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We derive the soliton matrices corresponding to an arbitrary number of higher-
order normal zeros for the matrix Riemann—Hilbert problem of arbitrary matrix
dimension, thus giving the complete solution to the problem of higher-order soli-
tons. Our soliton matrices explicitly give all higher-order multisoliton solutions to
the nonlinear partial differential equations integrable through the matrix Riemann—
Hilbert problem. We have applied these general results to the three-wave interac-
tion system, and derived new classes of higher-order soliton and two-soliton solu-
tions, in complement to those from our previous publicafiStud. Appl. Math.

110, 297 (2003 ], where only the elementary higher-order zeros were considered.
The higher-order solitons corresponding to nonelementary zeros generically de-
scribe the simultaneous breakup of a pumping wawg (nto the other two com-
ponents (; andu,) and merger ofi; andu, waves into the pumping; wave. The
two-soliton solutions corresponding to two simple zeros generically describe the
breakup of the pumping; wave into theu; andu, components, and the reverse
process. In the nongeneric cases, these two-soliton solutions could describe the
elastic interaction of the;; and u, waves, thus reproducing previous results ob-
tained by Zakharov and Manak¥h. Eksp. Teor. Fiz69, 1654(1975] and Kaup
[Stud. Appl. Math.55, 9 (1976]. © 2003 American Institute of Physics.

[DOI: 10.1063/1.1605821

[. INTRODUCTION

The importance of integrable nonlinear partial differential equati®BE9 in 1+ 1 dimen-
sions in applications to nonlinear physics can hardly be overestimated. Their importance partially
stems from the fact that it is always possible to obtain certain explicit solutions, called solitons, by
some algebraic procedure. At present, there is a wide range of literature concerning integrable
nonlinear PDEs and their soliton solutioiisee, for instance, Refs. 1-4 and the references
therein. The reader familiar with the inverse scattering transform method knows that it is zeros of
the Riemann—Hilbert problerfor poles of the reflection coefficients in the previous nomenclature
that give rise to the soliton solutions. These solutions are usually derived by using one of the
several well-known techniques, such as the dressing méthdthe Riemann—Hilbert problem
approact?;® and the Hirota methotsee Ref. 1 In the first two methods, the pure soliton solution
is obtained by considering the asymptotic form of a rational matrix function of the spectral
parameter, called the soliton matrix in the following. It is known that the generic case of zeros of
the matrix Riemann—Hilbert problem is the case of simple Zeté¢see also Ref. 13A single
simple zero produces a one-soliton solution. Several distinct zeros will produce multisoliton so-
lutions, which describe the interacti¢scattering of individual solitons. As far as the generic case
is concerned, there is no problem in the derivation of the corresponding soliton solutions.
However, in the nongeneric cases, when at least one higher-Grdermultiple zero is
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present in the Riemann—Hilbert problem, the situation is not so definite. Higher-order zeros must
be considered separately, as, in general, the soliton solutions which correspond to such zeros
cannot be derived from the known generic multisoliton solutions by coalescing some of the
distinct simple zeros. This is clear from the fact that a higher-order zero generally corresponds to
a higher-order pole in the soliton matiar its inversg, which cannot be obtained in a regular way

by coalescing simple poles in the generic multisoliton matrix. The procedure of coalescing several
distinct simple zeros produces only higher-order zeros with equal algebraic and geometric multi-
plicities (the geometric multiplicity is defined as the dimension of the kernel of the soliton matrix
evaluated at the zeypowhich is just the trivial case of higher-order zeros. For instance, if the
algebraic multiplicity is equal to or greater than the matrix dimension, then such coalescing will
produce a higher-order zero with the geometric multiplicity no less than the matrix dimension,
which could only correspond to the zero solution instead of solitons. Thus the soliton matrices
corresponding to higher-order zeros of the Riemann—Hilbert problem require a separate consider-
ation.

Soliton solutions corresponding to higher-order zeros have been investigated in the literature
before, mainly for the X2-dimensional spectral problem. A soliton solution to the nonlinear
Schralinger(NLS) equation corresponding to a double zero was first given in Ref. 14 but without
much analysis. The double- and triple-zero soliton solutions to the KdV equation were examined
in Ref. 15 and the general multiple-zero soliton solution to the sine-Gordon equation was exten-
sively studied in Ref. 16 using the associated Gelfand—Levitan—Marchenko equation. In Refs. 17
and 18, higher-order soliton solutions to the NLS equation were studied by employing the dressing
method. In Refs. 19-21, higher order solitons in the Kadomtsev—Petviashvili | equation were
derived by the direct method and the inverse scattering method. Finally, in our previous
publicatiorf? we have derived soliton matrices corresponding to a siatgimentanyhigher-order
zero—a zero which has the geometric multiplicity equal to 1. Our studies give the general higher-
order soliton solutions for the integrable PDEs associated with th2 ghatrix Riemann—Hilbert
problem with a single higher-order zero. Indeed, any zero of th& 2limensional Riemann—
Hilbert problem is elementary since a nonzer® 2 matrix can have only one vector in its kernel.

However, the previous investigations left some of the key questions unanswered. For instance,
the general soliton matrix corresponding to a single nonelementary zero remained unknown. Such
zeros arise when the matrix dimension of the Riemann—Hilbert problem is greater than 2. Natu-
rally then, the ultimate question—the most general soliton matrices corresponding to an arbitrary
number of higher-order zeros in the genédat N Riemann—Hilbert problem, was not addressed.
Because of these unresolved issues, the most general soliton and multisoliton solutions to PDEs
integrable through th&l X N Riemann—Hilbert problenisuch as the NLS equatidi the three-
wave interaction systeR?*2’and the Manakov equatiof have not been derived yet.

In this paper we derive the complete solution to the problem of soliton matrices corresponding
to an arbitrary number of higher-order normal zeros for the geridpaN matrix Riemann—
Hilbert problem. These normal zeros are defined in Definition 1, and are nonelementary in general.
They include almost all physically important integrable PDEs where the involution prdpeey
Eqg. (4)] holds. The corresponding soliton solutions can be termed as the higher-order multisoli-
tons, to reflect the fact that these solutions do not belong to the class of the previous generic
multisoliton solutions. Our results give a complete classification of all possible soliton solutions in
the integrable PDEs associated with tRex N Riemann—Hilbert problem. In other words, our
soliton matrices contain the most general forms of reflection-(eséiton) potentials in the
N-dimensional Zakharov—Shabat spectral operator. For these general soliton potentials, the corre-
sponding discrete and continuous eigenfunctions ofNtktimensional Zakharov—Shabat operator
naturally follow from our soliton matrices. As an example, we consider the three-wave interaction
system, and derive single-soliton solutions corresponding to a nonelementary zero, and higher-
order two-soliton solutions. These solutions generate many new processes such as the simulta-
neous breakup of a pumping wava,f into the other two componentsi{ andu,) and merger of
u; andu, waves into the pumping; wave, i.e.,u; +U,+ Uz« Uu;+U,+uz. They also reproduce
previous solitons in Refs. 2, 22, 26, 27 as special cases.
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The paper is organized as follows. A summary on the Riemann—Hilbert problem is placed in
Sec. Il. Section Il is the central section of the paper. There we present the theory of soliton
matrices corresponding to several higher-order zeros under the assumption that these zeros are
normal (see Definition }, which include the physically important cases with the involution prop-
erty [see Eq.4)]. Applications of these general results to the three-wave interaction system are
contained in Sec. IV. Finally, in the Appendix we briefly treat the more general case where the
zeros are abnormal.

II. THE RIEMANN-HILBERT PROBLEM APPROACH

The integrable nonlinear PDEs intll dimensions are associated with the matrix Riemann—
Hilbert problem(consult, for instance, Refs. 1-12, 294.3Phe matrix Riemann—Hilbert problem
(below we work in the space dii XN matrice$ is the problem of finding the holomorphic
factorization, denoted below b (k) and ® _*(k), in the complex plane of a nondegenerate
matrix functionG(k) given on an oriented curve:

Ok, x, )P (k,x,t)=G(k,x,t)=E(k,x,t)G(k,0,00E " *(k,x,t), ke, (1)
where
E(k,x,t)=exd — A(k)x—Q(k)t].

Here the matrix functionsb, (k) and ®~*(k) are holomorphic in the two complementary do-
mains of the complek-plane:C, to the left andC_ to the right from the curvey, respectively.

The matrices\ (k) and( (k) are called the dispersion laws. Usually the dispersion laws commute
with each other, e.g., given by diagonal matrices. We will consider this[gaseisely in this case
E(k,x,t) is given by the above formulaThe Riemann—Hilbert problem requires an appropriate
normalization condition. Usually the curgecontains the infinite poirk=<« of the complex plane
and the normalization condition is formulated as

O, (k,x,t)—1 as k—o. (2)

This normalization condition is called the canonical normalization. Setting the normalization
condition to an arbitrary nondegenerate matrix funct®(x,t) leads to the gauge equivalent
integrable nonlinear PDE, e.g., the Landau—Lifshitz equation in the case of the NLS eduation.
Obviously, the new solutiof . (k,x,t) to the Riemann—Hilbert problem, normalizedSfx,t), is
related to the canonical solution by the following transformation

D (k,x,t)=S(x,t)P(k,X,t). (3)

Thus, without any loss of generality, we confine ourselves to the Riemann—Hilbert problem under
the canonical normalization.

