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a b s t r a c t

Nonlinear wave propagation in parity-time symmetric localized potentials is investigated analytically
near a phase-transition point where a pair of real eigenvalues of the potential coalesce and bifurcate
into the complex plane. Necessary conditions for a phase transition to occur are derived based on a
generalization of the Krein signature. Using the multi-scale perturbation analysis, a reduced nonlinear
ordinary differential equation (ODE) is derived for the amplitude of localized solutions near phase
transition. Above the phase transition, this ODE predicts a family of stable solitons not bifurcating from
linear (infinitesimal) modes under a certain sign of nonlinearity. In addition, it predicts periodically-
oscillating nonlinear modes away from solitons. Under the opposite sign of nonlinearity, it predicts
unbounded growth of solutions. Below the phase transition, solution dynamics is predicted as well. All
analytical results are compared to direct computations of the full system and good agreement is observed.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Parity-time (PT ) symmetric systems started out from an ob-
servation in non-Hermitian quantummechanics, where a complex
but PT -symmetric potential could possess all-real spectrum [1].
This concept later spread out to optics, Bose–Einstein condensa-
tion, mechanical systems, electric circuits and many other fields,
where a judicious balancing of gain and loss constitutes a PT -
symmetric systemwhich can admit all-real linear spectrum [2–16].
For example, in optics, an even refractive index profile together
with an odd gain–loss landscape yields aPT -symmetric system. A
common phenomenon in linear PT -symmetric systems is the ex-
istence of a phase transition (also known as PT -symmetry break-
ing), where pairs of real eigenvalues collide and then bifurcate to
the complex plane when the magnitude of gain and loss is above
a certain threshold [1,7,17–19]. This phase transition has been
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observed experimentally in a wide range of physical systems
[4–6,8,13,14]. When nonlinearity is present in PT systems, the
interplay between nonlinearity and PT symmetry gives rise to
additional novel properties such as the existence of continuous
families of stationary nonlinear modes, stabilization of nonlinear
modes above phase transition, and symmetry breaking of nonlin-
ear modes [7,18–28]. These findings reveal that PT -symmetric
systems break the boundary between traditional conservative and
dissipative systems and open new exciting research territories.
Practical applications of PT systems are emerging as well, such
as recent demonstrations of PT -symmetric micro-ring lasers and
unidirectional reflectionless PT metamaterials [12,15,16].

Phase transition is an important property of linear PT -
symmetric systems which is at the heart of many proposed appli-
cations [12,16,29]. At a phase transition, a pair of real eigenvalues
coalesce and form an exceptional point featuring a non-diagonal
Jordan block (i.e., the algebraic multiplicity of the eigenvalue is
higher than the geometric multiplicity). In the presence of nonlin-
earity (such as when the wave amplitude is not small), the inter-
play between the phase transition and nonlinearity is a fascinating
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subject. This interplay was previously studied for periodic PT -
symmetric potentials in [25,30,31], where novel behaviors such
as wave-blowup and temporally-oscillating bound states were re-
ported below phase transition. In addition, stable nonlinear Bloch
modes were reported above phase transition because nonlinear-
ity transforms the effective potential from above to below phase
transition [25] (a similar phenomenon was reported in [32] for a
different PT -symmetric dimer model). However, in periodic po-
tentials above phase transition, the presence of unstable infinitely
extended linearmodesmakes the zero backgroundunstable every-
where, which excludes the possibility of stable spatially-localized
coherent structures. In localized potentials, will the situation be
different?

In this article we study nonlinear wave behaviors in localized
PT -symmetric potentials near a phase transition. Unlike periodic
potentials, the instability of linear modes above phase transition is
limited to the area around the localized potential. In this case, the
addition of nonlinearity can balance against the effects of gain and
loss making stable spatially-localized coherent structures, such as
solitons and oscillating bound states, possible above phase tran-
sition. Mathematically, we explain this phenomenon by a multi-
scale perturbation analysis, where a reduced nonlinear ordinary
differential equation (ODE) is derived for the amplitude of local-
ized solutions near phase transition. Above phase transition, this
ODEmodel predicts a family of stable solitons not bifurcating from
linear (infinitesimal) modes under a certain sign of nonlinearity. In
addition, it predicts persistent oscillating nonlinear modes away
from solitons. Under the opposite sign of nonlinearity, it predicts
unbounded growth of solutions. Similarly, solution dynamics be-
low phase transition is predicted as well. All these predictions are
verified in the full partial differential equation (PDE) system. In
addition to these nonlinear dynamics, we also derive a necessary
condition for a phase transition to occur at an exceptional point in
the linear PT system by a generalization of the Krein signature,
namely, a phase transition from a collision of two real eigenval-
ues is possible only when the two eigenvalues have opposite PT -
Krein signatures.

2. Preliminaries

The mathematical model we consider in this article is the fol-
lowing potential NLS equation

iψz + ψxx + V (x; ϵ)ψ + σ |ψ |
2ψ = 0, (2.1)

where V (x; ϵ) is a PT -symmetric complex potential, i.e.,

V ∗(−x; ϵ) = V (x; ϵ), (2.2)

parameterized by ϵ, σ = ±1 is the sign of nonlinearity, and the
superscript * represents complex conjugation. Throughout the
text, we assume that the potential V (x; ϵ) is continuous with
ϵ. Eq. (2.1) governs nonlinear light propagation in an optical
medium with gain and loss [18] as well as the dynamics of
Bose–Einstein condensates in a double-well potential with atoms
injected into one well and removed from the other well [9,10].
PT -symmetric optical systems have been realized experimentally
[5,6,12,14–16], however PT -symmetric Bose–Einstein conden-
sates remain theoretical. Without loss of generality, we assume a
phase transition occurs at ϵ = 0,where a pair of real eigenvalues of
the potential coalesce and form an exceptional point, whose alge-
braic multiplicity is two and the geometric multiplicity is one. We
will analyze the solution dynamics in Eq. (2.1) near this exceptional
point, i.e., when |ϵ| ≪ 1.

The analysis to be developed applies to all localized PT -
symmetric potentials near a phase transition. To illustrate these
analytical results and compare them with direct numerics of the
full model (2.1), we will use a concrete example—the so-called
Scarff II potential

V = VR sech2(x)+ iW0 sech(x) tanh(x), (2.3)

where VR and W0 are real parameters. For this potential, phase
transition occurs at W0 = VR + 1/4 [17], and solitons as well as
robust oscillating solutions have been reported numerically below
phase transition in [18,33–35].

