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A normal form for nonlinear resonance of embedded solitons is derived for a coupled
two-wave system that generalizes the second-harmonic-generating model. This wave
system is non-Hamiltonian in general. An embedded soliton is a localized mode of
the nonlinear system that coexists with the linear wave spectrum. It occurs as a
result of a codimension-one bifurcation of non-local wave solutions. Nonlinearity
couples the embedded soliton and the linear wave spectrum and induces a one-
sided radiation-driven decay of embedded solitons. The normal form shows that the
embedded soliton is semi-stable, i.e. it survives under perturbations of one sign, but is
destroyed by perturbations of the opposite sign. When a perturbed embedded soliton
sheds continuous wave radiation, the radiation amplitude is generally not minimal,
even if the wave system is Hamiltonian. The results of the analytical theory are
confirmed by numerical computations.
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1. Introduction

Progress in the analytical theory for partial differential equations (PDEs) and solitons
is marked by two recent discoveries: inverse scattering and Evans-function methods.
The first is a method to solve an initial-value problem for a class of integrable non-
linear PDEs. Within this method, the nonlinear spectral transform is based on a
Riemann–Hilbert or a ∂̄ formalism for linear (Lax) operators (Ablowitz & Clarkson
1991; Ablowitz & Fokas 1997). The other is a method to study the spectra of lin-
earized operators in soliton stability problems (Evans 1972a–c, 1975; Alexander et
al . 1990; Pego & Weinstein 1992). Both theories treat nonlinear problems through
classical spectral analysis of linear equations of mathematical physics (Hislop & Sigal
1996; Pego & Weinstein 1978).

Quite often, linear spectral problems exhibit special situations when eigenvalues
of discrete spectrum are embedded in the essential spectrum (Hislop & Sigal 1996).
Analytical theory for embedded eigenvalues and linear resonances is well studied
in quantum mechanics (Merkli & Sigal 1999; Soffer & Weinstein 1998). Embedded
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eigenvalues are generally destroyed and disappear under deformations of the poten-
tial. In time-evolution problems, the decay of resonant modes that correspond to
embedded eigenvalues is exponential within the linear theory and is described by the
Fermi golden rule (Soffer & Weinstein 1998).

Similar linear resonances also arise in the inverse scattering theory and Evans-
function method. In inverse scattering, embedded eigenvalues correspond to non-
generic initial data that separate propagation and non-propagation of solitons in non-
linear time-evolution problems (Pelinovsky & Sulem 1998, 2000a). In Evans-function
applications, embedded eigenvalues correspond to Hopf bifurcations (Bridges &
Derks 1999; Li & Promislow 1998; Pego et al . 1995; Sandstede & Scheel 1999) and
edge bifurcations (Barashenkov et al . 1998; Kapitula & Sandstede 2002; Kivshar et
al . 1998) in soliton stability problems. The structural instability of embedded eigen-
values is typically one sided in such problems, i.e. the way the embedded eigenvalues
disappear is different depending on the sign of a perturbation term. Under one sign,
the discrete spectrum of a linear problem acquires new eigenvalues emerging from
the embedded eigenvalue in an appropriate spectral space. Under the opposite sign,
the discrete spectrum simply loses the embedded eigenvalue.

Recent works on solitons in optical communications revealed two new classes of
problems where the linear resonance concept is generalized for nonlinear problems.
The first class corresponds to a problem in which an isolated eigenvalue of a linear
spectral problem couples with the essential spectrum due to nonlinearity-induced
generation of multiple frequencies. This mechanism leads to radiative decay of reso-
nant modes in nonlinear time-evolution problems (Buslaev & Perel’man 1995; Peli-
novsky & Yang 2000; Pelinovsky et al . 1998; Soffer & Weinstein 1999; Yang 1997).
Although this mechanism is of the same nature as the linear quantum resonance
and is described by a nonlinear variant of the Fermi golden rule, the decay rate is
algebraic and it depends on how many frequencies are required for coupling the dis-
crete and essential spectrum. The general dispersive Hamiltonian normal form for
nonlinear-through-linear resonance was found in Pelinovsky et al . (1998) and Soffer
& Weinstein (1999).

The second class of problems possesses a true nonlinear resonance. It occurs when
a nonlinear PDE exhibits solitary waves that have parameters lying in the continuous
spectrum of the linear wave system. Such solitary waves were recently discovered in
a number of physical systems and were referred to as embedded solitons (Champneys
et al . 1998, 2001; Yang et al . 1999, 2001). When the nonlinear PDE is linearized
around embedded solitons, part of the discrete spectrum of the linearized operator
lies inside the continuous spectrum of this same operator. Within the linear stability
theory, single-hump embedded solitons are often neutrally stable, with no coupling
between the discrete and continuous spectra. However, heuristic arguments based on
energy estimates (Yang et al . 1999) conjecture a one-sided nonlinear instability due
to nonlinear coupling of embedded solitons with the linear wave spectrum. In the
one-sided instability, embedded solitons survive under perturbations of one sign and
decay under perturbations of the opposite sign. These estimates were confirmed by
numerical simulations of PDEs for perturbed embedded solitons (Champneys et al .
2001; Yang et al . 1999, 2001).

Analytical theory for nonlinear resonances of embedded solitons remains an open
problem, except for two special situations where recent progress was made (Peli-
novsky & Sulem 2001; Yang 2001). The first situation occurs for embedded solitons
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in integrable nonlinear PDEs solvable through a linear (Lax) operator. In particu-
lar, the modified Korteweg–de Vries (KdV) equation in one dimension (Pelinovsky
& Grimshaw 1997) and the DSII equation in two dimensions (Gadyl’shin & Kise-
lev 1999; Pelinovsky & Sulem 2000b) exhibit embedded solitons where the nonlinear
instability can be traced to linear resonance in the Lax operator (Pelinovsky &
Sulem 2001). The second situation occurs for embedded solitons in nearly integrable
PDEs, such as the perturbed integrable fifth-order KdV equation (Yang 2001). In
this case, a soliton perturbation theory enables one to explain the one-sided non-
linear instability by reducing the PDE to an analytical equation for the velocity
of the embedded soliton (see also Pelinovsky & Grimshaw 1996). This analytical
equation describes the nonlinear coupling between embedded solitons and the lin-
ear wave spectrum that occurs due to mixing of small external perturbations with
the underlying integrable PDE. Thus progress of the analytical theory for nonlinear
resonance of embedded solitons was limited by the integrability of the underlying
PDE.

In this paper, we derive a general normal form for nonlinear resonance of embed-
ded solitons for a coupled wave system that is not close to an integrable system.
This coupled system is even non-Hamiltonian in general. Our method is an inter-
nal perturbation technique applied to the underlying PDE (Pelinovsky & Grimshaw
1996; Pelinovsky et al . 1996). When nonlinearities are quadratic and cubic, the cou-
pled wave system considered here generalizes the second-harmonic-generation (SHG)
model studied in Yang et al . (1999). The normal form we obtained shows that the
embedded soliton does suffer a one-sided nonlinear instability, as the heuristic argu-
ment in Yang et al . (1999) predicted. Our results also indicate that when a perturbed
embedded soliton sheds continuous wave radiation (tails) the tail amplitude is gen-
erally not the minimum of all possible tail amplitudes, even for the Hamiltonian
case. This contrasts with the analytical results of Yang (2001) for the perturbed
integrable fifth-order KdV equation and with numerical conjectures of Boyd (1998)
for the non-integrable fifth-order KdV equation. Excellent agreement is obtained
between our analytical results and numerical computations.

The paper is organized as follows: § 2 formulates the problem and describes our
main results. Proofs of auxiliary results for a linear stability problem associated with
embedded solitons are given in § 3. Section 4 presents proofs of the main results
by using nonlinear decomposition for nonlinear wave equations. Section 5 reports
numerical results that confirm our analytical formulae. Section 6 summarizes the
main results and briefly discusses other types of embedded solitons.

2. Formulation and main results

We consider a simple two-wave system that exhibits embedded solitons and nonlinear
resonances. This system is a generalization of the SHG model with quadratic and
cubic nonlinearities, where embedded solitons have been discovered (Yang et al .
1999). The general system can be written as

iut + uxx + f(u, v) = 0, (2.1)
ivt + Dvxx + ∆v + g(u, v) = 0, (2.2)
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where u, v ∈ C, (x, t) ∈ R × R+, D, ∆ ∈ R and the functions f, g : C
2 → C satisfy

the conditions

f(0, v) = 0,
∂f(u, v)

∂u

∣∣∣∣
u=0

=
∂f(u, v)

∂v

∣∣∣∣
u=0

= 0, v ∈ C, (2.3)

g(0, 0) = 0,
∂g

∂u

∣∣∣∣
u=v=0

=
∂g

∂v

∣∣∣∣
u=v=0

= 0. (2.4)

The conditions (2.3), (2.4) ensure that the linear wave spectrum, defined in the limit
‖u‖L2 , ‖v‖L2 → 0, becomes uncoupled,

v = 0, u = u0ei(kx+ωt) : ω = ω1(k) = −k2, (2.5)

u = 0, v = v0ei(kx+ωt) : ω = ω2(k) = ∆ − Dk2. (2.6)

Note that our system (2.1), (2.2) is non-Hamiltonian in general. Its continuous spec-
trum of the linear system is located at ω ∈ (−∞, 0] ∪ (−∞, ∆] for D > 0 or at
ω ∈ (−∞, 0] ∪ [∆, ∞) for D < 0. Several assumptions are used to set the problem
for embedded solitons in the coupled wave system (2.1), (2.2).