For physically applicable nonlinear PDEs the Riemann—Hilbert problem possesses the invo-
lution properties, which reduce the number of the dependent varigbtesplex fields. The
following involution property of the Riemann—Hilbert problem is the most common in applica-
tions

oL (k=0 '(k), k=k*. (4)

Here the superscript “1+” represents the Hermitian conjugate, afidttie complex conjugate.
Examples include the NLS equation, the Manakov equations, and-thave system. The analy-

sis in this article includes this involutio) as a special case. In this case, the overline of a
quantity represents its Hermitian conjugation in the case of vectors and matrices and the complex
conjugation in the case of scalar quantities. In other cases, the original and overlined quantities
may not be related.
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To solve the Cauchy problem for the integrable nonlinear PDE posed on the whole axis
usually constructs the associated Riemann—Hilbert problem starting with the linear spectral equa-
tion

A, D (k,x,t)=D(k,x,t)A(K)+U(k,x,t)D(k,x,t), (5)

whereas thé-dependence is given by a similar equation
3D (k,x,t) =D (k,x,1) Q (k) +V(k,x, 1) D(k,x,t). (6)
The nonlinear integrable PDE corresponds to the compatibility condition of the syStemd(6):
aU—aV+[U,V]=0. 7

The essence of the approach based on the Riemann—Hilbert problem lies in the fact that the
evolution governed by the complicated nonlinear PO is mapped to the evolution of the
spectral data given by simpler equations suclilasand (208—(20b). When the spectral data is
known, the matricet) (k,x,t) andV(k,x,t) describing the evolution ob . can then be retrieved
from the Riemann—Hilbert problem. In our case, the potentifk,x,t) andV(k,x,t) are com-
pletely determined by thédiagona) dispersion lawsA (k) and (k) and the Riemann—Hilbert
solution®=® . (k,x,t). Indeed, let us assume that the dispersion laws are polynomial functions,
ie.,

J1 J2

A=2 AR, Q=2 BiK. )
= ]=

Then using similar arguments as in Ref. 32 we get
U=—P{®ADP Y}, V=—PldQd 1}, 9)
Here the matrix functionb (k) is expanded into the asymptotic series,
d(k)=1+k 1O +Kk 2@ +... = koo,

and the operatoP cuts out the polynomial asymptotics of its argumenkasc. An important
property of matricetJ andV is that

TrU(k,x,t)=—TrA(k),

(10
TrV(k,x,t)=—TrQ(k),

which evidently follows from Eq(9). This property guarantees that the Riemann—Hilbert zeros
are (x,t) independent.
Let us consider as an example the physically relevant three-wave interaction $ysterfv.

SetN=3,
a, 0 0 by 0 O
A(k)=ikA, A=[ 0 a O |, Q(k)=ikB, B=[ 0 b, 0|, 11
0 0 aj 0 0 bs

wherea; andb; are real with the elements &f being ordereda,>a,>as. From Eq.(9) we get
U=-Ak)+i[A,®D], V=—Q(k) +i[B,dM]. (12

Setting
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=V a0, U= et us= B ey, 19
assuming the involutiod), and using Eq(12) in (7) we get the three-wave system:
dUg+v1d5Uq FigUyuz=0, (149
JtUs+vod,Uy+iguuz=0, (14b)
dUz+v3d3Uz+iguuy,=0. (140
Here
b,—b bs—b bs—b
vl:ai—al’ Uz:az—aj’ v3:aj—a;‘ (15

a,b,—ayb,+a,bz—azb,+azb;—a;bs

e= 16
[(a;—ap)(a,—az)(a;—ag)]"? (18
The group velocities satisfy the following condition:
U2~ U3 - a
vi—Us  8,—ag 0 @

The three-wave systerfl4) can be interpreted physically. It describes the interaction of three
wave packets with complex envelopes, u,, andus; in a medium with quadratic nonlinearity.

In general, the Riemann—Hilbert probleih—(2) has multiple solutions. Different solutions
are relat<29d6tlo3 each other by the rational matrix functib(is) (which also depend on the variables
X andt):=™>

DL (kx,t)=D. (kx, )T (k,x,t). (19

The rational matrix" (k) must satisfy the canonical normalization conditidi{k) —1 for k— o

and must have poles only @_ [the inverse functiod” ~*(k) then has poles i€ only]. Such a
rational matrixI'(k) will be called the soliton matrix below, since it gives the soliton part of the
solution to the integrable nonlinear PDE.

To specify a unique solution to the Riemann—Hilbert problem the set of the Riemann—Hilbert
data must be given. These data are also called the spectral data. The full set of the spectral data
comprises the matri (k,x,t) on the right-hand side of Eql) and the appropriate discrete data
related to the zeros of dét, (k) and detb~'(k). In the case of involution(4), the zeros of
detd. (K) and detb~*(K) appear in complex conjugate paiks=k . It is known'~*? (see also
Ref. 13 that in the generic case the spectral data include sirtgiinct) zerosky,... k, of
detd, (k) and ky,... k, of detd_%(K), in their holomorphicity domains, and the null vectors
[v1),....lvny and(vy],... (v, from the respective kernels:

@ (k)|v)=0, (vj]®*(k))=0. (19

Using the property10) one can verify that the zeros do not depend on the variabtaslt.
The (x,t) dependence of the null vectors can be easily derived by differentiati¢h®paind use
of the linear spectral equatiors) and(6). This dependence reads
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lvj)=exp{— A(k)x—Q(kj)t}vo;), (20a
(vj] = (vo;|expl A (k) x+ Q(k))t}, (20

where|vg;) and(vy;| are constant vectors.

The vectors in Eqs(209 and (20b) together with the zeros constitute the full set of the
generic discrete data necessary to specify the soliton miafkxx,t) and, hence, unique solution
to the Riemann—Hilbert problertl)—(2). Indeed, by constructing the soliton matiiXk) such
that the following matrix functions:

¢ (K= (KT k), ¢_*(k)=T(k)P_*(k) (21)

are nondegenerate and holomorphic in the domé&insand C_, respectively, we reduce the
Riemann—Hilbert problem with zeros to another one without zeros and hence uniquely solvable
(for details see, for instance, Refs. 2—4).18elow by matrixI" (k) we will imply the matrix from
equation(21) which reduces the Riemann—Hilbert probléi—(2) to the one without zeros. The
corresponding solution to the integrable PDEis obtained by using the asymptotic expansion of
the matrix® (k) ask—oe in the linear equatiofb). In theN-wave interaction model it is given by
formula (12). The pure soliton solutions are obtained by using the rational mdtrix" (k).

The above set of discrete spectral dét8) holds only for the generic case where zeros of
det®d, (k) and detb_(k) are simple. If these zeros are higher-order rather than simple, what the
discrete spectral data should be and how they evolve xvéhdt is unknowna priori. Moreover,
we have stressed in Sec. | that the case of higher-order zeros cannot be treated by coalescing
simple zeros, thus is highly nontrivial. In the next sections, we give the complete solution to this
problem.

[ll. SOLITON MATRICES FOR GENERAL HIGHER-ORDER ZEROS

In this section we derive the soliton matrices for an arbitrary matrix dimenNicand an
arbitrary number of higher-order zeros under the assumption that these zeros are (seemal
Definition 1). Normal higher-order zeros are most common in practice. In general, they are non-
elementary. Our approach is based on a generalization of the idea in our previou& paper.

A. Product representation of soliton matrices

Our starting point to tackle this problem is to derive a product representation for soliton
matrices. This product representation is not convenient for obtaining soliton solutions, but it will
lead to the summation representation of soliton matrices, which is very useful.

In treating the soliton matrix as a product of constituent matiicalied elementary matrices
in Ref. 2, see formula&24) and(27) below] one can consider each zero of the Riemann—Hilbert
problem separately. For instance, consider a pair of Zey@ndk,, respectively, ofb , (k) and
® (k) from Eq. (1), each having ordem:

detd , (k)= (k—ky)"p(k), detd=*(k)=(k—ky)"p(k), (22

wherep(k;)#0 andE(E) #0. The geometric muﬂplicity ok, (E) is defined as the number of
independent vectors in the kernel ®f, (k;) (®-(k,)), see(19). In other words, the geometric

multiplicity of k; (k,) is the dimension of the kernel space®f (k;) (®~*(k;)). It can be easily
shown that the order of a zero is always greater or equal to its geometric multiplicity. It is also
obvious that the geometric multiplicity of a zero is less than the matrix dimension. Let us recall
how the soliton matrices are usually constructeeke, for instance, Refs. 2 and)1Starting from

the solution®. (k) to the Riemann—Hilbert problemil)—(2), one looks for the independent
vectors in the kernels of the matricds, (k;) and® ~*(k;). Assuming that the geometric multi-

plicities of k; andE are the same and equalitg, then we have
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@, (k)|vi)=0, (v11|]®"*(ky)=0, i=1,...r;. (23)
Next, one constructs the constituent matrix

ky—ky
xa(k)=1- e P, (24)
K

where
51
P1=i2j loi) (K™ Y0l Kij=(vidlvja)- (25

Here P, is a projector matrix, i.e.Piz P,. It can be shown that dqu(k—kl)‘ll(k—ﬁ)rl (note
that the geometric multiplicity, is equal to ranl,). If r;<<m then one considers the new matrix
functions

D, (K=, (Kx1 k), PHK)=x (D Y(k).

By virtue of Egs.(23), the matricesff)+(k) and&bjl(k) are also holomorphic_in the respective
half planes of the complex plarieee Lemma 1 in Ref. 22In addition,k; andk; are still zeros
of det&>+(k) and deﬁ)il(k). Assuming that the geometric multiplicities of zeﬂqsand?l in new

matricesc~I>+(k) and Ebil(k) are still the same and equal tg, then the above steps can be
repeated, and we can define matgix(k) analogous to Eq(24). In general, if the geometric

multiplicities of zerosk, and?1 in matrices

D (K)=D, (K)x1 (K x bk, DK =x 1K) x2 (KD -L(K) (26)

are the same and given by(I=1,2,...), then we can define a matryg similar to Eqs(24) and
(25) but the independent vectdrs;; ) and{v;| (i=1,... r,) are from the kernels 05+(k1) and

&):1(?1) in Eq. (26). When this process is finished, one would get the constituent matrices
x1(K),..., x,(k) such thatr,;+r,+---+r,=m, and the product representation of the soliton
matrix I"(k),

I'(k) = xn(K)" -~ x2(K) x1(K). (27)

This product representatioi27) is our starting point of this paper. In arriving at this repre-
sentation, our assumptions are that the zkﬁoand?l have the same algebraic multiplicitgee
Eg. (22)], and their geometric multiplicities in matric&+(k) and&)jl(k) of Eq. (26) are also
the same for all’s. For convenience, we introduce the following definition.

Definition 1: A pair of zeros {(and_kl in the matrix RiemannaHilbert problem is called
normal if the zeros have the same algebraic multiplicity, and their geometric multiplicities in

matrices&n(k) and (T):l(k) of Eq. (26) are also the same for alld.

In the text of this paper, we only consider normal zeros of the matrix Riemann—Hilbert
problem. The case of abnormal zeros will be briefly discussed in the Appendix.

Remark 1:Under the involution property4), all zeros are normal. Thus, our results for
normal zeros cover almost all the physically important integrable PDEs.

