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Recent progress on nonlinear properties of parity-time (PT )-symmetric systems is comprehensively
reviewed in this article. PT symmetry started out in non-Hermitian quantum mechanics, where
complex potentials obeying PT symmetry could exhibit all-real spectra. This concept later spread out
to optics, Bose-Einstein condensates, electronic circuits, and many other physical fields, where a
judicious balancing of gain and loss constitutes a PT -symmetric system. The natural inclusion of
nonlinearity into these PT systems then gave rise to a wide array of new phenomena which have no
counterparts in traditional dissipative systems. Examples include the existence of continuous families
of nonlinear modes and integrals of motion, stabilization of nonlinear modes above PT -symmetry
phase transition, symmetry breaking of nonlinear modes, distinctive soliton dynamics, and many
others. In this article, nonlinear PT -symmetric systems arising from various physical disciplines are
presented, nonlinear properties of these systems are thoroughly elucidated, and relevant experimental
results are described. In addition, emerging applications of PT symmetry are pointed out.
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I. INTRODUCTION

Symmetries are the most fundamental properties of nature,
which are responsible for many physical phenomena we
observe. Not long ago Bender and Boettcher (1998) suggested
that parity (P) and time (T ) symmetries can be responsible
for purely real spectra of non-Hermitian operators. While
examples of such operators were known for a long time, the
discovery of Bender and Boettcher (1998) had profound
significance, because it suggested a possibility of PT -
symmetric modification of the conventional quantum mechan-
ics which considers observables as Hermitian operators in
the Hilbert space L2. This idea was further developed by
Mostafazadeh (2002a, 2002b) who introduced and explored a
general class of pseudo-Hermitian operators with special
symmetries and purely real spectra. These works have since
stimulated intensive research on PT -symmetric operators.
Developments on this front have been covered in a series of
reviews (Bender, 2005, 2007; Mostafazadeh, 2010; Makris
et al., 2011) and special issues in Geyer, Heiss, and Znojil
(2006), Fring, Jones, and Znojil (2008), and Bender
et al. (2012).
The concept ofPT symmetry has gone far beyond quantum

mechanics and has spread to many branches of physics.
Ruschhaupt, Delgado, and Muga (2005) noticed that if a
medium where a light pulse propagates has an even refractive
index profile and odd gain-loss landscape, then one can
construct an optical analog of PT -symmetric quantum
mechanics. The real explosion of the PT -symmetric optics
and photonics started after the works by El-Ganainy et al.
(2007), Makris et al. (2008), and Musslimani et al. (2008a)
who suggested and elaborated paraxial PT -symmetric optics.
Moreover, El-Ganainy et al. (2007) established the concept of
PT -symmetric waveguide optics, by showing that discrete
optics provides a simple but nontrivial framework for the
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study of PT -symmetric systems. The PT -symmetric optical
theories were soon confirmed in a series of experiments
(Guo et al., 2009; Rüter et al., 2010; Feng et al., 2011;
Regensburger et al., 2012). Extension of PT symmetry to
other branches of physics then quickly followed.
These developments suggested further extension of the

theory to include nonlinearity, which is inherent in many
fields of physics and is responsible for a wide variety of new
phenomena. This study was initiated in nonlinear optics with
linear PT -symmetric potentials by Musslimani et al. (2008a).
Later on optical systems with nonlinear PT -symmetric poten-
tials were also explored (Abdullaev, Kartashov et al., 2011;
Miroshnichenko, Malomed, and Kivshar, 2011). Presently the
first experimental studies of nonlinear PT -symmetric physics
are already available (Peng, Özdemir, Lei et al. (2014);
Wimmer et al., 2015). From a practical point of view, important
applications of PT symmetry such as single-mode PT lasers
(Feng et al., 2014; Hodaei et al., 2014) and unidirectional
reflectionless PT -symmetric metamaterial at optical frequen-
cies (Feng et al., 2013) have also emerged.
Why are PT systems interesting for physics beyond

quantum mechanics? There are a number of reasons. One
reason is that PT systems, being dissipative in nature, exhibit
many properties of conservative systems, such as all-real
linear spectra and the existence of nonlinear steady states with
continuous ranges of energy values. Such hybrid properties
make PT systems physically novel. Another reason is that
PT systems offer some exciting applications, such as those
mentioned previously. A third reason is that loss was always
considered to be a detrimental physical effect in the past. PT
symmetry makes loss useful, which is physically enlightening.
Finally, gain and loss can be varied in time, opening new
possibilities for flexible control and steering of physical
processes.
In this review we describe recent developments on non-

linear PT -symmetric systems. Even though reviews on linear
PT theories and non-Hermitian quantum mechanics have
been written [see Bender (2007) and Mostafazadeh (2009a,
2010) for instance], a comprehensive review on nonlinear
PT -symmetric systems is still lacking. More importantly, the
field of nonlinear PT systems has been developing very
rapidly, and a large body of knowledge has been obtained just
in the past few years. Thus it is timely to write a review on this
subject.1

II. NON-HERMITIAN OPERATORS WITH REAL SPECTRA

In this section, we overview the main concepts in the theory
of PT -symmetric (and, more generally, non-Hermitian) linear
operators. We do not intend to cover all available results of this
extremely vast field, but rather to systematize the material
relevant for description of nonlinear systems presented in the
subsequent sections. For comprehensive reviews on non-
Hermitian operators in physics and mathematics, in addition
to the works listed in the Introduction, we also mention the

reviews by Muga et al. (2004), Cannata, Dedonder, and
Ventura (2007), Rotter (2009), Daley (2014), and Garcia,
Prodan, and Putinar (2014), as well as the monograph of
Moiseyev (2011).

