (r-f + j?r$-l = 0, 

rhx - w2r2 + (r-22 + Brf)r2 = 0, 

(2.3a) 

(2.3b) 

where rl (x) + 0 and r-z(x) -+ 0 as 1x1 + 00. This is a nonlinear eigenvalue problem. In this paper we will treat 

the two parameters /? and w in Eqs. (2.3) as arbitrary positive numbers and call the (/3, o) plane the parameter plane. 

If one of r-1 (x) and r2(x) is zero, then Eqs. (2.3) can be easily solved. The solutions are 

r-1 =&sechx, r2=0 (2.4) 

and 

rl = 0, r2 = 45 w sech ox. (2.5) 

In the remainder of this paper, we will only consider solutions in which both r-1 and r-2 are non-zero. These solutions 

have the following general properties: 

(1) Symmetry: If ri(x) (i = 1 or 2) is a solution, so is -q(x). 

(2) Translational invariance: If [rl (x), r2(x)] is a solution, so is [rl (x -xo), r2(x -x0)], where xu is an arbitrary 

constant. 

(3) Reciprocal relation: If [rl (x; o), r2(x; w)] is a solution, so is 

[4 (xi --!-), j2 (x: !-)I = [tr2 (5; co), trl(E; -,I- (2.6) 

We call two solitary waves (rp’, rf’) and (r-i”, @) r2 ) equivalent if one of them can be deduced from the other 

by Property (1) or (2). All equivalent solitary waves will be treated as one. In the following we will classify 

the solitary waves in Eqs. (2.3) into various families in the parameter plane. A solitary wave is controlled by 

the parameter values of j? and o. We say that two solitary waves belong to one family if they can continuously 

change from one to the other when j3 and w vary. Property (3) indicates that for each family of solitary waves 

there is another family related to it. We call one the associated family to the other. Once the information on 

one family is available, that on its associated family will be automatically obtained. For instance, the parameter 

region of the associated family consists of points (j3, w) where (B, l/w) lies in the parameter region of the original 

family. 

Before we classify the solitary waves for arbitrary values of B and w, we can first get some important in- 

formation from special values of B or w. When w = 1, Eqs. (2.3) allow the following solitary waves of equal 

amplitudes 

rt =r2=,/!msechx. (2.7) 

When B = 1 and o = 1, the solutions are 

rl = xhcos8 sechx, r2 = &sin8 sechx, (2.8) 



where 8 is an arbitrary 

izations. They form an 

t-1 = 
,/m cash wx 

cosh(x - Ax) cash wx - o sinh(x - Ax) sinh wx ’ 
I? n..\ \L.ZJCl, 
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parameter. The solutions (2.8) are symmetric, single-humped and have arbitrary polar- 

one-parameter family of solutions. When j3 = 1 and 0 < w < 1, the solutions are 

r2 = 
--odm sinh(x - Ax) 

cosh(x - Ax) cash wx - o sinh(x - Ax) sinh wx ’ 
(2.9b) 

where Ax is an arbitrary parameter [ 151. These solutions also form an one-parameter family of solutions for each 

fixed w. They are asymmetric in general. However, when Ax = 0, YI becomes symmetric and 1-2, anti-symmetric. 

If /I = 1 and w > 1, the solutions can be deduced from (2.9) by the reciprocal relation (2.6). When fi = 3 and 

w = 1, the solutions are 

r-1 = 2 ’ &[sech(x - Ax) + h sech(x + Ax)], (2.lOa) 

r2 = z ’ &sech(x - Ax) - k sech(x + Ax)], (2. lob) 

where h = 1 or - 1, and Ax is an arbitrary parameter [5]. In these solutions, one of rl and r2 is symmetric and the 

other anti-symmetric. 

Another important category of solitary waves in Eqs. (2.3) is the so-called wave and daughter wave solutions 

in which either t-2 < rl or rl < r2. In these solutions, the smaller of rl and r2 is called the daughter wave. The 

functional forms of such solutions can be approximately obtained as follows [5]. Let us first assume that r2 << t-1. 

Then to the leading order approximation, 

rtxx - rl +rf = 0, 

and 

qxx -CW'Q +/3rfrz = 0. 

Under the condition that r1 + 0 as Ix] + 00, the solution of Eq. (2.11) is 

rl = 2/2 sechx, 

which then reduces Eq. (2.12) to 

rzxx - w2r2 +2/I sech2x r-2 = 0. 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

This equation can be transformed into a hypergeometric equation [ 191. In order for r-2 -+ 0 as Jx 1 -+ 00, we need 

to require that 

m=s-n, (2.15) 

where 

S = &KG?& l), (2.16) 

n is a non-negative integer and n -c s. For each fixed value of /3, there is a finite number of daughter wave solutions 

for t-2, all of which are either symmetric or anti-symmetric in x. The first solution, which exists for any ,!I > 0, is 

r2 cc sechS x, w = s, (2.17) 
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which is an even function in x. The second solution, which exists when ,!I > 1, is 

r2 c( sechS x sinh x, w=s-1, 

which is an odd function in x. The third solution, which exists when /I > 3, is 

t-2 cx sechS x[l + 2(1 - s) sinh2 x], w=s-2, 

(2.18) 

