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General soliton matrices in the Riemann–Hilbert problem
for integrable nonlinear equations
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We derive the soliton matrices corresponding to an arbitrary number of higher-
order normal zeros for the matrix Riemann–Hilbert problem of arbitrary matrix
dimension, thus giving the complete solution to the problem of higher-order soli-
tons. Our soliton matrices explicitly give all higher-order multisoliton solutions to
the nonlinear partial differential equations integrable through the matrix Riemann–
Hilbert problem. We have applied these general results to the three-wave interac-
tion system, and derived new classes of higher-order soliton and two-soliton solu-
tions, in complement to those from our previous publication@Stud. Appl. Math.
110, 297 ~2003!#, where only the elementary higher-order zeros were considered.
The higher-order solitons corresponding to nonelementary zeros generically de-
scribe the simultaneous breakup of a pumping wave (u3) into the other two com-
ponents (u1 andu2) and merger ofu1 andu2 waves into the pumpingu3 wave. The
two-soliton solutions corresponding to two simple zeros generically describe the
breakup of the pumpingu3 wave into theu1 andu2 components, and the reverse
process. In the nongeneric cases, these two-soliton solutions could describe the
elastic interaction of theu1 and u2 waves, thus reproducing previous results ob-
tained by Zakharov and Manakov@Zh. Éksp. Teor. Fiz.69, 1654~1975!# and Kaup
@Stud. Appl. Math.55, 9 ~1976!#. © 2003 American Institute of Physics.
@DOI: 10.1063/1.1605821#

I. INTRODUCTION

The importance of integrable nonlinear partial differential equations~PDEs! in 111 dimen-
sions in applications to nonlinear physics can hardly be overestimated. Their importance pa
stems from the fact that it is always possible to obtain certain explicit solutions, called soliton
some algebraic procedure. At present, there is a wide range of literature concerning inte
nonlinear PDEs and their soliton solutions~see, for instance, Refs. 1–4 and the referen
therein!. The reader familiar with the inverse scattering transform method knows that it is zer
the Riemann–Hilbert problem~or poles of the reflection coefficients in the previous nomenclatu!
that give rise to the soliton solutions. These solutions are usually derived by using one
several well-known techniques, such as the dressing method,1,5,6 the Riemann–Hilbert problem
approach,2,3 and the Hirota method~see Ref. 1!. In the first two methods, the pure soliton solutio
is obtained by considering the asymptotic form of a rational matrix function of the spe
parameter, called the soliton matrix in the following. It is known that the generic case of zer
the matrix Riemann–Hilbert problem is the case of simple zeros7–12 ~see also Ref. 13!. A single
simple zero produces a one-soliton solution. Several distinct zeros will produce multisolito
lutions, which describe the interaction~scattering! of individual solitons. As far as the generic ca
is concerned, there is no problem in the derivation of the corresponding soliton solutions.

However, in the nongeneric cases, when at least one higher-order~i.e., multiple! zero is

a!Also at: Instituto de Fisica Teo´rica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 Sa˜o Paulo, Brazil;
electronic mail: valery@ift.unesp.br

b!Electronic mail: jyang@emba.uvm.edu
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present in the Riemann–Hilbert problem, the situation is not so definite. Higher-order zeros
be considered separately, as, in general, the soliton solutions which correspond to suc
cannot be derived from the known generic multisoliton solutions by coalescing some o
distinct simple zeros. This is clear from the fact that a higher-order zero generally correspo
a higher-order pole in the soliton matrix~or its inverse!, which cannot be obtained in a regular wa
by coalescing simple poles in the generic multisoliton matrix. The procedure of coalescing s
distinct simple zeros produces only higher-order zeros with equal algebraic and geometric
plicities ~the geometric multiplicity is defined as the dimension of the kernel of the soliton m
evaluated at the zero!, which is just the trivial case of higher-order zeros. For instance, if
algebraic multiplicity is equal to or greater than the matrix dimension, then such coalescin
produce a higher-order zero with the geometric multiplicity no less than the matrix dimen
which could only correspond to the zero solution instead of solitons. Thus the soliton ma
corresponding to higher-order zeros of the Riemann–Hilbert problem require a separate co
ation.

Soliton solutions corresponding to higher-order zeros have been investigated in the lite
before, mainly for the 232-dimensional spectral problem. A soliton solution to the nonlin
Schrödinger~NLS! equation corresponding to a double zero was first given in Ref. 14 but wit
much analysis. The double- and triple-zero soliton solutions to the KdV equation were exa
in Ref. 15 and the general multiple-zero soliton solution to the sine-Gordon equation was
sively studied in Ref. 16 using the associated Gelfand–Levitan–Marchenko equation. In Re
and 18, higher-order soliton solutions to the NLS equation were studied by employing the dr
method. In Refs. 19–21, higher order solitons in the Kadomtsev–Petviashvili I equation
derived by the direct method and the inverse scattering method. Finally, in our pre
publication22 we have derived soliton matrices corresponding to a singleelementaryhigher-order
zero—a zero which has the geometric multiplicity equal to 1. Our studies give the general h
order soliton solutions for the integrable PDEs associated with the 232 matrix Riemann–Hilbert
problem with a single higher-order zero. Indeed, any zero of the 232-dimensional Riemann–
Hilbert problem is elementary since a nonzero 232 matrix can have only one vector in its kerne

However, the previous investigations left some of the key questions unanswered. For ins
the general soliton matrix corresponding to a single nonelementary zero remained unknown
zeros arise when the matrix dimension of the Riemann–Hilbert problem is greater than 2.
rally then, the ultimate question—the most general soliton matrices corresponding to an ar
number of higher-order zeros in the generalN3N Riemann–Hilbert problem, was not addresse
Because of these unresolved issues, the most general soliton and multisoliton solutions to
integrable through theN3N Riemann–Hilbert problem~such as the NLS equation,23 the three-
wave interaction system,2,24–27and the Manakov equations28! have not been derived yet.

In this paper we derive the complete solution to the problem of soliton matrices correspo
to an arbitrary number of higher-order normal zeros for the generalN3N matrix Riemann–
Hilbert problem. These normal zeros are defined in Definition 1, and are nonelementary in g
They include almost all physically important integrable PDEs where the involution property@see
Eq. ~4!# holds. The corresponding soliton solutions can be termed as the higher-order mu
tons, to reflect the fact that these solutions do not belong to the class of the previous g
multisoliton solutions. Our results give a complete classification of all possible soliton solutio
the integrable PDEs associated with theN3N Riemann–Hilbert problem. In other words, ou
soliton matrices contain the most general forms of reflection-less~soliton! potentials in the
N-dimensional Zakharov–Shabat spectral operator. For these general soliton potentials, the
sponding discrete and continuous eigenfunctions of theN-dimensional Zakharov–Shabat operat
naturally follow from our soliton matrices. As an example, we consider the three-wave intera
system, and derive single-soliton solutions corresponding to a nonelementary zero, and
order two-soliton solutions. These solutions generate many new processes such as the
neous breakup of a pumping wave (u3) into the other two components (u1 andu2) and merger of
u1 andu2 waves into the pumpingu3 wave, i.e.,u11u21u3↔u11u21u3 . They also reproduce
previous solitons in Refs. 2, 22, 26, 27 as special cases.
 25 Sep 2003 to 132.198.17.127. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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The paper is organized as follows. A summary on the Riemann–Hilbert problem is plac
Sec. II. Section III is the central section of the paper. There we present the theory of s
matrices corresponding to several higher-order zeros under the assumption that these z
normal ~see Definition 1!, which include the physically important cases with the involution pr
erty @see Eq.~4!#. Applications of these general results to the three-wave interaction system
contained in Sec. IV. Finally, in the Appendix we briefly treat the more general case wher
zeros are abnormal.

II. THE RIEMANN–HILBERT PROBLEM APPROACH

The integrable nonlinear PDEs in 111 dimensions are associated with the matrix Rieman
Hilbert problem~consult, for instance, Refs. 1–12, 29–32!. The matrix Riemann–Hilbert problem
~below we work in the space ofN3N matrices! is the problem of finding the holomorphi
factorization, denoted below byF1(k) and F2

21(k), in the complex plane of a nondegenera
matrix functionG(k) given on an oriented curveg:

F2
21~k,x,t !F1~k,x,t !5G~k,x,t ![E~k,x,t !G~k,0,0!E21~k,x,t !, kPg, ~1!

where

E~k,x,t ![exp@2L~k!x2V~k!t#.

Here the matrix functionsF1(k) and F2
21(k) are holomorphic in the two complementary d

mains of the complexk-plane:C1 to the left andC2 to the right from the curveg, respectively.
The matricesL(k) andV(k) are called the dispersion laws. Usually the dispersion laws comm
with each other, e.g., given by diagonal matrices. We will consider this case@precisely in this case
E(k,x,t) is given by the above formula#. The Riemann–Hilbert problem requires an appropri
normalization condition. Usually the curveg contains the infinite pointk5` of the complex plane
and the normalization condition is formulated as

F6~k,x,t !→I as k→`. ~2!

This normalization condition is called the canonical normalization. Setting the normaliz
condition to an arbitrary nondegenerate matrix functionS(x,t) leads to the gauge equivalen
integrable nonlinear PDE, e.g., the Landau–Lifshitz equation in the case of the NLS equ3

Obviously, the new solutionF̂6(k,x,t) to the Riemann–Hilbert problem, normalized toS(x,t), is
related to the canonical solution by the following transformation

F̂6~k,x,t !5S~x,t !F~k,x,t !. ~3!

Thus, without any loss of generality, we confine ourselves to the Riemann–Hilbert problem
the canonical normalization.

For physically applicable nonlinear PDEs the Riemann–Hilbert problem possesses the
lution properties, which reduce the number of the dependent variables~complex fields!. The
following involution property of the Riemann–Hilbert problem is the most common in app
tions

F1
† ~k!5F2

21~ k̄!, k̄5k* . ~4!

Here the superscript ‘‘†’’ represents the Hermitian conjugate, and ‘‘* ’’ the complex conjugate.
Examples include the NLS equation, the Manakov equations, and theN-wave system. The analy
sis in this article includes this involution~4! as a special case. In this case, the overline o
quantity represents its Hermitian conjugation in the case of vectors and matrices and the co
conjugation in the case of scalar quantities. In other cases, the original and overlined qua
may not be related.
 25 Sep 2003 to 132.198.17.127. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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To solve the Cauchy problem for the integrable nonlinear PDE posed on the whole axisx, one
usually constructs the associated Riemann–Hilbert problem starting with the linear spectra
tion

]xF~k,x,t !5F~k,x,t !L~k!1U~k,x,t !F~k,x,t !, ~5!

whereas thet-dependence is given by a similar equation

] tF~k,x,t !5F~k,x,t !V~k!1V~k,x,t !F~k,x,t !. ~6!

The nonlinear integrable PDE corresponds to the compatibility condition of the system~5! and~6!:

] tU2]xV1@U,V#50. ~7!

The essence of the approach based on the Riemann–Hilbert problem lies in the fact t
evolution governed by the complicated nonlinear PDE~7! is mapped to the evolution of th
spectral data given by simpler equations such as~1! and ~20a!–~20b!. When the spectral data i
known, the matricesU(k,x,t) andV(k,x,t) describing the evolution ofF6 can then be retrieved
from the Riemann–Hilbert problem. In our case, the potentialsU(k,x,t) andV(k,x,t) are com-
pletely determined by the~diagonal! dispersion lawsL(k) and V(k) and the Riemann–Hilber
solutionF[F6(k,x,t). Indeed, let us assume that the dispersion laws are polynomial funct
i.e.,

L~k!5(
j 50

J1

Ajk
j , V~k!5(

j 50

J2

Bjk
j . ~8!

Then using similar arguments as in Ref. 32 we get

U52P$FLF21%, V52P$FVF21%. ~9!

Here the matrix functionF(k) is expanded into the asymptotic series,

F~k!5I 1k21F (1)1k22F (2)1¯ , k→`,

and the operatorP cuts out the polynomial asymptotics of its argument ask→`. An important
property of matricesU andV is that

Tr U~k,x,t !52Tr L~k!,
~10!

Tr V~k,x,t !52Tr V~k!,

which evidently follows from Eq.~9!. This property guarantees that the Riemann–Hilbert ze
are (x,t) independent.

Let us consider as an example the physically relevant three-wave interaction system.2,24,25,27

SetN53,

L~k!5 ikA, A5S a1 0 0

0 a2 0

0 0 a3

D , V~k!5 ikB, B5S b1 0 0

0 b2 0

0 0 b3

D , ~11!

whereaj andbj are real with the elements ofA being ordered:a1.a2.a3 . From Eq.~9! we get

U52L~k!1 i @A,F (1)#, V52V~k!1 i @B,F (1)#. ~12!