Remark 2:Normal zeros include the elementary zeros of Ref. 22 as special cases, but they are
nonelementary in general.

It is an important factsee Ref. 22, Lemma)2hat the sequence of ranks of the projecters
in the matrixI"(k) given by Eq.(27), i.e., built in the described way, is nonincreasing:
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rankP,<rankP, _;<---<rankP,, (29)

i.e., r,=<r,_1=---<r4. This result allows one to classify all possible occurrences of a higher-
order zero of the Riemann—Hilbert problem for an arbitrary matrix dimenision general, for
zeros of the same order, different sequences of ranks 2By give different classes of higher-
order soliton solutions. In Ref. 22 we constructed the soliton matrices for the simplest sequence of
ranks, i.e., 1...,1.Such zeros are called “elementary.” If the matrix dimenshbs 2 (as for the
nonlinear Schrdinger equatioy) then all higher-order zeros are elementary since Pynis al-
ways equal to 1.

To obtain the product representation for soliton matrices corresponding to several higher-order
normal zeros one can multiply the matrices of the ty{®Y) for each zero, i.e.I'(k)
=F1(k)F2(k)-~FNZ(k), whereN; is the number of distinct zeros and edcf(k) has the form

given by formula(27) with n substituted by soma; .

The product representatid@7) of the soliton matrices is difficult to use for actual calculations
of the soliton solutions. Indeed, though the representd@i@hseems to be simple, derivation of
the (x,t) dependence of the involved vectaesxcept for the vectors in the first projectBr)
requires solving matrix equations wittx,€)-dependent coefficients. One would like to have a
more convenient representation, where all the involved vectors have exglifitdependence.
Below we derive such a representation for soliton matrices corresponding to an arbitrary number
of higher-order normal zeros.

For the sake of clarity, we consider first the case of a single pair of higher-order zeros,
followed by the most general case of several distinct pairs of higher-order zeros.

B. Soliton matrices for a single pair of zeros

Definition 2: For soliton matrices having a single pair of higher-order normal zeékgs?l),
supposel’ (k) is constructed judiciously as in Eq. (27), with ranksaf matrices R(1<j=<n)
satisfying inequality (28), i.e.

MSTh_1<:<I;.
Then a new sequence of positive integers

SIZSZZ.HZSI’]_

is defined as follows:

s,=the index of the last positive integer in the arfay+1—v,ro+1—v,... r,+1—v].
The sequence of integefs,,r,_1, .. .,r1} is then the rank sequence associated with the pair of
zeros(ky ,k;) and the new sequengs, ,s,, . .. ,srl} is called the block sequence associated with

this pair of zeros
Remark:lt is easy to see that the sum of the block sequence is equal to the sum of all ranks,

r n
2 szz r,
v=1 I=1

with the sum being equal to the algebraic order of the Riemann—Hilbert zkyos; ).

For example, if the rank sequence{8 [only one constituent matrix if27)—trivial higher-
order zerd, then the block sequence {%,1,1; if the rank sequence ifl,1,1,3 (an elementary
zero), then the block sequence{i4}; if the rank sequence i2,3,5,%, then the block sequence is
{4,4,3,2,2,1,1

With these definitions the most general soliton matricés) andI’ ~ (k) for a single pair of
higher-order normal zerosk(,k;) are given as follows. This result is a generalization of our
previous resuff to nonelementary higher-order zeros.
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Lemma 1: Consider a single pair of higher-order normal ze(k@,?l) in the Riemana
Hilbert problem. Suppose their geometric multiplicity is,rand their block sequence is
{s1,s2,...,5,}. Then the soliton matricek'(k) and I'"1(k) can be written in the following

summation forms:
f1 ry

F(k):|+21§w ri=1+>s,. (29)

Here S, and S, are the following block matrices

(Pt

G _
§=2 2 ————=(al)..[a")D, | : |, (308

I=1)=1 (k_kl)s,,+1— <_gv)|

Lo P el (@
8,22 2 iosr = (P Dy |, (30b)

S (af”|

where D,(k) and By(k) are triangular Toeplitz matrices of the size>ss, :

D,(=| (k—k)? (k—-k») -,

0

1 1 1
(k=kp>  (k=k)® (k—ky)

(31)

1 1 1
(k=k) (k=kp? 77 (k—kp®

0 ’ . :

D,(k=| . . 1 1
' T (kk) (kky)?
0 o 1
(k—ky)

The vectors p{”),(pt"|,(q™|,[q") (i=1,...s,) are independent of kand in the two sets
(1P, ... |pi) and (P, . .. (Pt Y]} the vectors are linearly independent

Remark 1:If r;=1, the zerok,; andk, are elementar§? In this case, the above soliton
matrices reduce to those in Ref. 22.

Remark 2:The total number of allp) vectors orp] vectors from allv blocks are equal to the
algebraic order of the zerdg andk;.

Proof: The representatiof29) can be proved by induction. Consider, for instance, the formula
for I'(k). Obviously, this formula is valid fon=1 in Eq.(27), wherel' (k) contains only a single
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matrix x1(k). Now, suppose that this formula is valid for>1. We need to show that it is valid
for n+1 as well. Indeed, denote the soliton matricesffandn+ 1 by I'(k), andT'(k), respec-
tively, the rightmost multiplier iri’(k) being(k). Then we have

- B A A, A, R
rk=rkyk=|1+——+ —— -t — |+ ——
k—ky (k—ky)? (k=ky)" k—ky
A A A
=l e e (32
k—ky (k—ky)? (k—ky)"**
where
’F
R=(ky—ky)P =2, Ju)(Uil. (33
Here we have normalized the vectdts) and(u;| such that
(Ulup)=(ky—ky) 3, (34)

and?zlankR. In view of Eq.(28), we know thaF=r,, wherer; is the geometric multiplicity of
k, andk; in the soliton matrice§ (k) andI’ ~1(k). The coefficients at the poles Ti(k) are given
by

A=A+R, A=Aj+A_iR, j=2,...n, A, =AR. (35)

Consider first the coefficien®s, to A, ;. The explicit form of the coefficientd; can be obtained
from Egs.(29), (30), and(32) as

ry s, +1-j

A= E A(V)_E E 98" (Pt s+2 il (36)

where the inner sum is zerosf + 1— j<0. Substituting this expression in(85) and defining the
following new vectors in each block:

BYI=@VIR, (BI=MIR+ (P, i=2....5,, 37

[for blocks of size 1s,=1, the second formula if87) is dropped, we then put the coefficients
A,,...,A,. into the required form

ry §V+1—J
A= 2 1670B ol (=20,
where
1G"N=laty, 1=1,...3,—1,

ands,=s,+1, i.e., the size of eachrblock grows by one as we multiply By(k) in formula(32).
Next, we consider the coefficierft;. Defining the vector(ﬁé”)|z(_(s”)| and utilizing the
definition (37), we can rewriteA{") as
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5,-1

SV
A= 2, 1) 11~ 2 [at) (P o R 39

To setA;=A;+R into the required form

Z P 1l (39)

we must define exactly one new vectqg )> for eachv-block[in the second term of E¢39)] and

T—r, new blocks of size 1 containing B ) new vectorsgi®)) and(p{*)|. Due to formulas
(35) and (38), the new vectors to be defined must satisfy the following equation:

r

i 1 Sy
> 16+ 2 16 IR=R- 2 2, [af”) (Pl IR, (40
u=r;+1 v=1 v v=11=2

where the definition of5{")| in Eq. (37) has been utilized. Substituting the expresgi@® for R
into the above equation, we get

(81 = 2, 1&)(uil, (41)

Qn

T
> |
p=ri+1

where

=

=13, 3 0 )~ 3, G, 1-1,...7.

To show that Eq(41) is solvable, we need to use an important fact that the matrix
M=(M,)), M, =@P|u), v=1,...r;, 1=1,...Fq,

has rankr,. This fact can be proved by contradiction as follows.
Suppose the matridM has rank less than, . Then itsr, rows are linearly dependent. Thus,
there are such scala;,C,, . .. ,C,l, not equal to zero simultaneously, that the vector

M1
(n1=2, C.p’)
is orthogonal to allu,)’s, i.e.,

(mlupy=0, 1<I<FT. (42

According to our induction assumption that soliton matrices involvinquultipliers in formula
(27) have the form(29), we can easily show, by equating the coefficient at the highest pde at

=k, in the left-hand sidélhs) of the identityT' (k)T ~*(k)=1 to zero, thatp{”|T'~*(ky) =0 for
all 1=sv=<r, (see also Ref. 22_Thus( 7| ~*(k,) =0 as well. According to Lemma 1 in Ref. 22,
if (| is in the kernel ofl “1(k;) and is orthogonal to allu))’s, then(z| is in the kernel of

Ffl(?l) as well, i.e.{ 17|T*1(E)=0. But according to our construction of soliton matri¢ese
Eqg. (27)], the vectors(u;| (I=1,...F) are all the linearly independent vectors in the kernel of

F‘l(?l). Thus(7| must be a linear combination ¢@,|’s. Then in view of Eqs(34) and(42), we
find that(»|=0, which leads to a contradiction.
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Now that the matrix M has rankr,, then we are able to select vecto|r§r(s”)> (v
=1,...r,) such that, of theT vectors(&| are zero. With this choice dﬁé”)’s, the rhsV of Eq.
(41) become§ —r, blocks of size 1. Assigning these blocks to the Ihs{éb]f;, then Eq.(41) can
be solved. Hence we can put the coefficiéatin the required forn(39).

Next we prove that all vectorg3{”| (1< v<F) in the matrixI'(k) are linearly independent.
These vectors were defined in the above proof as

(

O

“r‘
‘1”>|=<5‘1”’|R=|§1 PEPluywl|, 1<wv<ry, (43)

and (p{| for r,+1<v<F are simply equal t& —r, of the vectorst, depending on what;
X4 submatrix of M has rankr ;. To be definite, let us suppose the firgtcolumns of the matrix
M have rankr; (i.e., linearly independeptThen according to the above proof, we can uniquely
select vector$ciﬁsz)> (v=1,...r4) such thaf&)=0 for 1<I<r,. Thus,

PP=(,), ri+1<vr<t. (44)

Recalling that vectoréu,| (1= »<T) in the projectoR (33) are linearly independent, and the first
r, columns of matrixM have rankr,, we easily see that vecto(é(f)| (1=v=T) as defined in
Egs.(43) and(44) are linearly independent.