(2.19) 

which is even in x. As B + 00 we will find an infinite number of such solutions. In the parameter plane, the curves 
given by (2.15) represent the boundaries of wave and daughter wave solutions. If r-1 << r-2 in the solitary waves, the 
solutions can be deduced from those described above by the reciprocal relation (2.6). In particular, the wave and 
daughter wave boundaries now become 

w = l/(s - n) (2.20) 

in the parameter plane. 
The above exact and approximate solitary wave solutions for special values of /3 or o are very helpful in classifying 

the solitary waves in Eqs. (2.3). First, they suggest that there are infinite families of solitary waves. The evidence is 
that there is an infinite number of branches of wave and daughter wave solutions as mentioned above, and different 
branches belong to different families. Second, all the solitary waves at B = 1 are given by (2.8), (2.9) and the 
relation (2.6). As we will see later, the line p = 1 in the parameter plane plays a special role in our classification. 
Lastly, there are both symmetric, anti-symmetric and asymmetric solitary waves exemplified by (2.8) and (2.9). In 
the remainder of this paper, we will only examine the symmetric and anti-symmetric solitary waves and carry out 
their classifications. Asymmetric solitary waves will be considered elsewhere. 

3. Families of solitary waves generated by the wave and daughter wave solutions 

In this section we classify the families of solitary waves which are generated by the wave and daughter wave 
solutions. In the parameter plane the parameter regions of these families spread out from the wave and daughter 
wave boundaries (2.15) or (2.20). Given the infinite families of these solutions, we will focus on the first three of 
them. 

3.1. Family DI 

We call family D1 as the family of solitary waves which is generated by the first wave and daughter wave solution 
of the approximate form (2.13) and (2.17). In this family, both r-1 and t-2 of the solutions are symmetric and single- 
humped. We have determined these solutions numerically by the shooting method. One example is plotted in Fig. 1. 
In the parameter plane, the two curves 

C0=s=;<~~-l> (3.1) 

and 

w = l/s = 2/(J1+8B - l), (3.2) 

together with the w-axis, furnish the boundaries of family DI ‘s parameter region. This region is shown in Fig. 2. 
Near the boundaries w = s and w = l/s, the solitary waves are wave and daughter wave solutions with r2 (( r-1 
and t-1 << t-2, respectively. For any fixed /I > 0, as w changes from s to l/s, the polarization of the solitary wave 
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Fig. 1. A solitary wave in family D1 The parameter values are B = 
variational approximation (3.11) and (3.12). 

$ and w = 0.9. Solid curve: q ; dashed curve: r;?; dotted curves: 

Fig. 2. Family DI’S parameter region. 

r-2(0)/1-1 (0) increases continuously from zero to infinity. Family Dt includes the exact solitary waves (2.7) and (2.8) 
as well as the wave and daughter wave solutions of the type (2.13) and (2.17). This family has been studied before 
[5,6,8-10,131. Its associated family is itself. 

Next we set out to analytically investigate the solitary waves in family Dl. If the point (/3, w) is close to 
one of the two boundary curves (3.1) and (3.2) in Fig. 2, then the corresponding solitary wave is a wave and 
daughter wave solution. Its exact analytical expression, including the amplitude of the daughter wave, can be 
obtained perturbatively. Suppose (/I, w) is close to the curve (3.1), then the asymptotic expansion of the 
solution is 

rl = fi se&x + c2& (x) + E~~~(X) + . . . , 
r2 = E sechS x + c311/t (x) + E~+~(~) + . . . , 

(3.3a) 

(3.3b) 

(3.3c) 
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where s is given by (2.16) and E < 1. When (3.3) is substituted into Eqs. (2.3) and terms of the same order in .S are 

collected, the equations for & and @,, (n L 1) can be obtained. The equation for ~$1 is 

4%xX - q!q + 6 sech2 x& = -A @ sech”+’ x, 

whose solution is 

(3.4) 

(3.5) 

The equation for ~1 is 

Y~YX - S2$l + 28 sech2x @I = 2s w(‘)sech’x - sech3’x - 2&p sechs+‘x ,$, . (3.6) 

In order for the solution @t to vanish as x --+ &co, the solvability condition 

co 

(2s w(‘)sechsx - sech3’x - 2k$ sechSf’x$r)sechS x dx = 0 (3.7) 

has to be satisfied. This condition determines w(I) to be 

JI) = 
(1 - s3) srm sech4’ x dx 

2s [_“,, sech2’ x dx ’ 
(3.8) 

Eq. (3.8) shows that w(l) is positive when 0 < B < 1 and negative when #l > 1. This means that the wave and 

daughter wave solution (3.3) is to be found for w > s when 0 < j? < 1 and for w < s when B > 1. This agrees 

with our numerical findings. For fixed p, when such w is given and close to S, the amplitude E of the daughter wave 

r2 can be estimated by Eqs. (3.3~) and (3.8). Higher-order corrections in expansion (3.3) can be obtained with a 

little more effort. If the point (/I, o) is close to the other boundary curve (3.2), the analytical expressions for the 

corresponding wave and daughter wave solutions can be deduced from the above results by the reciprocal relation 

(2.6) stated in the previous section. 