A. Definition and basic properties

Let ψðr; tÞ be a complex-valued wave function of a
quantum particle. Evolution of ψðr; tÞ in space r and time t
is governed by the Schrödinger equation

i
∂ψ
∂t ¼ Hψðr; tÞ; ð1Þ

where the linear operator H acts in a Hilbert space L2ðRDÞ
endowed with an inner product hψ ;ϕi¼ R

RD ψ�ðr; tÞϕðr; tÞdr,
D is the space dimension, the asterisk stands for complex
conjugation, and (unless stated otherwise) we consider the
units where ℏ ¼ m ¼ 1 with m being the mass of the
particle.
For a given linear operatorH, the Hermitian conjugationH†

is defined by the relation hH†ψ ;ϕi ¼ hψ ; Hϕi for any two
functions ψ and ϕ in L2ðRDÞ. An operator H is said to be
Hermitian (or self-adjoint) if H† ¼H, i.e., hHψ ;ϕi¼ hψ ;Hϕi
[a mathematically rigorous definition of the Hermiticity
(Reed and Simon, 1980) additionally requires the operator
H to be densely defined, i.e., the domain of H must be a
dense subset of L2ðRDÞ; for simplicity, we assume that this
requirement holds for any operator we consider].
The spectrum of any Hermitian operator is purely real,

while the converse is not true, i.e., Hermiticity is sufficient for
reality of the spectrum but not necessary.
The two fundamental discrete symmetries in physics are

given by the parity operator P defined as

Pψðr; tÞ ¼ ψð−r; tÞ; ð2Þ
and by the time reversal operator T defined in Wigner’s sense
as (Wigner, 1959)

T ψðr; tÞ ¼ ψ�ðr;−tÞ: ð3Þ

The operator T is antilinear, i.e., T ðλψ þ ϕÞ ¼ λ�T ψ þ T ϕ,
for any vectors ψ , ϕ and a complex number λ. Additionally,

P2 ¼ T 2 ¼ I; ½P; T � ¼ 0; ð4Þ

where I is the identity operator.
An operator H is said to be PT symmetric if

½PT ; H� ¼ 0: ð5Þ

Using Eq. (4), definition (5) can be rewritten as
H ¼ PT HPT .
Rapidly growing interest in PT -symmetric operators

was triggered by the seminal work of Bender and
Boettcher (1998), where a connection between PT symmetry
and the reality of the spectrum was pointed out. To emphasize
this connection, Bender and Boettcher (1998) introduced
the notion of unbroken PT symmetry. PT symmetry of a
PT -symmetric operator H is said to be unbroken if any

1After submission of this review we became aware of the work of
Suchkov et al. (2016) which addresses PT symmetry in optical
applications.
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eigenfunction of H is at the same time an eigenfunction of the
PT operator. In this case, the relation Hψ ¼ Eψ implies the
existence of λ such that PT ψ ¼ λψ . From Eq. (4) it follows
that there exists a real constant φ such that λ ¼ eiφ, i.e., any
eigenvalue of the PT operator is a pure phase (Bender,
Boettcher, and Meisinger, 1999).
Unlike Hermiticity, PT symmetry is not sufficient for the

spectrum to be purely real. However, it becomes sufficient
when combined with the requirement for the PT symmetry to
be unbroken. Indeed, let E be an eigenvalue of H with the
eigenfunction ψ , i.e.,Hψ ¼ Eψ . Applying the PT operator to
both sides of this equation and utilizing Eq. (4), one obtains
HðPT ψÞ ¼ E�ðPT ψÞ. Then, if the PT symmetry of H is
unbroken, Hψ ¼ E�ψ , and hence the eigenvalue E is real.
Since this procedure is applied to every eigenvalue of H, we
conclude that the spectrum of H is purely real.
If the unbroken PT symmetry does not hold, then the PT

symmetry is said to be broken. The broken PT symmetry is
typically associated with the presence of complex eigenvalues
in the spectrum of H.
Unlike Hermiticity, PT symmetry does not ensure the

completeness of eigenvectors of the operator. Even if the
spectrum of a PT -symmetric operator H is entirely real,
the set of eigenfunctions of H may not constitute a complete
basis. The typical scenarios when the eigenvectors lose their
completeness correspond to the presence of an exceptional
point [see Kato (1966) and Moiseyev and Friedland (1980)
and Sec. II.B] or a spectral singularity (see Sec. X.A). These
features are not exclusive to PT -symmetric operators and can
be encountered for more general non-Hermitian operators
as well.
The described connection between the PT symmetry and

reality of the spectrum does not involve the definition (2) of
the parity operator, but rather relies on properties (4) and the
fact that T is antilinear. Therefore, one can also consider the
generalized parity operator P (Bender, Berry, and Mandilara,
2002; Mostafazadeh, 2003b, 2008), with P being an arbitrary
unitary linear operator P†P ¼ PP† ¼ I. Then properties (4)
also imply that P is self-adjoint, i.e., P† ¼ P.
More details about the relation between PT symmetry and

Hermiticity can be found in Mostafazadeh (2003a, 2009a).
Now we consider a few examples.

1. PT -symmetric parabolic potentials

A Schrödinger operator with a complex potential UðxÞ,

H ¼ −
d2

dx2
þ UðxÞ; UðxÞ ¼ VðxÞ þ iWðxÞ; ð6Þ

is PT symmetric if U�ðxÞ ¼ Uð−xÞ, i.e., its real and imagi-
nary parts are even and odd, respectively:

VðxÞ ¼ Vð−xÞ; WðxÞ ¼ −Wð−xÞ: ð7Þ
The simplest example of such a potential is the complex
parabolic potential (Kato, 1966, p. 86; Znojil, 1999; Bender
and Jones, 2008)

UðxÞ ¼ ðx − iαÞ2; α ∈ R: ð8Þ
Its eigenvalues and eigenfunctions are

En ¼ 2nþ1; ψnðxÞ¼Hnðx− iαÞe−ðx−iαÞ2=2; ð9Þ

where n ¼ 0; 1;…, and HnðxÞ is the nth Hermite polynomial.
Thus the PT symmetry of the parabolic potential is unbroken
for any α (that is En are real for all α).

