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Solitary waves in one-dimensional periodic media are discussed by employing the
nonlinear Schrödinger equation with a spatially periodic potential as a model. This
equation admits two families of gap solitons that bifurcate from the edges of Bloch
bands in the linear wave spectrum. These fundamental solitons may be positioned only
at specific locations relative to the potential; otherwise, they become non-local owing
to the presence of growing tails of exponentially small amplitude with respect to the
wave peak amplitude. Here, by matching the tails of such non-local solitary waves,
high-order locally confined gap solitons, or bound states, are constructed. Details are
worked out for bound states comprising two non-local solitary waves in the presence
of a sinusoidal potential. A countable set of bound-state families, characterized by
the separation distance of the two solitary waves, is found, and each family features
three distinct solution branches that bifurcate near Bloch-band edges at small, but
finite, amplitude. Power curves associated with these solution branches are computed
asymptotically for large solitary-wave separation, and the theoretical predictions are
consistent with numerical results.
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1. Introduction

Nonlinear wave phenomena in periodic media are currently attracting a great
deal of research interest in nonlinear optics, Bose–Einstein condensation and
applied mathematics (see Christodoulides et al. 2003; Kivshar & Agrawal 2003;
Morsch & Oberthaler 2006; Skorobogatiy & Yang 2009; Yang 2010 for
reviews). Apart from scientific curiosity, this research activity is also driven by
various potential applications, ranging from light routing in lattice networks
(Christodoulides & Eugenieva 2001) to image transmission through nonlinear
media (Yang et al. 2011).
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A characteristic feature of periodic media is the existence of bands in the linear
spectrum where linear disturbances, the so-called Bloch modes, may propagate.
Between these Bloch bands are band gaps in which linear disturbances are
evanescent but nonlinear-localized modes, commonly known as gap solitons, are
possible. Following the first theoretical prediction (Christodoulides & Joseph
1988) and experimental observation (Eisenberg et al. 1998) of fundamental
solitons in the semi-infinite band gap of one-dimensional periodic waveguides,
various types of gap solitons in one- and multi-dimensions have been reported
theoretically and experimentally. Examples include two-dimensional fundamental
gap solitons, vortex solitons, dipole solitons, reduced-symmetry solitons, vortex-
array solitons, truncated-Bloch-wave solitons and arbitrary-shape gap solitons
(see Yang 2010 for a review). Multi-soliton bound states in periodic media have
also been constructed in the framework of a discrete nonlinear Schrödinger (NLS)
model (Kevrekidis et al. 2001). In addition, the stability of some of these gap
solitons has been examined (Pelinovsky et al. 2004, 2005; Shi et al. 2008; Yang
2010; Hwang et al. 2011).

The plethora of gap solitons in periodic media calls for systematic identification
and classification of the various types of solutions. Some progress has been made,
in this issue, particularly for gap solitons that bifurcate from linear Bloch modes
at the edges of Bloch bands. Specifically, in one-dimensional periodic media, only
two gap-soliton families bifurcate from each edge of a Bloch band under self-
focusing or self-defocusing nonlinearity (Neshev et al. 2003; Pelinovsky et al. 2004;
Hwang et al. 2011), and the positions of these solitons relative to the periodic
medium (or potential) are determined by a certain recurrence relation (Hwang
et al. 2011). In two-dimensional periodic media, four gap-soliton families (or a
multiple of four families) bifurcate from each edge of a Bloch band under self-
focusing or self-defocusing nonlinearity (Yang 2010).

However, for the majority of gap solitons that do not bifurcate from band
edges, systematic theoretical treatment is lacking at present. Numerical results
indicate that, typically, those solution families feature multiple branches which
bifurcate near band edges at small (but finite) amplitude (see Yang 2010
and references therein), yet there has been no analytical explanation for this
phenomenon.

In this article, we employ the NLS equation with a spatially periodic
potential to analytically construct and classify a broad class of gap solitons
that bifurcate away from band edges in one-dimensional periodic media. Our
approach is based on the observation that the two families of fundamental
gap solitons that bifurcate from a band edge can be located only at specific
positions relative to the underlying potential; otherwise, they would be non-
local owing to the presence of growing tails of exponentially small amplitude
with respect to the peak wave amplitude. However, by piecing together
such non-local solitary waves, it is possible to construct high-order gap
solitons, or bound states. The proposed asymptotic theory is illustrated by
working out details for bound states involving two non-local solitary waves.
We show that a countable set of bound-state families can be constructed.
Each family is characterized by the separation distance of the two solitary
waves involved, and features three distinct solution branches that bifurcate
near band edges. The analytical predictions are verified by comparison with
numerical results.
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2. Preliminaries

Our study of nonlinear wave phenomena in periodic media is based on the one-
dimensional NLS equation,

iJt + Jxx − V (x)J + sJ2J∗ = 0 (2.1)

with a periodic potential V (x) and self-focusing (s = 1) or self-defocusing
(s = −1) cubic nonlinearity. This equation is the appropriate mathematical model
for Bose–Einstein condensates loaded in optical lattices (Dalfovo et al. 1999;
Morsch & Oberthaler 2006) and laser beam transmission in photonic lattices
under the paraxial approximation (Yang 2010). Although it is possible to consider
a general periodic potential V (x) as in Hwang et al. (2011), here, for simplicity,
we shall work with the sinusoidal potential

V (x) = V0 sin2x , (2.2)

which is p-periodic and also symmetric in x ; V0 being the potential depth. This
potential frequently arises in nonlinear optics and Bose–Einstein condensates.