If the point (fi, o) is not close to either of the two boundary curves (3.1) and (3.2) in Fig. 2, then the above results 

based on the perturbation method will be poor. In this case a different analytical method - the variational principle 

method - can be used. The Lagrangian form of Eqs. (2.3) is 

00 

6 
s 

C(r1, r2) dx = 0, (3.9) 

-co 

where the Lagrangian C is 

L = $4 - ,2 
21 I - rf, + ii-24 - w2ri - r22, + j3rfr22. (3.10) 

When an ansatz is assumed for the solutions rl and r2 and is substituted into Eq. (3.9), a system of algebraic equations 

will be obtained for the ansatz parameters. Apparently this method is based on approximations. Its success depends 

on whether the chosen ansatz for the true solution is appropriate or not. In the present situation the solitary waves 

in family Dt are symmetric and single-humped (see Fig. 1). Based on the information we have obtained so far we 

propose the following ansatz: 

t-1 = cl sechx, r2 = c2 sech@ x (3.11) 
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for the solutions when jl 5 1 and w 5 1 or B > 1 and o >_ 1. When (3.11) is substituted into Eq. (3.9) and the 

variations with respect to cl and c2 taken, two algebraic equations for cl and c2 will be obtained. Solving these 

equations we get 

c; = 
2 /-“, sech4w x dx - 3/?w3 (w + 1) [s-“, sech20x dx12 /(20 + 1 )2 

/-s$ sech4w x dx - 3fi2w2 [s_s$ sech2wx dx]* /(20 + l)* ’ 
(3.12a) 

’ 
;- 

20(w2 + o - 28) I-“, sech2w x dx/(2o + 1) 

- srm sech4w x dx - 3p2w2 [jrm sech2w x dx]2 /(20 + 1)2 ’ 
(3.12b) 

Some conclusions can be readily drawn from the above results. First, the boundary curve of the ansatz solution 

(3.11) in the parameter plane is 

J+w-2/?=0, (3.13) 

where c2 is equal to zero. This is the same as the exact boundary curve (3.1). Second, when 0 < /!I < 1, the 

denominator in Eq. (3.12b) is always positive. In order for solution c2 to exist, it is necessary that 

J+w-2/I > 0, (3.14) 

i.e. o > s. When b > 1, the denominator in Eq. (3.12b) along the boundary curve (3.1) becomes negative. Therefore, 

cz solution exists only if 

J+w--/?I <o, (3.15) 

i.e. w < s. These results agree with the perturbation results and the numerical findings. Thirdly, when (@, w) is 

close to the boundary curve (3.1), Eq. (3.12b) can be simplified as 

0 = s + kc; + O(c$, (3.16) 

where 

k = sra sech4s x dx - 3p2s2 [jrm sech2s x dx12 /(2s + 1)2 

2s ~~~ sech2s x dx 
(3.17) 

When comparing (3.16) and (3.17) with the perturbation results (3.3~) and (3.Q we see a slight difference between 

the first-order correction coefficients k and w 0) This discrepancy is caused by the approximation of the true 11 . 

and r-2 solutions with the ansatz (3.11). Actually for (B, w) close to the boundary (3.1), the true solutions are given 

perturbatively by (3.3) and (3.5), which are slightly different from the ansatz (3.11). So a difference of order ci 

should be expected between (3.16) and (3.3~). But this difference is rather small. For instance, when ,!l = i, 

Eqs. (3.8) and (3.17) give 

Jl) = 0.2439, k = 0.2426, (3.18) 

which are very close. Lastly when /3 = 1 and w = 1, the denominators and numerators in Eqs. (3.12) are all zero, so 

expression (3.12) is no longer valid. Actually in this case the variational principle method gives only one equation 

for cl and ~2, which is 

CT + c; = 2. (3.19) 

So the variational solutions are also (2.8) in agreement with the exact solutions. 
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The merit of the variational solution (3.11) and (3.12) is that it provides an approximate analytical expression 

for the r-1 and t-2 solution even if (B, o) is not close to the boundary curve (3.1), i.e. the solution is not a wave and 

daughter wave solution. To check the accuracy of this solution we plotted it in Fig. 1 along with the numerically 

obtained true solution for B = i and w = 0.9. The two solutions are almost identical. Such excellent agreement is 

actually shared for p and w anywhere in the parameter region 0 < /3 5 1, s < w _( 1 and ,8 > 1, 1 p w < s. In 

the rest of the parameter region (see Fig. 2), the ansatz (3.11) is no longer appropriate. In this case the variational 

solution can be obtained from (3.11) and (3.12) by the reciprocal relation (2.6) mentioned in Section 2. 

3.2. Family 02 

We call family D2 as the family of solitary waves which is generated by the second wave and daughter wave 

solution of the approximate form (2.13) and (2.18). When /l = 2 and w = 0.7, this wave and daughter wave 

solution is numerically determined and plotted in Fig. 3. In family D2, the r-1 solution is symmetric and r-2 solution, 

anti-symmetric. In the parameter plane, family D2’s parameter region spreads out from the wave and daughter wave 

boundary 

w=s- l= &/Gq-3). (3.20) 

We have determined this region numerically and plotted its boundaries in Fig. 4. The boundaries consist of the 

following five curves: 

(1) #8 = 0, w 2 1; 

(2) w = l/s = 2/(4_ - l), 0 < j!l _< 1; 

(3) curve L 1, 0 5 /3 I 1 (determined numerically); 

(4) w= 1, /3 > 1; 

(5) w=s-l=&?qJ&3), /?‘l. 