Setting
 25 Sep 2003 to 132.198.17.127. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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u15Aa12a2F12
(1) , u25Aa22a3F23

(1) , u35Aa12a3F13
(1) , ~13!

assuming the involution~4!, and using Eq.~12! in ~7! we get the three-wave system:

] tu11v1]xu11 i«ū2u350, ~14a!

] tu21v2]xu21 i«ū1u350, ~14b!

] tu31v3]xu31 i«u1u250. ~14c!

Here

v15
b22b1

a12a2
, v25

b32b2

a22a3
, v35

b32b1

a12a3
, ~15!

«5
a1b22a2b11a2b32a3b21a3b12a1b3

@~a12a2!~a22a3!~a12a3!#1/2 . ~16!

The group velocities satisfy the following condition:

v22v3

v12v3
52

a12a2

a22a3
,0. ~17!

The three-wave system~14! can be interpreted physically. It describes the interaction of th
wave packets with complex envelopesu1 , u2 , andu3 in a medium with quadratic nonlinearity.

In general, the Riemann–Hilbert problem~1!–~2! has multiple solutions. Different solution
are related to each other by the rational matrix functionsG(k) ~which also depend on the variable
x and t):2–6,13

F̃6~k,x,t !5F6~k,x,t !G~k,x,t !. ~18!

The rational matrixG(k) must satisfy the canonical normalization condition:G(k)→I for k→`
and must have poles only inC2 @the inverse functionG21(k) then has poles inC1 only#. Such a
rational matrixG(k) will be called the soliton matrix below, since it gives the soliton part of
solution to the integrable nonlinear PDE.

To specify a unique solution to the Riemann–Hilbert problem the set of the Riemann–H
data must be given. These data are also called the spectral data. The full set of the spect
comprises the matrixG(k,x,t) on the right-hand side of Eq.~1! and the appropriate discrete da
related to the zeros of detF1(k) and detF2

21(k). In the case of involution~4!, the zeros of
detF1(k) and detF2

21(k) appear in complex conjugate pairs,k̄ j5kj* . It is known7–12 ~see also
Ref. 13! that in the generic case the spectral data include simple~distinct! zerosk1 ,...,kn of
detF1(k) and k̄1 ,...,k̄n of detF2

21(k), in their holomorphicity domains, and the null vecto
uv1&,...,uvn& and ^v̄1u,... ,̂ v̄nu from the respective kernels:

F1~kj !uv j&50, ^v̄ j uF2
21~ k̄ j !50. ~19!

Using the property~10! one can verify that the zeros do not depend on the variablesx andt.
The (x,t) dependence of the null vectors can be easily derived by differentiation of~19! and use
of the linear spectral equations~5! and ~6!. This dependence reads
 25 Sep 2003 to 132.198.17.127. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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uv j&5exp$2L~kj !x2V~kj !t%uv0 j&, ~20a!

^v̄ j u5^v̄0 j uexp$L~ k̄ j !x1V~ k̄ j !t%, ~20b!

whereuv0 j& and ^v̄0 j u are constant vectors.
The vectors in Eqs.~20a! and ~20b! together with the zeros constitute the full set of t

generic discrete data necessary to specify the soliton matrixG(k,x,t) and, hence, unique solutio
to the Riemann–Hilbert problem~1!–~2!. Indeed, by constructing the soliton matrixG(k) such
that the following matrix functions:

f1~k!5F1~k!G21~k!, f2
21~k!5G~k!F2

21~k! ~21!

are nondegenerate and holomorphic in the domainsC1 and C2 , respectively, we reduce th
Riemann–Hilbert problem with zeros to another one without zeros and hence uniquely so
~for details see, for instance, Refs. 2–4, 13!. Below by matrixG(k) we will imply the matrix from
equation~21! which reduces the Riemann–Hilbert problem~1!–~2! to the one without zeros. The
corresponding solution to the integrable PDE~7! is obtained by using the asymptotic expansion
the matrixF(k) ask→` in the linear equation~5!. In theN-wave interaction model it is given by
formula ~12!. The pure soliton solutions are obtained by using the rational matrixF5G(k).

The above set of discrete spectral data~19! holds only for the generic case where zeros
detF1(k) and detF2

21(k) are simple. If these zeros are higher-order rather than simple, wha
discrete spectral data should be and how they evolve withx andt is unknowna priori. Moreover,
we have stressed in Sec. I that the case of higher-order zeros cannot be treated by co
simple zeros, thus is highly nontrivial. In the next sections, we give the complete solution t
problem.

III. SOLITON MATRICES FOR GENERAL HIGHER-ORDER ZEROS

In this section we derive the soliton matrices for an arbitrary matrix dimensionN and an
arbitrary number of higher-order zeros under the assumption that these zeros are norm~see
Definition 1!. Normal higher-order zeros are most common in practice. In general, they are
elementary. Our approach is based on a generalization of the idea in our previous paper.22

A. Product representation of soliton matrices

Our starting point to tackle this problem is to derive a product representation for so
matrices. This product representation is not convenient for obtaining soliton solutions, but
lead to the summation representation of soliton matrices, which is very useful.

In treating the soliton matrix as a product of constituent matrices@called elementary matrice
in Ref. 2, see formulas~24! and~27! below# one can consider each zero of the Riemann–Hilb
problem separately. For instance, consider a pair of zerosk1 and k̄1 , respectively, ofF1(k) and
F2

21(k) from Eq. ~1!, each having orderm:

detF1~k!5~k2k1!mw~k!, detF2
21~k!5~k2 k̄1!mw̄~k!, ~22!

wherew(k1)Þ0 andw̄( k̄1)Þ0. The geometric multiplicity ofk1 ( k̄1) is defined as the number o
independent vectors in the kernel ofF1(k1) (F2

21( k̄1)), see~19!. In other words, the geometri
multiplicity of k1 ( k̄1) is the dimension of the kernel space ofF1(k1) (F2

21( k̄1)). It can be easily
shown that the order of a zero is always greater or equal to its geometric multiplicity. It is
obvious that the geometric multiplicity of a zero is less than the matrix dimension. Let us
how the soliton matrices are usually constructed~see, for instance, Refs. 2 and 13!. Starting from
the solutionF6(k) to the Riemann–Hilbert problem~1!–~2!, one looks for the independen
vectors in the kernels of the matricesF1(k1) andF2

21( k̄1). Assuming that the geometric multi
plicities of k1 and k̄1 are the same and equal tor 1 , then we have
 25 Sep 2003 to 132.198.17.127. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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F1~k1!uv i1&50, ^v̄ i1uF2
21~ k̄1!50, i 51, . . . ,r 1 . ~23!

Next, one constructs the constituent matrix

x1~k!5I 2
k12 k̄1

k2 k̄1

P1 , ~24!

where

P15(
i , j

r 1

uv i1&~K21! i j ^v̄ j 1u, Ki j 5^v̄ i1uv j 1&. ~25!

Here P1 is a projector matrix, i.e.,P1
25P1 . It can be shown that detx15(k2k1)

r1/(k2k̄1)
r1 ~note

that the geometric multiplicityr 1 is equal to rankP1). If r 1,m then one considers the new matr
functions

F̃1~k!5F1~k!x1
21~k!, F̃2

21~k!5x1~k!F2
21~k!.

By virtue of Eqs.~23!, the matricesF̃1(k) and F̃2
21(k) are also holomorphic in the respectiv

half planes of the complex plane~see Lemma 1 in Ref. 22!. In addition,k1 and k̄1 are still zeros

of detF̃1(k) and detF̃2
21(k). Assuming that the geometric multiplicities of zerosk1 andk̄1 in new

matricesF̃1(k) and F̃2
21(k) are still the same and equal tor 2 , then the above steps can b

repeated, and we can define matrixx2(k) analogous to Eq.~24!. In general, if the geometric
multiplicities of zerosk1 and k̄1 in matrices

F̃1~k!5F1~k!x1
21~k!¯x l 21

21 ~k!, F̃2
21~k!5x l 21~k!¯x1~k!F2

21~k! ~26!

are the same and given byr l ( l 51,2,. . . ), then we can define a matrixx l similar to Eqs.~24! and

~25! but the independent vectorsuv i l & and^v̄ i l u ( i 51, . . . ,r l) are from the kernels ofF̃1(k1) and

F̃2
21( k̄1) in Eq. ~26!. When this process is finished, one would get the constituent mat

x1(k),..., x r(k) such thatr 11r 21¯1r n5m, and the product representation of the solit
matrix G(k),

G~k!5xn~k!¯x2~k!x1~k!. ~27!

This product representation~27! is our starting point of this paper. In arriving at this repr
sentation, our assumptions are that the zerosk1 and k̄1 have the same algebraic multiplicity@see

Eq. ~22!#, and their geometric multiplicities in matricesF̃1(k) andF̃2
21(k) of Eq. ~26! are also

the same for alll ’s. For convenience, we introduce the following definition.
Definition 1: A pair of zeros k1 and k̄1 in the matrix Riemann–Hilbert problem is called

normal if the zeros have the same algebraic multiplicity, and their geometric multiplicitie

matricesF̃1(k) and F̃2
21(k) of Eq. (26) are also the same for all l’ s.

In the text of this paper, we only consider normal zeros of the matrix Riemann–Hi
problem. The case of abnormal zeros will be briefly discussed in the Appendix.

Remark 1:Under the involution property~4!, all zeros are normal. Thus, our results f
normal zeros cover almost all the physically important integrable PDEs.

Remark 2:Normal zeros include the elementary zeros of Ref. 22 as special cases, but th
nonelementary in general.

It is an important fact~see Ref. 22, Lemma 2! that the sequence of ranks of the projectorsPl

in the matrixG(k) given by Eq.~27!, i.e., built in the described way, is nonincreasing:
 25 Sep 2003 to 132.198.17.127. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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rankPn<rankPr 21<¯<rankP1 , ~28!

i.e., r n<r n21<¯<r 1 . This result allows one to classify all possible occurrences of a hig
order zero of the Riemann–Hilbert problem for an arbitrary matrix dimensionN. In general, for
zeros of the same order, different sequences of ranks in Eq.~28! give different classes of higher
order soliton solutions. In Ref. 22 we constructed the soliton matrices for the simplest seque
ranks, i.e., 1, . . . ,1.Such zeros are called ‘‘elementary.’’ If the matrix dimensionN52 ~as for the
nonlinear Schro¨dinger equation!, then all higher-order zeros are elementary since rankP1 is al-
ways equal to 1.

To obtain the product representation for soliton matrices corresponding to several highe
normal zeros one can multiply the matrices of the type~27! for each zero, i.e.,G(k)
5G1(k)G2(k)¯GNZ

(k), whereNZ is the number of distinct zeros and eachG j (k) has the form
given by formula~27! with n substituted by somenj .

The product representation~27! of the soliton matrices is difficult to use for actual calculatio
of the soliton solutions. Indeed, though the representation~27! seems to be simple, derivation o
the (x,t) dependence of the involved vectors~except for the vectors in the first projectorP1)
requires solving matrix equations with (x,t)-dependent coefficients. One would like to have
more convenient representation, where all the involved vectors have explicit (x,t) dependence.
Below we derive such a representation for soliton matrices corresponding to an arbitrary n
of higher-order normal zeros.

For the sake of clarity, we consider first the case of a single pair of higher-order z
followed by the most general case of several distinct pairs of higher-order zeros.

B. Soliton matrices for a single pair of zeros

Definition 2: For soliton matrices having a single pair of higher-order normal zeros(k1 ,k̄1),
supposeG(k) is constructed judiciously as in Eq. (27), with ranks rj of matrices Pj (1< j <n)
satisfying inequality (28), i.e.,

r n<r n21<¯<r 1 .

Then a new sequence of positive integers

s1>s2>¯>sr 1

is defined as follows:
sn[the index of the last positive integer in the array@r 1112n,r 2112n, . . . ,r n112n#.

The sequence of integers$r n ,r n21 , . . . ,r 1% is then the rank sequence associated with the pai

zeros(k1 ,k̄1) and the new sequence$s1 ,s2 , . . . ,sr 1
% is called the block sequence associated w

this pair of zeros.
Remark:It is easy to see that the sum of the block sequence is equal to the sum of all

(
n51

r 1

sn5(
l 51

n

r l ,

with the sum being equal to the algebraic order of the Riemann–Hilbert zeros (k1 ,k̄1).
For example, if the rank sequence is$3% @only one constituent matrix in~27!—trivial higher-

order zero#, then the block sequence is$1,1,1%; if the rank sequence is$1,1,1,1% ~an elementary
zero!, then the block sequence is$4%; if the rank sequence is$2,3,5,7%, then the block sequence i
$4,4,3,2,2,1,1%.