Assumption 2.1 There exists a real number α > 0 such that the system (2.1),
(2.2) is phase invariant under the transformation

u → ueiθ0 , v → veiαθ0 (2.7)

for every θ0 ∈ R. There exists a conserved quantity (power) related to the phase
invariance,

Q =
∫ ∞

−∞
dx (|u|2 + α|v|2). (2.8)

Corollary 2.2. Nonlinear functions f(u, v) and g(u, v) in the system (2.1), (2.2)
satisfy several constraints related to the symmetry in assumption 2.1. It follows from
the phase invariance (2.7) and the system (2.1), (2.2) that

u
∂f

∂u
− ū

∂f

∂ū
+ α

(
v
∂f

∂v
− v̄

∂f

∂v̄

)
= f(u, v),

u
∂g

∂u
− ū

∂g

∂ū
+ α

(
v
∂g

∂v
− v̄

∂g

∂v̄

)
= αg(u, v),


 (2.9)

where ū, v̄ are complex conjugates of u, v. On the other hand, existence of the
conserved quantity (2.8) implies additional constraints on f(u, v) and g(u, v),

ū
∂f

∂u
− u

∂f̄

∂u
+ α

(
v̄

∂g

∂u
− v

∂ḡ

∂u

)
= f̄(u, v),

ū
∂f

∂v
− u

∂f̄

∂v
+ α

(
v̄
∂g

∂v
− v

∂ḡ

∂v

)
= αḡ(u, v).




(2.10)

Remark 2.3. The system (2.1), (2.2) may also conserve other quantities, such
as momentum and the Hamiltonian. However, the semi-stability theory of nonlinear
resonance of embedded solitons works for general non-Hamiltonian wave systems
that conserve a single positive-definite L2-type functional such as the power Q (2.8).
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Assumption 2.4 The system (2.1), (2.2) has embedded-soliton solutions that are
bounded in L2(R), i.e. Q < ∞. The solutions are given in the form

uES(x, t) = Φu(x)ei(ωESt+θ0), vES(x, t) = Φv(x)eiα(ωESt+θ0), (2.11)

where θ0 ∈ R is arbitrary, Φu, Φv : R → R and ωES is the propagation constant lying
inside the continuous spectrum of the linear v-component system, i.e.

ωES /∈ ω1(k) and αωES ∈ ω2(k). (2.12)

Here, ω1(k) and ω2(k) denote the continuous spectra of the u and v components,
respectively, i.e.

ω1(k) = (−∞, 0], ω2(k) =

{
(−∞, ∆], D > 0,

[∆, ∞), D < 0.
(2.13)

The free-parameter space of the embedded-soliton solutions (2.11) is defined by the
parameter θ0 associated with the symmetry (2.7). We assume that it is the only free
parameter of the solutions (2.11). For convenience, we consider symmetric embedded
solitons, i.e. Φu,v(−x) = Φu,v(x). If a translational symmetry (x → x − x0) exists,
another trivial parameter, x0, may be included in (2.11), but it does not change our
analysis.

Assumption 2.5 The embedded-soliton solution (2.11) is a single isolated solu-
tion of (2.1), (2.2) under the boundary conditions lim|x|→∞ |u|, |v| = 0, i.e. solu-
tion (2.11) is unique for ω = ωES and no such solutions exist for |ω−ωES| � ε, where
ε is a small number.

Assumption 2.6 The embedded soliton (2.11) is spectrally stable, i.e. the lin-
earized problem (see (3.3) below) has no localized eigenfunctions except for λ = 0,
which is a double embedded eigenvalue into the linear continuous spectrum. Alter-
natively, the Evans function has no zeros at any λ except for a double zero at λ = 0.

The latter assumption excludes stable embedded eigenvalues at Re(λ) = 0 and
Im(λ) �= 0, as well as unstable eigenvalues at Re(λ) �= 0. The stable embedded eigen-
values for | Im(λ)| � ε > 0 could be included in the analysis below and do not affect
the final result. On the other hand, unstable eigenvalues make the embedded soli-
tons linearly (exponentially) unstable. The problem of nonlinear resonance and weak
(algebraic) one-sided instability of embedded solitons makes no sense if embedded
solitons are linearly (exponentially) unstable.

Before presenting our main results, we give a simple example of embedded soli-
tons in the coupled system (2.1), (2.2) and reformulate the mathematical problem
for embedded solitons in terms of codimension-one bifurcation of non-local wave
solutions.

Example 2.7. The system (2.1), (2.2) includes the SHG model (Yang et al . 1999),
where

f(u, v) = ūv + γ1(|u|2 + 2|v|2)u,

g(u, v) = 1
2u2 + γ2(2|u|2 + |v|2)v.

}
(2.14)

Assumption 2.1 and corollary 2.2 are satisfied with these nonlinear functions, so that
the parameter α in the symmetry transformation (2.7) is α = 2. Note that the SHG

Proc. R. Soc. Lond. A (2002)



1474 D. E. Pelinovsky and J. Yang

model (2.14) is Hamiltonian if and only if γ1 = γ2. Embedded solitons (2.11) exist
for this model in two cases (Champneys et al . 2001; Yang et al . 1999),

I : D < 0, ∆ > 0, γ1,2 < 0, 2ωES ∈ [∆, ∞), (2.15)
II : D > 0, ∆ > 0, γ1,2 > 0, 2ωES ∈ [0, ∆]. (2.16)

These embedded solitons satisfy assumptions 2.4–2.6.

According to (2.12), the propagation constant ωES of the embedded soliton (2.11)
lies in the linear continuous spectrum of the v component, but not the u component.
This fact implies that the existence of embedded solitons is a codimension-one bifur-
cation of non-local waves at ω = ωES. The reason will be clear when we reformulate
this problem in an algebraic form below.

Lemma 2.8. Suppose that special non-local solutions of (2.1), (2.2) are sought in
the form

uNL(x, t) = U(x; ω, δ)ei(ωt+θ0),

vNL(x, t) = V (x; ω, δ)eiα(ωt+θ0),

}
(2.17)

where U, V : R → R, θ0 ∈ R is arbitrary, δ ∈ [0, 2π), ω > 0 and αω ∈ ω2(k). The
boundary conditions for the non-local wave solutions (2.17) as |x| → ∞ are

U(x; ω, δ) → O(e−
√

ω|x|), (2.18)

V (x; ω, δ) → r(ω, δ)Vtail(x; ω, δ) + o(e−
√

ω|x|). (2.19)

Here, δ denotes phase and r = r(ω, δ) is the amplitude for a periodic tail function,
Vtail(x + xp; ω, δ) = Vtail(x; ω, δ), normalized by the condition maxx∈R |Vtail| = 1.
Besides the parameter θ0 of the embedded soliton (2.11) and the wave frequency ω,
the non-local wave solutions (2.17) have an additional parameter δ.

Proof . The functions U(x) and V (x) in (2.17) solve the system

Uxx − ωU + f(U, V ) = 0, (2.20)
DVxx + (∆ − αω)V + g(U, V ) = 0. (2.21)

Constructing a symmetric solution of (2.20), (2.21), we define initial conditions at
x = 0,

U(0) = U0, V (0) = V0, U ′(0) = 0, V ′(0) = 0.

As |x| → ∞, we have to satisfy a single constraint on two parameters U0 and V0.
The constraint is imposed to eliminate exponential growth of eigenfunctions following
from (2.20). Therefore, there is a free parameter in addition to ω and θ0. We choose
the additional parameter as the phase δ of the periodic tail function Vtail(x) that
solves the equation

DVtail,xx + (∆ − αω)Vtail +
1
r
g(0, rVtail) = 0.

Here and in (2.18), (2.19), we have used the conditions (2.3), (2.4) on the nonlinear
functions. In the limit |r(ω, δ)| → 0, the periodic tail function Vtail(x) can be easily
found as

Vtail(x) = sin[k(ω)|x| + δ], k(ω) =
[
∆ − αω

D

]1/2

. (2.22)
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Notice that the tail amplitude r(ω, δ) is generally non-zero, since the two oscillatory
terms sin k|x| and cos k|x| cannot be removed simultaneously by a single condition
on U0 and V0. �

The embedded soliton (2.11) corresponds to a codimension-one bifurcation, i.e. the
existence of embedded solitons is defined by a zero of the scalar function r = r(ω, δ)
such that r(ωES, δ) = 0. Zeros ωES of r(ω, δ) must be uniform for any value of δ as
the parameter δ disappears in the limits,

lim
ω→ωES

U(x; ω, δ) = Φu(x), lim
ω→ωES

V (x; ω, δ) = Φv(x). (2.23)

Therefore, the form (2.11) implies that the function r(ω, δ) has a zero at ω = ωES,
according to the representation

r(ω, δ) → (ω − ωES)nR(δ) as ω → ωES, (2.24)

where n is the order of the zero. When n = 1, R(δ) is the slope of function r(ω; δ)
at ω = ωES and is given by (3.24) below.

Definition 2.9. The index of multiplicity of the embedded soliton (2.11) is the
order of zero of the function r(ω, δ) at ω = ωES,

n = indωES(r) :
∂nr

∂ωn

∣∣∣∣
ω=ωES

�= 0,
∂jr

∂ωj

∣∣∣∣
ω=ωES

= 0, 0 � j < n. (2.25)

In the nonlinear problem (2.1), (2.2), the two solutions (2.6) and (2.11) coexist,
i.e. the embedded soliton is a resonant mode of the linear wave spectrum. However,
there is no coupling between (2.6) and (2.11), since the amplitude r(ω, δ) in (2.19)
vanishes at ω = ωES. The coupling will occur in a nonlinear time-evolution problem
when the embedded soliton is perturbed. What happens then is that the deformed
embedded soliton will shed radiation in the form of continuous waves (tails) in both
directions of the x-axis. These tails travel at the group velocity of linear waves with
wavenumber kr = k(ωES) in the v component, and their amplitudes are generally
not minimal. These results are detailed below.