3. PT -Krein signature and a necessary condition for phase
transition

For the potential NLS equation (2.1), when one looks for linear
eigenmodesψ = u(x)e−iµz , with regards to the stability of the zero
state, the eigenvalue problem

L(x; ϵ)u = −µu (3.1)

will be obtained, where

L = ∂xx + V (x; ϵ) (3.2)

is a Schrödinger operator with a complex PT -symmetric po-
tential, and µ is an eigenvalue. We wish to consider the phase-
transition process bywhich the spectrumof L changes from all-real
to partially-complex. This phase transition occurs when a pair of
real eigenvalues collide, forming an exceptional point, and then bi-
furcate into the complex plane. It is important to recognize that not
any two real eigenvalues can turn complex upon collision. This is
analogous to the linear stability of equilibria in Hamiltonian sys-
tems, where not just any two purely imaginary eigenvalues upon
collision can bifurcate off the imaginary axis and result in linear
instability [36–39]. With this in mind, we consider the question:
under what conditions can a pair of real eigenvalues of L induce a
phase transition upon collision?

We will work in the square-integrable doubly-differentiable
Hilbert functional space H2 endowed with the standard inner
product

⟨f , g⟩ =


∞

−∞

f ∗(x)g(x) dx.

Under this inner product, the adjoint operator LĎ of L is

LĎ = L∗
= ∂xx + V ∗(x; ϵ).

When the potential V (x) is PT -symmetric, a key property of the
operator L, which can be readily verified, is

LĎ = P L P −1, (3.3)

where P is the parity operator, i.e., Pf (x) ≡ f (−x). For this parity
operator, P −1

= P and P Ď
= P , thus P is Hermitian and invert-

ible. Consequently, L is pseudo-Hermitian [40] and P L is Hermi-
tian.

One of the consequences of the pseudo-Hermiticity of L is
that, any complex eigenvalues of L must come in conjugate pairs
(µ,µ∗). The reason is that under pseudo-Hermiticity, LĎ is similar
to L, thus LĎ and L share the same spectrum. But the spectrum of LĎ
is the complex conjugate of L’s, thus complex eigenvalues of Lmust
come in (µ,µ∗) pairs.

Another consequence of the pseudo-Hermiticity of L is that,
it allows us to define a PT -Krein signature for discrete real
eigenvalues of L, which will prove to be important when studying
phase transition from collisions of L’s real eigenvalues. For this
purpose, we endow the Hilbert space H2 with another indefinite
PT inner product [41]

⟨f , g⟩PT ≡ ⟨f ,P g⟩ =


∞

−∞

f ∗(x)g(−x) dx. (3.4)
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Since P is Hermitian, this PT -product naturally satisfies the
symmetry condition

⟨g, f ⟩PT = ⟨f , g⟩∗PT . (3.5)

Thus, for any complex function f (x), ⟨f , f ⟩PT is real. In addition,
⟨f , f ⟩PT is independent of the overall phase of f since it is invariant
under f (x) → f (x)eiθ , where θ is a phase constant. More
importantly, under this PT -product, the operator L is symmetric,
i.e.,

⟨Lf , g⟩PT = ⟨f , Lg⟩PT , (3.6)

the reason being

⟨Lf , g⟩PT = ⟨Lf ,P g⟩ = ⟨f , LĎP g⟩ = ⟨f ,P Lg⟩ = ⟨f , Lg⟩PT

by virtue of the pseudo-Hermitian property of L. This symmetric
property of L will be convenient for us to prove certain
orthogonality relations between L’s eigenfunctions in later text of
this section.

For an eigenmode [µ, u(x)] of Lwith a simple real eigenvalueµ
we define its PT -Krein signature as

Sµ = sgn [⟨u, u⟩PT ] . (3.7)

Note that ⟨u, u⟩PT is always real in view of the symmetry property
(3.5). In addition, ⟨u, u⟩PT ≠ 0. The reason is that for a simple
eigenvalue µ of L, the generalized-eigenfunction equation

(L + µ)ug = u (3.8)

cannot admit a solution in the Hilbert space. Due to the pseudo-
Hermitian property of L, when (L + µ)u = 0, (L + µ)Ď (Pu) = 0,
thus Pu is in the kernel of the adjoint operator of L + µ. So the
Fredholm condition for Eq. (3.8) to not admit a solution is

⟨u,Pu⟩ = ⟨u, u⟩PT ≠ 0. (3.9)

Because of this, thePT -Krein signature of a simple real eigenvalue
is always positive or negative. In addition, this signature cannot
change under a continuous variation of the parameter ϵ unless
pairs of such eigenvalues collide. The reason is that this change
of signature can only occur through ⟨u, u⟩PT = 0, which cannot
happen as long asµ remains a simple real eigenvalue, see Eq. (3.9).

It is helpful to compare this PT -Krein signature with the
regular Hamiltonian–Krein signature for linearized Hamiltonian
systems. Such a system takes the form JLu = λu, where L is Her-
mitian and J invertible and anti-Hermitian. TheHamiltonian–Krein
signature for a simple imaginary eigenvalue λ of this system is de-
fined as sgn [⟨u,Lu⟩] = sgn[⟨u, λJ−1u⟩] [38]. For our eigenvalue
problem (3.1), the pseudo-Hermitian property of L allows us to
rewrite it as

(iP )−1(P L)u = (iµ)u, (3.10)

where P L is Hermitian, and (iP )−1
= −iP is anti-Hermitian and

invertible. This eigenvalue equation is then of the same form as
JLu = λu, with L = P L, J = (iP )−1, and λ = iµ. Thus, if
one copies the definition of theHamiltonian–Krein signature to the
above equation, this definition would be Sµ = sgn[−µ⟨u, u⟩PT ],
which differs from our definition (3.7) by a mere constant. For our
purposes, this constant difference is unimportant.

The main result of this section is that when two simple real
eigenvalues of L collide, a necessary condition for a phase transition
is the two real eigenvalues have opposite PT -Krein signatures.
This result extends an analogous one in Hamiltonian systems to
PT -symmetric systems [36,38,39]. In view of the connection be-
tween our eigenvalue problem (3.10) and the Hamiltonian prob-
lem JLu = λu, this result is hardly surprising. The proof we will
employ is, however, somewhat different from those in [36,38,39].

We first present three lemmas.
Lemma 3.1. Let u1(x) and u2(x) be two eigenfunctions of the
operator L with real eigenvalues µ1 and µ2 respectively. If µ1 ≠ µ2,
then ⟨u1, u2⟩PT = 0.