With these definitions the most general soliton matricesG(k) andG21(k) for a single pair of
higher-order normal zeros (k1 ,k̄1) are given as follows. This result is a generalization of o
previous result22 to nonelementary higher-order zeros.
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Lemma 1: Consider a single pair of higher-order normal zeros(k1 ,k̄1) in the Riemann–
Hilbert problem. Suppose their geometric multiplicity is r1 , and their block sequence i
$s1 ,s2 , . . . ,sr 1

%. Then the soliton matricesG(k) and G21(k) can be written in the following

summation forms:

G~k!5I 1 (
n51

r 1

S̄n , G21~k!5I 1 (
n51

r 1

Sn . ~29!

Here Sn and S̄n are the following block matrices,

S̄n5(
l 51

sn

(
j 51

l uq̄ j
(n)&^ p̄l 112 j

(n) u

~k2 k̄1!sn112 l
5~ uq̄sn

(n)&,...,uq̄1
(n)&D̄n~k!S ^ p̄1

(n)u
]

^ p̄sn

(n)u
D , ~30a!

Sn5(
l 51

sn

(
j 51

l upl 112 j
(n) &^qj

(n)u
~k2k1!sn112 l 5~ up1

(n)&,...,upsn

(n)&Dn~k!S ^qsn

(n)u

]

^q1
(n)u

D , ~30b!

where Dn(k) and D̄n(k) are triangular Toeplitz matrices of the size sn3sn :

D̄n~k!51
1

~k2 k̄1!
0 ... 0

1

~k2 k̄1!2

1

~k2 k̄1!
� ]

] � � 0

1

~k2 k̄1!sn
...

1

~k2 k̄1!2

1

~k2 k̄1!

2 ,

~31!

Dn~k!5S 1

~k2k1!

1

~k2k1!2 ...
1

~k2k1!sn

0 � � ]

] �

1

~k2k1!

1

~k2k1!2

0 ... 0
1

~k2k1!

D .

The vectorsupi
(n)&,^ p̄i

(n)u,^qi
(n)u,uq̄i

(n)& ( i 51, . . . ,sn) are independent of k, and in the two sets
$up1

(1)&, . . . ,up1
(r 1)

&% and $^ p̄1
(1)u, . . . ,̂ p̄1

(r 1)u% the vectors are linearly independent.

Remark 1:If r 151, the zerosk1 and k̄1 are elementary.22 In this case, the above solito
matrices reduce to those in Ref. 22.

Remark 2:The total number of allup& vectors or̂ p̄u vectors from alln blocks are equal to the
algebraic order of the zerosk1 and k̄1 .

Proof: The representation~29! can be proved by induction. Consider, for instance, the form
for G(k). Obviously, this formula is valid forn51 in Eq.~27!, whereG(k) contains only a single
 25 Sep 2003 to 132.198.17.127. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



4613J. Math. Phys., Vol. 44, No. 10, October 2003 General soliton matrices

Downloaded
matrix x1(k). Now, suppose that this formula is valid forn.1. We need to show that it is valid
for n11 as well. Indeed, denote the soliton matrices forn andn11 by G(k), andG̃(k), respec-
tively, the rightmost multiplier inG̃(k) being x̃(k). Then we have

G̃~k!5G~k!x̃~k!5S I 1
A1

k2 k̄1

1
A2

~k2 k̄1!2
1¯1

An

~k2 k̄1!nD S I 1
R

k2 k̄1
D

5I 1
Ã1

k2 k̄1

1
Ã2

~k2 k̄1!2
1¯1

Ãn11

~k2 k̄1!n11
, ~32!

where

R[~ k̄12k1!P̃5(
l 51

r̃

uul&^ūl u. ~33!

Here we have normalized the vectorsuul& and ^ūl u such that

^ūl uui&5~ k̄12k1!d l ,i , ~34!

andr̃ 5rankR. In view of Eq.~28!, we know thatr̃>r 1 , wherer 1 is the geometric multiplicity of
k1 andk̄1 in the soliton matricesG(k) andG21(k). The coefficients at the poles inG̃(k) are given
by

Ã15A11R, Ãj5Aj1Aj 21R, j 52, . . . ,n, Ãn115AnR. ~35!

Consider first the coefficientsÃ2 to Ãn11 . The explicit form of the coefficientsAj can be obtained
from Eqs.~29!, ~30!, and~32! as

Aj[ (
n51

r 1

Aj
(n)5 (

n51

r 1

(
l 51

sn112 j

uq̄l
(n)&^ p̄sn122 j 2 l

(n) u, ~36!

where the inner sum is zero ifsn112 j <0. Substituting this expression into~35! and defining the
following new vectors in each block:

^p! 1
(n)u5^ p̄1

(n)uR, ^p! j
(n)u5^ p̄ j

(n)uR1^ p̄ j 21
(n) u, j 52, . . . ,sn , ~37!

@for blocks of size 1,sn51, the second formula in~37! is dropped#, we then put the coefficients
Ã2 ,...,Ãn11 into the required form

Ãj5 (
n51

r 1

(
l 51

s̃n112 j

uq! l
(n)&^p! s̃n122 j 2 l

(n) u, j 52, . . . ,n11,

where

uq! l
(n)&[uq̄l

(n)&, l 51, . . . ,s̃n21,

ands̃n5sn11, i.e., the size of eachn-block grows by one as we multiply byx̃(k) in formula~32!.
Next, we consider the coefficientÃ1 . Defining the vector̂ p! s̃n

(n)u[^ p̄sn

(n)u and utilizing the

definition ~37!, we can rewriteA1
(n) as
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s,

at

,

of

4614 J. Math. Phys., Vol. 44, No. 10, October 2003 V. S. Shchesnovich and J. Yang

Downloaded
A1
(n)5 (

l 51

s̃n21

uq̄l
(n)&^p! s̃n112 l

(n) u2(
l 52

sn

uq̄l
(n)&^ p̄sn122 l

(n) uR. ~38!

To setÃ15A11R into the required form

Ã15 (
m5r 111

r̃

uq! 1
(m)&^p! 1

(m)u1 (
n51

r 1

(
l 51

s̃n

uq! l
(n)&^p! s̃n112 l

(n) u, ~39!

we must define exactly one new vectoruq! s̃n

(n)& for eachn-block @in the second term of Eq.~39!# and

r̃ 2r 1 new blocks of size 1 containing 2(r̃ 2r 1) new vectorsuq̄1
(m)& and ^p! 1

(m)u. Due to formulas
~35! and ~38!, the new vectors to be defined must satisfy the following equation:

(
m5r 111

r̃

uq! 1
(m)&^p! 1

(m)u1 (
n51

r 1

uq! s̃n

(n)&^ p̄1
(n)uR5R2 (

n51

r 1

(
l 52

sn

uq̄l
(n)&^ p̄sn122 l

(n) uR, ~40!

where the definition of̂p! 1
(n)u in Eq. ~37! has been utilized. Substituting the expression~33! for R

into the above equation, we get

(
m5r 111

r̃

uq! 1
(m)&^p! 1

(m)u5(
l 51

r̃

uj l&^ūl u, ~41!

where

uj l&[S I 2 (
n51

r 1

(
l 52

sn

uq̄l
(n)&^ p̄sn122 l

(n) u D uul&2 (
n51

r 1

uq! s̃n

(n)&^ p̄1
(n)uul&, l 51, . . . ,r̃ .

To show that Eq.~41! is solvable, we need to use an important fact that the matrix

M5~Mn,l !, Mn,l5^ p̄1
(n)uul&, n51, . . . ,r 1 , l 51, . . . ,r̃ 1 ,

has rankr 1 . This fact can be proved by contradiction as follows.
Suppose the matrixM has rank less thanr 1 . Then itsr 1 rows are linearly dependent. Thu

there are such scalarsC1 ,C2 , . . . ,Cr 1
, not equal to zero simultaneously, that the vector

^hu[ (
n51

r 1

Cn^ p̄1
(n)u

is orthogonal to alluul& ’s, i.e.,

^huul&50, 1< l< r̃ . ~42!

According to our induction assumption that soliton matrices involvingn multipliers in formula
~27! have the form~29!, we can easily show, by equating the coefficient at the highest polek

5 k̄1 in the left-hand side~lhs! of the identityG(k)G21(k)5I to zero, that̂ p̄1
(n)uG21( k̄1)50 for

all 1<n<r 1 ~see also Ref. 22!. Thus^huG21( k̄1)50 as well. According to Lemma 1 in Ref. 22
if ^hu is in the kernel ofG21( k̄1) and is orthogonal to alluul& ’s, then ^hu is in the kernel of
G̃21( k̄1) as well, i.e.,̂ huG̃21( k̄1)50. But according to our construction of soliton matrices@see
Eq. ~27!#, the vectorŝ ūl u ( l 51, . . . ,r̃ ) are all the linearly independent vectors in the kernel
G̃21( k̄1). Thus^hu must be a linear combination of^ūl u ’s. Then in view of Eqs.~34! and~42!, we
find that ^hu50, which leads to a contradiction.
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.

ely

st

e
sizes

ks of
f new
h

of

r-order

re
s

ition
y

all

4615J. Math. Phys., Vol. 44, No. 10, October 2003 General soliton matrices

Downloaded
Now that the matrixM has rank r 1 , then we are able to select vectorsuq! s̃n

(n)& (n

51, . . . ,r 1) such thatr 1 of the r̃ vectors^j l u are zero. With this choice ofuq! s̃n

(n)& ’s, the rhs of Eq.

~41! becomesr̃ 2r 1 blocks of size 1. Assigning these blocks to the lhs of~41!, then Eq.~41! can
be solved. Hence we can put the coefficientÃ1 in the required form~39!.

Next we prove that all vectorŝp! 1
(n)u (1<n< r̃ ) in the matrixG̃(k) are linearly independent

These vectors were defined in the above proof as

^p! 1
(n)u5^ p̄1

(n)uR5(
l 51

r̃

^ p̄1
(n)uul&^ūl u, 1<n<r 1 , ~43!

and ^p! 1
(n)u for r 111<n< r̃ are simply equal tor̃ 2r 1 of the vectorsūl depending on whatr 1

3r 1 submatrix ofM has rankr 1 . To be definite, let us suppose the firstr 1 columns of the matrix
M have rankr 1 ~i.e., linearly independent!. Then according to the above proof, we can uniqu
select vectorsuq! s̃n

(n)& (n51, . . . ,r 1) such thatuj l&50 for 1< l<r 1 . Thus,

^p! 1
(n)u5^ūnu, r 111<n< r̃ . ~44!

Recalling that vectorŝūnu (1<n< r̃ ) in the projectorR ~33! are linearly independent, and the fir
r 1 columns of matrixM have rankr 1 , we easily see that vectors^p! 1

(n)u (1<n< r̃ ) as defined in
Eqs.~43! and ~44! are linearly independent.

Last, we prove that the sizes of blocks in representations~29! are given by the block sequenc
defined in Definition 2. An equivalent statement is that the numbers of matrix blocks with
@1,2,3,. . . ,n# are given by the pairwise differences in the sequence of ranks:@r 12r 2 ,r 2

2r 3 , . . . ,r n212r n ,r n#, where the last number in the sequence defines the number of bloc
sizen. This can be easily proven by the induction argument using the fact that the number o
blocks of size 1 inÃ1 ~35! is given by r̃ 2r 1 , while the sizes of old blocks grow by 1 in eac
multiplication as in formula~32!.

Using similar arguments, we can prove that the representation~29! for G21(k) is
valid, and vectorsup1

(1)&, . . . ,up1
(r 1)

& are linearly independent. This concludes the proof
Lemma 1. Q.E.D.

C. Soliton matrices for several pairs of zeros

Next, we extend the above results to the most general case of several pairs of highe
normal zeros$(k1 ,k̄1),...,(kNZ

,k̄NZ
)%. In this general case, the soliton matrixG(k) can be con-

structed as a product of soliton matrices~27! for each zero, which are given by the procedu
outlined in the beginning of this section@see Eqs.~22! to ~27!#. Thus,G(k) can be represented a

G~k!5G1~k!•G2~k!¯GNZ
~k!. ~45!