Proposition 2.10 (tail amplitude). Let us suppose that the embedded soliton
(uES, vES)(x, t) is perturbed by a small symmetric deformation, θ0 → θ(t), such that
|θ̇(t)| < Cθε, where ε � 1 and Cθ is constant for t ∈ [0, T ]. The perturbed embedded
solitons generates radiation (uRD, vRD)(x, t) that propagates with the group velocity
Cg in both directions of the x-axis, where

Cg = |ω′
2(kr)| = 2|D|kr, kr = k(ωES) =

[
∆ − αωES

D

]1/2

. (2.26)

The radiation fronts have the tail amplitude R = R(δrad), where δrad is the radiation
tail phase defined in (4.22). This radiation tail amplitude is not minimal, but is
related to the minimum of R(δ) as

R(δrad) =
R(δmin)

cos(δmin − δrad)
, (2.27)
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where δmin is the tail phase defined in (3.21) that minimizes |R(δ)|. At large x and
t values such that

|x| � 1, t � 1,
|x|
t

= Cx < ∞, (2.28)

where Cx is a constant, the radiation fronts are given asymptotically as

uRD(x, t) → 0,

vRD(x, t) → −i sgn(D)θ̇nR(δrad)ei sgn(D)(kr|x|+δrad)H(Cgt − |x|),

}
(2.29)

where n is the index of the embedded soliton (2.25) and H(z) is the step-function
H(z) = 1 at z > 0 and H(z) = 0 at z < 0.

We note that, in general, δmin �= δrad, even if the system (2.1), (2.2) is Hamiltonian
(see § 5 for an example). Thus the radiation amplitude R(δrad) > R(δmin), i.e. the
tail amplitude R(δrad) is not minimal.

Our main result formulated in proposition 2.11 describes the nonlinear resonance
and transformation of a perturbed embedded soliton (2.11) in the coupled wave
system (2.1), (2.2). For convenience, we define the following quantity (see remark 2.13
below):

E1(δ) = 2
∫ ∞

−∞

(
Φu(x)

∂U(x; ω, δ)
∂ω

∣∣∣∣
ω=ωES

+ αΦv(x)
∂V (x; ω, δ)

∂ω

∣∣∣∣
ω=ωES

)
dx. (2.30)

Proposition 2.11 (normal form for nonlinear resonance). Consider the
initial-value problem for the coupled wave system (2.1), (2.2) with initial data

u0(x) = u(x, 0), v0(x) = v(x, 0). (2.31)

Assume that u0, v0 are symmetric and integrable functions in L2, u0, v0 : R → C

and u0, v0 ∈ L2(R). Also assume that the initial data are close to the embedded
soliton (2.11) in the sense

‖u0(x) − Φu(x)‖L2 � ε � 1,

‖v0(x) − Φv(x)‖L2 � ε � 1,

}
(2.32)

where ‖u(x)‖L2 is a suitable L2 norm in a complex function space. The leading-order
time-dependent solution for (2.1), (2.2) in the asymptotic region (2.28) is(

u
v

)
(x, t) =

[(
U
V

)
(x; ωES + θ̇, δrad) + iεn

(
δu
δv

)
(x, t) + O(εn+1)

]

× H(Cgt − |x|) exp
[
i
(

1
α

)
(ωESt + θ(t))

]
, (2.33)

where |θ̇(t)| < Cθε and the transverse perturbation term is (δu, δv) = c2ψsym(−)(x),
where c2 is given by (4.21) and (4.23) and ψsym(−)(x) is defined in lemma 3.2 below.
Under the constraint e1 ≡ E1(δrad) �= 0, the embedded-soliton orbit parameter θ(t)
satisfies the asymptotic equation

e1
d2θ

dt2
= −Γ

(
dθ

dt

)2n

, (2.34)

where the coefficient Γ is defined by

Γ = 4αkr|D||R(δrad)|2 > 0. (2.35)
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Corollary 2.12. A small symmetric perturbation to the embedded soliton results
in the one-sided instability of the embedded soliton.

Proof . Setting Ω = θ̇, we can solve the initial-value problem for (2.34),

Ω(t) =
Ω0

[1 + (2n − 1)e−1
1 ΓΩ2n−1

0 t]1/(2n−1)
, (2.36)

where Ω0 = θ̇(0). When Ω0 > 0, the dynamical soliton parameter ωES+Ω(t) is locally
increased, while in the other case, when Ω0 < 0, the soliton parameter is locally
decreased (the parameter ωES is positive). If e1 > 0, a local increase in the soliton
constant ωES (Ω0 > 0) results in decay of the perturbation, limt→+∞ Ω(t) = 0+. The
embedded soliton is asymptotically stable in this case. On the other hand, a local
decrease in the soliton constant ωES (Ω0 < 0) results in blow-up of the negative
perturbation, limt→T∞ Ω(t) = −∞, where

T∞ =
−e1

(2n − 1)ΓΩ2n−1
0

.

This blowing-up perturbation eventually destroys the embedded soliton, typically
through its radiative decay (Yang et al . 1999). Thus the embedded soliton is unsta-
ble only under a perturbation of a special sign, i.e. its instability is one-sided, as
conjectured in Yang et al . (1999). If e1 < 0, the one-sided instability is inverted with
respect to the sign of initial perturbation Ω0. �

Remark 2.13. Define a local energy of the non-local wave (2.17) as a function of
ω and δ,

E(ω, δ) =
∫ ∞

−∞
[U2(x; ω, δ) + α(V 2(x; ω, δ) − r2(ω, δ)V 2

tail(x; ω, δ))] dx, (2.37)

where the integral is bounded due to the boundary conditions (2.18), (2.19). Then
the coefficient E1(δ) appears in the Taylor expansion of E(ω, δ) around ω = ωES,

E(ω, δ) = EES + E1(δ)(ω − ωES) + O(ω − ωES)2,

where EES is the energy value for the embedded soliton (2.11). Within this con-
text, the asymptotic equation (2.34) reproduces equation (12) of Yang et al . (1999),
found with the use of physical semi-qualitative arguments. We associate the sta-
ble scenario (decay of the perturbation) with a local increase in the wave energy
E = E(ωES + Ω0, δrad) induced by the perturbation and the unstable scenario (the
decay of the embedded soliton) with a local decrease in the wave energy.

Remark 2.14. The asymptotic equation (2.34) breaks down for e1 = E1(δrad) = 0
or for δmin = δrad + 1

2π. In the former case, the soliton orbit parameter θ(t) satisfies
a third-order differential equation, which usually results in both-sided instabilities of
solitons (Pelinovsky et al . 1996). Since no examples are available for such a bifur-
cation to occur at this time, we do not extend the derivation of the asymptotic
equation (2.34) for that special case.
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3. Properties of linear spectrum for embedded solitons

Here we consider the linearized problem for stability of embedded solitons and derive
several general results on locations and properties of the linear spectrum. These
properties are used in § 4 for the proof of propositions 2.10 and 2.11.

We use a standard linearization technique (Kaup 1990) to reduce (2.1), (2.2) to a
linear eigenvalue problem. Small perturbations to the embedded soliton are written
as (

u
v

)
=

[(
Φu

Φv

)
(x) +

(
δu
δv

)
(x, t)

]
exp

[
i
(

1
α

)
(ωESt + θ0)

]
, (3.1)

where ‖δu(x, t)‖L2 , ‖δv(x, t)‖L2 � 1. The spectrum of the embedded soliton (2.11)
can be decomposed in the form(

δu
δv

)
(x, t) =

∑
λ

(
δuλ

δvλ

)
(x) exp(λt), (3.2)

where
∑

λ denotes a continuous and discrete sum of all eigenfunctions (δuλ, δvλ)(x)
of the linearized problem. We construct the perturbation vector

ψ = [δuλ, δvλ, δūλ, δv̄λ]T,

where the superscript stands for the matrix transpose. The perturbation vector sat-
isfies the linear eigenvalue problem following from (2.1), (2.2), (3.1) and (3.2),

Ĥψ = [M̂ − Ŵ(x)]ψ = λJ ψ. (3.3)

Here, J = diag(i, i, −i, −i), M̂ = diag(Lu, Lv, Lu, Lv) is a diagonal self-adjoint oper-
ator with entries Lu = −∂2

x +ωES, Lv = −D∂2
x +αωES −∆ and Ŵ(x) is a real-valued

matrix given by

Ŵ(x) =




∂f

∂u

∂f

∂v

∂f

∂ū

∂f

∂v̄

∂g

∂u

∂g

∂v

∂g

∂ū

∂g

∂v̄

∂f̄

∂u

∂f̄

∂v

∂f̄

∂ū

∂f̄

∂v̄

∂ḡ

∂u

∂ḡ

∂v

∂ḡ

∂ū

∂ḡ

∂v̄




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣u=ū=Φu(x),
v=v̄=Φv(x)

.

The operator Ĥ is not self-adjoint, since the matrix Ŵ(x) is generally not symmetric.
Many properties of the linear problem (3.3) are well known, such as the location of the
continuous spectrum, the null-spectrum associated with symmetries of solitons, and
the discrete non-null spectrum for internal modes and for unstable modes (Kivshar et
al . 1998; Li & Promislow 1998; Pelinovsky & Yang 2000). In application to embedded
solitons, these properties can be formulated as lemmas 3.1–3.4 below. We assume
here that the embedded soliton emerges from a codimension-one bifurcation (2.12),
i.e. αωES ∈ ω2(k), but ωES /∈ ω1(k).
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Lemma 3.1. The continuous spectrum of (3.3) is

essλ(Ĥ) = essλ(M̂) = {λ : Re(λ) = 0;
| Im(λ)| > ωES ∪ Im(λ) < |αωES − ∆| ∪ Im(λ) > −|αωES − ∆|}. (3.4)

Proof . When |x| → ∞, |Ŵ(x)| → O(e−√
ωES|x|) (see (2.3), (2.4), (2.18) and (2.19)

for r(ωES, δ) = 0). Given this estimate, the continuous spectrum of (3.3) coincides
with that of M̂ψ = λJ ψ, i.e. with (3.1). �

Due to the nature of embedded solitons, the gap in the continuous spectrum at
Re(λ) = 0, which is typical for a linearized problem associated with the nonlin-
ear Schrödinger (NLS) equation, closes up and disappears. As a result, the null-
spectrum eigenvalue λ = 0 becomes embedded into two branches of the continuous
spectrum (3.1). The eigenfunctions for λ = 0 are described below.