Near the boundary w = s - 1 (fi > I), the solutions are wave and daughter wave solutions as expected (see 

Fig. 3). As o moves from the boundary o = s - 1 to w = 1, the r2 amplitude gets larger, and the single r-1 pulse 

splits up into two (see Fig. 5(a)). Near the boundary o = 1 the solutions are two-peak pulses which appear to be 

two solitary waves (2.7) patched together (see Fig. 5(b)). As w -+ 1, the distance between these two pulses goes 

to infinity. When B decreases from the boundary o = s - 1 (1 < j3 < 3) to curve L 1, the amplitudes of t-z’s two 

1.5 

1 

0.5 

0 

-0.5 

Fig. 3. A wave and daughter wave solution in family D2. The parameter values are fi = 2 and o = 0.6. Solid curve: r~ ; dashed curve: t-2. 
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L3 -=+___ 

1 
---=__ _ --_ 

0.5 0.6 0.7 0.8 0.9 
@I 

P 

Fig. 4. (a) Family D2’s parameter region. The dash-dotted curve is the perturbative approximation (3.34) to the boundary curve L 1. 
(b) Enlargement of the thin crescent in (a) (shaded). In this region, three family Dz’s solitary waves exist at each point. 

pulses steadily increase, so does the distance between them. The single rl pulse, on the other hand, first splits up into 

two, then the two pulses merge again and become a single pulse. Near the boundary L 1, the rl solution has a single 

pulse in the middle, and the r2 solution has two anti-symmetric pulses on the outside (see Fig. 5(c)). It appears that 

the solution is patched together by a solitary wave (2.4) and two other waves (2.5). As w approaches L 1, the two r-2 

pulses move to infinity. Near the boundary B = 0 (w > l), the solution characteristics is essentially the same as 

that near L1. When w increases from boundary L1 to w = l/s, the single rl pulse splits up into two, which then 

are bound together with the two r2 pulses. Later on, the amplitudes of the two rl pulses steadily decrease, while 

those of the r2 pulses steadily increase. Near the boundary w = l/s, the solutions appear to be patched together 

by two wave and daughter wave solutions of family D1 (see Fig. 5(d)). This is not surprising since w = l/s is the 

boundary of family D1 ‘s wave and daughter wave solutions with r-1 << r2. As w approaches the boundary w = 1 /s 

the amplitudes of the two r-1 pulses reduce to zero, and the distance between the two r:! pulses tends to infinity. 

Family D2 includes the exact solitary waves (2.9) (with Ax = 0) and (2.10) beside the wave and daughter wave 

solutions of the type (2.13) and (2.18). Its associated family is different from itself. 
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-2 

! I 

\ i 
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\ I 
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-10 

(i) 

10 x 

Fig. 5. Family D2’s solitary waves. Solid curves: q; dashed curves: t-2. The parameters values (B, w) are (a) (2.0.9); (b) (2,0.9999); 
(c) (0.1,0.9); (d) (3, 1.25). In (c). the dotted curves are the leading order pezturbative approximation (3.25) to the solution. 

There is a further complication in family Dz’s solitary waves. It turns out that in its parameter region, there is a 

very thin crescent (shown in Figs. 4(a) and (b)) where three family D2’s solutions exist at each point, while in the 

rest of the region only one solution exists. This crescent is bounded by two curves L2 and L3. Its two end points 

are (B, 0) E=S (0.50, 1.039) and (1, 1). For fixed /3 between 0.50 and 1, as w increases from 1 to curve L2, the 

solution continuously varies. As L2, a saddle-node bifurcation occurs. Above L2, the solution disappears. Below it, 

a new solution appears. As o turns back at L2, the solution smoothly changes from one branch to the other. As w 

decreases from L2 to L3, the solution changes continuously. At L3, another saddle-node bifurcation occurs. Below 

it, the solution disappears. Above it, a new branch of solutions appears. As w turns around at L3, the solution moves 

from one branch to the other. Finally, as w increases from L3 to the boundary w = l/s, the solution continuously 

changes and no more bifurcations occur. Because of the two saddle-node bifurcations, at each point in the crescent 

enclosed by L2 and Ls, there are three family D2’s solutions. 

To quantitatively illustrate the solution features in family D2, we select B = $ and analyze in more detail. For 

each solitary wave in family D2, when 1x1 + CXJ, 

rt -+ ate +I, r2 --+ -a2 sgn(x)e-“IX’, (3.21) 

where at and a:! are two positive constants. A solitary wave in family D2 is uniquely determined by the at and a2 

values. For family D2’s solitary waves with #l = 4, these values against w are plotted in Fig. 6(a). When /I = $, 

the w value on the boundary curve L 1 is approximately equal to 0.2417, and that on the boundary o = l/S is 
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Fig. 6. (a) The al and a2 values of family D2’s solitary waves for p = i. Solid curves: ln(at); dashed curves: In(az)/w. (b) Enlargement 
of (a) at the vertical jump. 

2/(m- 1) = 1.3187. As w -+ 0.2417, at -+ constant, a2 + co, and the corresponding solitary waves appear 

to be patched by a rt pulse (2.4) and two t-2 pulses (2.5) (see Fig. 5(c)). As w + 1.3187, both at and a2 approach 

infinity. Meanwhile al << a2. The corresponding solitary waves appear to be patched by two wave and daughter 

wave solutions of family Dt (see Fig. 5(d)). More interestingly, there is a large vertical jump near w = 1 in Fig. 6(a). 