For each pair of zeros (kj ,k̄ j ), we can define its rank sequence and block sequence by Defin
2 either fromG(k) directly or from the individual matrixG j (k) associated with this zero. It is eas
to see that using either ofG(k) or G j (k) gives the same results. The inverse matrixG21(k) can be
represented in a similar way.

The product representation~45! for G(k) and its counterpart forG21(k) are not convenient for
deriving soliton solutions. Their summation representations such as Eq.~29! are needed. It turns
out thatG(k) andG21(k) in the general case are given simply by sums of all the blocks from
pairs of zeros plus the unit matrix. Let us formulate this result in the next lemma.

Lemma 2: Consider several pairs of higher-order normal zeros$(k1 ,k̄1),...,(kNZ
,k̄NZ

)% in the

Riemann–Hilbert problem. Denote the geometric multiplicity of zeros(kn ,k̄n) as r1
(n) and their

block sequence as$s1
(n) ,s2

(n) , . . . ,sr
1
(n)

(n)
% (1<n<NZ). Then the soliton matricesG(k) andG21(k)

can be written in the following summation forms:
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G~k!5I 1 (
n51

NZ

(
n51

r 1
(n)

S̄n
(n) , G21~k!5I 1 (

n51

NZ

(
n51

r 1
(n)

S n
(n) . ~46!

Here S n
(n) and S̄n

(n) are the following block matrices:

S̄n
(n)5~ uq̄s

n
(n)

(n,n)
&,...,uq̄1

(n,n)&)D̄n
(n)~k!S ^ p̄1

(n,n)u
]

^ p̄s
n
(n)

(n,n)u
D , ~47a!

S n
(n)5~ up1

(n,n)&,...,ups
n
(n)

(n,n)
&)Dn

(n)~k!S ^qs
n
(n)

(n,n)u

]

^q1
(n,n)u

D , ~47b!

where Dn
(n)(k) and D̄n

(n)(k) are triangular Toeplitz matrices of the size sn
(n)3sn

(n) :

D̄n
(n)~k!51

1

~k2 k̄n!
0 ... 0

1

~k2 k̄n!2

1

~k2 k̄n!
� ]

] � � 0

1

~k2 k̄n!sn
(n) . ..

1

~k2 k̄n!2

1

~k2 k̄n!

2 ,

~48!

Dn
(n)~k!5S 1

~k2kn!

1

~k2kn!2 ...
1

~k2kn!sn
(n)

0 � � ]

] �

1

~k2kn!

1

~k2kn!2

0 ... 0
1

~k2kn!

D .

Vectors upi
(n,n)&,^ p̄i

(n,n)u,^qi
(n,n)u,uq̄i

(n,n)& ( i 51, . . . ,sn
(n)) are independent of k. In addition, for

each n, vectors$up1
(1,n)&, . . . ,up

1
(r 1

(n) ,n)
&% and $^ p̄1

(1,n)u, . . . ,̂ p̄
1
(r 1

(n) ,n)u% are linearly independent
respectively.

Proof: Again we will rely on the induction argument. As it was already mentioned, the gen
soliton matrixG(k) corresponding to several distinct zeros can be represented as a product~45! of
individual soliton matrices~27! for each zero. For clarity reason and simplicity of the presenta
we will give detailed calculations for the simplest case of just one product in~45!. Then we will
show how to generalize the calculations. Consider soliton matrixG(k) for two pairs of distinct
higher-order zeros (k1 ,k̄1) and (k2 ,k̄2). We haveG(k)5G1(k)G2(k) and

G~k!5S I 1
A1

k2 k̄1

1•••1
An1

~k2 k̄1!n1
D S I 1

B1

k2 k̄2

1•••1
Bn2

~k2 k̄2!n2
D . ~49!
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Herenj ( j 51,2) is the number of simple matrices in the product representation~27! for G j . Due
to Lemma 1, the coefficientsAj andBj are given by formulas similar to~36!:

Aj5 (
n51

r 1
(1)

(
l 51

sn
(1)

112 j

uq̄l
(n,1)&^ p̄s

n
(1)122 j 2 l

(n,1) u, ~50!

Bj5 (
n51

r 1
(2)

(
l 51

sn
(2)

112 j

uq̄l
(n,2)&^ p̄s

n
(2)122 j 2 l

(n,2) u. ~51!

On the other hand, by expanding formula~49! into the partial fractions we get

G~k!5I 1
Ã1

k2 k̄1

1¯1
Ãn1

~k2 k̄1!n1

1
B̃1

k2 k̄2

1¯1
B̃n

~k2 k̄2!n2

. ~52!

Consider first the coefficientsÃj . Multiplication by (k2 k̄1)n1 of both formulas~49! and~52! and
taking derivatives atk5 k̄1 using the Leibniz rule gives

Ãn12 l5
1

l ! H dl

dkl ~k2 k̄1!n1G~k!J
k5 k̄1

5(
j 50

l An12 j

~ l 2 j !!

d( l 2 j )G2

dk( l 2 j ) ~ k̄1!. ~53!

In a similar way we get

B̃n22 l5(
j 50

l
d( l 2 j )G1

dk( l 2 j ) ~ k̄2!
Bn22 j

~ l 2 j !!
. ~54!

Now substituting Eqs.~50! and ~51! into ~53! and ~54! and defining new vectors

^p! m
(n,1)u5 (

j 50

m21

^ p̄m2 j
(n,1)u

1

j !

djG2

dkj ~ k̄1!, m51,...,sn
(1) , ~55!

and

uq! m
(n,2)&5 (

j 50

m21
1

j !

djG1

dkj ~ k̄2!uq̄m2 j
(n,2)&, m51,...,sn

(2) , ~56!

we find that

Ãj5 (
n51

r 1
(1)

(
l 51

sn
(1)

112 j

uq̄l
(n,1)&^p! s

n
(1)122 j 2 l

(n,1) u, ~57!

B̃j5 (
n51

r 1
(2)

(
l 51

sn
(2)

112 j

uq! l
(n,2)&^ p̄s

n
(2)122 j 2 l

(n,2) u, ~58!

which give precisely the needed representation~46!. Note from definitions~55! and ~56! that
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@^p! 1
(n,1)u, . . . ,̂ p! r

1
(1)

(n,1)u#5@^ p̄1
(n,1)u, . . . ,̂ p̄r

1
(1)

(n,1)u#G2~ k̄1!

and

@ uq! 1
(n,2)&, . . . ,uq! r

1
(2)

(n,2)
&] 5G1~ k̄2!@ uq̄1

(n,2)&, . . . ,uq̄r
1
(2)

(n,2)
&].

Due to Lemma 1, vectors$^ p̄1
(n,1)u, . . . ,̂ p̄r

1
(1)

(n,1)u% and $uq̄1
(n,2)&, . . . ,uq̄r

1
(2)

(n,2)
&% are linearly indepen-

dent respectively. In addition, matricesG1( k̄2) andG2( k̄1) are nondegenerate. Thus new vecto
$^p! 1

(n,1)u, . . . ,̂ p! r
1
(1)

(n,1)u% and $uq! 1
(n,2)&, . . . ,uq! r

1
(2)

(n,2)
&% are linearly independent respectively as we

This completes the proof of Lemma 2 for two pairs of higher-order zeros.
It is easy to see that the above procedure of redefining the vectors in the blocks corresp

to different zeros will also work in the general case, whenG1(k) is replaced by the produc
G1(k)¯Gn(k), andG2(k) replaced byGn11(k). In this case, the sum over all distinct poles w
be present in the left parentheses in formula~49!, and consequently there will be more terms
formula ~52!. Formula~53! will be valid for coefficientsÃ of each zero, and formula~54! remains
valid as well. Thus by defining vectors^p! m

(n, j )u by formula~55! for each zerokj (1< j <n), and
defining vectorsuq! m

(n,n11)& by formula ~56! for zero kn11 , we can show that the matrixG(k)
consisting ofn11 products ofG j (k) can be put in the required form~46!. This induction argu-
ment then completes the proof of Lemma 2. Q.E.

The notations in the representation~46! for soliton matrices with several zeros are getti
complicated. To facilitate the presentations of results in the remainder of this paper, let us
mulate the representation~46!. For this purpose, we definer 15r 1

(1)1¯1r 1
(NZ) , wherer 1

(n)’s are
as given in Lemma 2. Then we replace the double summations in Eq.~46! with single ones,

G~k!5I 1 (
n51

r 1

S̄n , G21~k!5I 1 (
n51

r 1

Sn . ~59!

Inside these single summations, the firstr 1
(1) terms are blocks of type~47! for the first pair of zeros

(k1 ,k̄1), the nextr 1
(2) terms are blocks of type~47! for the second pair of zeros (k2 ,k̄2), and so on.

Block matricesSn and S̄n can be written as

S̄n5(
l 51

sn

(
j 51

l uq̄ j
(n)&^ p̄l 112 j

(n) u
(k2k̄n)sn112 l 5(uq̄sn

(n)&,...,uq̄1
(n)&)D̄n~k!S ^ p̄1

(n)u
]

^ p̄sn

(n)u
D , ~60a!

Sn5(
l 51

sn

(
j 51

l upl 112 j
(n) &^qj

(n)u
~k2kn!sn112 l 5~ up1

(n)&,...,upsn

(n)&)Dn~k!S ^qsn

(n)u

]

^q1
(n)u

D , ~60b!

where matricesDn(k) and D̄n(k) are triangular Toeplitz matrices of the sizesn3sn :

D̄n~k!5S 1

~k2k̄n!
0 ... 0

1

~k2k̄n!2

1

~k2k̄n!
� ]

] � � 0

1

~k2k̄n!sn
...

1

~k2k̄n!2

1

~k2k̄n!

D ,
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~k2kn!
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~k2kn!2 ...
1

~k2kn!sn

0 � � ]

] �

1

~k2kn!

1

~k2kn!2 D . ~61!
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0 ... 0
1

~k2kn!

Here

kn5kj , if 11(
l 51

j 21

r 1
( l )<n<(

l 51

j

r 1
( l ) ~1< j <NZ!. ~62!

In other words,kn5k1 for 1<n<r 1
(1) , kn5k2 for r 1

(1)11<n<r 1
(1)1r 1

(2) , etc. In addition,

$sn ,11( l 51
j 21r 1

( l )<n<( l 51
j r 1

( l )% is the block sequence of thej th pair of zeros (kj ,k̄ j ). This new
representation~59! is equivalent to~46!, but it proves to be helpful in the calculations below.

We note that the simplified way of block numeration used in the representation~59! reflects
the important property of the solitons matrices: the soliton matrices preserve their form if so
the zeros coalesce~or, vice versa, a zero splits itself into two or more zeros!. The only thing that
does change is the association of a particularn-block to the pair of zeros.

The representation~59! @or ~46!# is but the first step towards the necessary formulas for
soliton matrices. Indeed, there are twice as many vectors in the expressions~59! for G(k) and
G21(k) as compared to the total number of vectors in the constituent matrices in the prod
representations of the type~27! for each pair of zeros. As the result, only half of the vec
parameters, sayupi

(n)& and ^ p̄i
(n)u, are free. To derive the formulas for the rest of the vec

parameters in~59! we can use the identityG(k)G21(k)5G21(k)G(k)5I . First of all, let us give
the equations for the free vectors themselves.

Lemma 3: The vectorsup1
(n)&,...,upsn

(n)& and ^ p̄1
(n)u,... ,̂ p̄sn

(n)u from eachnth block in the repre-

sentation (59)–(60) satisfy the following linear systems of equations:

Gn~kn!S up1
(n)&
]

upsn

(n)&
D 50, Gn~k![S G 0 ... 0

1

1!

d

dk
G G � ]

] � � 0

1

~sn21!!

dsn21

dksn21 G ...
1

1!

d

dk
G G

D , ~63!

(^ p̄1
(n)u,... ,̂ p̄sn

(n)u!Ḡn~ k̄n!50, Ḡn~k![S G21 1

1!

d

dk
G21 ...

1

~sn21!!

dsn21

dksn21 G21

0 G21
� ]

] � �

1

1!

d

dk
G21

0 ... 0 G21

D .

~64!

Remark:Note that the matricesGn(k) andGn
21(k) have block-triangular Toeplitz forms, i.e

they have the same~matrix! element along each diagonal.
Proof: The derivation of the systems~63!–~64! exactly reproduces the analogous derivation

Ref. 22 for the case of elementary zeros~as the equations for thenth block resemble analogou
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equations for a single block corresponding to a pair of elementary zeros!. For instance, the system
~63! is derived by considering the poles ofG(k)G21(k) at k5kn , starting from the highest pole
and using the representation~59!–~60! for G21(k). The details are trivial and will not be repro
duced here. Note that there may be several sets of vectors~from differentn-blocks of the same pai
of zeros! which satisfy similar equations if the geometric multiplicity of this pair of zeros is hig
than 1. Q.E.D.