Lemma 3.2. The problem Ĥψ = 0 has six bounded solutions,

ψ = {ψdis(+)(x), ψsym(+)(x), ψas(+)(x)} ⊗ {ψdis(−)(x), ψsym(−)(x), ψas(−)(x)}.
(3.5)

Here, ψdis(±)(x) are localized eigenfunctions in the null space of Ĥ. They are associ-
ated with translational and rotational (2.7) symmetries of the system (2.1), (2.2),

ψdis(+)(x) =




∂Φu

∂x

∂Φv

∂x

∂Φu

∂x

∂Φv

∂x




, ψdis(−)(x) =




Φu

αΦv

−Φu

−αΦv


 . (3.6)

The other four eigenfunctions ψsym(±)(x) and ψas(±)(x) are non-local and belong to
the continuous spectrum of Ĥ at λ = 0. They have the form

ψsym(±)(x) =




usym(±)
vsym(±)

±usym(±)
±vsym(±)


 , ψas(±)(x) =




uas(±)
vas(±)

±uas(±)
±vas(±)


 , (3.7)

where usym(±)(x), vsym(±)(x) and uas(±)(x), uas(±)(x) are symmetric and antisym-
metric functions, respectively. As |x| → ∞, these non-local eigenfunctions can be
normalized by the asymptotic behaviours

ψsym(±)(x) →




0
1
0

±1


 sin(kr|x| + δ±) (3.8)
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and

ψas(±)(x) →




0
1
0

±1


 sin(kr|x| + δ̂± sgn(x)), (3.9)

where kr = k(ωES) and δ±, δ̂± are unique numbers specified by solutions of (3.3) at
λ = 0.

Proof . The system (3.3) can be decomposed for δuλ = ur +iui and δvλ = vr +ivi,(
L+ O
O L−

) (
u+
u−

)
= λ

(
O −I
I O

) (
u+
u−

)
, (3.10)

where u+ = (ur, vr)T, u− = (ui, vi)T, I and O are unit and zero matrices in R
2 and

L± =




−∂2
x + ωES −

(
∂f

∂u
± ∂f

∂ū

)
−

(
∂f

∂v
± ∂f

∂v̄

)

−
(

∂g

∂u
± ∂g

∂ū

)
−D∂2

x + αωES − ∆ −
(

∂g

∂v
± ∂g

∂v̄

)



∣∣∣∣∣∣∣∣
u=ū=Φu(x),
v=v̄=Φv(x)

.

(3.11)
In deriving this system, we have used the fact that Ŵ(x) is a real-valued matrix.
When λ = 0, each equation L±u± = 0 has four solutions: a localized solution,
symmetric and antisymmetric bounded solutions and an unbounded solution. The
localized solutions generate two localized eigenfunctions (3.6), as follows from (3.11)
under the constraints (2.9). The bounded solutions can be normalized and reduced
to (3.7)–(3.9) by taking the inverse transformation from u+ and u− back to δuλ and
δvλ. �

The operator Ĥ in the problem (3.3) is not self-adjoint in general. The solutions
in the null space of the adjoint operator Ĥ+ is needed for inner product and decom-
position properties. It is described below.

Lemma 3.3. The problem Ĥ+φ = 0 has six bounded solutions,

φ = {φdis(+)(x), φsym(+)(x), φas(+)(x)} ⊗ {ψdis(−)(x), ψsym(−)(x), ψas(−)(x)},
(3.12)

where φdis(+)(x) is an antisymmetric localized eigenfunction, φsym(+)(x), φas(+)(x)
are bounded symmetric and antisymmetric functions, and eigenfunctions ψdis(−)(x),
ψsym(−)(x) and ψas(−)(x) are the same as in (3.6)–(3.9).

Proof . It follows from (2.9) and (2.10) that(
∂f

∂v
− ∂f

∂v̄

)∣∣∣∣u=ū=Φu(x),
v=v̄=Φv(x)

=
(

∂g

∂u
− ∂g

∂ū

)∣∣∣∣u=ū=Φu(x),
v=v̄=Φv(x)

. (3.13)

As a result, the operator L− in (3.11) is self-adjoint, i.e. L+
− = L−. Therefore, the

spectrum of L+
− is the same as that of L−. �
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Similar to the linearized NLS problem, the operator Ĥ of (3.3) also supports a
generalized eigenfunction, which is associated with the parameter ω = ωES of the
embedded soliton. The generalized eigenfunction is described below.

Lemma 3.4. If E1(δ) �= 0, where E1 is defined by (2.30), then the operator Ĥ
has a simple symmetric generalized eigenfunction at λ = 0,

ψgen(−)(x; δ) =




∂U(x; ω, δ)
∂ω

∂V (x; ω, δ)
∂ω

∂U(x; ω, δ)
∂ω

∂V (x; ω, δ)
∂ω




ω=ωES

, (3.14)

which solves the non-homogeneous linear problem

Ĥψgen(−) = iJ ψdis(−). (3.15)

The generalized eigenfunction (3.14) is bounded for n = 1 but is decaying for n � 2,
where n is the embedded soliton index (2.25).

Proof . By taking the derivative with respect to ω in (2.20) and (2.21) and setting
it at ω = ωES, it is proved that solution (3.14) satisfies (3.15). When n = 1, the
solution has the boundary condition due to (2.18), (2.19), (2.22) and (2.24),

ψgen(−)(x; δ) →




0
1
0
1


 R(δ) sin(kr|x| + δ) as |x| → ∞. (3.16)

When n � 2, the solution (3.14) has a zero boundary condition at infinity.
It remains to be shown that the operator Ĥ has no double generalized eigenfunction

ψgen2(−)(x) at λ = 0. The double generalized eigenfunction, if it exists, solves the
non-homogeneous system

Ĥψgen2(−) = iJ ψgen(−). (3.17)

Since the linear operator Ĥ in (3.3) is not self-adjoint in a Hilbert space H(R),
we define a skew-symmetric inner product (2-form) for eigenfunctions f(x) of the
operator Ĥ+ and eigenfunctions g(x) of Ĥ as

〈f | g〉J =
∫ ∞

−∞
dx (f (1)g(1) + f (2)g(2) − f (3)g(3) − f (4)g(4)), (3.18)

where superscripts denote components of a vector. It follows from Fredholm’s alter-
native for the non-homogeneous equation (3.17) that a bounded solution ψgen2(−)(x)
exists if

〈φdis(+) | ψgen(−)〉J = 0 (3.19)
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and

〈ψdis(−) | ψgen(−)〉J = 0. (3.20)

Since ψgen(−)(x) is symmetric and φdis(+)(x) antisymmetric, the first condition is
automatically satisfied. We can verify from (2.30), (3.6), (3.14) and (3.18) that
E1(δ) = 〈ψdis(−) | ψgen(−)〉J . Thus the second condition (3.20) indicates that a
bounded solution to (3.17) cannot exist if E1(δ) �= 0. �

Remark 3.5. The operator Ĥ can have another generalized eigenstate ψgen(+)(x)
associated with the mode ψdis(+)(x) if the coupled two-wave system (2.1), (2.2) is
Galilean invariant. This state is given by the derivative of the embedded soliton
(U, V ) with respect to its free velocity parameter. We neglect this additional state,
even if it exists, since it is not relevant to the analysis below.

The embedded soliton (2.11) and the linear wave spectrum (2.6) are in non-
linear resonance, which is represented by (2.12). This nonlinear resonance results
in the linear resonance in the null-space of operator Ĥ. Indeed, localized modes
ψdis(±)(x) coexist with the essential spectrum modes ψsym(±)(x) and ψas(±)(x) at
λ = 0 (see (3.5)). However, all eigenfunctions are separated within the linear prob-
lem due to linear decomposition properties. It is only the nonlinearity in the basic
model (2.1), (2.2) that couples eigenfunctions of discrete and essential spectrum and
induces the embedded-soliton transformation.

We conclude this section by proving a technical but important result for the non-
homogeneous linear problem (3.15). The δ dependence in (3.14) suggests that there
is a family of simple generalized eigenfunctions ψgen(−)(x; δ) parametrized by δ for
any n � 1. The family exists for a single eigenfunction ψdis(−)(x). This is a specific
feature of the nonlinear resonance of embedded solitons. The feature is explained by
the homogeneous solutions of the operator Ĥ at λ = 0. In fact, these homogeneous
solutions with the same resonant wavenumber kr are useful for computations of the
minimal tail amplitude for the family of the generalized eigenfunctions ψgen(−)(x; δ).

Lemma 3.6. Suppose n = 1 for embedded solitons (2.11). Then the solution
ψgen(−)(x; δ) of the non-homogeneous problem (3.15) has a minimal tail amplitude
at infinity for δ = δmin and δ = δmin − π, where

δmin = δ+ + 1
2π, (3.21)

i.e. the value δmin minimizes R(δ) in (3.16).

Proof . A general symmetric solution of the non-homogeneous linear problem (3.15)
can be written as

ψgen(−)(x; δ) = ψgen(−)(x; δ0) + c(δ, δ0)ψsym(+)(x), (3.22)

where c(δ, δ0) is a constant coefficient, δ0 is any fixed value and ψsym(−)(x) is not
included into (3.22) due to the symmetry conditions (3.7) and (3.14). The boundary
condition for the right-hand side of (3.22) as |x| → ∞ can be obtained from (3.8)
and (3.16). Matching this boundary condition with the boundary condition (3.16)
for ψgen(−)(x; δ), we find that

R(δ) =
R(δ0) sin(δ0 − δ+)

sin(δ − δ+)
, c(δ, δ0) = −R(δ0) sin(δ − δ0)

sin(δ − δ+)
. (3.23)
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Since δ0 is fixed, the first formula (3.23) reduces to the form

R(δ) =
r0

sin(δ − δ+)
, (3.24)

where r0 is constant, r0 = R(δ0) sin(δ0 − δ+). Clearly, the function |R(δ)| diverges
when δ = δ+ mod(π) and is minimal when δ = δmin and δ = δmin − π. If δ0 = δmin,
then the constant r0 is the minimal tail amplitude, r0 = R(δmin). Obviously,

R(δmin − π) = −R(δmin).