When this jump is enlarged in Fig. 6(b), we see an “s” shaped configuration. The two saddle-node bifurcations occur 

at w x 1.00345 and 1.002 1. At each w value between 1.002 1 and 1.00345, we find three solitary waves belonging 

to family Dz. This type of solution behavior is precisely that which happens in the thin crescent in Fig. 4(b). The 
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two bifurcation points (/I, w) = (i, 1.00345) and (+, 1.0021) are on curves L2 and L3, respectively. The vertical 
jump in Fig. 6(a) is quite a surprise. Over a very short w interval [ 1.002 1, 1.003451, the values of at and a2 exhibit a 
dramatic change. This indicates that the parameter dependence of family D2’s solitary waves is quite sensitive. As 
/3 approaches either of the two end points 0.50 and 1, we found that the length of the o interval of the jump shrinks 
to zero (see Fig. 4(b)). But there is a major difference here. As /I decreases to 0.50, this vertical jump gradually 
disappears. On the contrary, as @ increases to 1, the jump amount approaches infinity. This indicates that when b 
is closer to 1, the vertical jump as seen in Fig. 6(a) will be sharper, and the parameter dependence of the solitary 
waves will be more sensitive. 

Next we analytically study the solitary waves in family D2. If (/?, w) is close to the boundary w = s - 1 in 
the parameter plane, we have known that the solutions are wave and daughter wave solutions whose approximated 
expressions are (2.13) and (2.18). Their exact expressions, including the amplitude of the daughter wave r-2, can 
be obtained perturbatively. This procedure is similar to the one we employed for the wave and daughter waves in 
family D1, so only the results are reported here. The asymptotic expansion of the solution is 

r-1 = 1/2 sechx + r2#t (x) + l 4&(x) + . . . , 

r-2 = E sechSx sinh x + ~~$1 (x) + e5$2(x) + . . . , 
” = s - 1 + $(jJ’) + r4(#) + . . . ) 

where E < 1. The function ~$1 (x) and coefficient w(‘) are found to be 

X 

(3 - s)sechx tanhx 
J 

sech2(‘-‘)8 d0 - sech2’-’ x 

0 

and 

Jl) = ( 2 - s)(7s2 - 7~ + 3) irW sechG x d.x 

8(s - 1)(2s - 1) JrWsech2’xdx’ 

(3.22a) 

(3.22b) 

(3.22~) 

(3.23) 

(3.24) 

Eq. (3.24) shows that when 1 < #I < 3, i.e. 1 < s < 2, o(r) is positive; when /I > 3, i.e. s > 2, m(r) is 
negative. In the parameter plane, this means that the wave and daughter wave solutions (2.13) and (2.18) exist for 
w > s - 1 when 1 < ,9 c 3 and w c s - 1 when B > 3. This result is consistent with our numerical findings. 
Higher-order corrections in (3.22) can be obtained systematically with more effort, but it will not be pursued 
here. 

Another type of solitary waves for which the perturbation method can be applied is the one which appears to be 
patched by a single t-1 pulse (2.4) and two r-2 pulses (2.5) (see Fig. 5(c)). In the parameter region such solutions are 
located near the boundaries fi = 0 and L 1. The asymptotic expansion of these solutions is 

ri = & sechx + fieVXofr (x) + o(BeCXo), (3.25a) 

r2 = -Jz w(s+ - s_) + EeCwxogi (x) + o(ce-WXo), (3.25b) 

s+ = sech o(x +x0), s_ = sech w(x - xo), (3.26) 

(3.27) 

max{fi 6)) = O(l), maxIa (x)1 = O(l), (3.28) 
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and xu > 0 is the central position of r-z’s right hand pulse. We require that xo >> 1 and /I < 1 so that the above 

asymptotic series is uniformly valid. We also require that w 2 i for technical reasons. When expansion (3.25) is 

substituted into Eqs. (2.3) and higher-order terms neglected, the equations for fl and gt are found to be 

ft,.. + (6 sech2x - 1)ft = -21/2 o2 sechx(s+ - s_)2exo, (3.29a) 

gtxr + (602(s+ - s_)~ - w2)g1 = 2&o(B sech2x - 3w2s+s_)(s+ - s_)ewXo/e. (3.29b) 

At first sight, it appears that the right-hand side of Eq. (3.29b) may not be an order 1 function. Actually it is due to 

the later results. In order for the solutions fl and gt to vanish as x -+ foe, certain solvability conditions need to 

be satisfied. The condition for Eq. (3.29a) is 

cc 

s 
sechx(s+ - s_)~ sech x tanhx dx = 0, (3.30) 

--03 

which is satisfied automatically. The condition for Eq. (3.29b) is 

00 00 

s 
2& o(/I sech2 x - 3w2s+s_)(s+ - s_)s+t+eoxo dx = 6w2r 

s 
s+t+s_(s_ - 2s+)gl dx, (3.31) 

--co --co 

where t+ = tanh w(x + xo). It is easy to show that when xo B 1 and /3 (( 1, the right-hand side of Eq. (3.31) is 

exponentially smaller than either of the two terms in the left-hand side. So asymptotically the solvability condition 

(Eq. (3.31)) reduces to 

j”-“, 3w2++s_(s+ - SL) dx 

’ = lra sech2x s+t+(s+ - s_) dx ’ 
(3.32) 

This equation implicitly determines xa as a function of b and w. It is asymptotically accurate if xo >> 1 and /I < 1. 