Proof. Using the symmetry property (3.6) we have

⟨u1, Lu2⟩PT = ⟨Lu1, u2⟩PT .

Then, using the fact that u1 and u2 are eigenfunctions, we can cal-
culate the left and right sides of the above equation as

⟨u1, Lu2⟩PT = −µ2⟨u1, u2⟩PT ,

and

⟨Lu1, u2⟩PT = −µ1⟨u1, u2⟩PT .

Thus, if µ1 ≠ µ2 then ⟨u1, u2⟩PT = 0. �

Lemma 3.2. Let u(x) be an eigenfunction of the operator L with a
complex eigenvalue µ. Then ⟨u, u⟩PT = 0.

Proof. From Eq. (3.6) we have ⟨u, Lu⟩PT = ⟨Lu, u⟩PT . Calculating
the two sides of this equation we get

(µ− µ∗)⟨u, u⟩PT = 0.

Thus, if µ is complex then ⟨u, u⟩PT = 0. �

Lemma 3.3. Let {ej} be a basis for an N-dimensional functional
subspace in H2 and f =

N
j=1 cjej. Then

⟨f , f ⟩PT = cHMc,

where M is a N × N Hermitian matrix with elements given by

Mij = ⟨ei, ej⟩PT , (3.11)

and the superscript H represents the Hermitian (conjugate transpose)
of a vector. ThismatrixM will be called the dualmatrix of the quadratic
form ⟨f , f ⟩PT on the subspace {ej}.

Proof. Substituting the f expression into ⟨f , f ⟩PT and utilizing the
linearity of the PT -product, this lemma can be readily proved.
The Hermiticity ofM comes directly from the symmetry condition
(3.5). �

This leads us to the main result of this section.

Theorem 3.4. For the operator L(x; ϵ) parameterized by ϵ, if a pair of
simple real eigenvalues collide and induce a phase transition at ϵ = 0,
then before the phase transition the two real eigenvalues must have
opposite PT -Krein signatures.

Proof. Let u1(x) and u2(x) be two eigenfunctions of L with eigen-
values µ1 and µ2 respectively. When ϵ < 0, µ1 and µ2 are simple
real with µ1 ≠ µ2; when ϵ > 0, µ1 and µ2 are complex with
µ1 = µ∗

2; and when ϵ = 0, µ1 = µ2, which is a double eigen-
value with a non-diagonal Jordan block. We analyze the quadratic
form ⟨f , f ⟩PT restricted to the spectral subspace X = span(u1, u2)
by looking at the dual Hermitian matrix M . We will show that at
ϵ = 0, this M matrix is non-singular and its two real eigenvalues
have opposite signs, thus the quadratic form ⟨f , f ⟩PT restricted to
X is indefinite. Then, since the subspace X is continuous with ϵ, the
quadratic form ⟨f , f ⟩PT on the subspace X must be indefinite as
well when ϵ is in a small neighborhood of 0. For ϵ < 0, this will
imply that the two real eigenvalues of L have opposite PT -Krein
signatures before collision.

First we discuss the casewhen ϵ = 0, where the two real eigen-
values of L collide and the double real eigenvalue µ1 = µ2 has a
non-diagonal Jordan block. In this case, the spectral subspace X is
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X = span(u1, ug), where ug is the generalized eigenfunction satis-
fying

(L + µ1)ug = u1.

Since Pu1 is in the kernel of the adjoint operator of L + µ1 due to
the pseudo-Hermiticity of L, the Fredholm condition on the above
inhomogeneous equation yields

⟨u1, u1⟩PT = 0, (3.12)

thus

Mϵ=0 =


0 c1
c∗

1 c2


, (3.13)

where c1 = ⟨u1, ug⟩PT and c2 = ⟨ug , ug⟩PT . Note that c1 ≠ 0
since it is the Fredholm condition for the double eigenvalueµ1 not
to have a second generalized eigenfunction. Then det(Mϵ=0) < 0,
henceMϵ=0 is non-singular with a pair of real eigenvalues of oppo-
site sign. This means that the quadratic form ⟨f , f ⟩PT restricted to
X is indefinite at ϵ = 0.

Since the spectral subspace X is continuous with ϵ, by continu-
ity the quadratic form ⟨f , f ⟩PT restricted to X must be indefinite as
well when ϵ is in a small neighborhood of 0. This implies that the
dual matrix M must be non-singular with two real eigenvalues of
opposite sign in the same ϵ neighborhood of 0.

When ϵ < 0, since µ1 and µ2 are strictly real, then in view of
Lemma 3.1,

Mϵ<0 =


a1 0
0 a2


, (3.14)

where a1 = ⟨u1, u1⟩PT and a2 = ⟨u2, u2⟩PT . Notice that a1 and
a2 are real and non-zero (see Eq. (3.9)), thus Mϵ<0 is non-singular,
in agreement with the prediction of the previous paragraph. In ad-
dition, since the two eigenvalues of M must have opposite signs,
a1 and a2 then have opposite signs, which shows that the two real
eigenvalues of L have opposite PT -Krein signatures before colli-
sion.

When ϵ > 0, if µ1 and µ2 turn complex with µ1 = µ∗

2 (as
assumed in Theorem 3.4), then by Lemma 3.2 we see that

Mϵ>0 =


0 b
b∗ 0


, (3.15)

where b = ⟨u1, u2⟩PT . By virtue of the pseudo-Hermiticity of L and
µ2 = µ∗

1 , we can easily verify that (L + µ1)
Ď(Pu2) = 0, thus Pu2

is in the kernel of the adjoint operator of L + µ1. Then, since µ1
is a simple eigenvalue of L, the generalized eigenfunction equation
(L+µ1)ug = u1 cannot admit a solution in the Hilbert space. Thus,
the Fredholm alternative indicates that ⟨u1,Pu2⟩ ≠ 0, i.e., b ≠ 0.
This means that Mϵ>0 is non-singular with a pair of real eigen-
values of opposite sign, in agreement with the prediction above.
However, when ϵ > 0, µ1 and µ2 do not have to turn complex—
they may pass through each other and stay real (see Fig. 1 for an
example). Thus, opposite PT -Krein signatures of colliding eigen-
values are only a necessary, but not sufficient, condition for phase
transition. �

Nowwe use an example to illustrate this theorem. In the Scarff-
II potential (2.3), we fix VR = 5 and vary the gain–loss coefficient
W0. The linear spectra for variousW0 values are displayed in Fig. 1.
It is seen that a phase transition occurs atW0 = 5.25, where a pair
of simple real eigenvalues coalesce and form an exceptional point,
which then turns complex when W0 > 5.25. We have calculated
thePT -Krein signatures of those real eigenvalues before thephase
transition, which are indicated by colors in the figure. It is seen that
those signatures are indeed opposite of each other, in agreement
with Theorem 3.4.
Fig. 1. Eigenvalues µ for varying gain–loss strength W0 in the Scarff-II potential
(2.3) with VR = 5 (the continuous spectrum is displayed in light blue). Thick blue
lines indicate eigenvalues with positive PT -Krein signatures while thin red lines
indicate eigenvalues with negative PT -Krein signatures. Complex eigenvalues are
indicated with dotted purple lines. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Interestingly, Fig. 1 also shows another collision of simple real
eigenvalues of oppositePT -Krein signatures atW0 = 4.25 (which
creates another exceptional point). However, after collision these
real eigenvalues re-emerge and no complex eigenvalues bifurcate
out. This shows that a collision of real eigenvalues of opposite
PT -Krein signatures is a necessary but not sufficient condition
for complex-eigenvalue bifurcation. A sufficient condition for
complex-eigenvalue bifurcation can be found in the next section
(i.e., α ≠ 0, see the paragraph below Eq. (4.10)). This condition is
not met at the exceptional point of W0 = 4.25 (where α = 0),
thus we do not see a phase transition there. Another interesting
phenomenon at the exceptional point of W0 = 4.25 in Fig. 1 is
that, as W0 passes through this exceptional point, the two real
eigenvalues exchange their signatures after collision. This behavior
contrasts that for a matrix-pencil example in [42], where two
eigenvalues of opposite Krein signatures retain their signatures
after collision.

In this section, the key property of L which allowed us to
define a PT -Krein signature for its real eigenvalues is its pseudo-
Hermiticity (3.3). In general, for any pseudo-Hermitian operator L
such that LĎ = ηLη−1, where η is a certain Hermitian operator, the
complex eigenvalues of L always come in conjugate pairs (µ,µ∗).
In addition, for a simple discrete real eigenvalue µ of L, we can
define its η-Krein signature as sgn[⟨u, ηu⟩], where u(x) is the
eigenfunction of µ. Then, if two simple real eigenvalues collide, a
necessary condition for a complex-eigenvalue bifurcation is that
the two real eigenvalues have opposite η-Krein signatures. The
proofs for these more general statements are identical to those
given in this section.

4. Reduced model near phase transition

In this section, we consider the potential nonlinear Schrödinger
equation (2.1) and analyze its solution dynamics near a phase
transition.

Let us suppose the PT -symmetric potential in Eq. (2.1) takes
the form

V (x; ϵ) = V0(x)+ ϵ2V2(x), (4.1)

where 0 < ϵ ≪ 1. Here V0(x) is the unperturbed potential, V2(x)
is the form of potential perturbation, and ϵ2 is the strength of this
perturbation.We assume that the unperturbed potential V0(x) is at
a phase transition and possesses an exceptional point at µ = µ0,
i.e., the linear operator ∂xx + V0(x) has a single eigenfunction ue(x)
and a generalized eigenfunction ug(x) at µ0. Defining

L0 ≡ ∂xx + V0(x)+ µ0, (4.2)

we have

L0ue = 0, L0ug = ue. (4.3)

In addition, from Eq. (3.12) we see that ⟨ue, ue⟩PT = 0.
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In principle, an exceptional point can have algebraic multiplic-
ities higher than two, meaning that it can have additional general-
ized eigenfunctions beside ug . But in a generic case, an exceptional
point is formed by the collision of two simple real eigenvalues, in
which case its algebraic multiplicity is only two. For simplicity, we
only consider such generic exceptional points in this article. Since
their algebraic multiplicities are two, they do not admit other gen-
eralized eigenfunctions, i.e., the equation

L0ug2 = ug

admits no solutions for ug2 in the Hilbert space. Since Pue is in the
kernel of the adjoint operator LĎ0, the Fredholm condition on the
above equation is

D ≡ ⟨ug , ue⟩PT ≠ 0. (4.4)

In addition, by taking the PT -product of the equation L0ug = ue
with ug and recalling the symmetry properties (3.5)–(3.6), we see
that D is real.

If the potential V0(x) is perturbed to be (4.1), we study non-
linear dynamics in this perturbed potential by multiscale pertur-
bation methods. First, we expand the solution to Eq. (2.1) into a
perturbation series,

ψ(x, z) =

ϵu1(x, Z)+ ϵ2u2 + ϵ3u3 + · · ·


e−iµ0z, (4.5)

which is a slowly-modulated small-amplitude solution. Here Z =

ϵz is the slow-modulation scale. Then, up to order ϵ3 we get a sys-
tem of equations

L0u1 = 0,
L0u2 = −iu1Z ,

L0u3 = −iu2Z − V2u1 − σ |u1|
2u1.

Since Pue is in the kernel of the adjoint operator LĎ0, the solvability
conditions for these equations are that their right sides be orthog-
onal to Pue.

At orders ϵ and ϵ2 we find from (4.3) that

u1 = Aue, (4.6a)
u2 = −iAZug , (4.6b)

where A(Z) is the slowly-varying amplitude function of the
eigenmode ue(x). At order ϵ3 we have

L0u3 = −AZZug − AV2ue − σ |A|
2A|ue|

2ue.

The solvability condition of this equation yields

AZZ − αA + σ1|A|
2A = 0, (4.7)

where

α = −
1
D

⟨V2ue, ue⟩PT , σ1 =
σ

D
⟨|ue|

2ue, ue⟩PT . (4.8)

Eq. (4.7) for the wave-amplitude function A(Z) is our reduced
model for nonlinear wave dynamics near an exceptional (phase-
transition) point. Since V2(x) is PT -symmetric and D real, α and
σ1 are real.

The reduced model (4.7) is a fourth-order dynamical system
since A is complex. However it has two conserved quantities,

I1 = |AZ |
2
− α|A|

2
+
σ1

2
|A|

4, (4.9)

and

I2 = A∗AZ − AA∗

Z , (4.10)

where dIk/dZ = 0 (k = 1, 2). Due to these two conserved
quantities, solution dynamics in Eq. (4.7) is confined to a two-
dimensional surface, thus this dynamics cannot be chaotic. When
Z → ∞, the solution A can only approach a fixed point, or a
periodic orbit, or infinity (if σ1 > 0, infinity is further forbidden
due to the conservation of I1).