Last, we prove that the sizes of blocks in representati@@sare given by the block sequence
defined in Definition 2. An equivalent statement is that the numbers of matrix blocks with sizes
[1,2,3,....,n] are given by the pairwise differences in the sequence of rahks:r,,r,
—r3,...,fhn_1—In,ry], where the last number in the sequence defines the number of blocks of
sizen. This can be easily proven by the induction argument using the fact that the number of new
blocks of size 1 inA; (35) is given byF—r;, while the sizes of old blocks grow by 1 in each
multiplication as in formulg32).

Using similar arguments, we can prove that the representatg® for I' (k) is
valid, and vectors|p{™), ... | p(1r1)> are linearly independent. This concludes the proof of
Lemma 1. Q.E.D.

C. Soliton matrices for several pairs of zeros

Next, we extend the above results to the most general case of several pairs of higher-order
normal zeros{(kl,kl),...,(kNZ,kNZ)}. In this general case, the soliton matkiXk) can be con-

structed as a product of soliton matricgy) for each zero, which are given by the procedure
outlined in the beginning of this sectideee Eqs(22) to (27)]. Thus,I'(k) can be represented as

I(k)=T1(k)-T'a(k)---T'y,(K). (45)

For each pair of zero( ,k;), we can define its rank sequence and block sequence by Definition
2 either fromI’(k) directly or from the individual matriX';(k) associated with this zero. It is easy

to see that using either df(k) or I';(k) gives the same results. The inverse maltix (k) can be
represented in a similar way.

The product representati¢as) for I'(k) and its counterpart fdr ~ (k) are not convenient for
deriving soliton solutions. Their summation representations such a@8dqare needed. It turns
out thatI'(k) andI’ (k) in the general case are given simply by sums of all the blocks from all
pairs of zeros plus the unit matrix. Let us formulate this result in the next lemma.

Lemma 2: Consider several pairs of higher-order normal zé¢(ds ,E),...,(kNZ,?NZ)} in the

Riemannr-Hilbert problem. Denote the geometric multiplicity of ze(ds ,?n) as r(ln) and their
block sequence as{”,s{", ... s{h} (L=n=Nj). Then the soliton matrices(k) and '~ *(k)
1

can be written in the following summation forms:
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N, (n)

z " Nz 1
r(|<):|+nz1 ;1 S, r*1(|<)=|+n§l Vzls(ﬁ. (46)

Here S and S are the following block matrices:

@)
SO=(ai). a0 (ara
Py |
(|
SM=(Ipe ™), plaDP| (479
(af""|
where OV (k) and D{"(k) are triangular Toeplitz matrices of the siz&"s<s(™:
1
- 0 0
(k—kp)
1 1 . .
D) =| (k—kp)? (k—kp) |
) , 0
1 1 1
(k—Kpq)®» (k—kn)?  (k—kp)
(48)
1 1 1
(k=kp) (k=kp)2 7 (k—kyS
0 - - :
DM(k)= . , 1 1
' (k—kn)  (k—kp)?
0 0 !
(k—kp)

Vectors |p”™),(pt"™| (g™, [at"™M) (i=1,...s") are independent of .kin addition, for
(1.n)

each n vectors{|p{*”), ... |p{* ™)} and {(p{"), . .. ,<p1r(1)’”)|} are linearly independent,
respectively

Proof: Again we will rely on the induction argument. As it was already mentioned, the general
soliton matrixI'(k) corresponding to several distinct zeros can be represented as a sl wit
individual soliton matrice$27) for each zero. For clarity reason and simplicity of the presentation
we will give detailed calculations for the simplest case of just one produ@sn Then we will
show how to generalize the calculations. Consider soliton métfk) for two pairs of distinct

higher-order zeroskj ,k;) and (,,k,). We havel'(k) =T (k)I'»(k) and

k—kq (k—ky)M

A An1 B, B“z
rk)=| 1+ Fod ——| | I+ teeet . (49)
k—ks (kK—ka)"™
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Heren; (j=1,2) is the number of simple matrices in the product represent@idrfor I'; . Due
to Lemma 1, the coefficientd; andB; are given by formulas similar t(86):

r(ll) sgl)Jrlfj

A=Y 2 (AP . (50)

r(lz) s(V2)+1 j
— +{v.2)
Bj_];l 21 |_(V2)>< S(V2)+2 j_||- (51)

On the other hand, by expanding form@#®) into the partial fractions we get

"5‘1 A”1 ~Bl En
F(k):|+—_+"‘+ — + —+r . (52)
k—ky (k=kp™M  k—k, (k—ky)"2

Consider first the coeffi_cien%,— . Multiplication by (k—k;)™ of both formulas49) and(52) and
taking derivatives ak=k; using the Leibniz rule gives

- 1(d — AL 0,
Anl|=ﬁ{dﬁk(k—kl> 1r<k>]kk=j2( =5 5= (K- (53)

In a similar way we get

LU= J)I‘ Bn i
2~

J':0

Now substituting Eqs(50) and(51) into (53) and (54) and defining new vectors

m—1
(=2, @ i dk, — k), m=1,.s", (55
and
|45 ?) = E ], ko ), m=1,.52, (56)
we find that

r(ll) s(V1)+ 1-j

A= X A, (57)

r(lz) s(V2)+ 1-j

B=2 2 140, (58)

which give precisely the needed representatify). Note from definitiong55) and(56) that
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LB, (B 1=0RE Y - (P11 2(ka)
and

(652, JGED] =Ta(k)L[a?), ... JaE)l.

w1 (_(E’l)l)l} and{[q{"?), .. IG(Z'Z))>} are linearly indepen-

dent respectively. In addition, matnchl(kz) andl“z(?l) are nondegenerate. Thus new vectors
(e, . (pf(yl)l)l} and {|G{"?), ...,|d£§2’$)>} are linearly independent respectively as well.

Due to Lemma 1, vector§(p}

This completes the proof of Lemma 2 for two pairs of higher-order zeros.

It is easy to see that the above procedure of redefining the vectors in the blocks corresponding
to different zeros will also work in the general case, wHerfk) is replaced by the product
I'y(k)---T'h(k), andI',(k) replaced by, 1(K). In this case, the sum over all distinct poles will
be present in the left parentheses in form{48), and consequently there will be more terms in
formula(52). Formula(53) will be valid for coefficientsA of each zero, and formul®4) remains
valid as well. Thus by defining vecto(sp(” ')| by formula(55) for each zerk; (1<j=<n), and
defining vectorstq(” ”*”) by formula (56) for zerok,,,, we can show that the matrik(k)
consisting ofn+1 products ofl"j(k) can be put in the required fori@6). This induction argu-
ment then completes the proof of Lemma 2. Q.E.D.

The notations in the representati¢fo) for soliton matrices with several zeros are getting
complicated. To facilitate the presentations of results in the remainder of this paper, let us refor-
mulate the representatida6). For this purpose, we defimg=r{1+---+r"?  wherer{V's are
as given in Lemma 2. Then we replace the double summations itdBgwith single ones,

5 M

r(k)=|+21§V, =1+ s,. (59)

Inside these single summations, the f'n%f terms are blocks of typ@l7) for the first pair of zeros
(kq,ky1), the nextr {?) terms are blocks of typ@t7) for the second pair of zerog{ k), and so on.
Block matricesS, andS, can be written as

s, | |q V)><p, | <5(1V)|

+1 V) v —_— :
S,= 2 '—1‘r G, ... [a?)D, k| ], (603

T e ” o)

(v)

s, | (95

n P gl s,
$=2 2 Gy s =(pe) - p{2)D,(K) | (60b)

o ’ (ay”|

where matrice® ,(k) and Sv(k) are triangular Toeplitz matrices of the siggxs,:

1_ 0 0
(k—7,)
1 1 _ :
D= k-x)? (k-x,) ' ,
: .. 0
1 1 1
(k=x)> 7 (k—x)? (k—x,
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1 1 1
(k—k,) (k—=k,)%2 7 (k—k,)%
0 : - :
D, (k)= : . 1 1 . (61)
' ' (k—k,)  (k—k,)*
0 0 o
(k—=x,)
Here
j—1 j
k,=kj, if 14—21 ril= vszl ) (1sj=Nyp). (62)

In other words,«,=k; for 1<sv=<r{, «,=k, for rP+1=<v=<rP+r{? etc. In addition,
{s, . 1+3|_ir{P<v<3]_;r{)} is the block sequence of theh pair of zeros k; k;). This new
representatiori59) is equivalent to(46), but it proves to be helpful in the calculations below.

We note that the simplified way of block numeration used in the represent&@meflects
the important property of the solitons matrices: the soliton matrices preserve their form if some of
the zeros coalesder, vice versa, a zero splits itself into two or more zérd$e only thing that
does change is the association of a particutatock to the pair of zeros.

The representatiofb9) [or (46)] is but the first step towards the necessary formulas for the
soliton matrices. Indeed, there are twice as many vectors in the expregs®rer I'(k) and
I' (k) as compared to the total number of vectors in the constituent matrices in the product of
representations of the typ@7) for each pair of zeros. As the result, only half of the vector
parameters, sajp!”’) and (pt”)|, are free. To derive the formulas for the rest of the vector
parameters i159) we can use the identity (k)T ~(k)=T"1(k)I'(k)=1. First of all, let us give
the equations for the free vectors themselves.

Lemma 3: The vectorp{”),... [p{"”) and (p{”|,...,(p{"’| from eachuth block in the repre-

sentation (59}(60) satisfy the following linear systems of equations:

r 0 0
1 d
(v) B r
[py™) 1k’
I',(x,) () =0, I' (k)= . ol (63
|psV> :
1 delr 1 dF r
(s,— L)l dk&~ 1% " 1l dk
-1
—1 iirfl l dSV l"*l
1! dk (s,—1)! dks~ 1
_ _ 0 r-1 :
(P81, (P (K,)=0, T, (k)= L d
= " r-1
e
0 0 r-1
(64)

Remark:Note that the matriceF (k) and F;l(k) have block-triangular Toeplitz forms, i.e.,
they have the samg@natrix) element along each diagonal.