Solitary-wave solutions of equation (2.1) are sought in the form

J(x , t) = j(x)e−imt , (2.3)

where m is the propagation constant, and the amplitude function j(x) is real-
valued and localized in space. Inserting equation (2.3) into equation (2.1), we
find that j(x) satisfies

jxx − V (x)j + mj + sj3 = 0. (2.4)

For infinitesimal solutions j(x), the nonlinear term in the above equation drops
out. The resulting linear version of equation (2.4) is a Mathieu-type equation and,
by the Bloch–Floquet theory, its wave spectrum features a band gap structure.
Specifically, the linear version of equation (2.4) admits two linearly independent
solutions in the form

p(x ; m) = eikx p̃(x ; m), (2.5)

with p̃(x ; m) being p-periodic in x . The wave character of these so-called Bloch
modes hinges on whether the corresponding wavenumber k is real or complex. By
requiring k to be real, one then obtains an infinite number of Bloch bands for m in
which the Bloch modes (2.5) propagate. These propagation bands are separated
by gaps, where k turns out to be complex, implying evanescent behaviour.

At the edges of Bloch bands, where the modes (2.5) switch from propagating
to evanescent, two Bloch modes in the band collide at either k = 0 or k = ±1, and
a single real-valued Bloch mode that is either p- or 2p-periodic, arises there. This
suggests that edges of Bloch bands are possible bifurcation points of solitary-wave
solutions of the nonlinear equation (2.4). These solitary waves reside inside band
gaps and are the so-called gap solitary waves (or gap solitons).

The bifurcation of one-dimensional gap solitons from band edges was discussed
by Pelinovsky et al. (2004) using a multiple-scale expansion in powers of the wave
amplitude, along with a certain constraint obeyed by locally confined solutions
of equation (2.4). They identified two families of gap solitons that bifurcate from
each band edge, namely ‘on-site’ and ‘off-site’ solitons, depending on whether the
soliton is centred at a minimum or maximum of the sinusoidal potential (2.2).
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More recently, Hwang et al. (2011) re-visited the problem of small-amplitude
gap solitons near band edges, taking a different approach, that is applicable for
a general potential V (x). Rather than the constraint in Pelinovsky et al. (2004),
it focused on the behaviour of the tails of Bloch-wave packets. These tails are
controlled by the coupling of the wave envelope to the periodic Bloch mode at
the band edge, an effect that lies beyond all orders of the usual multiple-scale
expansion in powers of the wave amplitude. Hwang et al. (2011) carried this
expansion beyond all orders using techniques of exponential asymptotics (Yang &
Akylas 1997), for the case of Bloch-wave packets whose envelope features a single
hump. It turns out that the tails of such wave packets decay as x → ±∞, and
hence gap solitons arise, only for two specific locations of the wave envelope
relative to the underlying periodic potential. Both these soliton families bifurcate
from the linear (infinitesimal) periodic Bloch mode at a band edge, and they
coincide with the on-site and off-site gap solitons found by Pelinovsky et al.
(2004) in the case of a symmetric periodic potential.

In the present work, making use of the asymptotic expressions derived in
Hwang et al. (2011) for the tails of a single-hump Block-wave packet, we shall
construct small-amplitude gap-soliton families, in the form of bound states, which
comprise two or more such wave packets. In contrast to the so-called fundamental
gap solitons found in Pelinovsky et al. (2004) and Hwang et al. (2011), these high-
order soliton families bifurcate at small but finite amplitude close to a band edge,
and they feature multiple branches that do not connect to fundamental soliton
families or band edges.

In preparation for the ensuing analysis, we now summarize the main results of
the multiple-scale perturbation procedure for a single-hump Bloch-wave packet
(Pelinovsky et al. 2004; Hwang et al. 2011). Close to a band edge m = m0, say, gap
solitons are expected to be weakly nonlinear Bloch-wave packets. The solution to
equation (2.4) is expanded in powers of an amplitude parameter, 0 < e � 1,

j = ej0 + e2j1 + e3j2 + · · · , (2.6)

along with
m = m0 + he2, (2.7)

where h = ±1,
j0 = A(X)p(x), (2.8)

p(x) ≡ p(x ; m0), and X = ex is the ‘slow’ variable of the envelope function A(X).
By imposing the appropriate solvability condition at O(e3), it turns out that
A(X) satisfies the stationary NLS equation

DAXX + hA + saA3 = 0, (2.9)

where

D = 1
2

d2m

dk2

∣∣∣∣
m=m0

and a =
∫2p

0 p4(x) dx∫2p

0 p2(x) dx
. (2.10)

The well-known soliton solution of equation (2.9) is

A(X) = a sech
X − X0

b
, (2.11)
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where

a =
√

2
a

and b = √|D|, (2.12)

and X0 = ex0 denotes the position of the peak of the envelope. This solution exists
provided Dh < 0 and Ds > 0; the first of these conditions requires m to lie in
the interior of the band gap, whereas the second condition can be met in the
presence of self-focusing (s = 1) nonlinearity if D > 0, or self-defocusing (s = −1)
nonlinearity if D < 0.

It is important to note that the envelope equation (2.9) is translation-invariant,
and X0 is a free parameter in the solution (2.11). As a result, gap solitons
of equation (2.4) could be obtained regardless of the position of the envelope
(2.11) relative to the underlying periodic potential. This conclusion would seem
rather suspicious, though, given that the original amplitude equation (2.4) is not
translation-invariant.