The parameter α plays an important role in Eq. (4.7). Let us
consider the small-amplitude limit (|A| ≪ 1), in which case Eq.
(4.7) reduces to AZZ −αA = 0. If α < 0, these infinitesimal (linear)
modes are bounded, meaning that the system is below phase
transition. But, if α > 0, these linear modes grow exponentially,
indicating that the system is above phase transition. Recall that α
is dependent on the potential perturbation V2. Thus, whether the
perturbed potential is above or below phase transition depends on
the sign ofα. In addition, the value ofα also determineswhether or
not the underlying exceptional point µ = µ0 is a phase-transition
point: if α ≠ 0, then µ = µ0 is a phase-transition point; if α = 0,
then the answer is not certain, and further analysis is needed.

In the next two sections, we will describe the predictions of the
reduced model (4.7) and compare them with the full system (2.1).
In all our numerical comparisons, wewill use the Scarff-II potential
(2.3) with VR = 2. At this VR value, an exceptional point occurs
when

W0 = 2.25, µ0 ≈ −0.3144, (4.11)

and this exceptional point is a phase-transition point. In the format
(4.1), this Scarff-II potential has

V0(x) = 2 sech2(x)+ i2.25 sech(x) tanh(x), (4.12a)
V2(x) = ic sech(x) tanh(x). (4.12b)

This potential is above phase transition when c = 1 and below
phase transition when c = −1. At this phase-transition point, the
coefficients in the reduced model (4.7) are found to be

α ≈ 0.3144c, σ1 ≈ 0.2700σ . (4.13)

For these coefficients the eigenfunction ue(x) has been normalized
to have unit amplitude. In all our comparisons, we take ϵ = 0.2.
This ϵ is not very small, but predictions of the reduced model (4.7)
still match those in the full system (2.1) as we will see below.

5. Solution behaviors above phase transition

Our main interest is to investigate nonlinear wave dynamics
above phase transition (α > 0). Previous studies on nonlinear
PT -symmetric systems overwhelmingly focused on solution
behaviors below phase transition, because it was argued that
coherent structures such as solitons would be unstable above
phase transition (at least in PT -symmetric periodic potentials).
We will show in this section that in PT -symmetric localized
potentials, stable solitons and robust oscillating nonlinear modes
do exist above phase transition.

5.1. Soliton families and their stability

First we consider soliton solutions, which correspond to
constant-amplitude solutions in the reduced model (4.7). Specif-
ically, constant-amplitude solutions of the form

A(Z) = A0 e−iµ1Z (5.1)

in Eq. (4.7) correspond to soliton solutions of the form

ψ = u(x)e−i(µ0+ϵµ1)z (5.2)

in Eq. (2.1), where u(x) ≈ ϵA0ue(x) to leading order. In this A-
formula, A0 is a constant which will be made real positive from
phase invariance. Substituting (5.1) into (4.7), we find µ1 as

µ1 = ±


σ1A2

0 − α, (5.3)



S. Nixon, J. Yang / Physica D 331 (2016) 48–57 53
where the quantity under the square root must be non-negative.
This equation relates the propagation constant µ1 to the soliton
amplitude parameter A0.

Since α > 0 above phase transition, solutions (5.3) exist only
when σ1 > 0. For the Scarff-II potential (4.12), this means that
above phase transition, solitons can only exist under self-focusing
nonlinearity (σ > 0). The physical reason for the existence of these
solitons comes from the nonlinear feedback. It is commonly known
that a PT -symmetric complex potential is above phase transition
when the imaginary part of the potential (relative to the real part)
is above a certain threshold. In the current case, even though the
linear potential V (x; ϵ) is above phase transition, the effective
potential, which is this linear potential plus the nonlinearity-
induced positive refractive index σ |ψ |

2, can still be below phase
transition since the real part of this effective potential is enhanced
by nonlinearity, which makes the imaginary part of the effective
potential relativelyweaker. As a consequence, the nonlinearity can
transform the effective potential from above phase transition to
below phase transition [25,32].

Notice also from Eq. (5.3) that these solitons exist only above a
certain amplitude threshold, which is

A2
0 ≥ α/σ1. (5.4)

This means that the nonlinearity-induced positive refractive index
must be strong enough to transform the effective potential from
above to below phase transition. Consequently, these solitons do
not bifurcate from linear modes of the potential. In addition, the
two branches of these solutions (corresponding to the plus and
minus signs in (5.3)) are connected at this amplitude threshold and
thus belong to a single soliton family.

For the Scarff-II potential (4.1) with (4.12), c = 1 and ϵ =

0.2, we have numerically obtained these predicted solitons above
phase transition under focusing nonlinearity (σ = 1). The profile
of this complex potential is displayed in Fig. 2(a), and its linear
spectrum is shown in Fig. 2(b). This linear spectrum contains a
complex-conjugate pair of discrete eigenvalues, indicating that
this potential is above phase transition. The power curve of solitons
we numerically obtained is plotted in Fig. 2(c). Here the soliton’s
power is defined as P(µ) =


∞

−∞
|ψ |

2dx. It is seen that this
numerical power curve indeed has a minimum threshold. The
analytical prediction for this power threshold, obtained from Eq.
(5.4) and the leading-order perturbation solution (4.5) as

Pmin =
αϵ2

σ1


∞

−∞

|ue|
2dx,

is also depicted in Fig. 2(c) (as a horizontal dashed line). It is
seen that this analytical power threshold matches the numerical
value very well. At the black-dot point of the numerical power
curve (where µ = −0.5), the profile of the corresponding soliton
solution is illustrated in Fig. 2(d). This soliton is PT -symmetric, as
are all other solitons in this family.

Stability of these solitons can be analyzed by examining the
stability of constant-amplitude solutions (5.1) in the reduced ODE
model (4.7). Let us perturb this constant-amplitude solution by
normal modes as

A(Z) =


A0 +A eλAZ +B∗eλ

∗
AZ


e−iµ1Z ,

where A,B ≪ 1, and λA is the eigenvalue from the ODE model.
Plugging this into (4.7) and linearizing, we obtain

LA

AB


= 0,

where

LA =


λ2A − 2iλAµ1 + µ2

1 + α µ2
1 + α

µ2
1 + α λ2A + 2iλAµ1 + µ2

1 + α


.