When p = 0.1 and o = 0.9, Eq. (3.32) gives xu = 6.1836. In this case, the asymptotic solution (3.25), to the 

leading order, is plotted in Fig. 5(c) together with the numerically obtained true solution. Good agreement can be 

observed. As 0x0 + 00, to the leading order Eq. (3.32) becomes 

w2e-2(w-l)xo 

1-7 sech2 wx e2X dx ’ 
o> 1, 

-7 o= 
4x0 

1, 

w 

[-s$ sech2 x (e2wX - 1) dx ’ 
WC 1. 

Therefore in the parameter plane the boundary for the solutions (3.25) is 

0, 0s 1, 
B= 0 

J_a303 sech2 x (e2wX - 1) dx ’ 
o< 1. 

(3.33) 

(3.34) 

The graph of Eq. (3.34) for w -K 1 is plotted in Fig. 4(a) (dash-dotted curve). When B is small, this curve is in good 

agreement with the true boundary curve L 1. When /l gets large, the asymptotic expansion (3.25) and relation (3.32) 

both fail, therefore, it is not surprising that the graph of (3.34) and the curve L 1 separate. 

The solitary waves examined above can also be studied by the variational principle method. For this purpose we 

choose the ansatz as 
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r-1 = &sechx, 

rz=fiw(s+-s_), 

(3.35a) 

(3.35b) 

where s+ and s- are defined in Eq. (3.26). When this ansatz is substituted into the Lagrangian equation (3.9) and the 

variations with respect to xo taken, the equation for x0 will be obtained. It turns out that this equation is exactly the 

same as Eq. (3.32) obtained before by the perturbation method, but the algebra is much simpler here. The drawback 

of this variational result is that it gives no indication as to when it is accurate and when it is not. In comparison, the 

answer to that question is clear in the perturbation result. 

Some other types of solitary waves, such as the one shown in Fig. 5(d) when (fi, w) is close to the boundary 

w = l/s and the one shown in Fig. 5(b) when w is close to 1 (/I > l), can also be studied by the perturbation 

method or the variational principle method in a similar way. But the details are omitted here. 

3.3. Family 03 

We call family 03 the family of solitary waves generated by the third wave and daughter wave solution of 

the approximate form (2.13) and (2.19). When /I = 4.5 and w = 0.7, this wave and daughter wave solution is 

numerically determined and plotted in Fig. 7. In family D3, both the r-1 and t-2 solutions are symmetric in X. Its 

parameter region spreads out from the wave and daughter wave boundary 

w=s--2= &ir+ss-5). (3.36) 

We have numerically determined this region and plotted its boundaries in Fig. 8. The boundaries consist of the 

following six curves: 

(1) w=l, lI:!Is3; 

(2) L4, 3 5 B 5 7.4, (determined numerically); 

(3) w=s-2=1 ,(JIXQI-5), BL7.4; 
(4) o= 1, /!??6; 

(5) o = s - 2, 3 i /5 5 6; 

(6) Ls, 1 p B 5 3 (determined numerically). 

Near the curve w = s - 2, the solutions are wave and daughter wave solutions whose approximate expressions are 

(2.13) and (2.19) (see Fig. 7). For any fixed o, as /I decreases from the boundary o = s - 2 (3 _< B I 6) to Ls, the 

amplitude of the r-2 solution steadily increases, and the single t-1 pulse develops a shoulder (see Fig. 9(a)). Then this 

1.51 I 

Fig. 7. A wave and daughter wave solution in family D3. The parameter values are j3 = 4.5 and w = 0.7. Solid curve: q; dashed 
curve: r-2. 
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Fig. 8. Family D3’s parameter region. In the shaded region, two solitary waves belonging to family D3 exist at each point. 

shoulder gradually lowers while the two outer pulses in r2 separate (see Fig. 9(c)). At Lg, a saddle-node bifurcation 

occurs. If /l crosses Ls, the solution disappears. When #I turns back and increases, the solution smoothly moves 

onto a new branch. When B moves from Ls to the curve Lg, the shoulder in the 11 pulse gradually vanishes, and 

r2 becomes two isolated pulses separating apart (see Fig. 9(d)). Near Lg, the solution appears to be patched by a ri 

pulse (2.4) and two symmetric r2 pulses (2.5). As B approaches Lg, the two r2 pulses escape to infinity. As a result, 

for each point (p, w) in the narrow strip enclosed by L5 and Lg, two family D3’s solutions exist (see Figs. 9(c) 

and (d)). If the point (/3, w) approaches the boundary w = 1 (1 < B < 3), the solution appears to be patched by 

three solitary waves of equal amplitudes (2.7) which separate further and further apart (see Fig. 9(b)). Now we fix 

b (/3 > 3) and allow w to vary. When 3 5 B 5 7.4, close and above the curve w = s - 2, the solutions are wave 

and daughter wave solutions (see Fig. 7). As w increases from the boundary w = s - 2 to L4, the amplitudes of 