This issue was recognized by Pelinovsky et al. (2004), who pointed out that
locally confined solutions of equation (2.4) must obey the constraint

M (x0) =
∫∞

−∞
V ′(x)j2(x ; x0) dx = 0, (2.13)

which can be readily obtained by multiplying equation (2.4) with jx and
integrating with respect to x . Upon inserting the perturbation solution (2.6)
and the potential (2.2) into equation (2.13), this condition then restricts the peak
of the envelope to be at either a minimum (x0 = 0) or a maximum (x0 = p/2) of
the potential (2.2), corresponding to on-site or off-site gap solitons, respectively.
It is also worth noting that the so-called Melnikov function M (x0) in equation
(2.13), which depends on the shift x0 of the envelope relative to the potential
V (x), is exponentially small with respect to e; hence, the constraint (2.13) for
possible locations of gap solitons hinges upon information beyond all orders of
the two-scale expansion (2.6).

3. Non-local solitary waves

Another way of reconciling the two-scale expansion (2.6) with the fact that gap
solitons can be placed only at specific locations relative to the potential V (x), is
by examining the behaviour of the tails of Bloch-wave packets near a band edge.
Assuming that they have infinitesimal amplitude, these tails are governed by the
linear version of equation (2.4). Hence, for m inside a band gap and close to the
edge m0, using the same notation as in equations (2.7) and (2.10), the asymptotic
representation of j(x) away from the solitary-wave core is, generically, a linear
combination of two evanescent Bloch modes

j±(x) = p(x) exp

{
±

(
m0 − m

D

)1/2

x

}
, (3.1)

to leading order in |m − m0| = e2 � 1. As expected, the slow exponential
growth/decay of these modes is consistent with the behaviour of the tails of
the envelope function A(X) according to the steady NLS equation (2.9).
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Now, for the purpose of constructing a solitary-wave solution of equation (2.4),
the left-hand tail must involve only j+(x), j(x) ∼ eC+j+(x), so that j → 0 as
x → −∞. For generic values of C+, when one integrates equation (2.4) from this
left-hand tail to the right-hand side, the right-hand tail would involve both j−(x)
and j+(x),

j(x) ∼ eC−j−(x) + E+j+(x) (x 	 1), (3.2)

so j(x) is not locally confined. Only when C+ takes certain special values
can the growing-tail amplitude E+ vanish, resulting in a true solitary wave
solution. This restriction on C+ is consistent with the integral constraint (2.13)
used by Pelinovsky et al. (2004). However, the amplitude E+ of the growing
tail in equation (3.2) is exponentially small with respect to e (see below), and
hence this tail cannot be captured by an expansion in powers of e, such as
equation (2.6).

Hwang et al. (2011) computed the amplitude E+ by carrying expansion (2.6)
beyond all orders of e for a general periodic potential V (x), using an exponential-
asymptotics procedure in the wavenumber domain (Akylas & Yang 1995;
Yang & Akylas 1997). According to this revised perturbation analysis, E+,
which indeed is exponentially small with respect to e, does vanish for two
specific positions of the envelope (2.11) relative to the underlying potential, thus
furnishing two families of gap solitons that bifurcate at the band edge. For the
symmetric periodic potential (2.2), in particular, E+ vanishes when the peak of
the envelope is placed at x0 = 0 or x0 = p/2, corresponding to the on-site and
off-site gap solitons, as was obtained earlier by Pelinovsky et al. (2004).

As the details of the exponential-asymptotics procedure are rather involved,
we shall quote only the main results. When the peak of the envelope (2.11) is not
at a minimum or maximum of the potential (x0 
= 0, p/2), the resulting ‘solitary’
waves are non-local owing to the presence of both growing and decaying solutions
(3.1) in at least one of the tails. Specifically, assuming that the left-hand tail is
locally confined in accordance with equations (2.6) and (2.11),

j ∼ 2eap(x)ee(x−x0)/b (x → −∞), (3.3a)

the right-hand tail features a growing component of exponentially small
amplitude with respect to e, in addition to a decaying component analogous to
equation (3.3a):

j ∼ 2eap(x)e−e(x−x0)/b

+ 4pC
b3

e3
e−pb/e sin 2x0p(x)ee(x−x0)/b (x − x0 	 1/e). (3.3b)

Note that the amplitude of the growing tail in equation (3.3b) is proportional to
a constant C . As explained in Hwang et al. (2011), this constant is determined
from solving a certain recurrence relation that contains information beyond all
orders of expansion (2.6). In particular, C > 0 for the sinusoidal potential (2.2).
As expected, the growing component of the right-hand tail (3.3b) is absent when
x0 = 0, p/2.
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Using the symmetries of equation (2.4) as noted below, it is straightforward to
deduce from equation (3.3) the asymptotic behaviour of non-local solitary waves
whose right-hand tail is locally confined,

j ∼ 2eap(x)e−e(x−x0)/b (x → +∞), (3.4a)

but the left-hand tail comprises a growing and a decaying component:

j ∼ 2eap(x)ee(x−x0)/b

− 4pC
b3

e3
e−pb/e sin 2x0p(x)e−e(x−x0)/b (x − x0 � −1/e). (3.4b)

For the symmetric potential (2.2), equation (2.4) is invariant with respect to
reflection in x (x → −x), and the Bloch wave p(x) at a band edge is either
symmetric or antisymmetric in x , p(−x) = ±p(x). As equation (2.4) is also
invariant with respect to j → −j, the reflected solution j may thus be written
as equation (3.4) for both symmetric and antisymmetric p(x). The asymptotic
expressions (3.3) and (3.4) for the tails of non-local solitary waves are key to
constructing new families of locally confined solutions, in the form of bound states,
as discussed below.