Fig. 2. (a) Profile of the Scarff-II potential (4.1), (4.12) with c = 1 and ϵ = 0.2;
(b) linear spectrum of this Scarff-II potential in (a), which shows that this potential
is above phase transition; (c) power curve for the family of solitons in this Scarff-II
potential under focusing nonlinearity (σ = 1); solid blue indicates stable solitons
and dashed red unstable ones; the horizontal dashed line is the analytical prediction
for the power minimum; (d) profile of an example soliton at the black-dot point of
the power curve (where µ = −0.5); (e) discrete eigenvalues for stable solitons
versus the propagation constant µ; solid blue are numerical values and dashed
red analytical predictions; the shaded region is the continuous spectrum; (f) the
numerically obtained linear-stability spectrum for the soliton in panel (d). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Requiring the determinant of this matrix LA to vanish, non-zero
eigenvalues λA are then derived as

λA = ±i

2(3µ2

1 + α).

Since α > 0 above phase transition, this formula predicts a
pair of purely imaginary discrete eigenvalues, indicating that the
constant-amplitude solution (5.1) is linearly stable in the ODE
model (4.7). This suggests that the soliton solution (5.2) is also
linearly stable in the original system (2.1). Taking into account
the scaling Z = ϵz, an approximation for non-zero discrete
eigenvalues of this soliton is

λ ≈ ϵλA = ±iϵ

2(3µ2

1 + α). (5.5)

Numerically we have confirmed the linear stability of these
solitons near phase transition. This is achieved by computing
the linear-stability spectrum of these solitons by the Fourier-
collocation method [43]. The reader is reminded that this linear-
stability problem for solitons is different from that for the zero
state considered in Section 3. As an example, for the soliton shown
in Fig. 2(d), its linear-stability spectrum is displayed in Fig. 2(f).
All eigenvalues in this spectrum are purely imaginary, indicating
that the soliton is linearly stable. In addition, the pair of discrete
imaginary eigenvalues in this spectrum correspond to those
predicted by formula (5.5). Similar computations are performed for
other solitons, and their stability is indicated by solid blue lines
on the power diagram of Fig. 2(c). It is interesting to note that
solitons on both sides of the power minimum (with opposite signs
of power slopes) are linearly stable. This contrasts the case inmany
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conservative systems, where a sign change in power slope signals
a switching of linear stability [43]. The reason for non-switching
of linear stability here is that, the theorems predicting stability
switching at a power extremum (such as the Vakhitov–Kolokolov
criterion and others) do not apply to the present non-conservative
system [43]. More specifically, a stability-switching criterion for
PT -symmetric solitons in Eq. (2.1) was derived in [19]. For real
potentials (the conservative case), this criterion predicts stability
switching at a power extremum, in agreement with the previous
theory. However, for complex potentials, this criterion predicts
that stability switching of PT solitons does not occur at a power
extremum in general, and Fig. 2(c) is another numerical example
corroborating this prediction. Quantitative comparison between
numerical discrete imaginary eigenvalues and their analytical
prediction (5.5) is made in Fig. 2(e), and reasonable agreement can
be seen (even though ϵ = 0.2 is not small here).

At higher power values, we find that these solitons become
linearly unstable, and this instability is shown by dashed red
lines on the power curve of Fig. 2(c). The instability on the left
side of the power curve is induced by a collision between the
discrete imaginary eigenvalue shown in Fig. 2(e), (f) and another
discrete imaginary eigenvalue bifurcated out of the edge of the
continuous spectrum. This collision occurs at λ ≈ ±0.690i on
the imaginary axis (near the edges of the continuous spectrum)
when µ ≈ −0.711, and it creates a quartet of complex
eigenvalues bifurcating off the imaginary axis (analogous to a
Hamiltonian–Hopf bifurcation). The instability on the right side
of the power curve, on the other hand, is caused by a collision
between the discrete imaginary eigenvalue shown in Fig. 2(e), (f)
and the edge of the continuous spectrum. This collision occurs
whenµ ≈ −0.273 (on the right side of the powerminimumpoint),
and it creates a quartet of complex eigenvalues bifurcating off the
edges of the continuous spectrum.

5.2. Oscillating solutions

The behavior of solutions away from the soliton equilibria can
be largely captured by focusing on the case where A is purely
real in the reduced model (4.7). In this case, the model equation
becomes a simple second-orderODEwhichwe analyze using phase
portraits. Above phase transition (α > 0), this breaks into two
cases depending on the sign of the nonlinearity.

5.2.1. Positive σ1
In this case, the phase portrait is shown in Fig. 3(a), where α

and σ1 values are taken from Eq. (4.13) with c = 1 and σ = 1
(focusing nonlinearity). This phase portrait contains three fixed
points. One of them is the origin, which is unstable, signifying that
the system is above phase transition. The other two fixed points
are at A = ±

√
α/σ1, which are stable, and they correspond to

the soliton of minimum power (with µ1 = 0) in Eqs. (5.3)–(5.4).
Away from these fixed points, the phase portrait features two types
of periodic orbits which are separated by a figure-eight trajectory
joined at the origin. Inner periodic orbits surround the non-zero
fixed points, while outer periodic orbits undergo wider amplitude
swings.

These periodic orbits in the phase plane imply the existence of
robust oscillating solutions away from solitons in the full system
(2.1), and such oscillating solutions are confirmed in our direct
evolution simulations of that system. To illustrate, two examples
of such PDE solutions are displayed in Fig. 3(b), (c). Oscillations in
panel (b) are stronger, and they correspond to outer periodic orbits
in the phase portrait (a). Oscillations in panel (c) are weaker, and
they correspond to inner periodic orbits in the phase portrait. This
solution correspondence can be made more explicit by projecting
Fig. 3. (a) Phase portrait of the reduced model (4.7) with σ1 > 0 above phase
transition. (b, c) Full PDE simulations in the Scarff-II potential (4.12) with σ = 1,
c = 1 and ϵ = 0.2 under different initial conditions. In (a), solid blue lines are full
PDE solutions in (b, c) projected onto the phase plane (with the outer curve for (b)
and inner curve for (c)). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

the PDE solution onto the phase plane. To do so, we recall the
perturbation solution (4.5)–(4.6), which to order ϵ2 gives

ψ(x, z) =

ϵA(Z)ue(x)− iϵ2A′(Z)ug(x)


e−iµ0z . (5.6)

Taking the PT -product of this equation with ug(x) and retaining
only the leading-order term, we get

A(Z) =
⟨ug , ψ(x, Z/ϵ)⟩PT

ϵD
eiµ0Z/ϵ . (5.7)

Taking the PT -product of (5.6) with ue(x) and recalling that
⟨ue, ue⟩PT = 0, we get

A′(Z) =
i⟨ue, ψ(x, Z/ϵ)⟩PT

ϵ2D
eiµ0Z/ϵ . (5.8)

In this way, the full PDE solution can be embedded in the phase
portrait of the ODE model for comparison. As a technical matter,
the projected quantities (A, A′) from the PDE solution by (5.7)–(5.8)
are complex in general. But we have found that if the initial
condition of the PDE solution is chosen according to Eq. (5.6), then
the imaginary parts of the projected (A, A′) remain very small for
very long distances. Thus we neglect those small imaginary parts
and plot only the real parts of the projected (A, A′) in the phase
plane.