2. Bender-Boettcher potential

Generalizing a conjecture of Bessis and Zinn-Justin,
Bender and Boettcher (1998) investigated the spectrum of
the potential

UðxÞ ¼ −ðixÞN: ð10Þ

For 1 < N < 4, the eigenvalue problem is posed on the
real axis and the potential acquires the form UðxÞ ¼
−jxjN expfisignðxÞπN=2g. If 0 < N ≤ 1 or N ≥ 4, then the
problem must be posed on a contour lying in the com-
plex plane.
Numerical results of Bender and Boettcher (1998) on the

spectrum of this potential (Fig. 1) show that for N ≥ 2 the
spectrum is real and positive [a rigorous proof of this fact
belongs to Dorey, Dunning, and Tateo (2001)]. At the lower
boundary of this region, N ¼ 2, this potential becomes a real
parabolic potential. When 1 < N < 2 one observes a finite
number of real positive eigenvalues and an infinite number of
complex-conjugate pairs of eigenvalues. As N approaches 1
from above, the lowest real eigenvalue approaches infinity,
and for N < 1 there are no real eigenvalues. Thus PT
symmetry is unbroken for N ≥ 2, but becomes spontaneously
broken as parameter N crosses the PT -symmetry-breaking
threshold Ncr ¼ 2.

3. Two-level PT -symmetric system

Consider now a Hamiltonian defined by a 2 × 2 matrix
(Bender, Berry, and Mandilara, 2002)

H ¼
�
iγ κ

κ −iγ

�
¼ κσ1 þ iγσ3; ð11Þ

where γ ≥ 0 and κ ≥ 0 are real parameters and hereafter we
use the conventional notations for the Pauli matrices:

FIG. 1. Real eigenvalues of potential (10) for different N.
Adapted from Bender and Boettcher, 1998.
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σ1 ¼
�
0 1

1 0

�
; σ2 ¼

�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�
:

ð12Þ

The Hamiltonian (11) acts in a Hilbert space which consists
of two-component column vectors ψ ¼ ðψ1;ψ2ÞT (hereafter
the superscript T stands for the matrix transpose), with
complex entries ψ1;2, and the inner product is defined as
hψ ;ϕi ¼ ψ�

1ϕ1 þ ψ�
2ϕ2. The Hamiltonian (11) is PT sym-

metric with P ¼ σ1 and T being the complex conjugation.
The eigenvalues and eigenvectors of H are given by

E1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − γ2

q
; ψ ð1;2Þ ¼

�
iγ=κ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2=κ2

p
1

�
:

ð13Þ

Thus PT symmetry is unbroken (the spectrum is all real) if
γ ≤ κ and is broken (both eigenvalues are imaginary) if γ > κ.
At γ ¼ κ, PT -symmetry breaking occurs. At this point, the
two eigenvalues collide, and the eigenvectors become linearly
dependent. Thus PT -symmetry breaking occurs at the point
where the Hamiltonian is a nondiagonal Jordan block. The
respective algebraic multiplicity of the eigenvalue is two,
larger than its geometric multiplicity of one. Such points in the
parameter space ðγ; κÞ are called exceptional points (Kato,
1966) or branch points (Moiseyev and Friedland, 1980).

B. Exceptional points

Transition through an exceptional point is the most typical
scenario of PT -symmetry breaking, which arises also in a
more general context of non-Hermitian physics (Moiseyev
and Friedland, 1980; Rotter, 2009; Heiss, 2012). Now we take
a closer look at what happens at an exceptional point by
considering a (not necessarily PT -symmetric) Hamiltonian
(Heiss, 2012)

HðϵÞ ¼
�
E1 0

0 E2

�
þ iϵ

�
h11 h12
h21 h22

�
; ð14Þ

where E1 and E2 are real. Eigenvalues of HðϵÞ are

E1;2ðϵÞ ¼
1

2
½E1 þ E2 þ iϵðh11 − h22Þ�

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðh11 − h22Þ2 þ 4h12h21�ðϵ − ϵ1Þðϵ2 − ϵÞ

q
;

ð15Þ

where

ϵ1;2 ¼ ½E1 − E2�=½2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
h12h21

p ∓ iðh11 − h22Þ�: ð16Þ

For arbitrary parameters the spectrum of HðϵÞ contains two
distinct eigenvalues. However, at ϵ¼ ϵ1 (or ϵ ¼ ϵ2) the two
eigenvalues coalesce, i.e.,E1ðϵ1Þ¼E2ðϵ1Þ [orE1ðϵ2Þ¼E2ðϵ2Þ],
and at these points Hðϵ1;2Þ has only one linearly independent
eigenvector, which means that ϵ1 and ϵ2 are exceptional points.

These exceptional points may be complex numbers and
transition through an exceptional point requires variation of a
complex parameter ϵ, i.e., is controlled by two real parameters.
We simplify the consideration by imposing the conditions
h11 ¼ h�22 and h12h21 > 0 (each of h12 and h21 may be
complex). Then ϵ1;2 are real and we consider real ϵ. For
definiteness we also set ϵ1 < ϵ2 and consider ðh11 − h22Þ2þ
4h12h21 < 0. Then upon the increase of ϵ from zero, eigen-
values E1;2ðϵÞ move toward each other along the real axis and
collide at ϵ ¼ ϵ1. At this instant phase transition occurs. After
collision they move to the complex plane, then become real
again at ϵ ¼ ϵ2 where they collide on the real axis a second
time. As ϵ approaches an exceptional point functions E1;2ðϵÞ
display a typical square root behavior ∼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ − ϵ1;2
p

. The
described restoration of unbroken PT symmetry is referred
to as reentrant PT symmetry. It is noted that reentrant PT
symmetry resembles “bubbles of instability” in equilibria of
Hamiltonian systems (MacKay, 1987).
Exceptional points are inherently different from the degen-

eracy of eigenvalues, which corresponds to the situation
where two eigenvalues coalesce but their eigenvectors remain
linearly independent (i.e., the eigenvalue has a diagonal
Jordan block). In our case, the simplest example of degeneracy
occurs when E1 ¼ E2 and ϵ ¼ 0.