4. Bound states

As indicated above, gap solitons in the form of Bloch-wave packets with the ‘sech’
envelope (2.11) arise only when the peak of the envelope is at a minimum (x0 = 0)
or a maximum (x0 = p/2) of the potential (2.2). Apart from these fundamental
soliton states, it is possible, however, to construct other gap-soliton families by
piecing together two or more of the non-local solitary waves found in §3. The
overall strategy for determining these so-called bound states is similar to that
followed by Yang & Akylas (1997) for constructing multi-packet solitary-wave
solutions of the fifth-order Korteweg–de Vries (KdV) equation. Here, we shall
work out the details of finding bound states involving two Bloch-wave packets.

(a) Matching of tails

Consider two non-local solitary-wave solutions, j+(x) and j−(x), whose ‘sech’-
profile envelope functions are centred at x+

0 and −x−
0 , respectively, with x±

0 > 0.
In addition, let j±(x) → 0 as x → ±∞, so the right-hand tail of j−(x) and the
left-hand tail of j+(x) are non-local. Let us define the separation between the
solitary-wave cores of the two constituent non-local waves as

S ≡ x+
0 + x−

0 . (4.1)

Then, assuming S 	 1/e, equations (3.3b) and (3.4b) are legitimate asymptotic
expressions for these tails in the ‘overlap’ region −x−

0 � x � x+
0 . Specifically,

according to equation (3.3b), the right-hand tail of j−(x) is given by

j− ∼ ±2eae−e(x+x−
0 )/bp(x) ∓ 4pC

b3

e3
e−pb/e sin 2x−

0 ee(x+x−
0 )/bp(x), (4.2)
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and, according to equation (3.4b), the left-hand tail of j+(x) reads

j+ ∼ 2eaee(x−x+
0 )/bp(x) − 4pC

b3

e3
e−pb/e sin 2x+

0 e−e(x−x+
0 )/bp(x). (4.3)

Note that the upper sign in equation (4.2) corresponds to the case where the
envelopes of the two solitary waves have the same polarity (sign), whereas the
lower sign pertains to the case of opposite polarity.

Now, in order for these two non-local solitary waves to form a bound state, their
growing and decaying tail components must match smoothly in the overlap region
between the two main cores. Based on equations (4.2) and (4.3), this requires

sin 2x−
0 = sin 2x+

0 = ∓ a
2pC

e4

b3
epb/ee−eS/b, (4.4)

and, for this matching condition to be met, it is necessary that

a
2pC

e4

b3
epb/ee−eS/b ≤ 1. (4.5)

Clearly, owing to the growing exponential epb/e on the left-hand side of equation
(4.5), this constraint cannot be satisfied for e → 0 when S is finite. As a result,
solution families of bound states are expected to bifurcate at a finite amplitude
e = ec, say, depending on the separation distance S . Below, we shall verify this
claim and compute ec for the various solution branches.

(b) Solution branches

Attention is now focused on the matching condition (4.4), in order to delineate
the solution branches of bound states that bifurcate close to a band edge.

Consider first the case where the two non-local solitary waves forming a
bound state have envelopes with the same polarity. Then, the upper sign applies
in equation (4.4), and sin 2x−

0 = sin 2x+
0 < 0. This condition can be satisfied in

two ways:

(i) x−
0 =

(
m + 1

2

)
p + d, x+

0 =
(

n − 1
2

)
p + d (4.6a)

and

(ii) x−
0 =

(
m + 1

2

)
p + d, x+

0 = np − d, (4.6b)

where m, n are integers and 0 < d < p/2. Accordingly, the solitary-wave
separation (4.1) corresponding to these two possibilities is

(i) S = Np + 2d; (ii) S =
(

N + 1
2

)
p, (4.7)

where N = m + n. Moreover, the matching condition (4.4) reads

sin 2d = a
2pC

e4

b3
epb/ee−eS/b, (4.8)

with S given by (i) and (ii) in equation (4.7).
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It is convenient to label families of bound states by the integer N which, in view
of equation (4.7), controls the separation between the two non-local solitary waves
that form the bound states. As noted earlier, the present theory assumes that
these solitary waves are well-separated, namely, S 	 1/e, which in turn requires
N 	 1/e; the validity of this condition will be verified later in §4b.

In preparing to trace the solution branches of the family of bound states
corresponding to a given N , we write

d = p

4
+ d, (4.9)

with −p/4 < d < p/4, so that from equation (4.7), we have

(i) S = S0 + 2d and (ii) S = S0, (4.10)

where S0 = (N + 1/2)p. The matching condition (4.8), with S given by (i) and
(ii) above, then leads to the following two conditions, respectively,

cos 2d = W (e, N )e−2ed/b (4.11a)

and
cos 2d = W (e, N ), (4.11b)

where

W (e, N ) = a
2pC

e4

b3
epb/ee−eS0/b. (4.12)

Based on equations (4.11), given e, one may find the values of d, and from equation
(4.10) the corresponding separations S , for which bound states are possible.