Proof: The derivation of the systeni63)—(64) exactly reproduces the analogous derivation in
Ref. 22 for the case of elementary zefas the equations for theth block resemble analogous
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equations for a single block corresponding to a pair of elementary)zémsinstance, the system
(63) is derived by considering the poles Btk)I'“%(k) atk=«,, starting from the highest pole
and using the representati¢®9)—(60) for I' (k). The details are trivial and will not be repro-
duced here. Note that there may be several sets of vgétons differentr-blocks of the same pair
of zerog which satisfy similar equations if the geometric multiplicity of this pair of zeros is higher
than 1. Q.E.D.
Now let us express thig) and(q| vectors in the expressioit§9)—(60) for I'(k) andl’ (k)
through the p) and(p] vectors. This will lead to the needed representation of the soliton matrices
given through thép) and(p| vectors only. It is convenient to formulate the result in the following
lemma.
Lemma 4: The general soliton matrices for several pairs of normal zeros

{(kq ,E),...,(kNZ,E\,Z)} are given by the following formulas:
@)

(P

OO =1=(Ipf),--dPE)), I ™), [P PN k) , (659

(v

(Y|

Sr1

(Pt

(%)
T2 =1=(pM), . [P, [Py ). ) DO

Ty <5§f1)| '

(65b
(e

where s, and r, are the same as in Lemma 2. The matrie¥&) and D(k) are block-diagonal:

Dy(k) 0 D4(k) 0

D(k)= , D(k)= : (66)
0 D, ,(k) 0 Dy, (k)

where the triangular Toeplitz matriceEVCk) and D, (k) are defined in formulas (61Yhe matri-
ces Kand K have the following block matrix representation:

K@D . k@ K@y o k()
K= : : , K : :
K)o KU Kol Kor)

: (67)

with the matrices K*) and K(**) being given as

,—1

—1)(j+hr HYQM

it (k,— 1)L

S Sﬂfl (
K = >
<o =0
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s,—1 S#—l (_1)I(I+J)| Ql(VuU«)HJ(,U«)

K(va) = E Z

EIED) ! (Z;‘K,L)HJH'

(68)

Here {H") ,,,....H{".}} is the basis for the space of,ss,-dimensional Toeplitz matrices,

defined as(HJ(V))a”gE 84,5-j- The nonzero elements of matricgfsVQ) and Q""“) are defined as
the inner products between thevectors from the blocks with indicesand w:

0

@) 0
Q= <_;V)| (0...0pf), Py Q= gy | (IPE)... P& (69)

¢ :

(Pt

Remark 1in the case of a single pair of zeroks, (k,) simply replacex, («,) andx, (x,)
in formula (67) by k; (ky).
Remark 2:In the case of the involutiod) property, the obvious relations hold:

=i, (P=p")T, D, (k)=Dl(k*), K& =(KE)T,

Proof: We only need to prove that thg) and{q| vectors in soliton matrice9) and(60) are
related to thgp) and(p]| vectors by

(... Jaf"). ..

T, @) K== ([pf). - JpE). ) 6P, (70

"1

and
@y e
<q%1”| @?'
o || @ | (71)
<Q£rl)| ﬁsﬁ?'

where matrice&C andC are as given in Eq67). We will give the proof only for Eq(70), as the
proof for (71) is similar. Note that in the case of involutigd), Eq. (71) follows from (70) by
taking the Hermitian conjugate.

To prove Eq.(70), we consider the corresponding expressitG® and(60) for I'(k),

fy ()
T()=1+ 2, ([a),...[at”)D (k) <—§ " (72)
- Ps,

We need to determine tHg)-vectors using Eq(63). Note that thdth row in the u-system(63)
can be written as
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1 dr !
(k)= 10 dk(K ) WW(K“) b =0 (73
|pi)
for each = u<r,. When the expressiofr2) for I'(k) is substituted into the above equation, we
get
(P — Gy
E (G, [a”){ D) | 5 |Ip{)+ Doen| 5 gy
RER ) ! 10 dk
(P57 (s’
-1 <5(1V)|
T T | I T —— (74
(=Dt dk™ 5| ey |1 b
SV

The derivatives OEV(K#) can be easily computed as

d'D ‘ (J+|)| H®)
d 2 (KM_VV;H—H—l' (75)

Now it is straightforward to verify that all equations of the ty(®} can be united in a single
matrix equation(70) by padding some columns in the summation$7 by zeros, precisely as it
is done in the definitiori69) of Q(**). As a result we arrive at the relatigfi0) between/q) and
|p) vectors, where the matrik is precisely as defined in Lemma 4. Q.E.D.

D. Two special cases

Our soliton matrices derived above reproduce all previous results as special cases. The soliton
matrices were previously obtained in two special cases: several pairs of Riemann—Hilbert zeros
with equal geometric and algebraic multiplicittsand a single pair of elementary higher-order
zeros?? In the first case, suppose that the geometric and algebraic multiplicitiespaifirs of
Riemann-Hilbert zerog(k; k) 1<j=n} are{r),1<j=<n}, respectively. Then the soliton matri-
ces have been given befé?e{see also Appendix B in Ref. 3&s

0o 0 _1 —) no @ O gy oo —¢m)
™) (F ™Y im, i (0] 1 [0 (F i im{0 1™
r=1- > 2 = re=i+e 3 3 3 k—k; !

ij=1m=1i=1 k—kj ij=1m=11i=1
(76)

where r® vectors {[v{"), 1=<I<r®} and {(v{"],1<I<r®} are in the kerels of(k;) and
I'~*(k;), respectively,

T'(k)lv=0, @Mr-tk)=0, 1=1,...r0, 77
and
@™o ")
Fim,jlz%- (78
k—k;
Moreover,
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(i)
k—k;j\"
detl'= H( ) .

—k;

The above special soliton matrices can be easily retrieved from the general soliton matrices
(65—(69) of Lemma 4. Indeed, in this special case, the block sequence of agair of kerkg (
is a row of 1's of lengthr ), Thuss,=1 for all v's. Consequently, matricd3, andD, in Eq. (66)

have dimension 1. In addition, matrick$”* andK**) in Eq. (68) also have dimension 1, and
the summations in their definitions can be dropped slrc@ andj=0 there. Hence, we get
QI
K(Vxﬂ):(K(M’V))T:mll—pi>,

Ky= K,

see (69). Relating |p) vectors {|p{”),1+=]21rO<p<3|_;rO} to {jo{),1<I<r} and
{(p] 1+ 22 O<w<3{_;rO} to {(v{"], 1<I<r(”} for each]— .., and recalling the
definition (62) of K'S, we read|ly find that our general representat(ﬁﬁ) reduces tq76). We note

by passing that the soliton matric€&)—(78) cover the case of simple zeros, where there is just
one vector in each kernel ifY7).

Our second example is a single pair of elementary higher-order zeros. A higher-order zero is
called elementary if its geometric multiplicity is?2 This case has been extensively studied in the
literature before(see Refs. 15, 17, 18, R2or different integrable PDEs. The soliton matrices
having similar representation &5)—(69) for this case were derived in our previous publicatién.
The only difference between that paper’s representation and the prese®®re9) is the
definition of the matrice«C and K. However, in this special case, these matrices have just one

block each, i.e. K™D and KD, since there is just one block in the soliton matrices. By
comparison of both definitions one can easily establish their equivalence.

E. Invariance properties of soliton matrices

In this section, we discuss the invariance properties of soliton matrices. When the soliton
matrix is in the product representati@@?7) for a single pair of zeros, the invariance property
means that one can choose anylinearly independent vectors in the kernels Iofk;) and
I'1(k,), or more generally, one can choose any(1<I=n) linearly independent vectors in the
kernels of @“XII- . -X,ill)(kl) and (x,—1- - x1I 1) (k,), and the soliton matrix remains invariant.

In other words, given the soliton matrix(k), for a fixed set ofr| linearly independent vectors
lvir) (1<i<r)) in the kernels of [x; * - -x;-%)(k;) and another fixed set af linearly inde-
pendent vectorév;)| (1<i<r,) in the kernels of §,_1---x:I'"1)(k,), new sets of vectors

(Bu) (02, - [0 DI=Llva). o2, - .- Jor, 1)1B (79
and
(0] (vl
Wal | g Cal | (80)
@oal] L@l

whereB andB are arbitraryk-independent nondegeneraie< r; matrices, give the same soliton
matrixI" (k). This invariance property is obvious from definitiai2$) for projector matrices. Note
that the invariance transformatiorig9) and (80) are the most general automorphisms of the
respective kernelé.e., null spacesof (I'y; -+ x;1) (k1) and (¢—1- - x1T 1) (kq).

Now let us determine the total numbgaf,.. of free complex parameters characterizing the
higher-order soliton solution. For a single pair of the higher-order zdtpk() in the case with
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no involution, it is given by the total numbgr,, (= 2N=[_;r,+ 2) of all complex constants in all
the linearly independent vectors in the above null spaces and the pair of kerkg) ( minus the
total numberNj,, (=23,r?) of the free parameters in the invariance matri¢e® and (80).
Thus, in the case with no involution, we have

n n
A[freeEMot_MnVZZNzl rl+2_221 I’|2. (81)

Note that the total number ¢ ) or (v] vectors in the product representati#v), given by the

sum 2_,r|, is equal to the algebraic order of the pair of zerés,k;). In the case of the
involution (4), the numbet\.c is reduced by half. When the soliton matrices have several pairs
of zeros as in the product representatid®), the invariance property is similar, and the total
number of free soliton parameters is given by the sum of the right-handrbigleof formula (81)

for all distinct pairs of zeros.

By analogy, the invariance properties for the summation represent@®rof the soliton
matrices are defined as preserving the form of the soliton matrices as well as the equations
defining thel p) and(p] vectors(63) and(64). The equations defining the transformations between
different sets ofp vectors of the same invariance class must be linear, since all the spts of
vectors in the invariance class satisfy equati@® and(64) for a fixed soliton matrix—i.e., the
invariance transformations are a subset of transformations between solutions to diisearof
equations. Thus the most general form of the invariance is given by two linear transformations—
one for|p) vectors and one fofp| vectors:

(rl)

(B8, B, . B Ip‘”) (1P, [P, [P, . Ip‘”)>)B (82)

and
(Bt <5f11’|
(P, <ps1 |
=B| . (83)
<p“1’| <|ol )
<p“1’| @ r”I
S

Different from the product representation of the soliton matrices, the transformation ma&rices
andB in Egs.(82) and(83) cannot be arbitrary in order to keep the soliton matri&s and Eqgs.
(63) and(64) invariant. Let us call such matricds and B which keep the soliton matric€65)
invariant as the invariance matrices. The form of invariance matrices can be determined most
easily by considering the invariance of E¢83) and (64).