For the two PDE solutions in Fig. 3(b), (c), their phase-plane
projections are displayed as solid blue lines in panel (a). It is seen
that these PDE projections closely mimic the periodic orbits of the
ODE model.

It is noted that these predictions of periodically-oscillating so-
lutions in the PDE systemare valid on the distance scale of z ∼ 1/ϵ.
Beyond this distance scale, the PDEdynamics generally starts to de-
viate from the ODE predictions. Our numerics show that over very
long distances, these oscillations in the PDE solution gradually in-
tensify and eventually break up. This phenomenon resembles that
of solitons in Hamiltonian systemswith internalmodes of negative
Krein signatures or with Hamiltonian–Hopf bifurcations [44,45].

5.2.2. Negative σ1
When σ1 < 0, the phase portrait is shown in Fig. 4 (left panel),

where α and σ1 values are taken from Eq. (4.13) with c = 1 and
σ = −1 (defocusing nonlinearity). In this case, except for the
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Fig. 4. (Left) Phase portrait of the reduced model (4.7) with σ1 < 0 above phase
transition. (Right) Full PDE simulation in the Scarff-II potential (4.12) with σ = −1,
c = 1 and ϵ = 0.2. The solid blue line in the left panel is this full PDE solution
projected onto the phase plane. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

origin (an unstable fixed point), all trajectories escape to infinity.
Similar solution behaviors are observed in the full PDE (2.1). An ex-
ample is shown in the right panel of Fig. 4, where the PDE solution
is seen to first decrease, and then rise to higher amplitudes. The
projection of this PDE solution onto the phase plane is displayed as
a solid blue line in the phase portrait. This projection closely fol-
lows the trajectory of the ODEmodel. After the solution amplitude
has risen to the order of ϵA ∼ O(1) (beyond the validity of our
perturbation theory), the PDE solution eventually saturates in am-
plitude while continuing to emit radiation and growing in power.
As z → ∞, the amplitude |u(x, z)| of the PDE solution approaches
an asymmetric stationary state with constant shelves at large dis-
tances (|x| ≫ 1), and this stationary state attracts almost all non-
zero localized initial conditions.

6. Solution behaviors below phase transition

In this section, we consider the predictions of our reduced
model for solution behaviors below phase transition, and compare
them with PDE solutions.

6.1. Soliton solutions

Below phase transition (α < 0), the ODE model (4.7) admits
constant-amplitude solutions (5.1) for both signs of the nonlinear
coefficient σ1, meaning that solitons exist under both focusing and
defocusing nonlinearities. But behaviors of solitons for the two
signs of σ1 are very different.

When σ1 > 0, formula (5.3), when rewritten as

A2
0 = (µ2

1 + α)/σ1, (6.1)

predicts that constant-amplitude solutions exist when |µ1| >√
|α|, i.e., soliton solutions exist when |µ − µ0| > ϵ

√
|α|. In

addition, the amplitude A0 (and hence power) of these solitons can
be arbitrary. Numerically we have confirmed this prediction in the
Scarff-II potential (4.12) with σ = 1, c = −1 and ϵ = 0.2. The
numerically obtained power curves of these solitons are displayed
in Fig. 5(a).

Stability of these solitons may be analyzed in the framework
of the reduced model (4.7). The eigenvalue formula (5.5) shows
that these eigenvalues are purely imaginary since 3µ2

1 + α >

µ2
1 + α > 0 here. This suggests that these solitons are linearly

stable at low amplitudes (where the perturbation theory is valid).
This prediction proves to be correct for the left branch of the
soliton family, which is numerically found to be linearly stable at
low amplitudes, see Fig. 5(a) (at higher amplitudes, they become
unstable due to a quartet of complex eigenvalues bifurcating off
the edges of the continuous spectrum at µ ≈ −0.75 when a pair
of purely imaginary discrete eigenvalues collide with these edges).
The right branch of the soliton family, however, is all linearly
unstable, in disagreement with the ODE model’s prediction. This
Fig. 5. (a,b) Numerically obtained power curves for the families of solitons below
phase transition in the Scarff-II potential (4.12) with c = −1, ϵ = 0.2, σ = 1 in (a)
and σ = −1 in (b). (c) Analytical prediction for the power curve and linear stability
of solitons in (b). In all of (a, b, c), solid blue indicates stable solitons and dashed red
unstable ones. (d) Comparison of numerically obtained (solid blue) and analytically
predicted (dashed red) unstable eigenvalues for solitons in (b). (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

linear instability in solitons of the right branch is due to a quartet of
complex eigenvalues, which bifurcate out from a pair of embedded
eigenvalues inside the continuous spectrum when the solitons
bifurcate out from the zero-amplitude limit. This pair of embedded
eigenvalues at the zero-amplitude limit is located at ±i (µ2 −µ1),
where µ1 ≈ −0.4303 and µ2 ≈ −0.2079 are the two discrete
eigenvalues of the linear PT potential. These eigenvalues are
embedded inside the continuous spectrum of ±i [|µ2|,∞) and
bifurcate off the imaginary axis when the solitons bifurcate out.
We note that while the reduced model misses this eigenvalue
bifurcation into the complex plane, it does successfully predict the
embedded eigenvalues where this bifurcation occurs. Specifically,
at the zero-amplitude limit (A0 = 0), the ODE model predicts
µ = µ0 + ϵ

√
|α|, hence the continuous spectrum is located

at ±i [|µ|,∞), but the discrete eigenvalues (5.5) are at λ =

±2iϵ
√

|α|, which are embedded inside this continuous spectrum
for the underlying µ0, ϵ and α values.