C. PT symmetry and pseudo-Hermiticity

Although PT symmetry itself is not sufficient to guarantee
the reality of the spectrum of a Hamiltonian H, it ensures
that complex eigenvalues (if any) always exist in complex-
conjugate pairs. Indeed, if E is a complex eigenvalue
(with nonzero imaginary part) and ψ is the corresponding
eigenvector, then E� is also an eigenvalue with eigenvector
PT ψ . This, in particular, implies that in the finite dimensional
case PT symmetry of a linear operator results in reality of all
coefficients of the characteristic equation of the Hamiltonian.
Bender and Mannheim (2010) proved that the converse is
also correct: if all the coefficients of the characteristic
polynomial are real, then the corresponding Hamiltonian is
PT symmetric.
A necessary and sufficient condition for the spectrum of a

non-Hermitian Hamiltonian to be purely real can be formu-
lated in terms of a more general property called pseudo-
Hermiticity (Lee and Wick, 1969; Mostafazadeh, 2002a). A
Hamiltonian H is said to be η-pseudo-Hermitian if there exists
a Hermitian invertible linear operator η such that

H† ¼ ηHη−1: ð17Þ

It is clear that if η is the identity operator, then the definition
(17) is equivalent to Hermiticity, i.e., pseudo-Hermiticity is a
generalization of Hermiticity. In many cases, pseudo-
Hermiticity can also be considered as a generalization of
PT symmetry. For example, if H is a symmetric matrix
Hamiltonian, then PT symmetry implies HP − PH� ¼ 0,
and hence H† ¼ H� ¼ PHP, i.e., the pseudo-Hermiticity of
H. As another example, the Schrödinger operator (6) with
complex potential (7) is P-pseudo-Hermitian.
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An immediate corollary of the pseudo-Hermiticity is
that the quantity Q ¼ hηψ ;ψi is invariant under the time
evolution (1) generated by the HamiltonianH, i.e., dQ=dt≡ 0

(Mostafazadeh, 2002a). In the case of the Schrödinger
operator (6) and (7) this leads to a conserved quantity
(Bagchi, Quesne, and Znojil, 2001)

Q ¼
Z

∞

−∞
ψðx; tÞψ�ð−x; tÞdx: ð18Þ

Solombrino (2002) introduced a possibly more general
concept of weak pseudo-Hermiticity which does not require
the operator η in Eq. (17) to be Hermitian. Whenever one
considers only diagonalizable operators with discrete spec-
trum, the class of all pseudo-Hermitian operators coincides
with the class of all weakly pseudo-Hermitian operators.
Moreover, in this case (weak) pseudo-Hermititicy is equiv-
alent to the presence of an antilinear symmetry, such as
PT symmetry: a diagonalizable operator H with discrete
spectrum is (weakly) pseudo-Hermitian if and only if there
exists an invertible antilinear operator Ω such that Ω2 ¼ I and
½H;Ω� ¼ 0 (Mostafazadeh, 2002c; Solombrino, 2002).
The notion of the pseudo-Hermiticity allows one to for-

mulate necessary and sufficient conditions for a a Hamiltonian
to possess a purely real spectrum. Let us consider the case of
the discrete spectrum, and let a Hamiltonian have a complete
set of biorthonormal eigenvectors fjψni; jϕnig defined by
(Faisal and Moloney, 1981)

Hjψni ¼ Enjψni; H†jϕni ¼ E�
njϕni;

hϕnjψni ¼ δn;m;
X
n

jψnihϕnj ¼ I:

Then the following theorem holds.

Theorem 1 (Mostafazadeh, 2002b) Let H be a
Hamiltonian that acts in a Hilbert space, has a discrete
spectrum, and admits a complete set of biorthonormal eigen-
vectors fjψni; jϕnig. Then the spectrum of H is real if and
only if there is an invertible linear operator O such that H is
OO†-pseudo-Hermitian: H ¼ ðOO†ÞH†ðOO†Þ−1.
To illustrate the application of Theorem 1, consider the

PT -symmetric operator (11). It possesses a complete set of
biorthonormal eigenvectors unless ϵ ¼ γ=κ ¼ 1. Since at
ϵ < 1 the spectrum of H is real, Theorem 1 guarantees that
there exists the operator O such that H is η-pseudo-Hermitian
with η ¼ OO†. Note that although H is P-pseudo-Hermitian,
this cannot be used in Theorem 1, because the parity operator
P ¼ σ1 does not admit the representation P ¼ OO† (this can
be verified straightforwardly). Therefore there must exist
another operator η ≠ P when the spectrum of H is purely
real. By straightforward algebra one finds that

η ¼ 1

ϵ2

�
1 iϵ

−iϵ 1

�
; O ¼ 1

ϵ

�
0 iffiffiffiffiffiffiffiffiffiffiffiffi

1 − ϵ2
p

ϵ

�
:

Theorem 1 also indicates that no such operators exist in the
broken PT -symmetry case of ϵ > 1.
It is noted that PT symmetry is not necessary for a non-

Hermitian operator to have a real spectrum. Nixon and Yang

(2016a) showed that if an operator H satisfies a weaker
symmetry relation H†η ¼ ηH for some operator η (not
necessarily invertible), then under some mild conditions
on the kernel of η, complex eigenvalues of H (if any) always
come in conjugate pairs, and a real spectrum is often possible.
Imposing this symmetry relation on the Schrödinger oper-
ator (6) for differential operators η, wide classes of non-PT -
symmetric complex potentials with all-real spectra were
constructed (Nixon and Yang, 2016a). For an arbitrary real
function wðxÞ, one such class of potentials is UðxÞ ¼
−w2ðxÞ − iw0ðxÞ [see also Eq. (31)], and another class is

UðxÞ ¼ −
�
1

4
w2 þ w02 − 2w00wþ c

4w2

�
− iw0; ð19Þ

where c is a free real parameter. The latter class of potentials
generalizes the earlier result of Andrianov et al. (1999) who
discovered potentials (19) with negative c using the super-
symmetry (SUSY) technique (addressed in Sec. II.E).