Recall from Lemma 3 that alp) vectors in the soliton matrik65) satisfy the equation

P1")
Ipsl ) T'y(kq) 0
:01 I‘BE ’ (84)
(r )
|p ' 0 Frl( Krl)
Ips”)>
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whereI',(«,) is the lower-triangular Toeplitz matrix defined in E@3). The matrixB is an
invariance matrix if and only if the above equation is still satisfied when|phevectors in Eq.
(84) are replaced by the transformed vect{s in Eq. (82), and the resulting matrices and
are nondegenerafsee Eq.(65)]. Note that the transformatiof82) can be rewritten in the fol-

lowing form:
p) pi)
) o)
ey | 7| ey | o
mﬁ[% |p§;1’>

where the superscripfT™ stands for the matrix transposition. Since the origifal vectors can be
chosen arbitrarilyfthe matrixI'g is determined subsequently from thépg vectors as well as the
(p] vectors, in order for the abovép) vectors(85) to satisfy Eq.(84) as well, the necessary and
sufficient condition is thal's andBT commute, i.e.,

FB' BT:BT'FB, (86)

andB is nondegenerate. The requirement for the nondegeneraByioheeded in order for the
resulting matricesC and K to be nondegenerafsee Eq.(96)]. Similarly, we can show that the
matrix B in Eq. (83) is an invariance matrix if and only Fg andB™ commute,

FB'gTZET'FB, (87)
andB is nondegenerate. Here the block-diagonal mﬁgxis

Fl(Kl) 0

j|
w

(88)
0 T ()

and upper-triangular Toeplitz matricE_S(KV) have been defined in E¢64). Note that matrices
I's andllB have exactly thE same forms B¢k) andD(k), respectively. Thus invariance matrices
BT andB" commute withD(k) andD(k) as well:

D(k)-B"=BT-D(k), D(k)-BT=BT-D(k). (89

In addition, sinceD T has the same form d§ invariance matriceB andB also commute witiD
andD:

B-D(k)=D(k)-B, B-D(k)=D(K)-B. (90)

The form of these invariance matrices are easy to determine. First of all, the commutability
relations(90) demand that the invariance matfk has a block-diagonal form with each block
corresponding to a pair of zeros:
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B1

B= . (91)

B

z

HereB, is a square matrix associated with thth pair of zeros k,, ,k,,). The form of each matrix
B, is readily found to be

11 1M
= -

Bn= : : : (92

B(r(ln)’l) B(r(ln)’r(ln))
n n

whereB{"*) is as{V xs{) matrix of the following type:

0 ... 0 by by ... bm.y Db
0 . . 0 by by o by
BU#=| 1 : | v=we, (939
0 0 b, b,
0 0 b,
Cl C2 A CSLH)—J. CS'EP)
0 ¢ ¢ Csﬁf)—l
0o -
I G o (930
0 Cq
0
0 ... ... ... 0

sW=sV= .BS% is the block sequence of zerok,(k,) as in Lemma Zsee Definition 2
1

andb;,c; are arbitrary complex constants which are generally different in different submatrices

Bﬁ”*"’ . The invariance matri8 has the form oB” (in general, with arbitrary elements unrelated
to those ofB).

The above form$92) and(93) of the invariance matriceB,, and§n follow immediately from
the following argument. Consider, for instance, the maBjx The commutability relation with
the part of the matrix D(k) corresponding to thenth pair of zeros, i.e., DM(k)

=diagdD{(K), . .. D)(K)] where matrice® " (k) are given by Eq(48), produces the following
1
set of independent matrix equations:

DM(k)B W =B"DM(k), vu=1,...r{". (94)

For v=pu, the above equations are equivalent to the commutability conditions for the single
elementary higher-order zero considered in Ref. 22, thus the (@8nfor the diagonal blocks
Bﬁ”’”’ follows accordingly. Consider now the case when n (the other case can be considered
similarly). We have thers"’<s{!”, thus the square matr{’(k) contains the matri©{” (k) in
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its lower right cornefconsult the definitior{48)]. It is easy to conclude, first of all, that the first
p— v columns of the matri>B§,"'“) are identically zero, otherwise on the rhs of E2g) we would
have higher powers ofk(—k,) ! than the highest power of this quantity on the left-hand side
(Ihs). Then if we denote the nonzero partBf* asB{”, the condition(94) becomes

DM (k)B(M=BDM(k),

which is equivalent to the one considered above in the cage=of. Thus the form(93g for the
off-diagonal blocks of the invariance mat"*) follows as well. Q.E.D.

From the above explicit expressiori81)—(93) for invariance matrices in the summation
representationi65), it is easy to see that the total numb€y,, of free complex constants in these
invariance matrices coincides with that in the product representéirand (45) [see Eq(81)].
Indeed consider for simplicity just a single pair of zeros. In the case with no invol(#iorithe
total number\,, of free complex constants in the invariance matri®8—(93) is

M

Niy=22, (2= 20+ 1811

ry
=22 (2u—1)s,
n=1

"n -1 rq n
=2(nX (2u-1)+(n-1) Cu=1+-+ X (2u-1)|=22 1,
pn=1 p=rpt+1 pn=rot+1 =1

(99

which is exactly the same as that in E§1) for N, . Here we have used the fact that the numbers
of blocks with sizes[1,2,3,...,n] are given by the differences of the ranks,—r,,r,
—ra,...h—1—TIn,rn] (see the end of the proof of Lemma 1 in Sec. Il B

This result is not surprising since the invariance properties of the soliton matrices in the
summation representation originate from the invariance properties in the product representation,
that is why the respective invariance matrices have the same total number of free parameters.
Consequently, the total number of free complex parameters in the summation repres¢@ftion
is the same as in the product representation, as expected. In the case with no involution for a single
pair of zeros it is given by the same E&J1).

Invariance matrices have many important properties. These inGlutlee identity matrixl is
an invariance matrix(ii) if B is an invariance matrix, so isB, wherec is any nonzero complex
constant;(iii) if B is an invariance matrix, so iB~1; (iv) if B, and B, are two invariance
matrices, so ar8,*B, andB;-B,. In the former caseB,* B, should be nondegenerate.

Last, we note that if matriceB andB satisfy the commutability relation®0), the transfor-
mations(82) and(83) indeed keep the soliton matric&5) invariant. The proof uses the fact that
under the transformatiof82) whereB is an invariance matrixthe (p] vectors are held fixeg

matriceskC and K are transformed to

K=KB, K=KB (96)

respectively. Similarly, under the transformati@3) while keeping thép) vectors fixed, matrices
K and KC are transformed to

K=BK, K=BK. (97)
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For a single pair of elementary higher-order zeros these facts have been proved in Ref. 22. The
proof for the present general case is given below. Since the proofs for(#)sand (97) are
similar, we only consider Eq96).

To prove the transformatiof®6), we need to recall how matricés andK are obtained. The
matrix K is derived from Eq(84). Comparing this equation wit{v0), we find that

o) )
Ipi?> |a§1>>

(I'g—1) |p(r1) =K' |air1)>
1

|psr1)> |a<1:rl)>

Now using the form(85) of the transformatlor@82) and recalling thaB™ andI's— | commute, we
readily find that () "=BTK, thusk = KB. As about the matrix_, it is derived from the equation

(P (P (BT (PG DT =0,

wherel; is given by Eqgs(63) and (88). Recall thatl' ~1(k) is given by Eq.(59), i.e.,
(1)|

<fo)|

P =1+ (pf) [P APy ) N D [ F
" SN

<q(T1)|

Thus, using the transformatid82) and noting thaB andD commute[see Eq.(90)], we readily

find that = KB, i.e., the equatiori96) holds.

Because of Eq(96) and the commutability relatiof®0), we see that soliton matricdyk)
andI" (k) in Eq. (65) indeed remain invariant under the transformaiig®). Analogously, these
soliton matrices are also invariant under the transformat&8) if matrix B is an invariance
matrix. In the case of involutiod), transformationg82) and (83) need to be performed simul-
taneously sincép) and(p] vectors are related by the Hermitian operation. Under these combined
transformations, matrixC transforms tak = BB, thus soliton matrice$65) remain invariant as
well.

The invariance matrices can be used to reduce the number of the free parameters in the soliton
solution to the minimum, which is given by the formul@l). They are also used to reduce the
(x,t) dependence of the soliton matrices to the simplest possible @emthe next sectipn

F. Spatial and temporal evolutions of soliton matrices

Finally, we derive theX,t) dependence of the free vector parameters which enter the soliton
matrix (65). The idea is similar to the one used in the derivation of Eg6) in Sec. Il. Our
starting point is the fact that the soliton matfiXk,x,t) satisfies Eqs(5) and(6) with potentials
U(k,x,t) andV(k,x,t):
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A (k,x,t) =T"(k,x,t) A (k) + U(k,x,t)['(k,x,t), (983
ol (k,x,t) =T (k,x,t) A (k) +V(k,x,t)I"(k,X,t). (98b)
First we need to find the equations for the triangular block—Toeplitz matﬂgemdﬁ. To this

goal one needs to differentiate E488) with respect tdk up to the §,—1)th order. It is easy to
check that the equations faét, have the same form as E(q98),

oL, (kx, 1) =T ,(k,x, 1) A (K) + U, (k,x, ) T, (K, X, 1), (99a
0T, (k,x,1) =T, (k,x,1) Q,(K) + V,(k,x,H) T, (K, X, 1). (99b)

HereA,, Q,, U,, andV, are lower-triangular block—Toeplitz matrices,

A 0 0
1 olA
N 11 dk
v : 0l
1 dsv—lA 1 dA A
(s,—1)! dks 17 7 1rdk
(100
Q 0 0
1 olQ
11 dk
QV: : O ]
1 clsv—lQ 1 olQ 0
(s,— 1)l dk&1°° 7 11dk
U 0 0
1 dU
11 dk
Ull: : 0 ]
1 dsV_l
- U .. ——uU VU
(s,—1)! dkalU 1! de
(101)
Y, 0 0
1 dV
11 dk
V= : 0
1 dSV71
(s,—1)! a1 Ty Y