�

Corollary 3.7. Suppose n = 1 for embedded solitons (2.11). When |ω−ωES| � 1,
the tail amplitude |r(δ; ω)| of non-local waves (2.17) is minimal when δ = δmin, where
δmin is given in (3.21). In addition,

r(ω, δ) =
r(ω, δmin)
sin(δ − δ+)

+ O(ω − ωES)2. (3.25)

Proof . When |ω − ωES| � 1, the tail amplitude r(ω, δ) of non-local waves (2.17)
is given by (2.24), i.e. for n = 1,

r(ω, δ) = (ω − ωES)R(δ) + O(ω − ωES)2. (3.26)

Then (3.25) is directly obtained from (3.24) and (3.26). �

It is easy to see from lemmas 3.2 and 3.3 that the vector φsym(+)(x) has the same
structure as ψsym(+)(x) and it satisfies the following boundary condition as |x| → ∞,

φsym(+)(x) →




0
1
0
1


 sin(kr|x| + γ+), (3.27)

where γ+ is the phase constant. The next lemma relates the phase γ+ of the adjoint
solution φsym(+)(x) to the phase δ+ of the solution ψsym(+)(x) in (3.5) and (3.8). In
addition, an analytical expression for R(δmin) is also obtained.

Lemma 3.8. Suppose n = 1 for embedded solitons (2.11). The phase γ+ of the
adjoint solution φsym(+)(x) and the phase δ+ of the solution ψsym(+)(x) are the
same, i.e. γ+ = δ+. In addition,

R(δmin) = −
〈φsym(+) | ψdis(−)〉J

4Dkr
. (3.28)

Proof . The general symmetric solution ψgen(−)(x; δ) of the non-homogeneous prob-
lem (3.15) has the asymptotic behaviour (3.16), where δ is an arbitrary constant.
Taking the inner product between (3.15) and the null-space equation Ĥ+φsym(+) = 0,
we find that

〈φsym(+) | ψdis(−)〉J = 2
2∑

k=1

ck

(
φ

(k)
sym(+)

∂ψ
(k)
gen(−)

∂x
− ψ

(k)
gen(−)

∂φ
(k)
sym(+)

∂x

)∣∣∣∣
x→∞

x→−∞
,

(3.29)
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where c1 = 1, c2 = D and the superscript (k) represents the kth component of a
vector function. Using boundary conditions (3.16) and (3.27), we can easily find that

〈φsym(+) | ψdis(−)〉J = −4DkrR(δ) sin(δ − γ+). (3.30)

The inner product on the left-hand side of (3.30) does not depend on δ. Therefore,
the tail amplitude function R(δ) is

R(δ) = −
〈φsym(+) | ψdis(−)〉J

4Dkr sin(δ − γ+)
. (3.31)

Comparing this equation with (3.24) for r0 = R(δmin), we immediately find that
γ+ = δ+ and the formula (3.28) for R(δmin) is proved. �

4. Nonlinear transformation of embedded solitons

Here we prove the main results of the paper: propositions 2.10 and 2.11. We start
with a general Fourier analysis of linear PDEs. The linear non-homogeneous wave
equation of Schrödinger type can be written as a system of two equations,

−Wt + δUxx + κU = f(x),
Ut + δWxx + κW = 0,

}
(4.1)

where f : R → R is a given localized source in L2(R) and δ, κ ∈ R. First, we prove a
technical result useful for further analysis.

Lemma 4.1. Consider the initial-value problem for the system (4.1) with zero ini-
tial values, U(x, 0) = 0 and W (x, 0) = 0. Under the resonance condition sgn(κδ) = 1,
the time-dependent solution of (4.1) has the long-term asymptotic limit in the asymp-
totic region (2.28),(

U
W

)
(x, t) → 1

2δκr
|F (κr)|

(
sin(κr|x| ± arg(F (κr)))

− sgn(δ) cos(κr|x| ± arg(F (κr)))

)
H(2|δ|κrt − |x|),

(4.2)
where the plus-minus signs stand for two separate regions, x � 1 and x � −1,
respectively. In addition, H(z) is the step function defined below (2.29), F (k) is the
Fourier transform of f(x),

F (k) =
∫ ∞

−∞
f(x)e−ikx dx = F̄ (−k), (4.3)

and κr is the resonant wavenumber defined by

κr =
√

κ

δ
(greater than zero).

Proof . The time-dependent solution of the problem (4.1) with zero initial data
can be found by using the Fourier transform in the form(

U
W

)
(x, t) =

1
2π

∫ ∞

−∞

F (k)eikx

κ − δk2

(
1 − cos(κ − δk2)t
− sin(κ − δk2)t

)
dk. (4.4)
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The integral in (4.4) is non-singular for finite t � 0 and, therefore, the poles at
k = ±κr do not result in a singular contribution for boundary values of U and W as
|x| → ∞. Indeed, a localized source f(x) generates at t > 0 the outgoing waves that
reach the boundary region |x| → ∞ only in the limit when t → +∞. In the later
limit, the integrand in (4.4) becomes singular. We use the stationary phase method
(Ablowitz & Fokas 1997) to analyse the singular limit of (4.4). We decompose the
denominator in (4.4) as

1
κ − δk2 =

1
2δκr

(
1

k + κr
− 1

k − κr

)
. (4.5)

Substituting k = ∓κr + z/t for the two terms separately, we rewrite (4.4) as(
U
W

)
(x, t) =

1
4πδκr

∫ ∞

−∞

dz

z

[
F (−κr + z/t)e−iκrx+izx/t

(
1 − cos(2κrδz − δz2/t)
− sin(2κrδz − δz2/t)

)

− F (κr + z/t)eiκrx+izx/t

(
1 − cos(2κrδz + δz2/t)

sin(2κrδz + δz2/t)

)]
.

(4.6)

Keeping |x|/t = Cx as a constant of order O(1), and using the integral∫ ∞

−∞

eizp dz

z
= πi sgn(p),

we reduce (4.6) in the asymptotic limit t → ∞ to the form(
U
W

)
(x, t) → 1

4δκr
|F (κr)|

×
(

sin(κrx + arg(F (κr)))(2 sgn(x/t) − sgn(x/t + 2δκr) − sgn(x/t − 2δκr))
− cos(κrx + arg(F (κr)))(sgn(x/t + 2δκr) − sgn(x/t − 2δκr))

)
.

(4.7)

This formula reduces to (4.2) in the two separate regions, x � 1 and x � −1. �

Remark 4.2. The system (4.1) is equivalent to a linear Schrödinger equation for
complex function φ(x, t) = U(x, t) + iW (x, t),

iφt + δφxx + κφ = f(x). (4.8)

The time-dependent solution of the zero initial-value problem associated with (4.8)
has a long-term asymptotic limit in the asymptotic region (2.28),

φ(x, t) → − i|F (κr)|
2|δ|κr

ei sgn(δ)(κr|x|±arg(F (κr)))H(2|δ|κrt − |x|), (4.9)

where the plus-minus signs stand for two separate regions, x � 1 and x � −1,
respectively. This formula follows from (4.2). In fact, it reproduces the Sommerfeld
radiation condition (see, for example, Ablowitz & Fokas 1997, ch. 4.6). According
to that condition, a localized source f(x) can generate at t > 0 only the outgoing
waves that have the form eik(|x|−ct)+iκt at infinity, where c > 0. The incoming waves
that have the form e−ik(|x|+ct)+iκt should be eliminated if no sources are located at
infinity. The incoming wave is eliminated in the limits x → ±∞ if k = ± sgn(δ)κr,
as in (4.9).
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Now we extend lemma 4.1 for a linear non-homogeneous problem with asymp-
totically constant coefficients. The linear problem occurs later in analysis as the
first-order perturbation reduction of the coupled NLS equations (2.1), (2.2),

Ĥφ = [M̂ − Ŵ(x)]φ = J ∂φ

∂t
+ γf(x), (4.10)

where f = [fu, fv, fu, fv]T, fu, fv : R → R is a given localized source in L2(R) and
γ ∈ R. We use assumption 2.6 and properties of the linearized problem described in
lemmas 3.1–3.4.

Lemma 4.3. Consider the initial-value problem for (4.10) with zero initial value,
φ(x, 0) = 0. The time-dependent solution of (4.10) has the long-term asymptotic
limit in the asymptotic region (2.28),

φ(x, t) →




0
iGei sgn(D)(kr|x|+g)

0
−iGe−i sgn(D)(kr|x|+g)


 H(Cgt − |x|), (4.11)

where Cg, kr are given by (2.26), G ∈ [0, ∞) and g ∈ [−π, π].

Proof . We assume here that the four branches of the continuous spectrum (3.1)
and the two localized eigenfunctions (3.6) form a complete basis for the linearized
problem (3.3). Solution to the non-homogeneous time-dependent problem (4.10) can
be decomposed as

φ(x, t) = γF (x) +
4∑

n=1

∫ ∞

−∞
dk cn(k)eiΩn(k)tψn(x, k) + γ+ψdis(+)(x) + γ−ψdis(−)(x),

(4.12)
where F = [Fu, Fv, Fu, Fv]T, Fu, Fv : R → R is a solution of the non-homogeneous
time-independent problem, while cn(k) and γ± are some constants. We order the
branches of the continuous spectrum by the boundary conditions

ψn(x, k) → eneikx as x → +∞.