Specifically, from equation (4.11a), it is easy to see that two values of d arise for
each e above a certain threshold, e

(1)
c , which is the bifurcation point of the bound

states obeying equation (4.11a). This threshold is associated with a double root,
d = d

(1)
c , of equation (4.11a), where

v

vd
(cos 2d − W (e(1)

c , N )e−2e
(1)
c d/b)|

d=d
(1)
c

= 0. (4.13)

From equations (4.13) and (4.11a), it follows that

d(1)
c = 1

2
tan−1 e

(1)
c

b
. (4.14)

Inserting this result into equation (4.11a), e
(1)
c then is found by solving

cos

(
tan−1 e

(1)
c

b

)
= W (e(1)

c , N ) exp

{
−e

(1)
c

b
tan−1 e

(1)
c

b

}
. (4.15)

For N 	 1, the two solution branches of d(e), obtained from equation (4.11a)
for e > e

(1)
c , are plotted schematically in figure 1. The bifurcation point e

(1)
c is the

turning point of this double-branch curve, and d
(1)
c > 0. For e 	 e

(1)
c , it is clear

from equation (4.11a) that cos 2d → 0, and hence the two branches approach d =
±p/4, so d = p/4 + d → p/2, 0. Therefore, in this limit, in view of equation (4.6a),
the two solution branches that bifurcate at e

(1)
c approach limiting configurations
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0

e

d

ec
(1) ec

(2)
−p/4

p/4

Figure 1. Schematic for the three branches of the solution curve d(e). Two branches (solid curve)
are obtained from solving equation (4.11a) and one branch (dashed curve) from solving equation

(4.11b). The bifurcation point e
(1)
c with d

(1)
c > 0 (solid dot) is found by solving equation (4.15),

and the bifurcation point e
(2)
c with d

(2)
c = 0 (open dot) is found by solving equation (4.17). (Online

version in colour.)

of bound states, with both solitary waves being on-site on one branch (as d →
p/4) and off-site on the other branch (as d → −p/4). In other words, as the
solution curve in figure 1 is traced from one branch to the other, the two solitary
waves making up the bound state transform simultaneously from on-site to off-
site. In this transition, d decreases from p/4 to −p/4, and according to (i) in
equation (4.10), the separation distance S of the two solitary waves decreases from
(N + 1)p to Np. This transition behaviour will be verified numerically in §6
(figure 2).

Turning next to the second possibility of bound states in equation (4.10),
equation (4.11b) furnishes two values of d,

d = ±1
2

cos−1 W (e, N ), (4.16)

for each e, as long as W (e, N ) ≤ 1. Hence, e must exceed a certain threshold,
e ≥ e

(2)
c , where W (e(2)

c , N ) = 1. In view of equation (4.12), this bifurcation point is
determined from the equation

pb

e
(2)
c

− e
(2)
c S0

b
= ln

[
2pC

a
· b3

e
(2)4
c

]
. (4.17)

Here, the two values of d in equation (4.16) actually correspond to equivalent
bound-state configurations (under mirror reflection of the x-axis), as can be easily
verified from equation (4.6b) with d = (1/4)p + d. Therefore, equation (4.11b)
describes only one solution branch. For e 	 e

(2)
c , in particular, d → ±p/4, and this

solution branch approaches a limiting bound-state configuration that, according
to equation (4.6b), involves an on-site and an off-site solitary wave.
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We remark that the double root d = d
(2)
c = 0 of equation (4.11b) for e = e

(2)
c is

also a solution of equation (4.11a) for the same value of e. Hence, the solution
branch (4.11b) bifurcates from the point d = 0 on the lower branch of the
solutions (4.11a), which themselves bifurcate at e

(1)
c , as illustrated schematically in

figure 1. As a consequence, the bound-state family corresponding to a certain N
comprises three distinct solution branches which are connected with each other.
The bifurcation points, e

(1)
c and e

(2)
c , do not coincide; but when N is large, they

are close to each other. Indeed, in the limit N 	 1, it can be readily shown,
using equations (4.11), (4.12) and (4.17), that e

(1)
c ∼ e

(2)
c ∼ bN −1/2. Thus, for large

solitary-wave separation (N 	 1), bound-state families bifurcate near a band
edge, but never exactly at the band edge itself. Moreover, this scaling of e

(1)
c

and e
(2)
c in terms of N is consistent with the condition N 	 1/e imposed earlier

for the purpose of matching the tails (4.2) and (4.3) of non-local solitary waves
forming a bound state.

We now consider the case when the two non-local solitary waves participating
in a bound state have envelopes with opposite polarity, and the lower sign
in equation (4.4) applies. Hence, sin 2x+

0 = sin 2x−
0 > 0. This condition can be

satisfied in two ways:

(i) x−
0 = mp + d, x+

0 = np + d (4.18a)

and

(ii) x−
0 = mp + d, x+

0 =
(

n + 1
2

)
p − d, (4.18b)

for some integers m, n and 0 < d < p/2. As a result, the expressions (4.7) for
the solitary-wave separation S = x+

0 + x−
0 are also valid here, so the matching

condition (4.4) gives rise to the same equations (4.11) that describe the solution
branches d = d(e) of bound states belonging to the family labelled by N = m + n,
where d = p/4 + d as before. Specifically, for a given N , the three solution
branches found earlier arise in this instance as well: two of these branches
bifurcate at e = e

(1)
c and, in the limit e 	 e

(1)
c , represent bound states with both

solitary waves being on-site (d → −p/4) or off-site (d → p/4). Marching along
this solution curve from the on-site branch to the off-site branch, d increases
from −p/4 to p/4, and, in view of equation (4.18a), the separation distance S of
the two non-local solitary waves increases from Np to (N + 1)p. (This transition
behaviour is also brought out by the numerical results presented in §6; figure 3.)
This transition contrasts with the case of same envelope polarity examined earlier,
where the separation distance S of the two non-local solitary waves decreases from
(N + 1)p to Np when marching along the solution curve from the on-site branch
to the off-site branch.