Now let us express theuq̄& and^qu vectors in the expressions~59!–~60! for G(k) andG21(k)
through theup& and^ p̄u vectors. This will lead to the needed representation of the soliton mat
given through theup& and^ p̄u vectors only. It is convenient to formulate the result in the followi
lemma.

Lemma 4: The general soliton matrices for several pairs of normal ze

$(k1 ,k̄1),...,(kNZ
,k̄NZ

)% are given by the following formulas:

G~k!5I 2~ up1
(1)&,...,ups1

(1)&,...,up1
(r 1)

&,...,upsr 1

(r 1)
&)K̄21D̄~k!S ^ p̄1

(1)u
]

^ p̄s1

(1)u

]

^ p̄1
(r 1)u
]

^ p̄sr 1

(r 1)u

D , ~65a!

G21~k!5I 2~ up1
(1)&,...,ups1

(1)&,...,up1
(r 1)

&,...,upsr 1

(r 1)
&)D~k!K 21S ^ p̄1

(1)u
]

^ p̄s1

(1)u

]

^ p̄1
(r 1)u
]

^ p̄sr 1

(r 1)u

D , ~65b!

where sn and r1 are the same as in Lemma 2. The matricesD̄(k) and D(k) are block-diagonal:

D̄~k![S D̄1~k! 0

�

0 D̄r 1
~k!
D , D~k![S D1~k! 0

�

0 Dr 1
~k!

D , ~66!

where the triangular Toeplitz matrices Dn̄(k) and Dn(k) are defined in formulas (61). The matri-

ces K̄and K have the following block matrix representation:

K̄[S K̄ (1,1) ... K̄ (1,r 1)

] ]

K̄ (r 1,1) ... K̄ (r 1 ,r 1)
D , K[S K (1,1) ... K (1,r 1)

] ]

K (r 1,1) ... K (r 1 ,r 1)
D , ~67!

with the matrices K̄(n,m) and K(n,m) being given as

K̄ (n,m)5 (
j 50

sn21

(
l 50

sm21
~21! l~ j 1 l !!

j ! l !

H2 j
(n)Q̄l

(n,m)

~km2k̄n! j 1 l 11 ,
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K (n,m)5 (
l 50

sn21

(
j 50

sm21
~21! l~ l 1 j !!

l ! j !

Ql
(n,m)H j

(m)

~ k̄n2km! l 1 j 11 . ~68!

Here $H2sn11
(n) , ...,Hsn21

(n) % is the basis for the space of sn3sn-dimensional Toeplitz matrices

defined as(H j
(n))a,b[da,b2 j . The nonzero elements of matrices Ql̄

(n,m) and Ql
(n,m) are defined as

the inner products between the p-vectors from the blocks with indicesn and m :

Q̄l
(n,m)[S ^ p̄1

(n)u
]

^ p̄sn

(n)u
D ~0,...,0,up1

(m)&,...,upsm2 l
(m) , Ql

(n,m)[S 0
]

0

^ p̄1
(n)u
]

^ p̄sn2 l
(n) u

D ~ up1
(m)&,...,upsm

(m) . ~69!

Remark 1:In the case of a single pair of zeros (k1 ,k̄1) simply replacekm (k̄m) andkn (k̄n)
in formula ~67! by k1 ( k̄1).

Remark 2:In the case of the involution~4! property, the obvious relations hold:

k̄n5kn* , ^ p̄ j
(n)u5upj

(n)&†, D̄n~k!5Dn
†~k* !, K̄ (n,m)5~K (m,n)!†.

Proof: We only need to prove that theuq̄& and^qu vectors in soliton matrices~59! and~60! are
related to theup& and ^ p̄u vectors by

~ uq̄s1

(1)&,...,uq̄1
(1)&,...,uq̄sr 1

(r 1)
&,...,uq̄1

(r 1)
&)K̄52~ up1

(1)&,...,ups1

(1)&,...,up1
(r 1)

&,...,upsr 1

(r 1)
&), ~70!

and

KS ^qs1

(1)u

]

^q1
(1)u
]

^qsr 1

(r 1)u

]

^q1
(r 1)u

D 52S ^ p̄1
(1)u
]

^ p̄s1

(1)u

]

^ p̄1
(r 1)u
]

p̄sr 1

(r 1)u

D , ~71!

where matricesK andK̄ are as given in Eq.~67!. We will give the proof only for Eq.~70!, as the
proof for ~71! is similar. Note that in the case of involution~4!, Eq. ~71! follows from ~70! by
taking the Hermitian conjugate.

To prove Eq.~70!, we consider the corresponding expressions~59! and ~60! for G(k),

G~k!5I 1 (
n51

r 1

~ uq̄sn

(n)&,...,uq̄1
(n)&)D̄n~k!S ^ p̄1

(n)u
]

^ p̄sn

(n)u
D . ~72!

We need to determine theuq̄&-vectors using Eq.~63!. Note that thel th row in them-system~63!
can be written as
 25 Sep 2003 to 132.198.17.127. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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FG~km!,
1

1!

dG

dk
~km!,...,

1

~ l 21!!

dl 21G

dkl 21 ~km!G S upl
(m)&
]

up1
(m)&

D 50 ~73!

for each 1<m<r 1 . When the expression~72! for G(k) is substituted into the above equation, w
get

(
n51

r 1

~ uq̄sn

(n)&,...,uq̄1
(n)&)H D̄n~km!S ^ p̄1

(n)u
]

^ p̄sn

(n)u
D upl

(m)&1
1

1!

dD̄n

dk
~km!S ^ p̄1

(n)u
]

^ p̄sn

(n)u
D upl 21

(m) &1¯

1
1

~ l 21!!

dl 21D̄n

dkl 21 ~km!S ^ p̄1
(n)u
]

^ p̄sn

(n)u
D up1

(m)&J 52upl
(m)& . ~74!

The derivatives ofD̄n(km) can be easily computed as

dl D̄n

dkl ~km!5 (
j 50

sn21
~21! l~ j 1 l !!

j !

H2 j
(n)

~km2k̄n! j 1 l 11 . ~75!

Now it is straightforward to verify that all equations of the type~74! can be united in a single
matrix equation~70! by padding some columns in the summations of~74! by zeros, precisely as i
is done in the definition~69! of Q̄(n,m). As a result we arrive at the relation~70! betweenuq̄& and
up& vectors, where the matrixK̄ is precisely as defined in Lemma 4. Q.E.D

D. Two special cases

Our soliton matrices derived above reproduce all previous results as special cases. The
matrices were previously obtained in two special cases: several pairs of Riemann–Hilber
with equal geometric and algebraic multiplicities,13 and a single pair of elementary higher-ord
zeros.22 In the first case, suppose that the geometric and algebraic multiplicities ofn pairs of
Riemann-Hilbert zeros$(kj ,k̄ j ),1< j <n% are$r ( j ),1< j <n%, respectively. Then the soliton matr
ces have been given before13 ~see also Appendix B in Ref. 33! as

G5I 2 (
i , j 51

n

(
m51

r ( i )

(
l 51

r ( j )
uv i

(m)&~F21! im, j l ^v̄ j
( l )u

k2 k̄ j

, G215I 1 (
i , j 51

n

(
m51

r ( i )

(
l 51

r ( j )
uv j

( l )~F21! j l ,im^v̄ i
(m)u

k2kj
,

~76!

where r ( j ) vectors $uv j
( l )&,1< l<r ( j )% and $^v̄ j

( l )u,1< l<r ( j )% are in the kernels ofG(kj ) and
G21( k̄ j ), respectively,

G~kj !uv j
( l )&50, ^v̄ j

( l )uG21~ k̄ j !50, l 51, . . . ,r ( j ), ~77!

and

Fim, j l 5
^v̄ i

(m)uv j
( l )&

kj2 k̄i

. ~78!

Moreover,
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atrices

d

just

ero is
the
s

.

one

oliton
rty

e
t.
s

n

he

he

4623J. Math. Phys., Vol. 44, No. 10, October 2003 General soliton matrices

Downloaded
detG5)
j 51

n S k2kj

k2 k̄ j
D r ( j )

.

The above special soliton matrices can be easily retrieved from the general soliton m
~65!–~69! of Lemma 4. Indeed, in this special case, the block sequence of a pair of zeros (kj ,k̄ j )
is a row of 1’s of lengthr ( j ). Thussn51 for all n’s. Consequently, matricesDn andD̄n in Eq. ~66!

have dimension 1. In addition, matricesK (n,m) andK̄ (n,m) in Eq. ~68! also have dimension 1, an
the summations in their definitions can be dropped sincel 50 and j 50 there. Hence, we get

K̄ (n,m)5~K (m,n)!†5
^ p̄1

(n)up1
(m)&

km2k̄n
,

see ~69!. Relating up& vectors $up1
(n)&,11( l 51

j 21r ( l )<n<( l 51
j r ( l )% to $uv j

( l )&,1< l<r ( j )% and
$^p1

(n)u,11( l 51
j 21r ( l )<n<( l 51

j r ( l )% to $^v j
( l )u,1< l<r ( j )% for each j 51, . . . ,n, and recalling the

definition ~62! of k’s, we readily find that our general representation~65! reduces to~76!. We note
by passing that the soliton matrices~76!–~78! cover the case of simple zeros, where there is
one vector in each kernel in~77!.

Our second example is a single pair of elementary higher-order zeros. A higher-order z
called elementary if its geometric multiplicity is 1.22 This case has been extensively studied in
literature before~see Refs. 15, 17, 18, 22! for different integrable PDEs. The soliton matrice
having similar representation as~65!–~69! for this case were derived in our previous publication22

The only difference between that paper’s representation and the present one~65!–~69! is the
definition of the matricesK and K̄. However, in this special case, these matrices have just
block each, i.e.,K (1,1) and K̄ (1,1), since there is just onen block in the soliton matrices. By
comparison of both definitions one can easily establish their equivalence.

E. Invariance properties of soliton matrices

In this section, we discuss the invariance properties of soliton matrices. When the s
matrix is in the product representation~27! for a single pair of zeros, the invariance prope
means that one can choose anyr 1 linearly independent vectors in the kernels ofG(k1) and
G21( k̄1), or more generally, one can choose anyr l (1< l<n) linearly independent vectors in th
kernels of (Gx1

21
¯x l 21

21 )(k1) and (x l 21¯x1G21)( k̄1), and the soliton matrix remains invarian
In other words, given the soliton matrixG(k), for a fixed set ofr l linearly independent vector
uv i l & (1< i<r l) in the kernels of (Gx1

21
¯x l 21

21 )(k1) and another fixed set ofr l linearly inde-
pendent vectorŝv̄ i l u (1< i<r l) in the kernels of (x l 21¯x1G21)( k̄1), new sets of vectors

@ uṽ1l&,uṽ2l&, . . . ,uṽ r l ,l&] 5@ uv1l&,uv2l&, . . . ,uv r l ,l&]B ~79!

and

F ^v! 1l u
^v! 2l u
]

^v! r l ,l u
G5B̄F ^v̄1l u

^v̄2l u
]

^v̄ r l ,l u
G , ~80!

whereB and B̄ are arbitraryk-independent nondegenerater l3r l matrices, give the same solito
matrix G(k). This invariance property is obvious from definitions~25! for projector matrices. Note
that the invariance transformations~79! and ~80! are the most general automorphisms of t
respective kernels~i.e., null spaces! of (Gx1

21
¯x l 21

21 )(k1) and (x l 21¯x1G21)( k̄1).
Now let us determine the total numberNfree of free complex parameters characterizing t

higher-order soliton solution. For a single pair of the higher-order zeros (k1 ,k̄1) in the case with
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no involution, it is given by the total numberNtot (52N( l 51
n r l12) of all complex constants in al

the linearly independent vectors in the above null spaces and the pair of zeros (k1 ,k̄1), minus the
total numberNinv (52( l 51

n r l
2) of the free parameters in the invariance matrices~79! and ~80!.

Thus, in the case with no involution, we have

Nfree[Ntot2Ninv52N(
l 51

n

r l1222(
l 51

n

r l
2 . ~81!