Then Ω3(k) = −Ω1(k) = ωES + k2 and Ω2(k) = −Ω4(k) = ∆ − αωES − Dk2. The
non-homogeneous solution F (x) can be decomposed through the complete set of
eigenfunctions as

F (x) =
4∑

n=1

∫ ∞

−∞
dk bn(k)ψn(x, k) + β+ψdis(+)(x) + β−ψdis(−)(x), (4.13)

where b3(k) = b̄1(−k) and b4(k) = b̄2(−k). The zero initial-value problem (4.10) then
has the explicit solution

φ(x, t) = γ
4∑

n=1

∫ ∞

−∞
dk bn(k)(1 − eiΩn(k)t)ψn(x, k). (4.14)
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Suppose that F (x) has the oscillatory boundary conditions as |x| → ∞,

F (x) →




0
1
0
1


 R(δ) sin(kr|x| + δ). (4.15)

Then the spectral coefficients b2(k) and b4(k) are singular at k = ±kr, where kr is
given by (2.26),

b2(k) =
B(k)

k2
r − k2 , b4(k) =

B̄(−k)
k2
r − k2 , (4.16)

where |B(±kr)| < ∞. Since Fu, Fv are real functions, we have the symmetry relation
B(k) = B̄(−k). In the asymptotic region (2.28) for x � 1, the second and fourth
integrals in (4.14) reproduce the same solution (4.4) for φ2(x, t) = U + iW , where
δ = D, κ = ∆−αωES and the Fourier transform F (k) is replaced by F (k) = 2πδB(k).
Therefore, we can use the same method as in lemma 4.1 to analyse the singular
contribution of the integrals (4.14) in the asymptotic region (2.28) such that x � 1.
As a result, we derive the radiation boundary condition (4.11) with

G = −γ
π|B(kr)|

kr
, g = arg(DB(kr)). (4.17)

Since the solution F (x) and φ(x, t) is symmetric in x, the analysis in the other region
x � −1 is not required. �

By using lemma 4.3, we now prove propositions 2.10 and 2.11 that describe solu-
tions of the initial-value problem for the nonlinear system (2.1), (2.2).

Proof of proposition 2.10. Consider a small deformation of the embedded soli-
ton (2.11), θ0 → θ(t), such that |θ̇| < Cθε, where ε � 1 and Cθ is constant for
t ∈ [0, T ]. Since the perturbed embedded soliton is not stationary, a small perturba-
tion vector appears in the time-dependent initial-value problem associated with the
NLS system (2.1), (2.2). The order of the perturbation vector depends on the index
n of the embedded soliton (2.25).

Case 1 (n = 1). At the leading order of |θ̇| < Cθε, a solution to (2.1), (2.2) is
written as (

u
v

)
=

[(
Φu

Φv

)
(x) +

(
δu
δv

)
(x, t)

]
exp

[
i
(

1
α

)
(ωESt + θ(t))

]
, (4.18)

where the perturbation vector φ(x, t) = (δu, δv, δū, δv̄)T satisfies the linearized
non-homogeneous problem (4.10), with γ = θ̇ and f(x) = iJ ψdis(−)(x). The non-
homogeneous solution F (x) in (4.12) is simply F (x) = ψgen(−)(x), where ψgen(−)(x)
is given by (3.14). The non-homogeneous solution is bounded but not decaying at
infinity (cf. (3.16) and (4.15)).

If the change of θ(t) is adiabatic, then the parameter γ = θ̇ is treated as a constant.
In the limit t → ∞, the solution of the initial-value problem for (4.10) becomes time
independent for |x| < ∞. The time-independent solution for (4.10) is a combination
of the non-homogeneous solution F (x) and bounded homogeneous solutions (3.5) of
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the null-spectrum of the operator Ĥ. Assuming that the embedded soliton is symmet-
ric, we construct a general time-independent symmetric solution for limt→∞ φ(x, t)
in the form

lim
t→∞

φ(x, t) = θ̇ψgen(−)(x; δ0) + c1ψsym(+)(x) + ic2ψsym(−)(x), (4.19)

where δ0 is a fixed value and c1 and c2 are some real constants. At infinity, i.e. as
|x| → ∞, the time-independent solution (4.19) must match the time-independent
asymptotic limit (4.11). In other words, the constants δ0, c1, and c2 are to be chosen
from the Sommerfeld radiation condition for the resonant waves generated by a
localized source. Using (3.8), (3.16), (4.11) and (4.19), we match the limits |x| → ∞
and arrive at the following system of relations:

θ̇R(δ0) sin(kr|x| + δ0) + c1 sin(kr|x| + δ+) = −G sgn(D) sin(kr|x| + g),
c2 sin(kr|x| + δ−) = G cos(kr|x| + g).

}
(4.20)

Solving the second equation in (4.20), we match the coefficients

c2 = −G, g = δrad, (4.21)

where the radiation phase δrad is

δrad = δ− + 1
2π. (4.22)

Solving the first equation in (4.20), we match the other coefficients,

c1 = − θ̇R(δ0) cos(δ0 − δ−)
cos(δ+ − δ−)

(4.23)

and

G = − sgn(D)
θ̇R(δ0) sin(δ0 − δ+)

cos(δ+ − δ−)
= − sgn(D)

θ̇R(δmin)
cos(δmin − δrad)

, (4.24)

where we have used (3.24) with r0 = R(δmin). It is clear from (4.11), (4.21) and (4.24)
that the small non-localized perturbation vector

(uRD, vRD)(x, t) = lim
t→∞

(δu, δv)(x, t)

has, in the asymptotic region (2.28), the boundary conditions (2.29) at n = 1.

Case 2 (n � 2). The non-homogeneous solution F (x) = ψgen(−)(x) is decay-
ing exponentially in the limit |x| → ∞ and so is the perturbation vector φ(x, t)
considered above. Then the constants c1 and c2 in the time-independent localized
solution (4.19) must be zero in the case n � 2, c1 = c2 = 0. By summing such
localized (up to the (n − 1)th order) solutions to the embedded soliton, we include
the non-localized perturbation to the leading order of |θ̇|n � Cn

θ εn. At the leading
order, a solution to (2.1), (2.2) is written as

(
u
v

)
=




(
Φu

Φv

)
(x) +

n−1∑
k=0

1
k!

θ̇k




∂kU

∂ωk

∂kV

∂ωk




∣∣∣∣∣∣∣∣
ω=ωES

(x) +
(

δu
δv

)
(x, t)




× exp
[
i
(

1
α

)
(ωESt + θ(t))

]
. (4.25)
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The perturbation vector φ(x, t) = (δu, δv, δū, δv̄)T now satisfies the linearized non-
homogeneous problem (4.10), with γ = θ̇n and f = Nn(x), where the non-homo-
geneous vector Nn(x) is due to nonlinearity of the system (2.1), (2.2) and is com-
puted through the lower-order terms of (4.25). Existence of non-local wave solutions
of (2.20), (2.21) ensures that the non-homogeneous solution F (x) in (4.12) is simply

F (x) =
1
n!

θ̇nψ(n)(x; δ),

where

ψ(n)(x; δ) =




∂nU(x; ω, δ)
∂ωn

∂nV (x; ω, δ)
∂ωn

∂nU(x; ω, δ)
∂ωn

∂nV (x; ω, δ)
∂ωn




ω=ωES

. (4.26)

In the limit t → ∞, the solution of the initial-value problem for (4.10) matches the
following time-independent symmetric solution,

lim
t→∞

φ(x, t) =
1
n!

θ̇nψ(n)(x; δ0) + c1ψsym(+)(x) + ic2ψsym(−)(x), (4.27)

where again δ0, c1 and c2 are coefficients to be found. Then the same analysis of the
radiation problem in the asymptotic region (2.28) leads to the same solution (4.20)–
(4.24), where θ̇ is replaced by θ̇n. One can show that the value δ = δmin still minimizes
the tail amplitude |R(δ)| by extending the method of lemmas 3.6 and 3.8 for n � 2.
This proof results in the same relation (3.24), with

r0 = R(δmin) =
i

4Dkr
〈φsym(+) | Nn〉J . (4.28)

Note that for n = 1, N1(x) = iψdis(−)(x) and (4.28) matches (3.28). Finally, the
non-localized part of (4.27) leads to the boundary condition (2.29) for n � 2, where
the radiation field is

(uRD, vRD)(x, t) = lim
t→∞

(δu, δv)(x, t).

�

Remark 4.4. The two alternative expressions for G and g given by (4.17) and
(4.21)–(4.24) coincide. In order to prove it, we compute the singular contribution in
the non-homogeneous solution F (x) given by (4.13) and (4.16) in the region x � 1,∫ ∞

−∞

B(k)eikx

k2
r − k2 dk → πi

2kr
(B(kr)eikrx − B̄(kr)e−ikrx). (4.29)

Matching (4.29) with the boundary condition (4.15), we arrive at the relations

R(δ) = − sgn(D)
π|B(kr)|

kr
, δ = arg(DB(kr)).
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When δ = δrad, the two expressions for G and g in (4.17) and in (4.21)–(4.24) become
equivalent.

Proof of proposition 2.11. Suppose that the initial data (2.31) are close to the
embedded soliton according to (2.32), where ε is an explicit small parameter. The
small initial perturbation leads to two main events: (i) deformation of the embed-
ded soliton (2.11) according to the change of θ0 → θ(t) and (ii) generation of the
radiation fronts. These two events are, in fact, self-consistent, i.e. the deformation
of the embedded soliton depends on the radiation fronts and vice versa. We cap-
ture this dynamics by developing formal perturbation analysis in terms of the small
parameter ε.

Case 1 (n = 1). Let T = εt be slow time and define a perturbation series(
u
v

)
=

[(
Φu

Φv

)
(x)+ε

(
u1
v1

)
(x, t)+ε2

(
u2
v2

)
(x, t)+O(ε3)

]
exp

[
i
(

1
α

)
(ωESt+θ(T ))

]
.