r2’s three pulses steadily increase, and the single rI pulse develops a shoulder. At L4, a saddle-node bifurcation 

occurs. Above L4, the solution disappears. Below it, another branch of solutions appears. As w turns back at L4 and 

decreases, the solution changes continuously from one branch to the other. Finally when w moves down from L4 to 

the line o = 1, both t-1 and r:! develop into three waves of equal amplitudes (2.7), and the solution becomes similar 

to Fig. 9(b). As w approaches 1, these pulses separate infinitely apart. In the above process we discover another 

interesting parameter region enclosed by the three curves Lb, w = 1 (3 5 B I 6) and w = s - 2 (6 5 B 5 7.4) (see 

the upper shaded region in Fig. 8). In this “triangle” region, due to the saddle-node bifurcation at L4, two solutions 

belonging to family 03 exist at each point. This behavior is similar to that in the narrow strip enclosed by L5 and Lg. 

When t?I 2 7.4, both the parameter region and the parameter dependence of the solitary waves become simple again. 

The wave and daughter wave solutions are now located near and below the boundary w = s - 2. As w decreases 

from this boundary to the line w = 1, the solutions change smoothly from the wave and daughter wave solutions 

(see Fig. 7) to solutions patched by three waves of equal amplitudes (2.7) separating apart (see Fig. 9(b)). 

For demonstration purpose, we now consider the two special cases B = 2 and B = 5 in more detail. As lx 1 + 00, 

the solitary waves in family D3 have the following asymptotic behaviors: 
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Fig. 9. Family D3’s solitary waves. The parameter values (B. w) are (a) (2,0.7); (b) (2,0.999); (c) (1.42,0.7); (d) (1.42,0.7). 

--Ix1 r~ + ale , --wIxI r2+a2e , (3.37) 

where al and a2 are two positive constants. When B = 2, the al and a2 values of these solitary waves are plotted 

in Fig. 10. Observe that as w + 1, al -+ 00, a2 + 00, and a I /a2 + 1. In this case, the solution appears to 

be patched by three solitary waves of equal amplitudes (2.7) (see Fig. 9(b)). At o x 0.40 (which is on boundary 

Ls), a saddle-node bifurcation occurs. As o + 0.44 (which is on curve &), a1 + constant, a2 + co, and the 

corresponding solution appears to be patched by a P-I pulse (2.4) and two r2 pulses (2.5) (see Fig. 9(d)). Note from 

Fig. 10 that in the o interval [0.40,0.44], two family D3’s solutions exist. When B = 5, the al and a2 values are 

plotted in Fig. 11. When o is near 0.7016 (which is on the boundary w = s - 2), al x 2&!, a2 <( 1, and the solitary 

wave is a wave and daughter wave solution approximated by (2.13) and (2.19). At w z 1.09 (which is on boundary 

Lb), a saddle-node bifurcation occurs. As w + 1, al + 00, a2 + 00, al /a2 + 1, and the corresponding solution 

is similar to Fig. 9(b). Again note from Fig. 11 that two family D3’s solutions exist in the w interval [ 1, 1.091. 

Next we analytically study family D3’s solitary waves. When the point (@, w) lies close to the boundary w = s -2, 

we have known that the solutions are wave and daughter wave solutions. Once again, the exact expressions for these 

solutions can be obtained by perturbation methods. The asymptotic expansion of such solutions is 

rl = 1/2 sechx + ~~41 (x) + c4&(x) + . . , (3.38a) 

r2 = E [ 1 + 2(1 - S) sinh2 x)sech’x + ~~$1 (x) + l 5+2(x) + . . . , (3.38b) 

w=s-2+E2w(‘)+640(2)+..., (3.38~) 
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Fig. I I. The al and a2 values of family D3’s solitary waves for /3 = 5. Solid curve: In(al); dashed curve: In(az)/w. 

where E (< 1. Following the procedure outlined before we find that 

41 = ~#~j”‘(x> + #)(x)sechx tanhx, 

where 

@I”’ = :&{4(s - 1)2(s + l)sech2s-3 x - ~(2s - 1)2sech2s-’ x), 

109 

(3.39) 

(3.40) 
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Fig. 12. The graph of the function p(s) against j3. 

x 

CJ+‘) I = 11/2 2 s {2(s2 - 1)(2s2 - 5s + 4)sech2s-48 - s(s - 1)(2s - 1)2sech2s-2 6’) de. 

0 

The coefficient o(l) is given by 

(3.41) 

(3.42) 

where p(s) is a rational function of s whose expression is quite complicated. In Fig. 12 we plotted the graph 

of p against j!?. The function p has one root p M 7.4384. It is positive when 3 I B < 7.4384 and negative 

when /? > 7.4384. This indicates that the wave and daughter wave solutions (3.38) exist for o > s - 2 when 

3 5 /3 -C 7.4384 and for w < s - 2 when /3 > 7.4384. This result is in excellent agreement with the parameter 

region (Fig. 8) numerically obtained. When (/?, w) is close to the curve & or w = 1, the solitary waves can also be 

determined by the perturbation methods or the variational principle method. The details will not be given here. 

Families of solitary waves which are generated by Eq. (2.13) and higher-mode daughter wave solutions (2.14) 

can be classified in a similar manner. It is expected that their parameter regions and parameter dependence will be 

even more interesting and complicated. In this paper we will not pursue further in this direction. 