Note that the total number ofuv& or ^v̄u vectors in the product representation~27!, given by the
sum ( l 51

n r l , is equal to the algebraic order of the pair of zeros (k1 ,k̄1). In the case of the
involution ~4!, the numberNfree is reduced by half. When the soliton matrices have several p
of zeros as in the product representation~45!, the invariance property is similar, and the tot
number of free soliton parameters is given by the sum of the right-hand side~rhs! of formula ~81!
for all distinct pairs of zeros.

By analogy, the invariance properties for the summation representation~65! of the soliton
matrices are defined as preserving the form of the soliton matrices as well as the equ
defining theup& and^ p̄u vectors~63! and~64!. The equations defining the transformations betwe
different sets ofp vectors of the same invariance class must be linear, since all the setsp
vectors in the invariance class satisfy equations~63! and~64! for a fixedsoliton matrix—i.e., the
invariance transformations are a subset of transformations between solutions to a set oflinear
equations. Thus the most general form of the invariance is given by two linear transformati
one for up& vectors and one for̂p̄u vectors:

~ u p̃1
(1)&,...,u p̃s1

(1)&,...,u p̃1
(r 1)

&,...,u p̃sr 1

(r 1)
&)5~ up1

(1)&,...,ups1

(1)&,...,up1
(r 1)

&,...,upsr 1

(r 1)
&)B ~82!

and

S ^p! 1
(1)u
]

^p! s1

(1)u

]

^p! 1
(r 1)u
]

^p! sr 1

(r 1)u

D 5B̄S ^ p̄1
(1)u
]

^ p̄s1

(1)u

]

^ p̄1
(r 1)u
]

^ p̄sr 1

(r 1)u

D . ~83!

Different from the product representation of the soliton matrices, the transformation matriB

andB̄ in Eqs.~82! and~83! cannot be arbitrary in order to keep the soliton matrices~65! and Eqs.
~63! and ~64! invariant. Let us call such matricesB and B̄ which keep the soliton matrices~65!
invariant as the invariance matrices. The form of invariance matrices can be determined
easily by considering the invariance of Eqs.~63! and ~64!.

Recall from Lemma 3 that allup& vectors in the soliton matrix~65! satisfy the equation

GBS up1
(1)&
]

ups1

(1)&

]

up1
(r 1)

&
]

upsr 1

(r 1)
&

D 50, GB[S G1~k1! 0

�

0 Gr 1
~k r 1

!
D , ~84!
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where Gn(kn) is the lower-triangular Toeplitz matrix defined in Eq.~63!. The matrixB is an
invariance matrix if and only if the above equation is still satisfied when theup& vectors in Eq.
~84! are replaced by the transformed vectorsu p̃& in Eq. ~82!, and the resulting matricesK andK̄
are nondegenerate@see Eq.~65!#. Note that the transformation~82! can be rewritten in the fol-
lowing form:

S u p̃1
(1)&
]

u p̃s1

(1)&

]

u p̃1
(r 1)

&
]

u p̃sr 1

(r 1)
&

D 5BTS up1
(1)&
]

ups1

(1)&

]

up1
(r 1)

&
]

upsr 1

(r 1)
&

D , ~85!

where the superscript ‘‘T’’ stands for the matrix transposition. Since the originalup& vectors can be
chosen arbitrarily~the matrixGB is determined subsequently from theseup& vectors as well as the
^ p̄u vectors!, in order for the aboveu p̃& vectors~85! to satisfy Eq.~84! as well, the necessary an
sufficient condition is thatGB andBT commute, i.e.,

GB•BT5BT
•GB , ~86!

andB is nondegenerate. The requirement for the nondegeneracy ofB is needed in order for the

resulting matricesK̃ andK! to be nondegenerate@see Eq.~96!#. Similarly, we can show that the
matrix B̄ in Eq. ~83! is an invariance matrix if and only ifḠB and B̄T commute,

ḠB•B̄T5B̄T
•ḠB , ~87!

and B̄ is nondegenerate. Here the block-diagonal matrixḠB is

ḠB[S Ḡ1~k1! 0

�

0 Ḡr 1
~k r 1

!
D , ~88!

and upper-triangular Toeplitz matricesḠn(kn) have been defined in Eq.~64!. Note that matrices
GB andḠB have exactly the same forms asD̄(k) andD(k), respectively. Thus invariance matrice
BT and B̄T commute withD̄(k) andD(k) as well:

D̄~k!•BT5BT
•D̄~k!, D~k!•B̄T5B̄T

•D~k!. ~89!

In addition, sinceD T has the same form asD̄, invariance matricesB andB̄ also commute withD
andD̄:

B•D~k!5D~k!•B, B̄•D̄~k!5D̄~k!•B̄. ~90!

The form of these invariance matrices are easy to determine. First of all, the commuta
relations~90! demand that the invariance matrixB has a block-diagonal form with each bloc
corresponding to a pair of zeros:
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B5S B1

B2

�

BNZ

D . ~91!

HereBn is a square matrix associated with thenth pair of zeros (kn ,k̄n). The form of each matrix
Bn is readily found to be

Bn5S Bn
(1,1) ... B

n

(1,r 1
(n))

] ]

B
n

(r 1
(n),1) ... B

n

(r 1
(n) ,r 1

(n))
D , ~92!

whereBn
(n,m) is a sn

(n)3sm
(n) matrix of the following type:

Bn
(n,m)5S 0 . . . 0 b1 b2 . . . bs

n
(n)21 bs

n
(n)

0 � � 0 b1 b2 �
bs

n
(n)21

] � � � � � � ]

0 � � � � 0 b1 b2

0 . . . . . . . . . . . . . . . 0 b1

D , n>m, ~93a!

Bn
(n,m)51

c1 c2 . . . cs
m
(n)21 cs

m
(n)

0 c1 c2 �
cs

m
(n)21

] 0 � � ]

] � � � c2

] � � 0 c1

] � � � 0

] � � � ]

0 . . . . . . . . . 0

2 , n<m, ~93b!

s1
(n)>s2

(n)> . . . >sr
1
(n)

(n)
is the block sequence of zeros (kn ,k̄n) as in Lemma 2~see Definition 2!,

andbj ,cj are arbitrary complex constants which are generally different in different submat
Bn

(n,m) . The invariance matrixB̄ has the form ofBT ~in general, with arbitrary elements unrelate
to those ofB).

The above forms~92! and~93! of the invariance matricesBn andB̄n follow immediately from
the following argument. Consider, for instance, the matrixBn . The commutability relation with
the part of the matrix D(k) corresponding to thenth pair of zeros, i.e.,D (n)(k)
5diag@D1

(n)(k), . . . ,Dr
1
(n)

(n)
(k)# where matricesDn

(n)(k) are given by Eq.~48!, produces the following

set of independent matrix equations:

Dn
(n)~k!Bn

(n,m)5Bn
(n,m)Dm

(n)~k!, n,m51, . . . ,r 1
(n) . ~94!

For n5m, the above equations are equivalent to the commutability conditions for the s
elementary higher-order zero considered in Ref. 22, thus the form~93! for the diagonal blocks
Bn

(n,n) follows accordingly. Consider now the case whenn.m ~the other case can be consider
similarly!. We have thensn

(n)<sm
(n) , thus the square matrixDm

(n)(k) contains the matrixDn
(n)(k) in
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its lower right corner@consult the definition~48!#. It is easy to conclude, first of all, that the firs
m2n columns of the matrixBn

(n,m) are identically zero, otherwise on the rhs of Eq.~94! we would
have higher powers of (k2kn)21 than the highest power of this quantity on the left-hand s
~lhs!. Then if we denote the nonzero part ofBn

(n,m) as B̂n
(n) , the condition~94! becomes

Dn
(n)~k!B̂n

(n)5B̂n
(n)Dn

(n)~k!,

which is equivalent to the one considered above in the case ofm5n. Thus the form~93a! for the
off-diagonal blocks of the invariance matrixBn

(n,m) follows as well. Q.E.D.
From the above explicit expressions~91!–~93! for invariance matrices in the summatio

representation~65!, it is easy to see that the total numberNinv of free complex constants in thes
invariance matrices coincides with that in the product representation~27! and~45! @see Eq.~81!#.
Indeed consider for simplicity just a single pair of zeros. In the case with no involution~4!, the
total numberNinv of free complex constants in the invariance matrices~91!–~93! is

Ninv52(
n51

r 1

~2r 122n11!sr 12n11

52 (
m51

r 1

~2m21!sm

52S n (
m51

r n

~2m21!1~n21! (
m5r n11

r n21

~2m21!1¯1 (
m5r 211

r 1

~2m21!D 52(
l 51

n

r l
2 ,

~95!

which is exactly the same as that in Eq.~81! for Ninv . Here we have used the fact that the numb
of blocks with sizes@1,2,3,. . . ,n# are given by the differences of the ranks@r 12r 2 ,r 2

2r 3 , . . . ,r n212r n ,r n# ~see the end of the proof of Lemma 1 in Sec. III B!.
This result is not surprising since the invariance properties of the soliton matrices i

summation representation originate from the invariance properties in the product represen
that is why the respective invariance matrices have the same total number of free para
Consequently, the total number of free complex parameters in the summation representati~65!
is the same as in the product representation, as expected. In the case with no involution for a
pair of zeros it is given by the same Eq.~81!.

Invariance matrices have many important properties. These include~i! the identity matrixI is
an invariance matrix;~ii ! if B is an invariance matrix, so iscB, wherec is any nonzero complex
constant;~iii ! if B is an invariance matrix, so isB21; ~iv! if B1 and B2 are two invariance
matrices, so areB16B2 andB1•B2 . In the former case,B16B2 should be nondegenerate.

Last, we note that if matricesB and B̄ satisfy the commutability relations~90!, the transfor-
mations~82! and~83! indeed keep the soliton matrices~65! invariant. The proof uses the fact tha
under the transformation~82! whereB is an invariance matrix~the ^ p̄u vectors are held fixed!,

matricesK andK̄ are transformed to

K̃5KB, K! 5K̄B ~96!

respectively. Similarly, under the transformation~83! while keeping theup& vectors fixed, matrices

K andK̄ are transformed to

K̃5B̄K, K! 5B̄ K̄. ~97!
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For a single pair of elementary higher-order zeros these facts have been proved in Ref. 2
proof for the present general case is given below. Since the proofs for Eqs.~96! and ~97! are
similar, we only consider Eq.~96!.

To prove the transformation~96!, we need to recall how matricesK andK̄ are obtained. The

matrix K̄ is derived from Eq.~84!. Comparing this equation with~70!, we find that

~GB2I !S up1
(1)&
]

ups1

(1)&

]

up1
(r 1)

&
]

upsr 1

(r 1)
&

D 5K̄TS uq̄s1

(1)&

]

uq̄1
(1)&
]

uq̄sr 1

(r 1)
&

]

uq̄1
(r 1)

&

D .

Now using the form~85! of the transformation~82! and recalling thatBT andGB2I commute, we

readily find that (K! )T5BTK̄T, thusK! 5K̄B. As about the matrixK, it is derived from the equation

~^ p̄1
(1)u, . . . ,̂ p̄s1

(1)u, . . . ,̂ p̄1
(r 1)u, . . . ,̂ p̄sr 1

(r 1)u!ḠB50,

whereḠB is given by Eqs.~63! and ~88!. Recall thatG21(k) is given by Eq.~59!, i.e.,

G21~k!5I 1~ up1
(1)&,...,ups1

(1)&,...,up1
(r 1)

&,...,upsr 1

(r 1)
&)D~k!S ^qs1

(1)u

]

^q1
(1)u
]

^qsr 1

(r 1)u

]

^q1
(r 1)u

D .

Thus, using the transformation~82! and noting thatB andD commute@see Eq.~90!#, we readily

find thatK̃5KB, i.e., the equation~96! holds.
Because of Eq.~96! and the commutability relation~90!, we see that soliton matricesG(k)

andG21(k) in Eq. ~65! indeed remain invariant under the transformation~82!. Analogously, these
soliton matrices are also invariant under the transformation~83! if matrix B̄ is an invariance
matrix. In the case of involution~4!, transformations~82! and ~83! need to be performed simul
taneously sinceup& and^ p̄u vectors are related by the Hermitian operation. Under these comb

transformations, matrixK transforms toK̃5B̄KB, thus soliton matrices~65! remain invariant as
well.

The invariance matrices can be used to reduce the number of the free parameters in the
solution to the minimum, which is given by the formula~81!. They are also used to reduce th
(x,t) dependence of the soliton matrices to the simplest possible form~see the next section!.