Finally, according to equations (4.11b), (4.16) and (4.17), the third solution
branch bifurcates at e = e

(2)
c and, for e 	 e

(2)
c , represents bound states with one

solitary wave on-site and the other off-site. Moreover, it follows from equation
(4.18) that, in the course of continuation of the bound-state solution from the
on-site branch to this mixed-site branch, one of the two on-site solitary waves
remains on-site and does not move, while the other on-site solitary wave moves
away and becomes off-site.
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5. Power curves

In applications, gap-soliton solution branches are often described through

P =
∫∞

−∞
j2 dx , (5.1)

which is commonly referred to as the soliton power. This quantity
is also key to understanding the stability properties of gap solitons
(Vakhitov & Kolokolov 1973; Shi et al. 2008; Yang 2010). Here, we shall derive
an analytical expression for the power of small-amplitude bound states near band
edges, and trace the solution branches found earlier in terms of P. The theoretical
predictions will be compared against numerical results in §6.

By virtue of perfect matching of the tails (4.2) and (4.3) in the overlap region
−x−

0 � x � x+
0 , one may write the following uniformly valid approximation to

bound states involving two non-local solitary waves (to the leading order):

j ∼ ea sech
{

e(x + x−
0 )

b

}
p(x) ± ea sech

{
e(x − x+

0 )
b

}
p(x); (5.2)

here again the upper (lower) sign corresponds to the case where the envelopes of
the solitary waves have the same (opposite) polarity. Inserting equation (5.2)
into equation (5.1), the power associated with a bound state may then be
approximated as

P ∼ I + + I − ± I , (5.3)

where

I ± = e2a2
∫∞

−∞
p2(x)sech2

{
e(x ∓ x±

0 )
b

}
dx (5.4)

and

I = 2e2a2
∫∞

−∞
p2(x)sech

{
e(x + x−

0 )
b

}
sech

{
e(x − x+

0 )
b

}
dx . (5.5)

The integrals above can be evaluated by substituting the Fourier series

p2(x) = q0 +
∞∑

m=1

qm cos 2mx , (5.6)

for the even p-periodic function p2(x), into equations (5.4) and (5.5) and then
integrating term-by-term. Specifically, in the limit e � 1, eS 	 1, we find

I ± ∼ 2a2ebq0 + 4pa2b2q1 cos 2x±
0 e−pb/e + · · · (5.7)

and
I ∼ 8a2e2q0Se−eS/b + · · · . (5.8)

From equation (4.8), however, it is clear that e2Se−eS/b 	 e−pb/e; hence, the second
term in equation (5.7) is sub-dominant in comparison with equation (5.8), and
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equation (5.3) yields the following asymptotic expression for P,

P ∼ 4a2eq0(b ± 2eSe−eS/b) (eS 	 1, e � 1), (5.9)

with

q0 = 1
p

∫p

0
p2(x) dx . (5.10)

Consider first the case of bound states comprising two solitary waves with
envelopes of the same polarity, where the upper sign in equation (5.9) applies.
Corresponding to the first possibility for S in equation (4.10), there are two
bound-state solution branches, d = d(e), governed by equation (4.11a), and the
associated power according to equation (5.9) is

P ∼ 4a2eq0{b + 2e(S0 + 2d)e−e(S0+2d)/b}, (5.11)

where S0 = (N + 1/2)p as before. On the other hand, corresponding to the second
possibility for S in equation (4.10), there is only one solution branch, given by
equation (4.16), and its power is

P ∼ 4a2eq0{b + 2eS0e−eS0/b}. (5.12)

In both equations (5.11) and (5.12), the second term in the brackets derives from
the interaction of the tails of the non-local solitary waves. Moreover, it should be
kept in mind that these expressions are valid when e � 1 and eS 	 1; i.e. close
to the band edge and for wide separation of the two solitary waves forming a
bound state.

Based on the asymptotic formulae (5.11) and (5.12), it is possible to deduce
the qualitative behaviour of the power curves. We recall that, for bound states
of solitary waves with the same envelope polarity, d decreases from p/4 to −p/4
as the solution curve (4.11a) is traversed from the on-site to the off-site branch.
As, for given e, the power (5.11) is a decreasing function of d (for eS > b), the
power on the off-site branch is then always higher than the power on the on-site
branch. Similarly, one can see that the power (5.12) of the mixed-site solution
branch (4.11b) always lies between the powers of the on-site and off-site branches.
Hence, the power curve associated with a bound-state solution family involving
solitary waves of the same polarity, is such that the on-site branch is always the
low-power branch, the mixed-site branch lies in the middle and the off-site branch
is the high-power branch. Also, in the (e, d) plane, the middle solution branch
bifurcates from the lower (off-site) branch (figure 1); thus, on the power curve, the
intermediate-power (mixed-site) branch bifurcates from the high-power (off-site)
branch. These general features of the power curves will be verified numerically in
§6 (figures 2 and 5).

Next, in the case of bound states with non-local solitary waves having envelopes
of opposite polarity, where the lower sign in equation (5.9) applies, a similar
calculation based on equation (4.18), along with equation (4.10), yields

P ∼ 4a2eq0

{
b − 2e(S0 + 2d)e−e(S0+2d)/b

}
, (5.13)

for the two solution branches bifurcating at e
(1)
c , and

P ∼ 4a2eq0
{
b − 2eS0e−eS0/b

}
, (5.14)
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for the single solution branch bifurcating at e
(2)
c . Based on these power formulae,

it is again possible to show that, on the associated power curve, the on-site branch
is the low-power branch, the mixed-site branch is the immediate-power branch,
and the off-site branch is the high-power branch, just as in the case of same
envelope polarity above. However, the intermediate-power branch now bifurcates
from the low-power branch, which is the opposite of the conclusion reached earlier
in the same-envelope-polarity case. These theoretical predictions are confirmed
by numerical results in §6 (figure 3).