(4.30)
Then the perturbation vectors ψj(x, t) = (uj , vj , ūj , v̄j)T satisfy the non-homo-
geneous systems

Ĥψ1 = J ∂ψ1

∂t
+ iθ̇J ψdis(−)(x), (4.31)

Ĥψ2 = J ∂ψ2

∂t
+ θ̇2J N2(x) + θ̈J ψ̂1(x), (4.32)

where ψ1(x, t) = θ̇ψ̂1(x) and the term N2(x) is due to the nonlinearity of the sys-
tem (2.1), (2.2). The symmetric initial data for the problem (4.31) are defined as
u1(x, 0) = (u0(x) − Φu(x))/ε and v1(x, 0) = (v0(x) − Φv(x))/ε. A particular solution
to the problem (4.31) with zero initial data is constructed in proposition 2.10 under
the adiabaticity assumption, i.e. θ̇ is constant in time t (which is justified by the
asymptotic method, since θ = θ(T = εt)). As a result, the time-independent solu-
tions for ψ1(x, t) in the region |x| < ∞ is given by (4.19), with c1 and c2 defined
in (4.21)–(4.23). In the limit |x| → ∞, this solution is non-vanishing due to the
radiation condition (4.11). The general solution of (4.31) is a superposition of the
homogeneous solution, which is induced by non-zero initial data for u1(x, 0) and
v1(x, 0), and the same non-homogeneous solution constructed in proposition 2.10.
The homogeneous solutions vanish at infinity |x| → ∞ and do not thus affect the
radiation condition (2.29) in the asymptotic region (2.28).

The second-order linear non-homogeneous problem (4.32) may have a secularly
growing solution ψ2(x, t) in time t if the right-hand side of (4.32) is not orthogonal
to the localized homogeneous solution ψdis(−)(x) of the operator Ĥ+ (Fredholm’s
alternative). In order to ensure the non-secular behaviour of ψ2(x, t) in t, we define
the time evolution of θ = θ(T ) from the Fredholm alternative for (4.32) as

θ̈〈ψdis(−) | ψ̂1〉J + θ̇2〈ψdis(−) | N2〉J = 0. (4.33)

Although the computation of the second inner product in (4.33) could be quite
lengthy, there is a shortcut to a final formula (2.34). The symmetry (2.7) and the
conserved quantity (2.8) imply that the system (2.1), (2.2) has a balance equation,

∂

∂t

∫ ∞

−∞
(|u|2 + α|v|2) dx = i[ūux − uūx + αD(v̄vx − vv̄x)]

∣∣x→∞
x→−∞. (4.34)
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In order to simplify the normal form equation, we choose δ0 in (4.19) as δ0 = δrad.
Then c1 = 0 from (4.22), (4.23). By setting the expansion (4.30) into the balance
equation (4.34) and equating the leading-order terms of O(ε2), we match the inner
products as 〈ψdis(−) | ψ̂1〉J = E1(δrad) = e1, where E1(δ) is defined by (2.30) and
〈ψdis(−) | N2〉J = Γ , where

Γ = −i[ūRDuRDx−uRDūRDx+αD(v̄RDvRDx−vRDv̄RDx)]
∣∣x→∞
x→−∞ = 4αkr|D||R(δrad)|2.

Here we have used the boundary conditions (2.29) for (uRD, vRD)(x, t).

Case 2 (n � 2). We now set T = ε2n−1t as a slow time for θ = θ(T ) and define
the perturbation series as(

u
v

)
=

[(
Φu

Φv

)
(x)+

2n∑
n=1

ε

(
un

vn

)
(x, t)+O(ε2n+1)

]
exp

[
i
(

1
α

) (
ωESt+

1
ε2n−2 θ(T )

)]
,

(4.35)
such that |θ̇| is still of order O(ε). The perturbation series satisfies a set of linear
non-homogeneous problems up to the order of O(ε2n), where the non-homogeneous
equation has the form

Ĥψ2n = J ∂ψ2n

∂t
+ θ̇2nJ N2n(x) + θ̈J ψ̂1(x), (4.36)

where ψ̂1(x) = ψgen(−)(x, δrad) in the limit t → ∞. Suppression of the secular growth
of ψ2n(x, t) in time t leads to the orthogonality condition

θ̈〈ψdis(−) | ψgen(−)〉J + θ̇2n〈ψdis(−) | N2n〉J = 0,

where
〈ψdis(−) | ψgen(−)〉J = E1(δrad) = e1.

The leading-order radiation (uRD, vRD)(x, t) is given by (2.29). Combining the bound-
ary condition (2.29) and the balance equation (4.34), we equate the leading-order
terms of O(ε2n), which reproduce the same asymptotic equation (2.34) for any
n � 2. �

5. Numerical results

Here we verify numerically the main formula (2.34) for the semi-stability of embedded
solitons. We consider the coupled two-wave equations (2.1) and (2.2) with the non-
linear functions (2.14). We choose parameters corresponding to the type-I embedded
soliton (2.15)

D = −1, ∆ = 1, γ1 = γ2 = −0.05. (5.1)

At ωES = 0.8114, the system has an embedded soliton with index n = 1. The profile
(Φu(x), Φv(x)) of the embedded soliton is shown in figure 1a, while the symmetric
eigenfunction ψsym(+)(x) is shown in figure 1b. The phase δ+ was found from this
plot and formula (3.8) as δ+ = 1.3270. We have also computed the other symmetric
eigenfunction ψsym(−)(x), from which we found δ− = 1.4007. The phases δmin and
δrad, defining the minimum amplitude tail and the radiation phase, were computed
from (3.21) and (4.22) as δmin = 2.8978 and δrad = 2.9715. As we can see, the radi-
ation phase δrad is close to the minimum-amplitude phase δmin, but is not equal
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Figure 1. (a) The profile of an embedded soliton (Φu(x), Φv(x)) for the system (2.1), (2.2),
with (2.14) and (5.1). The soliton exists at ωES = 0.8114. (b) The symmetric eigenfunction
ψsym(1)(x) of the linearized problem (3.3) defined by the boundary condition (3.8).
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Figure 2. (a) The minimum tail amplitude r(ω, δmin) of non-local waves (2.17) for various values
of ω in the system (2.1), (2.2), with (2.14) and (5.1). The phase δ = δmin in (2.17) is chosen such
that the amplitude r(ω, δmin) is minimal. (b) Local energy curve E(ω, δrad), as defined by (2.37).

to it. As a result, the radiation tail amplitude R(δrad) is not minimal (see (2.27)).
This is true even though the system (2.1), (2.2) is Hamiltonian for our choice of
parameters (5.1).

In order to determine R(δmin) and then R(δrad) via (2.27), we have numerically
calculated the tail amplitude r(ω, δmin) at various values of ω and plotted them
in figure 2a. This figure clearly indicates the existence of an embedded soliton at
parameter ωES = 0.8114. The slope of this curve at ωES is R(δmin) = −2.806. This
value was also obtained independently from (3.28) for φsym(+)(x, t) = ψsym(+)(x, t)
in the Hamiltonian case (5.1). With these values, we find the coefficient Γ from (2.35)
to be Γ = 49.98.

Local energy E(ω, δrad), as defined in (2.37), has also been found numerically for
various values of ω. It is plotted in figure 2b. As we can see from the figure, the graph
of E(ω, δrad) is a decreasing function of ω. The slope of this curve at ω = ωES = 0.8114
is e1 = E1(δrad) = −85.3. The same value of e1 was also found from (2.30) by direct
computation of the integral.

The asymptotic equation (2.34) has the exact solution (2.36), which can be rewrit-
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Figure 3. Numerical simulation of evolution of the embedded soliton under energy-enhancing
perturbation (5.3) with a1 = a2 = 0.1. (a) Evolutions of |u(0, t)| and |v(0, t)|. (b) Profile of
|v(x, t)| at two values of t. Theoretical predictions for |u(0, t)| and |v(0, t)| found from (5.2) are
shown in (a) by stars and circles, respectively.

ten with the found constants as

Ω(t) =
Ω0

[1 − 0.586Ω0t]
, (5.2)

where Ω0 = Ω(0). We compare this solution with direct numerical simulations of the
two-wave system (2.1), (2.2). As initial conditions for the direct numerical simula-
tions, we choose

u(x, 0) = Φu(x) + a1 sech 2x, v(x, 0) = Φv(x) + a2 sech 2x, (5.3)

where (Φu, Φv) is the embedded soliton and a1 and a2 are small perturbation coeffi-
cients. First we take a1 = a2 = 0.1, where the perturbed solution has more energy
than the embedded soliton. According to our analysis (see corollary 2.12), the per-
turbed solution will asymptotically approach the embedded soliton and shed off extra
energy in the form of radiation. This is clearly confirmed by our numerical solution
shown in figure 3. To compare these results quantitatively with our analytical solu-
tion (5.2), we first need to choose the initial value Ω0. Naturally, one wants to choose
Ω0 such that the central part of the non-local solitary wave (U, V ) is close to the
initial condition (5.3) (note that this non-local wave has frequency ωES + Ω0 and
phase δrad). Under this criterion, we found that Ω0 ≈ −0.0414 when a1 = a2 = 0.1
in (5.3). With this Ω0 value, the solution Ω(t) is then determined for all time. We then
determine the non-local wave with frequency ωES + Ω(t). Its central part will be our
analytical approximation for the true solution. We measured the amplitudes |u(0, t)|
and |v(0, t)| of these analytically predicted non-local waves at x = 0, and plotted
them in figure 3a together with the same quantities from direct numerical simula-
tions. The agreement is excellent. We note that the true analytical solution (2.33)
contains not only the non-local wave, but also a transverse perturbation term. But
this transverse perturbation is one order smaller in the expansion for |u(0, t)| and
|v(0, t)| than the non-local wave at the wave centre. Thus it is neglected when we
compare the analytical solution (2.33) with the numerical solution at x = 0.