F. Spatial and temporal evolutions of soliton matrices

Finally, we derive the (x,t) dependence of the free vector parameters which enter the so
matrix ~65!. The idea is similar to the one used in the derivation of Eqs.~20! in Sec. II. Our
starting point is the fact that the soliton matrixG(k,x,t) satisfies Eqs.~5! and~6! with potentials
U(k,x,t) andV(k,x,t):
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]xG~k,x,t !5G~k,x,t !L~k!1U~k,x,t !G~k,x,t !, ~98a!

] tG~k,x,t !5G~k,x,t !V~k!1V~k,x,t !G~k,x,t !. ~98b!

First we need to find the equations for the triangular block–Toeplitz matricesGn andḠn . To this
goal one needs to differentiate Eqs.~98! with respect tok up to the (sn21)th order. It is easy to
check that the equations forGn have the same form as Eqs.~98!,

]xGn~k,x,t !5Gn~k,x,t !Ln~k!1Un~k,x,t !Gn~k,x,t !, ~99a!

] tGn~k,x,t !5Gn~k,x,t !Vn~k!1Vn~k,x,t !Gn~k,x,t !. ~99b!

HereLn , Vn , Un , andVn are lower-triangular block–Toeplitz matrices,

Ln[S L 0 ... 0

1

1!

d

dk
L � � ]

] � L 0

1

~sn21!!

dsn21

dksn21 L ...
1

1!

d

dk
L L

D ,

~100!

Vn[S V 0 ... 0

1

1!

d

dk
V � � ]

] � V 0

1

~sn21!!

dsn21

dksn21 V ...
1

1!

d

dk
V V

D ,

Un[S U 0 ... 0

1

1!

d

dk
U � � ]

] � U 0

1

~sn21!!

dsn21

dksn21 U ...
1

1!

d

dk
U U

D ,

~101!

Vn[S V 0 ... 0

1

1!

d

dk
V � � ]

] � V 0

1

~sn21!!

dsn21

dksn21 V ...
1

1!

d

dk
V V

D .

Indeed, this is due to the fact that the matrix multiplication in~99! exactly reproduces the Leibni
rule for higher-order derivatives of a product. Similarly, using the equations forG21,

]xG
21~k,x,t !52L~k!G21~k,x,t !2G21~k,x,t !U~k,x,t !, ~102a!

] tG
21~k,x,t !52V~k!G21~k,x,t !2G21~k,x,t !V~k,x,t !, ~102b!
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one finds that

]xḠn~k,x,t !52L̄n~k!Ḡn~k,x,t !2Ḡn~k,x,t !Ūn~k,x,t !, ~103a!

] tḠn~k,x,t !52V̄n~k!Ḡn~k,x,t !2Ḡn~k,x,t !V̄n~k,x,t !, ~103b!

whereL̄n , V̄n , Ūn , andV̄n are upper-triangular block–Toeplitz matrices:

L̄n5S L
1

1!

d

dk
L ...

1

~sn21!!

dsn21

dksn21 L

0 L � ]

] � �

1

1!

d

dk
L

0 ... 0 L

D ,

~104!

V̄n5S V
1

1!

d

dk
V ...

1

~sn21!!

dsn21

dksn21 V

0 V � ]

] � �

1

1!

d

dk
V

0 ... 0 V

D ,

Ūn5S U
1

1!

d

dk
U ...

1

~sn21!!

dsn21

dksn21 U

0 U � ]

] � �

1

1!

d

dk
U

0 ... 0 U

D ,

~105!

V̄n5S V
1

1!

d

dk
V ...

1

~sn21!!

dsn21

dksn21 V

0 V � ]

] � �

1

1!

d

dk
V

0 ... 0 V

D .

To obtain the (x,t) dependence of thep vectors, let us differentiate Eqs.~63! and ~64!. Utilizing
Eqs.~100! and ~103!, we find that

Gn~kn!H @]x1Ln~kn!#S up1
(n)&
]

upsn

(n)&
D J 50 ~106!

and
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Gn~kn!H @] t1Vn~kn!#S up1
(n)&
]

upsn

(n)&
D J 50. ~107!

Due to the invariance properties~the explanation will follow below!, we can set the quantitie
inside the curly brackets of Eqs.~106! and ~107! to be zero without any loss of generality:

@]x1Ln~kn!#S up1
(n)&
]

upsn

(n)&
D 50, @] t1Vn~kn!#S up1

(n)&
]

upsn

(n)&
D 50. ~108!

The reason for it is the uniqueness of solution to the Riemann–Hilbert problem for a given
the spectral data. Thus, the (x,t) dependence of theup& vectors is

S up1
(n)&
]

upsn

(n)&
D 5exp$2Ln~kn!x2Vn~kn!t%S up01

(n)&
]

up0sn

(n) &
D . ~109!

By similar arguments, the (x,t) dependence of thêp̄u vectors is given as

~^ p̄1
(n)u,... ,̂ p̄sn

(n)u!5~^ p̄01
(n)u,... ,̂ p̄0sn

(n) u!exp$L̄n~ k̄n!x1V̄n~ k̄n!t%. ~110!

Here the subscript ‘‘0’’ is used to denote constant vectors. The exponential functions in the
two equations can be readily determined. Indeed, by using the property that the opera
raising a diagonal matrix@such asL(k)x1V(k)t here# to the exponent commutes with th
construction of the related triangular block–Toeplitz matrix~see appendix in Ref. 22!, we find that

exp$2Ln~kn!x2Vn~kn!t%5S E~k1! 0 ... 0

1

1!

d

dk
E~k1! � � ]

] � E~k1! 0

1

~sn21!!

dsn21

dksn21 E~k1! ...
1

1!

d

dk
E~k1! E~k1!

D
~111a!

and

exp$L̄n~ k̄n!x1V̄n~ k̄n!t%5S E21~ k̄1!
1

1!

d

dk
E21~ k̄1! ...

1

~sn21!!

dsn21

dksn21 E21~ k̄1!

0 E21~ k̄1! � ]

] � �

1

1!

d

dk
E21~ k̄1!

0 ... 0 E21~ k̄1!

D ,

~111b!

whereE(k)[exp$2L(k)x2V(k)t%.
Given the spatial and temporal evolutions of vectorsup& and^ p̄u, as in Eqs.~109!–~111!, the

associated soliton matrices~65! can be constructed. Eventually, the soliton solutions are der
from Eq.~5! by taking the limitk→`. The soliton solutions for the three-wave interaction mo
are given by Eqs.~12! and ~13!. The corresponding eigenfunctions of theN-dimensional
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Zakharov–Shabat spectral problem with these soliton~reflectionless! potentials are then simply
the column vectors of the soliton matricesG(k) andG21(k) given by~65! with k either equal to
one of the zeros (kj , k̄ j ) ~the eigenfunctions of the discrete spectrum! or taking values on the rea
axis ~the eigenfunctions of the continuous spectrum!.

Last, let us show that other solutions to Eqs.~106! and ~107!, different from those given by
Eq. ~108!, will give the same soliton matrices. Notice that Eqs.~106! for all n blocks can be
written in the following compact form:

GB~]x1VB!S up1
(1)&
]

ups1

(1)&

]

up1
(r 1)

&
]

upsr 1

(r 1)
&

D 50, VB[S V1~k1! 0

�

0 Vr 1
~k r 1

!
D . ~112!

According to the invariance properties discussed in the Sec. III E, any two vectors in the ker
matrix GB are linearly dependent. Thus the most generalup& solutions to Eq.~106! are such that

~]x1VB!S u p̃1
(1)&
]

u p̃s1

(1)&

]

u p̃1
(r 1)

&
]

u p̃sr 1

(r 1)
&

D 5BT~x,t !S u p̃1
(1)&
]

u p̃s1

(1)&

]

u p̃1
(r 1)

&
]

u p̃sr 1

(r 1)
&

D , ~113!

whereB is an invariance matrix which depends onx andt in general@see Eq.~85!#. To show that
theseu p̃& vectors give the same soliton matrices~65! as theup& vectors from Eq.~108!, we define
a matrix functionG(x,t) which satisfies the following differential equation and initial conditio

]xG~x,t !5BT~x,t !G~x,t !, Gux505I .

Because the matrixB here is an invariance matrix andG(x50)5I , obviously the functionG(x,t)
is an invariance matrix as well~note thatG is always nondegenerate by construction!. In addition,
G21 is also an invariance matrix. Now for any solutionu p̃& of Eq. ~112!, we define new vectors
up& as

S up1
(1)&
]

ups1

(1)&

]

up1
(r 1)

&
]

upsr 1

(r 1)
&

D 5G21S u p̃1
(1)&
]

u p̃s1

(1)&

]

u p̃1
(r 1)

&
]

u p̃sr 1

(r 1)
&

D .

Then theseup& vectors satisfy the first equation in~108!. This can be checked directly by subs
tuting the above equation into~108! and noting that matricesG andVB commute by virtue of Eq.
~86! and the fact that matricesVB andGB have identical form. SinceG21 is an invariance matrix,
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the up& andu p̃& vectors, related as above, naturally give the same soliton matrices~65!. Thus there
is no loss of generality in picking the particular solutions of Eq.~106! given by Eqs.~108!.

IV. APPLICATIONS TO THE THREE-WAVE INTERACTION SYSTEM

To illustrate the above general results, we apply them to the three-wave interaction mod~14!
and display various higher-order soliton solutions. In this case, the involution property~4! holds,
thus all zeros are normal and appear in complex conjugate pairs. The soliton matrixG(k) is given
by Eq. ~65a!, where^ p̄u5up&†, and the (x,t) evolution of up& vectors is given by Eqs.~109! and
~111a!. The general higher-order soliton solutions of the three-wave system are then given
~13!, where

F (1)5G (1)52~ up1
(1)&,...,ups1

(1)&,...,up1
(r 1)

&,...,upsr 1

(r 1)
&)K̄21S ^ p̄1

(1)u
]

^ p̄s1

(1)u

]

^ p̄1
(r 1)u
]

^ p̄sr 1

(r 1)u

D , ~114!

and matrixK̄ is given in Eq.~67!. In all our solutions, we fix the parameters in the dispersion la
~11! as (a1 ,a2 ,a3)5(1,0.5,20.5) and (b1 ,b2 ,b3)5(1,1.5,0.5).

A. Soliton solutions for a single pair of nonelementary zeros

First, we derive soliton solutions corresponding to a single pair of nonelementary zer
particular, we consider the rank sequence$1, 2% of a pair of zeros (k1 ,k̄1). In this case,r 152 and
r 251. Using formula~81! ~for the case of involution! we get the number of free complex param
eters in the soliton solution:

Nfree53~211!112~411!5102555.

There are threeup& vectors,up1
(1)&, up2

(1)&, andup1
(2)& in Eq. ~114!. Whenk1 and the initial values

@ up01
(1)&,up02

(1)&,up01
(2)&] of these vectors are provided, the soliton solutions~13! will then be com-

pletely determined.
In the present case, the block sequence reads$s1 ,s2%5$2,1%, the corresponding invarianc

matrix B can be readily obtained from the general formula~91! as

B5S b11 b12 b13

0 b11 0

0 b32 b33

D ,

which indeed has five free complex parameters@see Eq.~95!#. The invariance matrixB̄ is just the
Hermitian conjugate of theB matrix.

To display these soliton solutions, we choosek1511 i , up02
(1)&5@21,i ,12 i #T, up01

(2)&
5@1,0.5,21#T. Whenup01

(1)&5@1,11 i ,0.5#T ~the generic case!, the solutions are plotted in the to
row of Fig. 1. In the two nongeneric cases~where some elements of theup& vectors vanish!,
up01

(1)&5@0,11 i ,0.5#T andup01
(1)&5@1,0,0.5#T, the solutions are plotted in the second and third ro

of Fig. 1, respectively. We see that in the generic case, three sech waves in the three com
interact and then separate into the same sech waves with their positions shifted. In other
this is a u1(sech)1u2(sech)1u3(sech)→u1(sech)1u2(sech)1u3(sech) process. What happens
that the initial pumping (u3) wave breaks up into two sech waves in the other two componentsu1

andu2), while simultaneously the two initialu1 andu2 waves combine into a pumping sech wav
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Thus this process is a combination of two subprocesses:u3→u11u2 and u11u2→u3 . This
phenomenon seems related to the rank sequence$1, 2% of the present solitons and the fact that, t
rank sequence$1% itself describes the breakup of a pumping sech wave into two nonpumping
waves, while the rank sequence$2% itself describes the reserve process. In the nongeneric c
these solutions can describe theu1(sech)1u2(second order)→u2(sech)1u3(sech) process, the
u1(sech)1u2(sech)1u3(sech)→u3(second order) process~see Fig. 1, second and third rows!, and
many others. In the solutions of Fig. 1, theaj and bj parameters are such thatu2,u3,u1 . If
u1,u3,u2 , the processes will be exactly the opposite~see Ref. 22!. Thus our solutions can
describe the processes reverse to those of Fig. 1 as well.