D. Real spectrum and effect of perturbations

Since PT symmetry ensures that complex eigenvalues
appear as complex-conjugate pairs, one can expect that if
PT symmetry is unbroken and the real eigenvalues are “well
separated” from each other, then the reality of the spectrum is
“robust” against sufficiently small perturbations. While this
intuitive expectation is not always correct, in many situations
it is indeed true. In particular, this happens if a perturbed
PT -symmetric operator is “close” to a self-adjoint operator
(Caliceti, Graffi, and Sjöstrand, 2005; Caliceti, Cannata, and
Graffi, 2006). Let us consider a Hermitian operator H0

perturbed as HðϵÞ ¼ H0 þ ϵH1, where ϵ is a real parameter.
We also require operators H0 and H1 to be pseudo-Hermitian
with the same operator η,

H†
0 ¼ ηH0η

−1; H†
1 ¼ ηH1η

−1; ð20Þ
where η2 ¼ I (for PT -symmetric operators, η is a parity
operator P). Then according to the following theorem, the
spectrum of HðϵÞ is real provided that ϵ is small enough.

Theorem 2 (Caliceti, Graffi, and Sjöstrand, 2005) Let
H0 be a self-adjoint positive operator in a Hilbert space. Let
H0 have the only discrete spectrum f0 ≤ λ0 < λ1 < � � �
< λn < � � �g, where each eigenvalue λj is simple, and
δ ¼ infj≥0½λjþ1 − λj�=2 > 0. Let also H0 and H1 satisfy
Eq. (20), and H1 be continuous. Then the spectrum of
HðϵÞ is real if ϵ ∈ R and jϵj < δ=‖H1‖.

Here the operator norm is defined in the usual way:
‖H1‖ ¼ supf‖H1f‖; ‖f‖ ¼ 1g, and the operator H0 is said
to be positive if hH0ψ ;ψi ≥ 0 for any ψ from the Hilbert space
(Reed and Simon, 1980).
Theorem 2 guarantees the existence of a large class of

pseudo-Hermitian operators with real spectra constructed as
perturbations of a given Hermitian operator, provided the
spectrum of the unperturbed operator is bounded below and its
eigenvalues are well separated. As a simple example, consider
the Schrödinger operator with a harmonic potential H0 ¼
−d2=dx2 þ x2 and PT -symmetric perturbation H1 ¼ iWðxÞ,
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with WðxÞ ¼ −Wð−xÞ and WðxÞ ∈ L∞ðRÞ [recall that the
L∞ norm is defined as ‖W‖L∞ ¼ supx∈RjWðxÞj]. Then δ ¼ 1

and the spectrum of H0 þ ϵH1 is real at least for
jϵj < 1=‖W‖L∞ . A similar result is obtained for the power-
law potentials VðxÞ ¼ x2m with polynomial perturbations
iWðxÞ, provided that the odd degree m0 of polynomials
WðxÞ is less than m − 1 (Caliceti and Graffi, 2005).

E. Supersymmetry and real spectra

The concept of SUSY was first introduced in quantum field
theories and high-energy physics [see Cooper, Khare, and
Sukhatme (1995) and the references therein]. Subsequently,
SUSY was utilized in quantum mechanics to construct
analytically solvable potentials. This construction is based
on the factorization of the Schrödinger operator into the
product of two first-order operators (Infeld and Hull, 1951).
Switching the order of these two first-order operators gives
another Schrödinger operator with a new potential (called the
partner potential) which shares the same spectrum as the
original potential (except possibly a single discrete eigen-
value). Extending the idea of SUSY, parametric families of
complex potentials with all-real spectra can be constructed
(Khare and Sukhatme, 1989; Cannata, Junker, and Trost,
1998; Andrianov et al., 1999; Bagchi, Mallik, and Quesne,
2001; Miri, Heinrich, and Christodoulides, 2013).
Let us employ the idea of SUSY to construct complex

potentials with all-real spectra, following Khare and Sukhatme
(1989), Miri, Heinrich, and Christodoulides (2013), and Yang
(2014b). To this end, we consider the Schrödinger operator
(6) and assume that UðxÞ has purely real spectrum. Let E1

and ψ1 be an eigenvalue and its eigenfunction of H, i.e.,
ðH − E1Þψ1 ¼ 0. We first factorize the linear operator in this
equation as

H − E1 ¼ A−Aþ; A� ¼ � d
dx

þ YðxÞ; ð21Þ

where the function YðxÞ is obtained from the requirement
Aþψ1 ¼ 0, which yields YðxÞ ¼ −ψ1;x=ψ1.
Now we switch operators Aþ and A− on the right side of

Eq. (21). This leads to a new Schrödinger operator defined by
Hp − E1 ¼ AþA−, i.e.,

Hp ¼ −
d2

dx2
þ UpðxÞ with Up ¼ U þ 2Yx: ð22Þ

Up is the partner potential of U and has the same spectrum as
U (with the only possible exception of E1), since operators
AþA− and A−Aþ share the same spectrum.
The partner potential Up is real or PT symmetric if U is

so. In order to obtain a non-PT -symmetric potential with
all-real spectrum, we build a new factorization for the
partner potential Hp−E1¼ ~Aþ ~A−, with ~A�¼�d=dxþ ~YðxÞ.
Equating both factorizations for Hp − E1, we obtain the

relation ~Yx þ ~Y2 ¼ Yx þ Y2 which is a Riccati equation for
~Y. Decomposition ~Y ¼ Y þ 1=f leads to a linear equation
fx − 2Yf ¼ 1 which can be readily solved. This yields