Indeed, this is due to the fact that the matrix multiplicatiori98) exactly reproduces the Leibniz
rule for higher-order derivatives of a product. Similarly, using the equation¥ fdr

oL 1k, x,t) = — A (KT 2k, x,0) =T =k, x,H ) U(K,X, 1), (1023

T 71k, x, 1) = — QKT 2k, x,t) =T 71k, x, ) V(K,x,t), (102b
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one finds that
oL (kx,t)=—A,(K)T,(k,x,t)—T,(kx,t)U,(kx,t), (103a
oL, (kx,t)=—Q, (KT, (kx,t) =T ,(kX,t)V,(kXt), (103b

whereA,, Q,, U,, andV, are upper-triangular block—Toeplitz matrices:

A iiA #EA
1! dk (s,—1)! dks~ 1
_ 0 :
A= 1 d ,
Tk
0 0 A
(109
1 d 1 a1t
QO ﬁ&ﬂ (sv——l)!WQ
_ 0 :
Q,= 1 d ,
ok
0 0 Q
U iiu #Eu
1! dk (s,—1)! dks» 1
_ 0 :
u.,= 1 d ’
Tk
0 0 U
(109
\Y; iiv ;Ev
1! dk (s,—1)! dks~ 1
_ 0 :
Vo= 1 d
Tk
0 0 \Y;

To obtain the k,t) dependence of thp vectors, let us differentiate Eq&3) and(64). Utilizing
Egs. (100 and(103), we find that

[
(k)| [oxt Ak =0 (106
)

and
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[pi)
(k) [0+ Q,(k,)]| - =0. (107
[

Due to the invariance propertig¢the explanation will follow below we can set the quantities
inside the curly brackets of Eq&106) and (107) to be zero without any loss of generality:

[p$”) [p$”)
Col=0,  [a+Qx)1| : |=o. (108
[ [

v

[oxtA(k,)]

The reason for it is the uniqueness of solution to the Riemann—Hilbert problem for a given set of
the spectral data. Thus, thg,{) dependence of thip) vectors is

[pi") Ipt?)
; = exp{_ AV(KV)X_ QV( KV)t} ; (109)
(2% P62
By similar arguments, thex(t) dependence of th€p] vectors is given as
(P (P = (RS, (P2 eXp A, () X+ Q, (k) ) (110

Here the subscript “0” is used to denote constant vectors. The exponential functions in the above
two equations can be readily determined. Indeed, by using the property that the operation of
raising a diagonal matrixsuch asA (k)x+Q(k)t herg to the exponent commutes with the
construction of the related triangular block—Toeplitz mats&e appendix in Ref. 22we find that

E(kq) 0 0
1d
eXp{_AV(KV)X_QV(KV)t}z E(kl) o
dsvfl d
o=t a1k - g7 Bk E(ky)
V (1113
and
,l? 1 d E_l? 1 ds”il E—l?
E™"(kq) 11 dk (ky) - oD de T (ky)
X ol O (= 0 E~(ky) . :
exp(A,(k,)X+Q,(k,)t}= ; B ,
' ; i gE (ko)
0 0 E (k)
(111

whereE (k) =exp[— A(K)x—Q(K)t}.

Given the spatial and temporal evolutions of veci@sand(p], as in Eqs(109—(111), the
associated soliton matricé85) can be constructed. Eventually, the soliton solutions are derived
from Eq. (5) by taking the limitk— . The soliton solutions for the three-wave interaction model
are given by Egs.12) and (13). The corresponding eigenfunctions of ti&-dimensional
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Zakharov—Shabat spectral problem with these soliteflectionlesk potentials are then simply
the column vectors of the soliton matricEg¢k) andI"~%(k) given by (65) with k either equal to
one of the zerosk| , k;) (the eigenfunctions of the discrete spectjumtaking values on the real
axis (the eigenfunctions of the continuous spectyum

Last, let us show that other solutions to E¢H06) and (107), different from those given by
Eqg. (108, will give the same soliton matrices. Notice that E¢B06) for all v blocks can be
written in the following compact form:

[
p{Y Q,(xy) 0
I'g(d4+Qp) (:rl) =0, Qp= . (112
|p1 > 0 er(Krl)
p{Y)
1

According to the invariance properties discussed in the Sec. Ill E, any two vectors in the kernel of
matrix I'g are linearly dependent. Thus the most genfsalsolutions to Eq(106) are such that

|T>§“> I'Iﬁ(f’>
BY) BY)
: _pT :
(9,+Qp) I“ri(l”)> BT(x,t) |"p(l'1)> , (113
|ﬁ(}1)> IE(}1)>
St, S,

whereB is an invariance matrix which depends wmndt in generalsee Eq(85)]. To show that
these|P) vectors give the same soliton matrid€$) as the|p) vectors from Eq(108), we define
a matrix functionG(x,t) which satisfies the following differential equation and initial condition:

3,G(x,1)=BT(x,1)G(x,t), Gly—o=1.

Because the matri® here is an invariance matrix aii®{x=0)=1, obviously the functiorG(x,t)
is an invariance matrix as welhote thatG is always nondegenerate by constructidn addition,
G lis also an invariance matrix. Now for any solutiffi) of Eq. (112, we define new vectors
p) as

n{) B)
pS) [BE)

. G .
p{'2) By

(1) ~(ry)
[ps?) [B5,")

Then thesep) vectors satisfy the first equation {#08). This can be checked directly by substi-
tuting the above equation infd08) and noting that matriceS and€Qg commute by virtue of Eq.
(86) and the fact that matriceQg andI's have identical form. Sinc& ! is an invariance matrix,
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the|p) and|p) vectors, related as above, naturally give the same soliton matéibesThus there
is no loss of generality in picking the particular solutions of E6) given by Eqs.(108).

IV. APPLICATIONS TO THE THREE-WAVE INTERACTION SYSTEM

To illustrate the above general results, we apply them to the three-wave interaction(i#bdel
and display various higher-order soliton solutions. In this case, the involution prdgégitplds,
thus all zeros are normal and appear in complex conjugate pairs. The soliton F{&yils given
by Eq. (658, where(p]=|p)', and the &,t) evolution of|p) vectors is given by Eq$109 and
(1119. The general higher-order soliton solutions of the three-wave system are then given by Eq.
(13), where

o)

(Pt

1

OW=T W= —(|pP),... p{).. ). [Py PN S e

(|
Py
1

and matrixk is given in Eq.(67). In all our solutions, we fix the parameters in the dispersion laws
(1) as @;,a,,a3)=(1,0.5-0.5) and p;,b,,b3)=(1,1.5,0.5).

A. Soliton solutions for a single pair of nonelementary zeros

First, we derive soliton solutions corresponding to a single pair of nonelementary zeros. In
particular, we consider the rank sequefite2} of a pair of zerosK; ,k;). In this caser,;=2 and
r,=1. Using formula(81) (for the case of involutionwe get the number of free complex param-
eters in the soliton solution:

Niee=3(2+1)+1—(4+1)=10-5=5.

There are thregp) vectors,|p{)), |p), and|p{?) in Eq. (114. Whenk, and the initial values
[1pY),|pEy).[p$3)] of these vectors are provided, the soliton soluti¢hd) will then be com-
pletely determined.

In the present case, the block sequence réads,}={2,1}, the corresponding invariance
matrix B can be readily obtained from the general form(84) as

b1y bip byg
B=| 0 by 0],
0 bz bs

which indeed has five free complex paramefeee Eq(95)]. The invariance matriB is just the
Hermitian conjugate of th& matrix.

To display these soliton solutions, we chooke=1+i, |p§Y)y=[—1i,1—i]7, |p{3)
=[1,0.5-1]". When|p{Y)=[1,1+i,0.5]" (the generic cagethe solutions are plotted in the top
row of Fig. 1. In the two nongeneric caséshere some elements of tHp) vectors vanish
IpiYy=[0,1+i,0.5]" and|p{})=[1,0,0.97, the solutions are plotted in the second and third rows
of Fig. 1, respectively. We see that in the generic case, three sech waves in the three components
interact and then separate into the same sech waves with their positions shifted. In other words,
this is a uj(sech)u,(sech)us(sech)-u,(sechjtu,(sech)-us(sech) process. What happens is
that the initial pumping ;) wave breaks up into two sech waves in the other two componants (
andu,), while simultaneously the two initial; andu, waves combine into a pumping sech wave.
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FIG. 1. Soliton solutions in the three-wave systéiv) corresponding to a single pair of zeros with rank sequéhcé}
at timet=—15, 0, and 15. Here&k;=1+i, |p{)=[—1j,1-i]", |p?)=[1,0.5-1]". First row,|p{¥)=[1,1+i,0.5]";
second row|p$Y)=[0,1+i,0.5]"; third row, |p{)=[1,0,0.9".

Thus this process is a combination of two subprocessgs:u;+u, and u;+u,—us. This
phenomenon seems related to the rank sequgn& of the present solitons and the fact that, the
rank sequencél} itself describes the breakup of a pumping sech wave into two nonpumping sech
waves, while the rank sequen{® itself describes the reserve process. In the nongeneric cases,
these solutions can describe theg(sech)u,(second order)- u,(sech)us(sech) process, the
u4(sechjtuy(sechius(sech}-ug(second order) procesgsee Fig. 1, second and third rowand
many others. In the solutions of Fig. 1, the and b; parameters are such thag<uz<u,. If
u;<uz<u,, the processes will be exactly the oppodisee Ref. 22 Thus our solutions can
describe the processes reverse to those of Fig. 1 as well.

B. Soliton solutions for two pairs of simple zeros

Here we derive the soliton solutions corresponding to two pairs of simple zeros in the three-
wave systenil14). Some solutions belonging to this category have been presented in Refs. 26 and
27. But we will show that those solutions are only spe@mingenerit solutions for two pairs of
simple zeros. Below, the more general solutions for this case will be presented.

In this caser{Y=r{?>=1. By using formula81), for the case of involutioii4), for two pairs
of zeros, we readily obtain that the number of free complex parameters in the solution is six:

Niee=2(3X1+1—1)=86.

Indeed, there are twfp) vectors in Eq.(114). Together with the two zerds, andk,, there are
eight complex parameters in the soliton solutions. However, th@ variance matrixB in this
case is diagonal and has two fr@kagonal complex parameters.