When σ1 < 0, formulae (5.3) and (6.1) predict that solitons only
exist in the propagation-constant interval of |µ − µ0| < ϵ

√
|α|

with a limited range of amplitude values |A0| ≤
√
α/σ1. The

analytically predicted power curve from Eqs. (4.5), (4.6) and (6.1)
is

P(µ) ≈
(µ− µ0)

2
+ αϵ2

σ1


∞

−∞

|ue|
2dx, (6.2)

which is plotted in Fig. 5(c). Numerically we have obtained these
solitons, whose power curve is shown in Fig. 5(b). This numerical
power curve closely resembles the analytical prediction in (c). In
particular, the existence of a power upper bound is confirmed.
This close agreement between the perturbation theory and direct
numerics is understandable, since these solitons have low powers
and are thus within the regime of validity of the perturbation
theory.

The physical reason for limited power ranges of these solitons
is that, under defocusing nonlinearity, if this power is too high, the
negative nonlinearity-induced refractive index would transform
the effective potential from below phase transition to above phase
transition, rendering stationary solitons impossible.

Stability of these solitons with limited power ranges can be
analyzed in the framework of the reduced model (4.7). In this
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Fig. 6. (Left) Phase portrait of the reduced model (4.7) with σ1 > 0 below phase
transition. (Right) Full PDE simulation in the Scarff-II potential (4.12) with σ = 1,
c = −1 and ϵ = 0.2. The solid blue line in the left panel is this full PDE solution
projected onto the phase plane. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

case, the eigenvalue formula (5.5) predicts that these solitons are
linearly unstable when

|µ− µ0| < ϵ


|α|/3, (6.3)

and stable otherwise. This predicted instability and stability are
shown in the predicted power curve in Fig. 5(c). It is seen that
solitons at the top part of the power curve are predicted as unstable
and the bottom ones predicted as stable. Numerically we have
determined the linear stability of these solitons by computing
their stability spectra, and the results are shown in Fig. 5(b).
Clearly the numerical resultsmatch those of analytical predictions.
Quantitativelywe have also computed real eigenvalues of unstable
solitons and plotted them in Fig. 5(d), togetherwith their analytical
predictions in Eq. (5.5). This quantitative comparison shows good
agreement as well. The good agreement on the instability here is
due to the fact that this instability is caused by real eigenvalues,
which can be captured by the underlying perturbation theory.

6.2. Oscillating solutions

Like the previous case above phase transition, robust oscillating
solutions exist below phase transition as well. As before, we will
unveil such solutions by focusing on the case of real A in the
reduced model (4.7).

If σ1 > 0, the phase portrait of the reduced model is shown
in Fig. 6 (left panel), where α and σ1 values are taken from Eq.
(4.13) with c = −1 and σ = 1 (focusing nonlinearity). In this
phase portrait the origin is a stable fixed point, a reflection that
the system is below phase transition. Surrounding the origin are
periodic orbits of various sizes. This implies an abundance of
robust oscillating solutions in the PDE system. Numerically we
have confirmed the existence of these oscillating solutions, and
an example is shown in Fig. 6 (right panel). Projection of this PDE
solution onto the phase plane is plotted as a solid blue line in the
left panel, and good agreement with the ODE orbit is seen.

If σ1 < 0, the phase portrait of the reduced model (4.7) is
shown in Fig. 7(a), where α and σ1 values are taken from Eq.
(4.13) with c = −1 and σ = −1 (defocusing nonlinearity). This
phase portrait contains three fixed points: the origin which is
stable, and A = ±

√
α/σ1 which are unstable. The latter two

fixed points correspond to the soliton with maximal power (at
µ = µ0) in Fig. 5(c). Away from these three equilibria, trajectories
are divided into two categories: periodic orbits surrounding the
origin, and orbits which escape to infinity. Numerically we have
found both types of solutions in the PDE system (2.1) under the
Scarff-II potential (4.12) with σ = −1, c = −1 and ϵ = 0.2, and
two examples are displayed in Fig. 7(b), (c). Projections of the PDE
solutions onto the phase plane in panel (a) indicate that the ODE
model accurately describes the PDE dynamics.
Fig. 7. (a) Phase portrait of the reduced model (4.7) with σ1 < 0 below phase
transition. (b, c) Full PDE simulations in the Scarff-II potential (4.12) with σ = −1,
c = −1 and ϵ = 0.2 under different initial conditions. In (a), solid blue lines are full
PDE solutions in (b, c) projected onto the phase plane (with the upper curve for (b)
and lower curve for (c)). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

7. Summary and discussion

In this article, nonlinear wave propagation in PT -symmetric
localized potentials was investigated analytically near a phase
transition. Necessary conditions for a phase transition were first
derived based on a generalization of the Krein signature. Then rich
nonlinear dynamics near a phase transition was revealed through
amulti-scale perturbation analysis, which yielded a nonlinear ODE
model for the amplitude of the solutions. Above phase transition,
this ODEmodel predicted a family of stable solitons not bifurcating
from linear modes under a certain sign of nonlinearity. In addition,
it predicted persistent periodically-oscillating solutions away from
solitons. Under the opposite sign of nonlinearity, it predicted
unbounded growth of solutions. Below phase transition, solution
dynamics was predicted as well. We have compared all analytical
predictions with direct numerical calculations of the full PDE
system and good agreement was obtained.

The analytical results obtained in this article are helpful for
several reasons. First, it is known that a phase transition is a distinct
and important phenomenon in PT -symmetric systems. Thus the
analytical condition for a phase transition in terms of PT -Krein
signatures helps understandwhen a phase transition can or cannot
occur. Second, the analytical predictions of nonlinear dynamics
near a phase transition contribute to a global understanding
of solution behaviors in PT -symmetric systems. Thirdly, even
though our analysis was performed only for the potential NLS
equation (2.1), a similar treatment can be extended to other PT -
symmetric systems near a phase transition, and similar solution
dynamics are expected in all such systems.

Along the lines of this work, various extensions can be
anticipated. One is the development ofPT -Krein signature theory
for linear stability of solitons (rather than the zero state) in PT -
symmetric systems. Such a theory can help decide when purely-
imaginary linear-stability eigenvalues of solitons can bifurcate
off the imaginary axis upon collision, creating linear instability
and Hopf bifurcations. Another extension is the analysis of
solution dynamics near such a Hopf bifurcation in PT -symmetric
solitons. At the Hopf bifurcation point, collided purely-imaginary
eigenvalues are also exceptional points with non-diagonal Jordan
blocks. Thus solution dynamics around such exceptional points
may be analyzed by a technique similar to that developed in this
article.
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