~YðxÞ¼−
d
dx

lnð ~ψ1Þ; ~ψ1ðxÞ¼
ψ1ðxÞ

cþR
x
0 ½ψ1ðξÞ�2dξ

; ð23Þ

where c is an arbitrary complex constant. For this new
Up factorization, its partner potential is defined through
~H−E1¼A−Aþ and is given by ~U¼Up−2 ~Yx. Utilizing the

Up and ~Y in Eqs. (22) and (23), this ~U potential is found to be

~UðxÞ ¼ UðxÞ − 2
d2

dx2
ln

�
cþ

Z
x

0

½ψ1ðξÞ�2dξ
�
: ð24Þ

For generic values of the complex constant c, ~U is complex
and not PT symmetric. In addition, its spectrum is identical to
that of U. Hence if U has an all-real spectrum, so does ~U. The
potential ~U is referred to as the superpotential; it represents a
family of potentials parametrized by c.
Now we give two explicit examples of non-PT -symmetric

superpotentials (24) with all-real spectra. The first one is
constructed from the parabolic potential UðxÞ ¼ x2 and its
first eigenmode of E1 ¼ 1 with ψ1 ¼ e−x

2=2. Then the super-
potential (24) reads

UðxÞ ¼ x2 − 2
d2

dx2
ln

�
cþ

Z
x

0

e−ξ
2

dξ

�
; ð25Þ

see Fig. 2(a). The spectrum of this superpotential (for any c) is
f1; 3; 5;…g, i.e., is all real.
In the second example, the superpotential (24) is built from

the PT -symmetric periodic potential UðxÞ ¼ −V2
0e

2ix and its
Bloch mode ψ ð1Þ ¼ I1ðV0eixÞ with eigenvalue E1 ¼ 1. Here
V0 is a real constant, and In is the modified Bessel function.
The resulting periodic superpotential (24) reads

UðxÞ ¼ −V2
0e

2ix − 2
d2

dx2
ln

�
cþ

Z
x

0

I21ðV0eiξÞdξ
�
; ð26Þ

see Fig. 2(b). The diffraction (dispersion) relation of this
superpotential (for all c values) is the same as that of the
original potential UðxÞ ¼ −V2

0e
2ix, i.e., E ¼ −ðkþ 2mÞ2,

where k is in the first Brillouin zone k ∈ ½−1; 1�, and m is
any non-negative integer.
If UðxÞ is a localized real potential, then SUSY allows

one to construct localized complex superpotentials (24) with
all-real spectra (Miri, Heinrich, and Christodoulides, 2013;
Yang, 2014b).

(a) (b)

FIG. 2. (a) Superpotential (25) with c ¼ 1þ i; (b) periodic
superpotential (26) with c ¼ 0.5 − 2i and V0 ¼ 1. From
Yang, 2014b.
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Another technique allowing one to construct potentials with
desirable spectrum is based on the idea of Darboux (1882) and
yields similar results as those of the SUSY (Cannata, Junker,
and Trost, 1998).

F. Soliton theory and PT -symmetric potentials

Nonlinear integrable equations solvable by the inverse
scattering transform technique play a special role in physics
and mathematics. Some of those equations, like the Korteweg–
de Vries (KdV) equation

ut − 6uux þ uxxx ¼ 0; ð27Þ
and the nonlinear Schrödinger (NLS) equation

iψ t þ ψxx þ gjψ j2ψ ¼ 0 ð28Þ

with g being a real constant, constitute fundamental models
describing a large variety of physical phenomena (Lamb, 1980;
Ablowitz and Segur, 1981; Dodd et al., 1982; Novikov et al.,
1984; Faddeev and Takhtadjan, 1987). The starting point of the
inverse scattering transform is the representation of a nonlinear
equation as a compatibility condition for two linear equations
(the so-called Lax pair). Wadati (2008) noticed that the Lax
representation offers a way to construct a wide class of PT -
symmetric (as well as complex asymmetric) potentials with
purely real spectra. Indeed, let us consider the modified
Korteweg–de Vries (mKdV) equation

wt þ 6w2wx þ wxxx ¼ 0 ð29Þ
for the real function wðx; tÞ, where x ∈ R is the spatial
coordinate, and t > 0 is time. We consider decaying functions
limjxj→∞wðx; tÞ ¼ 0. Equation (29) is the compatibility con-
dition for the Zakharov-Shabat (ZS) spectral problem
(Zakharov and Shabat, 1971)

ϕ1xþ iζϕ1 ¼wðx;tÞϕ2; ϕ2x− iζϕ2 ¼−wðx;tÞϕ1; ð30Þ

where ζ is the spectral parameter, and the linear system

ϕ1t ¼ 2iζðw2 − 2ζ2Þϕ1 þ ð2iζwx − 2w3 − wxx þ 4ζ2wÞϕ2;

ϕ2t ¼ ð2iζwx þ 2w3 þ wxx − 4ζ2wÞϕ1 − 2iζðw2 − 2ζ2Þϕ2:

Then the new function ϕ ¼ ϕ2 − iϕ1 solves the linear
Schrödinger equation Hϕ ¼ Eϕ, where H is given by
Eq. (6) with the potential (Lamb, 1980, Sec. 2.12)