Three solutions, wittk;=1+i, k,=—1+0.5 and three different sets ¢p{y)) and|p{?)
vectors, are displayed in Fig. 2. In the generic case Wlhpig@):[l,lH,O.SJT and |p021>
=[1,0.5-1]" (see top row of Fig. § the solution describes the breakup of a higher-order
pumping (3) wave into two higher-orden; andu, waves. This is analogous to solutions for a
single pair of elementary zeros with algebraic multiplicitysee Ref. 22 In the nongeneric case
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FIG. 2. Soliton solutions in the three-wave syst€éi) corresponding to two pairs of simple zeros at titme— 15, 0, and
15. Here,k,=1+i, k,=—1+0.5. First row, |p{"y=[1,1+i,0.5]7, |p{?)=[1,0.5-1]"; second row,|p{})=[0,1
+i,0.9]", |p§y=[1,0.5-1]T; third row, |pY)=[0,1+i,0.5, |p2)=[1,0.5,0".

where|p§})=[0,1+i,0.5]" and|p{3)=[1,0.5—1]" (second row in Fig. @ the present solutions

can describe tha,(sech)+ u;(sech)}-u;(sech)-u,(second order) process. This process has been
seen in Ref. 22 for elementary zeros as well. More interestingly, in the nongeneric case when
p{P1]1=p)[3]=0, these solutions describe the elastic interaction of a seciave with a
sechu, wave (see bottom row of Fig.)2 These are precisely the soliton solutions presented in
Refs. 26 and 27. We see that these solutions are simply nongeneric solutions for two pairs of
simple zeros.

C. Soliton solutions for two pairs of higher-order zeros

Last, we consider two pairs of distinct zeros, one simple and the other one elementary with the
algebraic multiplicity 2. Let us sak; is the elementary zero, ang is the simple zero. Then the
rank sequence fdk, is {1, 1}, and the rank sequence fkg is {1}. Thus,r{"’=1, r{’=1, and
r{¥=1. By formula(81), we have

Mree=3(1+1)+1—-(1+1)+3X1+1-1=8.
Indeed, in this case{")=2 ands{®’=1, hence there are 11 complex parameters in the soliton

solutions(nine in the threép) vectors, plus the two zerdg andk,). The invariance matri can
be found from the general formul@1) as

bll b12 0
B=| 0 by 0|,
0 0 b

which has three free complex parameters. Thigs,=11—-3=8 as calculated above.
Three solutions, withk;=1+i, k,=—1+0.5, |p§})=[—1i,1-i]7, and three different
sets of|p{})) and|p{d) vectors, are displayed in Fig. 3. In the generic céisst row in Fig. 3,
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FIG. 3. Soliton solutions in the three-wave systéi#) corresponding to two pairs of zeros—one elementary with
algebraic multiplicity 2, and the other one simple. Hekgs=1+i (elementary zero k,=—1+0.5 (simple zer9, and
Ip$y=[—1,i,1—i]". First row, |p§)=[1,1+i,0.5]", |p{2)=[1,0.5-1]"; second row,|p{Y)=[0,1+i,0.5]", |p{>)
=[1,0.5-1]T; third row, |p{Y)=[0,1+i,0.5]", |p{3)=[1,0.5,0".

this solution describes the breakup of a higher-order pumping wayeitfto the othem; andu,
componentgboth higher order In nongeneric cases, it can describe processes suah(sech)
+ug(higher order)-u (higher order}-u,(higher order) (second row of Fig. B uj(sech)
+uy(sech)+us(sech)-uy(higher order)+ u,(higher order)(last row of Fig. 3, and many others.
The reverse processes of Fig. 3 can also be described by chagsanyl b; values such that
u;<uz<u, instead ofu,<uz<u, in Fig. 3.

V. CONCLUSION AND DISCUSSION

We have proposed a unified and systematic approach to study the higher-order soliton solu-
tions of nonlinear PDEs integrable by tNex N-dimensional Riemann—Hilbert problem. We have
derived the complete solution to the Riemann—Hilbert problem with an arbitrary number of
higher-order zeros, and characterized the discrete spectral data. Therefore, we have obtained the
most general form of the higher-order multisoliton solutions to nonlinear PDEs integrable through
the NX N-dimensional Riemann—Hilbert problem. In other words, the most general reflectionless
(soliton) potentials in theN-dimensional Zakharov—Shabat operators have been derived. The
eigenfunctions associated with these reflectionless potentials are readily available from our soliton
matrices. We have applied these general results to the three-wave interaction system, and new
higher-order soliton and two-soliton solutions have been presented. These solutions reveal new
processes such as +U,+uUz—U;+U,+Uz. They also reproduce previously known solitons
from Refs. 2, 22, 26, and 27 as special cases. Our results can be applied to derive higher-order
multisolitons in the NLS equation and the Manakov equations as well, but this is not pursued in
this paper.

The results obtained in this paper are significant from both physical and mathematical points
of view. Physically, our results completely characterized higher-order solitons and multisolitons in
important physical systems such as the three-wave interaction equation, the NLS equation and the
Manakov equations. These higher-order solitons can describe new physical processes such as
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those displayed in Figs. 1-3. If these integrable equations are pertiwhézh is inevitable in a
real-world probleny, our higher-order solitons then become the starting point for the development
of a soliton-perturbation theory which could determine what happens to these higher-order solitons
under external or internal perturbatioifs’® From the mathematical point of view, our results
completely characterized the discrete spectral data of higher-order zeros in a general
N-dimensional Riemann—Hilbert problem. These results will be useful for many purposes such as
proving the completeness of eigenfunctions iN-@imensional Zakharov—Shabat spectral prob-
lem with arbitrary localized potentials. The difficulty of such a proof is caused by higher-order
zeros. Hopefully, with our results at hand, this difficulty can be removed.

From a broader perspective, our results are closely related to many other physical and math-
ematical problems. For instance, the lump solutions in the Kadomtsev—Petviashvili equation are
given by the higher-order poles of the time-dependent Sthger equation. In Refs. 20 and 21,
lump solutions corresponding to certain special higher-order poles were derived, but the most
general lump solutions still remain an open question. Note that the time-dependendiSgiro
equation is an infinite-dimensional system compared to our prédatimensional Riemann—
Hilbert system. But the ideas used in this paper might be generalizable to the time-dependent
Schralinger equation as well. This remains to be seen.
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APPENDIX: GENERAL RIEMANN-HILBERT PROBLEM WITH ABNORMAL ZEROS

Here we show that our soliton matrices of Sec. Il can be generalized to the case of Riemann—
Hilbert problem with abnormal zeros. However, due to the lack of important applications, we will
show only a simple example, which corresponds to a pair of zeros with different geometric
multiplicities but the same algebraic multiplicity. Then we comment on the general case of several
nonpaired zeros.

Let us use the simplest example to show the idea behind generalization of our results to the
general Riemann—Hilbert problem with abnormal zeros. Consider one pair of kgrés)(which
have the same algebraic multiplicity 2 but different geometric multiplicities, which here will be 1
and 2, respectively. The corresponding soliton matrices are given as follows:

(ka— k) (1) (03] +[v2)(v2))

r(k)=1+ -
k_kl

(A1)

) (kl—E>|v1><v—1|) ( . (kl—E>|vz><v—z|)’

with the conditions thatv;|v;)=1, (v,|v1)=0, and(v,|v,) # 0. To verify that the above matrices
are indeed inverse to each other it is enough to rewrite the miafikx in the form

<E—kl>|v2><v—2|) ( . <E—k1>|v1><v—l|> .

r(k)=(|+ . —
k_kl k_kl
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and take into account th&;=|v;)(v;| is a projector. EquationA2) and (A3) are in fact the
product representations of the fori@7). Now let us show that there are exactly two solutions to

<5[F*1(E)=o. Indeed, the corresponding null vectors are as follows:
(Pal=(1l, (P2l=(val. (A4)

This is due to the fact theIt“l(E)=(l —Py)(1—=P,). But, on the other hand, there is just one
solution toT'(ky)|p)=0: |p1)=]|v1). Suppose that there is another solutigg) to I'(k,)|p)
=0 linearly independent frorfp,). We have then using formul@l) for I"(k,),

Ip2)=[v1)(valp2) +|v2){(valp)- (A5)
Thus |py)=alvy) +blv,). Using this in formula(A5) we get, due tav,|v,)=0 and(v,|v,)
#0,
alvy)(va|v2) =0,

which is a contradiction, sinca+# 0.
The soliton matrices given by formul#81)—(A2) have the following form in the standard
notations of Lemma 1 of Sec. Il

92)(P2| +[d2)(P4]

T(k)=1+ i
k—k,

(AB)

Ip(d2l +[p2){(asl  [pa(aal

rky=1+ + ,
(k) k—k; (k—k1)2

(A7)

where
[y =(ki—kp)[va), [A2)=(ki—kp)|va), (G1l=(ki—ky)Zv1|v,)(val,

|vz>
(ky—kq){(v1|v2)

Notice that"(k) has two blocks of size 1, whilE ~1(k) has one block of size 2.

In general, for one pair of zeros with different geometric multiplicities, the soliton matrices
have the structure of Lemma 1 but with different numbers of blocks(k) andI" “*(k), while
the total number of thép) and(p]| vectors appearing in these matrices is the same and equals to
the order of the pair of zeros. One can proceed to derive the representations similar to those in
Lemma 4 for this case. Evidently, due to the way of the derivation, the formulas will be similar
with the only difference in the number of blocks and block sizeF (k) andI" (k).

In the more general case of the Riemann—Hilbert problem with abnormal zeros, the zeros can
be nonpairedfor instance, zero of order 2 i@, and two simple zeros i€ ). Formally, this case
can be obtained by “splitting” some of the paired zeros into several distinct zeros in the soliton
matricesI"(k) andI" (k) discussed above, since this limit is obviously regjithe geometric
multiplicity of the zero to be split should be at least equal to the number of the new zeros
generated in this way, thus providing for the needed number of blocks; fo@é)afor instance,
allows splitting of the zer&=k, of I' (k) into two simple zerok Thus, the most general case
can be handled starting from the case of just one pair of zeros, i.e., the case discussed above. The
explicit expressions for the soliton matricE¢k) andI" ~*(k) will involve similar relations be-
tween the numbers of zeros, their geometric multiplicities and the numbers and sizesof the
blocks of vectors as those in Lemma 1, though, obviously, with different particular numbers for
each of the two matrices.

<Q2|:(k1_?1)<0_1|1 |p2)=
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