6. Numerical results

We now turn to a numerical investigation of bound states in order to make
a comparison of numerical results against the predictions of the asymptotic
theory discussed earlier. To this end, equation (2.4) is solved numerically by the
Newton-conjugate-gradient method (Yang 2010), using the sinusoidal potential
(2.2) with V0 = 6. For this value of the potential depth, when s = 1 (self-focusing
nonlinearity), gap solitons bifurcate from the lower edge m0 = 2.061318 of the first
Bloch band, where the diffraction coefficient D is positive, and the parameters
(2.12) of the envelope soliton (2.11) take the values

a = 1.7146 and b = √
D = 0.6594. (6.1)

Moreover, the constant C in the tail expressions (3.3b) and (3.4b) is found by
solving a certain recurrence relation as discussed in Hwang et al. (2011): C =
1.307. On the other hand, when s = −1 (self-defocusing nonlinearity), gap solitons
bifurcate from the upper edge m0 = 2.266735 of the first Bloch band, where the
diffraction coefficient is negative, and the soliton parameter values are

a = 1.681 and b = √|D| = 0.7669, (6.2)

with C = 3.0133.
We begin with a few qualitative comparisons between the analysis and

numerics. For this purpose, we assume self-focusing nonlinearity (s = 1) and
consider bound states involving solitary waves with envelopes of the same polarity
for N = 10. The numerical results for this family of bound states are displayed
in figure 2. From the power curve in figure 2a, it is seen that this family indeed
exhibits three distinct solution branches that bifurcate near the band edge, as
predicted by the theory. On the low-power branch, the bound state at point
c comprises two on-site gap solitons which are separated by (N + 1)p = 11p
(figure 2c); on the high-power branch, the bound state at point e comprises two
off-site gap solitons which are separated by Np = 10p (figure 2e). Thus, as one
moves from the lower branch to the upper branch along the power curve, the two
solitary waves forming a bound state transform from on-site to off-site, and their
separation decreases by one lattice period (p). On the middle branch, however, the
bound state at point d comprises an on-site and an off-site gap soliton which are
separated by (N + 1/2)p = 10.5p (figure 2d), confirming that this is the mixed-
site branch. At the bifurcation point near the band edge (tip of the power curve),
the bound-state profile is displayed in figure 2f. This bound state comprises two
low-amplitude Bloch-wave packets which are well separated, as assumed in our
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Figure 2. (a) Numerical power curve for bound states involving two solitary waves of the same
envelope polarity with N = 10 and s = 1 (self-focusing nonlinearity); the shaded region is the first
Bloch band. (b) Amplification of (a) near the bifurcation point. (c–f ) Soliton profiles at points of
the power curve marked by the same letters in (a). Shaded stripes represent lattice sites (locations
of low potentials); stripe separation is equal to the potential period, p. (Online version in colour.)

asymptotic analysis. These features of the power curve and the corresponding
bound-state profiles are in perfect qualitative agreement with the asymptotic
theory. Furthermore, from the amplification of the power curve near the
bifurcation point, shown in figure 2b, it is clear that the middle branch bifurcates
from the high-power branch, again in agreement with the previous analysis in the
case of bound states with solitary waves of the same envelope polarity.

Next, we turn to quantitative comparison between the analysis and numerics.
For this purpose, we choose to consider bound states comprising solitary waves
with opposite envelope polarity (the results of comparison for bound states with
same envelope polarity are very similar). Specifically, once again, we assume
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Figure 3. (a,b) Power curves for bound states involving two solitary waves with opposite envelope
polarity and N = 10, for self-focusing nonlinearity (s = 1): (a) numerical; (b) analytical. The
analytical solid blue branches are obtained from equations (5.13) and (4.11a), whereas the
analytical dashed red branch is obtained from equations (5.14) and (4.11b). (c,d) Soliton profiles
at the points (corresponding to m = 2.0438) of the lower and upper branches marked by the same
letters in (a). Solid curves: numerical; dashed curves: analytical as given by equation (5.2). (Online
version in colour.)

self-focusing nonlinearity (s = 1) and take N = 10, but the envelopes of the
two solitary waves in the bound state now have opposite polarity. Figure 3a
displays the numerical power diagram near the bifurcation point mc = 2.04442,
and figure 3b illustrates the analytical power curves given by equations (5.13)
and (5.14) near the analytical bifurcation point mc = m0 − e

(1)2
c = 2.04446, where

e
(1)
c = 0.1368 as obtained from equation (4.15). (To compute the analytical power

curves, we first solve equations (4.11) for d as a function of e for e
(1)
c < e � 1,

and then use e = √|m0 − m|.) Both the numerical and analytical power curves
in figure 3a,b exhibit three branches, as expected. In addition, the middle
(mixed-site) branch now bifurcates from the low-power (on-site) branch, again in
agreement with the analysis in the end of §5. Quantitatively, the numerical and
analytical power curves are also in reasonable agreement, especially considering
that the analytical bifurcation point here is e

(1)
c = 0.1368, which is not all that

small; moreover, for this value of e and N = 10, eS ∼ 4, which is not all that
large. Figure 3c,d shows quantitative comparison of numerics and analysis for
the bound-state profiles on the low- and high-power branches at m = 2.0438 (near
the bifurcation point). The corresponding analytical bound-state profiles (red
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Figure 4. Comparison between analytical and numerical values of the bifurcation point e
(1)
c at

various values of N for s = 1 (self-focusing nonlinearity): (a) same envelope polarity; (b) opposite

envelope polarity. The analytical e
(1)
c is obtained by solving equation (4.15). Asterisks, numerical;

circles, analytical. (Online version in colour.)

dashed curves) are given by equation (5.2). Here, the locations of the two solitary
waves involved in the bound state, namely, x±

0 , are determined by equation (4.18);
these values are dependent on d(e), which is found by solving equations (4.11)
with e = √|m0 − m|. The analytical solution profiles show good agreement with
the numerical ones.