Uðx; tÞ ¼ −w2ðx; tÞ − iwxðx; tÞ; ð31Þ

and E ¼ −ζ2. Here time t plays the role of a parameter. If
wðx; tÞ is an even function, the potential Uðx; tÞ is PT
symmetric; for general real wðx; tÞ, this potential is complex
and asymmetric.
Discrete eigenvalues of the ZS problem (30) are either

purely imaginary or situated symmetrically with respect to the
imaginary axis. Its continuous spectrum is the real axis. Thus
from any solution wðx; tÞ of the mKdV equation (29) that
possesses purely imaginary discrete eigenvalues of Eq. (30),

one can obtain a complex potential Uðx; tÞ defined by
Eq. (31), with purely real spectrum. Further, we notice that
wðx; tÞ depends on the parameter t, while the spectrum
of the ZS problem does not depend on t. This means that t
can be considered as a “deformation” parameter, and wðx; tÞ
generates a family of deformable potentials Uðx; tÞ with
real spectra. As an example, we present a PT -symmetric
potential obtained from the two-soliton solution of the mKdV
equation, with ζ1;2 ¼ iη1;2=2, where 0 < η1 < η2. It is gen-
erated by the function (here t ¼ 0, and not indicated) (Wadati
and Ohkuma, 1982; Wadati, 2008) wðxÞ¼ 2ϵΔgðxÞ=fðxÞ,
where Δ¼ðη1þη2Þ=ðη1−η2Þ, g¼η1coshðη2xÞþη2coshðη1xÞ,

f ¼ cosh½ðη2 þ η1Þx� þ
4ϵ2η1η2
ðη1 − η2Þ2

þ Δ2 cosh½ðη2 − η1Þx�;

and has the form

UðxÞ ¼ −4Δ2ðg=fÞ2 − 2iϵΔðg=fÞx: ð32Þ
By changing η1;2 or ϵ one can modify the potential shape
without violating the reality of the spectrum.
In addition we notice that the potentials of the form (31)

were also discussed in the earlier literature in the context
of supersymmetry (Balantekin, Seger, and Fricke, 1991;
Unanyan, 1992; Andrianov et al., 1999) and in application
to neutrino physics (Balantekin, Fricke, and Hatchell, 1988;
Nötzold, 1987).

III. PT SYMMETRY IN NONLINEAR PHYSICS

Rapidly growing interest in PT symmetry and particularly
in its interplay with other physical phenomena, such as
periodicity, discreteness, or nonlinearity, is stimulated by
possibilities of extending the paradigm far beyond its quantum
mechanical applications. In this section, we review sugges-
tions on implementation of PT symmetry in physical systems
of different natures.

A. Optics

1. Paraxial optics versus quantum mechanics

The Schrödinger equation (1) with the Hamiltonian (6)

iΨt þΨxx −UðxÞΨ ¼ 0 ð33Þ
has direct mathematical analogy with the theory of optical
wave propagation under the paraxial approximation (El-
Ganainy et al., 2007; Makris et al., 2008; Musslimani et al.,
2008a). To introduce this analogy, we consider propagation of
a linear monochromatic transverse electric (TE) wave Eeiω0t

with frequency ω0, in a waveguide confined to the ðx; zÞ plane,
i.e., bounded in the domain −l ≤ y ≤ l, where 2l is the
waveguide width, by parallel claddings (say, by Bragg
mirrors). The field diffraction in such a waveguide is described
by the Helmholtz equation ∇2Eþ k20n

2ðxÞE ¼ 0, where
k0 ¼ ω0=c. Let the refractive index of the medium be weakly
modulated along the x direction, i.e., nðxÞ ¼ n0 þ n1ðxÞ,
where n0 is the constant component, and jn1ðxÞj ≪ n0
describes the modulation. In the paraxial approxima-
tion (i.e., under small diffraction angles) the field can be
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represented as E ¼ ψðξ; ζÞϕðyÞeiβz, where β is the propaga-
tion constant, ϕðyÞ describes the transverse distribution of the
field and solves the equation d2ϕ=dy2 þ k20n

2
0ϕ ¼ β2ϕ subject

to the continuity boundary conditions at y ¼ �l (determined
by the cladding), and ψðξ; ζÞ solves Eq. (33), where UðxÞ ¼
n0n1ðxÞ=k20 and the independent variables were renamed as
ζ ¼ k0z → t and ξ ¼ k0x → x=

ffiffiffi
2

p
.

Thus variation of the dielectric permittivity −εðxÞ ¼
−n2ðxÞ in optical applications plays the role of a potential
in the Schrödinger equation, and non-Hermitian quantum
mechanics can be emulated by optical media with the
refractive index or permittivity [cf. Eq. (7)]

nðxÞ ¼ n�ð−xÞ or εðxÞ ¼ ε�ð−xÞ: ð34Þ

2. Modeling pulse propagation through a PT layer

A simple model for refractive index (34) is provided by two
cells with a gas of two-level atoms described by the Lorentz
model. It was used by Ruschhaupt, Delgado, andMuga (2005)
for description of pulse propagation through a PT -symmetric
layer inserted in a waveguide confined by two metallic plates
parallel to the ðx; yÞ plane and having distance 2a between
them. If the atomic population in the left cell (−l < x < 0) is
inverted, and in the right cell (0 < x < l) the atoms are in the
ground state, then the dielectric permittivity for a monochro-
matic beam with central frequency ω reads (Chiao, 1993)
ε ¼ 1 − fðxÞω2

p=ðω2 − ω2
0 þ 2iγωÞ, where fðxÞ ¼ −1 for x ∈

ð−l; 0Þ (cell with gain), fðxÞ ¼ 1 for x ∈ ð0;lÞ (cell with
loss) and zero for jxj > l, ωp and ω0 are the plasma and
resonance frequencies, respectively, and γ is the damping
constant. Assuming that the pulse frequency is close to the
resonant one, i.e., ω − ω0 ≪ γ, and that the plasma frequency
is small enough, ωp ≪ γ, the system can be shown to obey
Eq. (33) with the complex potential UðxÞ ≈ −iω2

pfðxÞ=4γ
(where distance is measured in units of a=π). Accounting also
for the real part of the dielectric permittivity such steplike
potential can be rewritten as

U ¼

8>><
>>:

V0 þ iγ x ∈ ð−l; 0Þ ðgainÞ;
V0 − iγ x ∈ ð0;lÞ ðabsorptionÞ;
0 jxj > l ðvacuumÞ;

ð35Þ

with V0 and γ being real positive constants.