A notable feature of family Dg’s parameter region is that it does not cross over the vertical line /3 = 1 into the 

strip 0 < B < 1. The reason is that on the line /3 = 1, all the symmetric solitary waves are located at the single point 

(/?, o) = (1, 1) (see Eqs. (2.8) and (2.9)), and those solutions belong to family DI . By similar reasons we conclude 

that the parameter regions of solution families generated by higher-mode wave and daughter wave solutions are all 

confined to the right-hand side of the vertical line fi = 1. On the other hand, for families of solitary waves (other 

than D1, D2 and D2’s associated family) which exist for 0 < B -C 1, their parameter regions will not cross over the 

line B = 1 into the region ,Ll > 1 either. Such families of solutions are also abundant and will be reported elsewhere. 

4. Stability of the solitary waves 

One application of the above classification of the solitary waves in Eqs. (1.1) is to determine the stability of those 

waves. In one family, any two solitary waves can continuously deform from one to the other as the parameters 

vary. Therefore they generally have the same stability behaviors (if no stability bifurcations occur). As a result, if 
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the stability of one solitary wave in a family is known, then the stability of that whole family can be heuristically 

deduced. First we discuss family Dt ‘s stability. Family Di includes the solitary waves (2.7) and (2.8) (with B = 1 

and w = 1). When p = 1, Eqs. (1.1) are the Manakov equations and are exactly integrable [2 I]. It has been shown 

that the solitary waves (2.8) are actually solitons, and thus are stable. We then expect that all family Dt ‘s solitary 

waves are stable. This is confirmed in our previous work [5,6]. In [5] we established the stability of the solitary waves 

(2.7) by perturbation methods. In [6] we proved the stability of all single-hump solitary waves by examining the 

complete eigenmodes of the linearized equations of (1.1) around those single-hump waves. Next we discuss family 

D2’s stability. This family includes the solitary waves (2.9) (with b = 1 and Ax = 0) and (2.10), and has been 

shown numerically to be unstable in [ 131. In the special case when /I = 1, it is well known that (2.9) is a two-soliton 

state and is thus unstable, consistent with the above result. The instability of this family is further confirmed by our 

own numerical studies on the evolution of many solitary waves in this family (also see [5]). But it should be noted 

that the instability characteristics of family D2’s solitary waves are not all the same. In fact, for the two-soliton state 

(2.9) (B = l), the small disturbances governed by the linearized equations of (1.1) around (2.9) grow linearly with 

time. For other solitary waves in family D2, we found numerically that the small disturbances grow exponentially 

with time. For instance, for the solitary wave (2.10) (#I = 3) with Ax = 1, we found that the small disturbances 

exponentially grow with the maximum growth rate approximately equal to 0.54. These different instability behaviors 

indicate that, under small perturbations, the two-soliton state (2.9) takes much longer time to disintegrate than the 

other solitary waves in family D2. Lastly, we discuss family D3. To determine its stability, we selected one of its 

solitary waves with B = 2 and w = 0.7 (shown in Fig. 9(a)) and used it as the initial condition in Eqs. (1.1). The 

time evolution of this wave was numerically computed and plotted in Fig. 13. We can see that it is unstable to small 

numerical round off error disturbances. We also studied the time evolution of many other solitary waves in various 

parts of the parameter region of this family and found that they are never stable. Thus we deduce that family D3 

is unstable. Furthermore, we found that all the solitary waves in family 03 whose time evolution we numerically 

investigated are exponentially unstable, i.e. small disturbances of these waves grow exponentially. For instance, 

for the solitary wave shown in Fig. 9(a), its small disturbances exponentially grow with the maximum growth rate 

approximately equal to 0.35. To determine the stability of the solution families generated by higher-mode wave and 

daughter wave solutions, the same method can be used, and we expect that those families are all unstable. These 

results support our previous conjecture [5] that only the family DI of symmetric and single-humped solitary waves 

is stable. 

40 40 

t t 

0 0 
-20 -10 0 10 20 x -20 -10 0 10 20 x 

Fig. 13. Instability of a solitary wave in family D3. This wave, with ,!I = 2, o = 0.7 (see Fig. 9(a)), is used as the initial condition for 
Eqs. (1.1). The subsequent time evolutions for 1 A 1 and 1 B 1 are shown in the upper and lower graphs, respectively. 
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The families of solitary waves studied in this paper signify the complexity of the solution structures in the 
nonlinear eigenvalue system (2.3). The parameter regions of these families (see Figs. 2,4 and 8) are novel, intricate 
and unexpected. The big jump in the solution coefficients over a very short parameter interval (see Fig. 6(a)) reveals 
the surprisingly sensitive dependence of the solitary waves on the parameters. Moreover, the small parameter regions 
where two or more solitary waves belonging to the same family exist at each point seem to be unpredictable. This 
indicates that the solution structures of the nonlinear eigenvalue system (2.3) is much more complicated than that 
of any linear eigenvalue system. 

In this paper, we only classified the families of symmetric and anti-symmetric solitary waves which are generated 
by the wave and daughter wave solutions. Actually, there are also countably infinite families of symmetric or anti- 
symmetric solitary waves which do not fall into that category. In addition, there are abundant asymmetric solitary 
waves exemplified by the solutions (2.9). Studies on such solitary waves can be found in [7]. 
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