As another quantitative comparison, we examine the dependence of the
bifurcation point e

(1)
c on the parameter N that controls the separation distance

of the two solitary waves in a bound state. The analytical and numerical values
of this bifurcation point against N are displayed in figure 4 for solitons with the
same as well as opposite envelope polarities and self-focusing nonlinearity (s = 1).
Here, the analytical bifurcation point e

(1)
c is obtained from solving equation (4.15),

and this value is the same for both cases of envelope polarity (with the same N ).
For both envelope polarities, the numerical values for e

(1)
c approach the analytical

ones when N → ∞, confirming the asymptotic accuracy of our analysis.
As a final comparison, we assume self-defocusing nonlinearity (s = −1) and

consider bound states involving solitary waves with the same envelope polarity.
For N = 10, the numerical results for this family of bound states are displayed in
figure 5. The power curve features three branches (figure 5a), and the middle
branch bifurcates from the upper branch (figure 5b), in agreement with the
asymptotic analysis. In addition, the bound state at point c on the lower branch
comprises two on-site solitons which are separated by (N + 1)p = 11p (figure 5c),
and the bound state at point d on the upper branch comprises two off-site solitons
which are separated by Np = 10p, again consistent with the previous analysis.
It may seem puzzling at first sight that the two on-site solitons in figure 5c
are of opposite signs, given that the envelopes of these solitons ought to have
the same polarity. To explain this feature, note that at the band edge relevant
here, m0 = 2.266735, which is the upper edge of the first Bloch band, the Bloch
mode p(x) is 2p-periodic, and its adjacent peaks have opposite signs, similar
to the function cos x (see Yang 2010, §6.1.1). As the two on-site gap solitons in
figure 5c are separated by (N + 1)p = 11p, the Bloch function p(x) at the centres
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Figure 5. (a) Numerical power curve for bound states involving solitary waves of the same envelope
polarity with N = 10 and s = −1 (self-defocusing nonlinearity); the shaded region is the first Bloch
band. (b) Amplification of (a) near the bifurcation point. (c,d) Bound-state profiles at points of
the power curve marked by the same letters in (a). (Online version in colour.)

of these solitons then has opposite sign. Thus, even though the envelopes of the
two gap solitons have the same polarity, the overall gap-soliton profiles, which are
products of the Bloch function and the envelope function, have opposite signs, as
in figure 5c.

7. Concluding remarks

In this paper, an asymptotic theory was developed for stationary gap-soliton
bound states consisting of two fundamental gap solitons in one-dimensional
periodic media. It was shown that there is a countable set of such bound state
families, characterized by the separation distance of the two solitary waves
involved, and each family features three distinct solution branches that bifurcate
near band edges at small, but finite, amplitude. Of these three solution branches,
one branch contains bound states whose fundamental solitons are both on-site; the
second branch contains bound states whose fundamental solitons are both off-site;
and the third branch represents bound states in which one fundamental soliton
is on-site and the other off-site. The power curves associated with these solution
branches were computed asymptotically for large solitary-wave separation. On
the power diagram, the on-site solution branch is always the low-power branch,
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the mixed-site branch the middle branch and the off-site branch is the high-power
branch; in addition, the middle branch bifurcates from the upper (lower) branch
when the envelopes of the two fundamental solitons in the bound state have the
same (opposite) polarity. These analytical results were compared with numerical
results and good agreement was obtained.

There are several common features between the results of this article and those
obtained by Yang & Akylas (1997) for two-wavepacket bound states in the fifth-
order KdV equation. In that case, a countable set of bound states also bifurcate
at finite values of the wave amplitude, and each solution family also features
multiple branches, with asymmetric-wave branches bifurcating off symmetric-
wave branches. Furthermore, the techniques for constructing bound states in
these two models follow along the same lines. Even though the current lattice
model (2.4) is not translation-invariant, while the fifth-order KdV equation is,
remarkably, both models admit very similar classes of solitary-wave solutions.

In addition to being of fundamental interest, the bound states discussed here
could also prove useful in applications as they allow increased flexibility in the
profiles of localized nonlinear modes within band gaps. In a recent demonstration
of image transmission in photonic lattices, in fact, Yang et al. (2011) used two-
dimensional high-order gap solitons of various shapes, and those gap solitons
are closely related to the one-dimensional bound states constructed in the
present paper. For the purpose of assessing the potential usefulness of these
one-dimensional bound states, of course, it is necessary to examine the stability
properties of the various bound-state families, a question that will be taken up
in future studies.

In this paper, attention was focused on bound states consisting of only two
fundamental gap solitons; extending the analysis to more complicated bound
states involving three or more fundamental solitons, as well as to bound states in
two-dimensional periodic media, will be left to future studies.

Our final remark is that, as the bound states constructed in this paper bifurcate
near Bloch-band edges at finite amplitude, their power curves always terminate
before band edges and never reach them (figures 2a and 5a). This feature of the
power curve is shared by some other types of gap solitons, such as the truncated-
Bloch-wave solitons (Alexander et al. 2006; Yang 2010). Whether the present
analysis can be applied to those gap solitons needs further investigation.
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