Next we choose energy-reducing perturbations (5.3) with a1 = a2 = −0.1. The
direct numerical simulation results are shown in figure 4. Consistent with our the-
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Figure 4. Numerical simulation of evolution of the embedded soliton under energy-reducing
perturbation (5.3) with a1 = a2 = −0.1. Shown are (a) evolutions of |u(0, t)| and |v(0, t)| and
(b) profile of |v(x, t)| at two values of t. The theoretical prediction found from (5.2) are shown
in (a) by stars and circles.
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Figure 5. The tail amplitude r(ω, δ) of non-local waves (2.17) as a function of δ for ω = 0.8.
The solid line is the analytical formula (5.4), and stars are numerically obtained values.

oretical predictions, the embedded soliton is destroyed in the case of the energy-
reducing perturbation. To get a quantitative comparison, we first note that for this
perturbation, Ω0 ≈ 0.0386 in (5.2). We then determined the non-local waves with
frequency ωES + Ω(t), where Ω(t) is given by (5.2). The amplitudes of these waves
at x = 0 are shown in figure 4a at various times. Again, these analytically predicted
centre amplitudes of the solutions agree well with the direct numerical simulation
results. As the solution decays far away from the embedded soliton, the analytical
solution (5.2) will become invalid. Thus the analytical predictions and numerical
solutions will deviate apart at large times (see figure 4a).

The analytical formula (3.25) for the tail amplitude of non-local waves (U, V ) has
also been confirmed numerically. According to (3.25), the tail amplitude r(ω, δ) of
non-local waves with ω close to ωES is (to leading order)

r(ω, δ) ≈ (ω − ωES)R(δmin)
sin(δ − δ+)

, (5.4)

where R(δmin) = −2.806, δ+ = 1.327, ωES = 0.8114 (see above). In order to check this
formula, we take ω = 0.8 and plot r(ω, δ) as a function of δ in figure 5 (solid line).

Proc. R. Soc. Lond. A (2002)



A normal form for embedded solitons 1495

On the other hand, we determined numerically the dependence r(ω, δ) for several
δ values and also plotted them in figure 5 (stars) for comparison. The agreement
between numerics and formula (5.4) is quite satisfactory.

6. Conclusion

We have derived the normal form for nonlinear resonance of embedded solitons in a
coupled two-wave system (2.1), (2.2). The normal form is given by the asymptotic
equation (2.34), and it captures the dynamics of the embedded soliton and its reso-
nant wave radiation. This result is valid for general non-Hamiltonian wave systems
under certain assumptions on the equation (assumption 2.1) and on the existence
and linearized stability of embedded solitons (assumptions 2.4–2.6). Applications of
the theory to the second-harmonic-generating system (2.14) shows good agreement
between numerics and the theory. Some limitations of the theory are worth mention-
ing here.

Embedded solitons can also arise in nonlinear wave systems where assumption 2.1
is not satisfied, i.e. the conserved quantity (2.8) does not exist. In this case, the
normal form should be generally different from (2.34). For instance, it happens for
an extended KdV equation (Yang 2001). Two branches of embedded solitons exist
there, one of which is linearly (exponentially) unstable (i.e. it does not satisfy our
assumption 2.6) and the other one is linearly and nonlinearly stable (i.e. it does not
compile with our proposition 2.11) (Yang 2001).

Another kind of embedded soliton occurs in non-local systems when assumption 2.5
is violated. Such embedded solitons exist for a certain interval of possible values of ω
in the linear spectrum (2.6) rather than for a single value ω = ωES. It is unclear how
to introduce the tail amplitude r(ω, δ) for the non-local case and what is the normal
form for embedded solitons. One example was given for an integral NLS equation
describing dispersion-managed optical solitons (Pelinovsky 2000). Two families of
embedded solitons were identified numerically in the normal regime of the dispersion-
managed fibre, one is linearly (exponentially) unstable and the other one is linearly
and nonlinearly stable. Thus our main results on the normal form for embedded
solitons are clearly violated in non-local wave systems.
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University.

References

Ablowitz, M. & Clarkson, P. 1991 Solitons, nonlinear evolution equations, and inverse scattering.
Cambridge University Press.

Ablowitz, M. J. & Fokas, A. S. 1997 Complex variables. Introduction and applications. Cam-
bridge University Press.

Alexander, J., Gardner, R. & Jones, C. K. R. T. 1990 A topological invariant arising in the
stability of travelling waves. J. Reine Angew. Math. 410, 167.

Barashenkov, I. V., Pelinovsky, D. E. & Zemlyanaya, E. V. 1998 Vibrations and oscillatory
instabilities of gap solitons. Phys. Rev. Lett. 80, 5117.

Boyd, J. P. 1998 Weakly nonlinear solitary waves and beyond-all-orders asymptotics. Kluwer.

Proc. R. Soc. Lond. A (2002)



1496 D. E. Pelinovsky and J. Yang

Bridges, T. J. & Derks, G. 1999 Unstable eigenvalues and the linearization about solitary waves
and fronts with symmetry. Proc. R. Soc. Lond. A455, 2427.

Buslaev, V. S. & Perel’man, G. S. 1995 On the stability of solitary waves for nonlinear
Schrödinger equations. Am. Math. Soc. Transl. 164, 75.

Champneys, A. R., Malomed, B. A. & Friedman, M. J. 1998 Thirring solitons in the presence
of dispersion. Phys. Rev. Lett. 80, 4169.

Champneys, A. R., Malomed, B. A., Yang, J. & Kaup, D. J. 2001 Embedded solitons: solitary
waves in resonance with the linear spectrum. Physica D152–153, 340.

Evans, J. 1972a Nerve axon equations. Indiana Univ. Math. J. 21, 877.
Evans, J. 1972b Nerve axon equations. Indiana Univ. Math. J. 22, 75.
Evans, J. 1972c Nerve axon equations. Indiana Univ. Math. J. 22, 577.
Evans, J. 1975 Nerve axon equations. Indiana Univ. Math. J. 24, 1169.
Gadyl’shin, R. R. & Kiselev, O. M. 1999 Structural instability of soliton for the Davey–

Stewartson II equation. Teor. Mat. Fiz. 118, 354.
Hislop, P. D. & Sigal, I. M. 1996 Introduction to spectral theory with application to Schrödinger

operators. Springer.
Kapitula, T. & Sandstede, B. 2002 Edge bifurcations for near integrable systems via Evans-

function techniques. SIAM J. Math. Analysis 33, 1117.
Kaup, D. J. 1990 Perturbation theory for solitons in optical fibers. Phys. Rev. A42, 5689.
Kivshar, Yu. S., Pelinovsky, D. E., Cretegny, T. & Peyrard, M. 1998 Internal modes of solitary

waves. Phys. Rev. Lett. 80, 5032.
Li, Y. & Promislow, K. 1998 The mechanism of the polarizational mode instability in birefringent

fiber optics. Physica D124, 137.
Merkli, M. & Sigal, I. M. 1999 A time-dependent theory of quantum resonance. Commun. Math.

Phys. 201, 549.
Pego, R. & Weinstein, M. 1992 Eigenvalues and instabilities of solitary waves. Phil. Trans. R.

Soc. Lond. A340, 47.
Pego, R. L., Smereka, P. & Weinstein, M. I. 1995 Oscillatory instability of solitary waves in a

continuum model of lattice vibrations. Nonlinearity 8, 921.
Pelinovsky, D. 2000 Instability of dispersion-managed solitons in the normal dispersion regime.

Phys. Rev. E62, 4283.
Pelinovsky, D. E. & Grimshaw, R. H. J. 1996 An asymptotic approach to solitary wave instability

and critical collapse in long-wave KdV-type evolution equations. Physica D98, 139.
Pelinovsky, D. E. & Grimshaw, R. H. J. 1997 Structural transformation of eigenvalues for a

perturbed algebraic soliton potential. Phys. Lett. A229, 165.
Pelinovsky, D. E. & Sulem, C. 1998 Bifurcations of new eigenvalues for the Benjamin–Ono

equation. J. Math. Phys. 39, 6552.
Pelinovsky, D. E. & Sulem, C. 2000a Eigenfunctions and eigenvalues for a scalar Riemann–

Hilbert problem associated to inverse scattering. Commun. Math. Phys. 208, 713.
Pelinovsky, D. E. & Sulem, C. 2000b Spectral decomposition for the Dirac system associated to

the DSII equation. Inverse Problems 16, 59.
Pelinovsky, D. E. & Sulem, C. 2001 Embedded solitons of the DSII equation. In CRM Proc.

and Lecture Notes (ed. I. M. Sigal & C. Sulem), vol. 27, p. 135. Providence, RI: American
Mathematical Society.

Pelinovsky, D. E. & Yang, J. 2000 Internal oscillations and radiation damping of vector solitons.
Stud. Appl. Math. 105, 245.

Pelinovsky, D. E., Afanasjev, V. V. & Kivshar, Yu. S. 1996 Nonlinear theory of oscillating,
decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation. Phys.
Rev. E 53, 1940–1953.

Proc. R. Soc. Lond. A (2002)



A normal form for embedded solitons 1497

Pelinovsky, D., Kivshar, Yu. S. & Afanasjev, V. V. 1998 Internal modes of envelope solitons.
Physica D116, 121.

Reed, M. & Simon, B. 1978 Modern methods of mathematical physics. IV. Analysis of operators.
Academic Press.

Sandstede, B. & Scheel, A. 1999 Essential instability of pulses and bifurcations to modulated
travelling waves. Proc. R. Soc. Edinb. A129, 1263.

Soffer, A. & Weinstein, M. I. 1998 Time dependent resonance theory. Geom. Funct. Analysis
8, 1086.

Soffer, A. & Weinstein, M. I. 1999 Resonances, radiation damping and instability in Hamiltonian
nonlinear wave equations. Invent. Math. 136, 9.

Yang, J. 1997 Vector solitons and their internal oscillations in birefringent nonlinear optical
fibers. Stud. Appl. Math. 98, 61–97.

Yang, J. 2001 Dynamics of embedded solitons in the extended Korteweg–de Vries equations.
Stud. Appl. Math. 106, 337.

Yang, J., Malomed, B. A. & Kaup, D. J. 1999 Embedded solitons in second-harmonic-generating
systems. Phys. Rev. Lett. 83, 1958.

Yang, J., Malomed, B. A., Kaup, D. J. & Champneys, A. R. 2001 Embedded solitons: a new
type of solitary waves. Math. Comput. Simul. 56, 585.

Proc. R. Soc. Lond. A (2002)