B. Soliton solutions for two pairs of simple zeros

Here we derive the soliton solutions corresponding to two pairs of simple zeros in the
wave system~14!. Some solutions belonging to this category have been presented in Refs. 2
27. But we will show that those solutions are only special~nongeneric! solutions for two pairs of
simple zeros. Below, the more general solutions for this case will be presented.

In this case,r 1
(1)5r 1

(2)51. By using formula~81!, for the case of involution~4!, for two pairs
of zeros, we readily obtain that the number of free complex parameters in the solution is s

Nfree52~3311121!56.

Indeed, there are twoup& vectors in Eq.~114!. Together with the two zerosk1 andk2 , there are
eight complex parameters in the soliton solutions. However, the 232 invariance matrixB in this
case is diagonal and has two free~diagonal! complex parameters.

Three solutions, withk1511 i , k252110.5i and three different sets ofup01
(1)& and up01

(2)&
vectors, are displayed in Fig. 2. In the generic case whereup01

(1)&5@1,11 i ,0.5#T and up01
(2)&

5@1,0.5,21#T ~see top row of Fig. 2!, the solution describes the breakup of a higher-or
pumping (u3) wave into two higher-orderu1 andu2 waves. This is analogous to solutions for
single pair of elementary zeros with algebraic multiplicity 2~see Ref. 22!. In the nongeneric case

FIG. 1. Soliton solutions in the three-wave system~14! corresponding to a single pair of zeros with rank sequence$1, 2%
at time t5215, 0, and 15. Here,k1511 i , up02

(1)&5@21,i ,12 i #T, up01
(2)&5@1,0.5,21#T. First row, up01

(1)&5@1,11 i ,0.5#T;
second row,up01

(1)&5@0,11 i ,0.5#T; third row, up01
(1)&5@1,0,0.5#T.
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whereup01
(1)&5@0,11 i ,0.5#T andup01

(2)&5@1,0.5,21#T ~second row in Fig. 2!, the present solutions
can describe theu2(sech)1u3(sech)→u1(sech)1u2(second order) process. This process has b
seen in Ref. 22 for elementary zeros as well. More interestingly, in the nongeneric case
p01

(1)@1#5p01
(2)@3#50, these solutions describe the elastic interaction of a sechu1 wave with a

sechu2 wave ~see bottom row of Fig. 2!. These are precisely the soliton solutions presente
Refs. 26 and 27. We see that these solutions are simply nongeneric solutions for two p
simple zeros.

C. Soliton solutions for two pairs of higher-order zeros

Last, we consider two pairs of distinct zeros, one simple and the other one elementary w
algebraic multiplicity 2. Let us sayk1 is the elementary zero, andk2 is the simple zero. Then the
rank sequence fork1 is $1, 1%, and the rank sequence fork2 is $1%. Thus,r 1

(1)51, r 2
(1)51, and

r 1
(2)51. By formula~81!, we have

Nfree53~111!112~111!1331112158.

Indeed, in this cases1
(1)52 ands1

(2)51, hence there are 11 complex parameters in the so
solutions~nine in the threeup& vectors, plus the two zerosk1 andk2). The invariance matrixB can
be found from the general formula~91! as

B5S b11 b12 0

0 b11 0

0 0 b33

D ,

which has three free complex parameters. ThusNfree5112358 as calculated above.
Three solutions, withk1511 i , k252110.5i , up02

(1)&5@21,i ,12 i #T, and three different
sets ofup01

(1)& and up01
(2)& vectors, are displayed in Fig. 3. In the generic case~first row in Fig. 3!,

FIG. 2. Soliton solutions in the three-wave system~14! corresponding to two pairs of simple zeros at timet5215, 0, and
15. Here, k1511 i , k252110.5i . First row, up01

(1)&5@1,11 i ,0.5#T, up01
(2)&5@1,0.5,21#T; second row,up01

(1)&5@0,1
1 i ,0.5#T, up01

(2)&5@1,0.5,21#T; third row, up01
(1)&5@0,11 i ,0.5#T, up01

(2)&5@1,0.5,0#T.
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this solution describes the breakup of a higher-order pumping wave (u3) into the otheru1 andu2

components~both higher order!. In nongeneric cases, it can describe processes such asu2(sech)
1u3(higher order)→u1(higher order)1u2(higher order) ~second row of Fig. 3!, u1(sech)
1u2(sech)1u3(sech)→u1(higher order)1u2(higher order)~last row of Fig. 3!, and many others
The reverse processes of Fig. 3 can also be described by choosingaj and bj values such that
u1,u3,u2 instead ofu2,u3,u1 in Fig. 3.

V. CONCLUSION AND DISCUSSION

We have proposed a unified and systematic approach to study the higher-order solito
tions of nonlinear PDEs integrable by theN3N-dimensional Riemann–Hilbert problem. We ha
derived the complete solution to the Riemann–Hilbert problem with an arbitrary numb
higher-order zeros, and characterized the discrete spectral data. Therefore, we have obta
most general form of the higher-order multisoliton solutions to nonlinear PDEs integrable th
the N3N-dimensional Riemann–Hilbert problem. In other words, the most general reflectio
~soliton! potentials in theN-dimensional Zakharov–Shabat operators have been derived.
eigenfunctions associated with these reflectionless potentials are readily available from our
matrices. We have applied these general results to the three-wave interaction system, a
higher-order soliton and two-soliton solutions have been presented. These solutions reve
processes such asu11u21u3↔u11u21u3 . They also reproduce previously known solito
from Refs. 2, 22, 26, and 27 as special cases. Our results can be applied to derive highe
multisolitons in the NLS equation and the Manakov equations as well, but this is not pursu
this paper.

The results obtained in this paper are significant from both physical and mathematical
of view. Physically, our results completely characterized higher-order solitons and multisolito
important physical systems such as the three-wave interaction equation, the NLS equation
Manakov equations. These higher-order solitons can describe new physical processes

FIG. 3. Soliton solutions in the three-wave system~14! corresponding to two pairs of zeros—one elementary w
algebraic multiplicity 2, and the other one simple. Here,k1511 i ~elementary zero!, k252110.5i ~simple zero!, and
up02

(1)&5@21,i ,12 i #T. First row, up01
(1)&5@1,11 i ,0.5#T, up01

(2)&5@1,0.5,21#T; second row,up01
(1)&5@0,11 i ,0.5#T, up01

(2)&
5@1,0.5,21#T; third row, up01

(1)&5@0,11 i ,0.5#T, up01
(2)&5@1,0.5,0#T.
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those displayed in Figs. 1–3. If these integrable equations are perturbed~which is inevitable in a
real-world problem!, our higher-order solitons then become the starting point for the develop
of a soliton-perturbation theory which could determine what happens to these higher-order s
under external or internal perturbations.34,35 From the mathematical point of view, our resul
completely characterized the discrete spectral data of higher-order zeros in a g
N-dimensional Riemann–Hilbert problem. These results will be useful for many purposes s
proving the completeness of eigenfunctions in aN-dimensional Zakharov–Shabat spectral pro
lem with arbitrary localized potentials. The difficulty of such a proof is caused by higher-o
zeros. Hopefully, with our results at hand, this difficulty can be removed.

From a broader perspective, our results are closely related to many other physical and
ematical problems. For instance, the lump solutions in the Kadomtsev–Petviashvili equati
given by the higher-order poles of the time-dependent Schro¨dinger equation. In Refs. 20 and 21
lump solutions corresponding to certain special higher-order poles were derived, but the
general lump solutions still remain an open question. Note that the time-dependent Schro¨dinger
equation is an infinite-dimensional system compared to our presentN-dimensional Riemann–
Hilbert system. But the ideas used in this paper might be generalizable to the time-dep
Schrödinger equation as well. This remains to be seen.
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APPENDIX: GENERAL RIEMANN–HILBERT PROBLEM WITH ABNORMAL ZEROS

Here we show that our soliton matrices of Sec. III can be generalized to the case of Riem
Hilbert problem with abnormal zeros. However, due to the lack of important applications, we
show only a simple example, which corresponds to a pair of zeros with different geom
multiplicities but the same algebraic multiplicity. Then we comment on the general case of s
nonpaired zeros.

Let us use the simplest example to show the idea behind generalization of our results
general Riemann–Hilbert problem with abnormal zeros. Consider one pair of zeros (k1 ,k̄1) which
have the same algebraic multiplicity 2 but different geometric multiplicities, which here will b
and 2, respectively. The corresponding soliton matrices are given as follows:

G~k!5I 1
~ k̄12k1!~ uv1&^v̄1u1uv2&^v̄2u!

k2 k̄1

, ~A1!

G21~k!5S I 1
~k12 k̄1!uv1&^v̄1u

k2k1
D S I 1

~k12 k̄1!uv2&^v̄2u
k2k1

D , ~A2!

with the conditions that̂v̄ j uv j&51, ^v̄2uv1&50, and^v̄1uv2&Þ0. To verify that the above matrice
are indeed inverse to each other it is enough to rewrite the matrixG(k) in the form

G~k!5S I 1
~ k̄12k1!uv2&^v̄2u

k2 k̄1

D S I 1
~ k̄12k1!uv1&^v̄1u

k2 k̄1

D ~A3!
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and take into account thatPj[uv j&^v̄ j u is a projector. Equations~A2! and ~A3! are in fact the
product representations of the form~27!. Now let us show that there are exactly two solutions

^ p̄uG21( k̄1)50. Indeed, the corresponding null vectors are as follows:

^ p̄1u5^v̄1u, ^ p̄2u5^v̄2u. ~A4!

This is due to the fact thatG21( k̄1)5(I 2P1)(I 2P2). But, on the other hand, there is just on
solution to G(k1)up&50: up1&5uv1&. Suppose that there is another solutionup2& to G(k1)up&
50 linearly independent fromup1&. We have then using formula~A1! for G(k1),

up2&5uv1&^v̄1up2&1uv2&^v̄2up2&. ~A5!

Thus up2&5auv1&1buv2&. Using this in formula~A5! we get, due tô v̄2uv1&50 and ^v̄1uv2&
Þ0,

auv1&^v̄1uv2&50,

which is a contradiction, sinceaÞ0.
The soliton matrices given by formulas~A1!–~A2! have the following form in the standar

notations of Lemma 1 of Sec. III:

G~k!5I 1
uq̄1&^ p̄2u1uq̄2&^ p̄1u

k2 k̄1

, ~A6!

G21~k!5I 1
up1&^q2u1up2&^q1u

k2k1
1

up1^q1u
~k2k1!2 , ~A7!

where

uq̄1&5( k̄12k1)uv2&, uq̄2&5( k̄12k1)uv1&, ^q1u5~k12 k̄1!2^v̄1uv2&^v̄2u,

^q2u5~k12 k̄1!^v̄1u, up2&5
uv2&

~k12 k̄1!^v̄1uv2&
.

Notice thatG(k) has two blocks of size 1, whileG21(k) has one block of size 2.
In general, for one pair of zeros with different geometric multiplicities, the soliton matr

have the structure of Lemma 1 but with different numbers of blocks inG(k) andG21(k), while
the total number of theup& and^ p̄u vectors appearing in these matrices is the same and equa
the order of the pair of zeros. One can proceed to derive the representations similar to th
Lemma 4 for this case. Evidently, due to the way of the derivation, the formulas will be sim
with the only difference in the number of blocks and block sizes inG(k) andG21(k).

In the more general case of the Riemann–Hilbert problem with abnormal zeros, the zer
be nonpaired~for instance, zero of order 2 inC1 and two simple zeros inC2). Formally, this case
can be obtained by ‘‘splitting’’ some of the paired zeros into several distinct zeros in the so
matricesG(k) and G21(k) discussed above, since this limit is obviously regular@the geometric
multiplicity of the zero to be split should be at least equal to the number of the new z
generated in this way, thus providing for the needed number of blocks; formula~A6!, for instance,
allows splitting of the zerok5 k̄1 of G21(k) into two simple zeros#. Thus, the most general cas
can be handled starting from the case of just one pair of zeros, i.e., the case discussed abo
explicit expressions for the soliton matricesG(k) and G21(k) will involve similar relations be-
tween the numbers of zeros, their geometric multiplicities and the numbers and sizes ofn
blocks of vectors as those in Lemma 1, though, obviously, with different particular numbe
each of the two matrices.
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