3. Discrete optics

Interplay between gain and loss in wave scattering attracted
additional attention due to suggestions on constructing non-
reciprocal optical devices (Poladian, 1996). Greenberg and
Orenstein (2004) and Kulishov et al. (2005a, 2005b) consid-
ered this problem for a guiding medium with a periodic
modulation of the real and imaginary parts of the refractive
index U ¼ δc cosð2β0xÞ þ iδs sinð2β0xÞ, where δc and δs are
the depths of modulations, and β0 ¼ 2π=Λ is defined by
the lattice period Λ. Lin et al. (2011) considered this phe-
nomenon, termed as unidirectional invisibility, for the particu-
lar PT -symmetric configuration. In the presence of weak
constant absorption ~γ, i.e., when UðxÞ→UðxÞþ i~γ, one can

employ the two-mode approximation ψðx; tÞ ≈ ½q1ðxÞeiβx þ
q2ðxÞe−iβx�e−iβ2t, where q1ðxÞ and q2ðxÞ are slowly varying
amplitudes of the forward and backward propagating waves.
Using this ansatz in the paraxial equation (33), in the leading
order one obtains [cf. Eq. (11)]

i
dq
dx

¼ Hq; q ¼
�
q1
q2

�
; H ¼

�−iγ κ12

κ21 iγ

�
; ð36Þ

where γ ¼ ~γ=ð2βÞ, κ12 ¼ ðδs − δcÞe2ibx=ð4βÞ, κ21 ¼
ðδs þ δcÞe−2ibx=ð4βÞ, and b ¼ β0 − β is the phase mismatch.
System (36) is also known as the simplest model for

stationary propagation of light in an optical coupler with
gain and loss (Chen, Snyder, and Payne, 1992). Indeed, if one
considers the real part of the dielectric permittivity (34) to
have two localized and well-separated maxima, then UðxÞ has
the form of a double-well potential in quantum mechanics.
The field in Eq. (33) can be searched in the form (Landau and
Lifshitz, 1977) Ψ ¼ ½q1ðzÞE1ðxÞ þ q2ðzÞE2ðxÞ�eiβz, where
E1;2ðxÞ are the field distributions localized in the vicinity
of the potential minima. Then by straightforward algebra one
can show that q1;2 solve the system (36) with properly defined
matrix elements.
The link between Eqs. (33) and (36), yet in a different

setting where each of the two arms of a coupler has balanced
gain and loss, was established by El-Ganainy et al. (2007),
who recognized the relevance of the model for PT -symmetric
optics. If PT symmetry is unbroken, a medium with balanced
gain and loss allows for stationary propagation of light, while
the light undergoes attenuation or amplification if the PT
symmetry is broken. Moreover, since the existence of an
exceptional point, and hence the transition between different
propagation regimes, does not require the exact balance
between gain and loss [Sec. II.B], one can introduce the concept
of a passive PT -symmetric coupler (Guo et al., 2009). Indeed,
consider an imbalanced generalization of Eqs. (36),

i _q1 ¼ −iγ1q1 þ κq2; i _q2 ¼ iγ2q2 þ κq1; ð37Þ
where γ1 ≠ γ2. Hereafter the overdot stands for the derivative
with respect to an evolution variable, which can be either
the propagation distance or time, depending on the context.
By substitution q1;2ðzÞ¼ ~q1;2ðzÞexp½ðγ2− γ1Þz=2� one verifies
that ~q1;2 solves Eq. (36) with γ¼ðγ1þ γ2Þ=2 and κ12 ¼
κ21 ¼ κ, thus reducing the dissipative system (37) to a PT -
symmetric one. Propagation of a 1.55 μmwavelength beam in a
passive coupler fabricated on a multilayer AlxGa1−xAs hetero-
structure with one nonlossy waveguide and another waveguide
with controlled absorption was used in the experiment of

FIG. 3. Left panel: details of two-waveguide layered structure
which includes the Cr stripe and features complex refractive
index; right panel: scanning electron microscopy picture of the
finalized device. Adapted from Guo et al., 2009.
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Guo et al. (2009) (see Fig. 3), where transition between broken
and unbroken PT symmetries was observed for the first time.
Later, PT -symmetry breaking was observed experimentally in
different physical settings, such as the microwave billiard
(implemented in a microcavity) (Bittner et al., 2012) and
polarization of the electromagnetic radiation interacting with
a metasurface (Lawrence et al., 2014).
PT -symmetry phase transition in a coupler with gain and

loss was observed by Rüter et al. (2010). In the experimental
setup two waveguides were created in a photorefractive
Fe-doped lithium niobate substrate. The loss was determined
by excitations of electrons from Fe2þ centers, while gain was
created by the pump light through the two-wave mixing
determined by the concentration of Fe3þ centers. The model
was described by Eqs. (37). Having the loss coefficient γ1
fixed at the level γ1 ¼ 3.3 cm−1 and increasing the gain
coefficient γ2, Rüter et al. (2010) observed spontaneous
PT -symmetry breaking as shown in Fig. 4.
System (36) also reveals other important effects observable

in media with balanced gain and loss. Kulishov et al. (2005a)
found that a finite medium with periodically modulated
complex refractive index (or a coupler) of length L possesses
distinct transmission and reflection properties depending on
whether the light is applied at z ¼ 0 or at z ¼ L. This
unidirectional propagation, which was also studied for the
PT -symmetric configuration (Lin et al., 2011), is described
by the entriesMij of the transfer matrixMðLÞ defined through
the relation qðLÞ ¼ MðLÞqð0Þ. In particular, defining the left
(right) transmission and reflection coefficients tLðRÞ and rLðRÞ
by the conditions q2ðLÞ ¼ 0 [q1ð0Þ ¼ 0], one obtains

tL ¼ tR ¼ 1

M22

; rL ¼ −
M21

M22

; rR ¼ M12

M22

: ð38Þ

The difference in light propagation from the left and right
can be described by the contrast ratio C ¼ ðjrLj2 − jrRj2Þ=
ðjrLj2 þ jrRj2Þ (Feng et al., 2013). For the system (36) with
β0 ¼ β one obtains C ¼ 2δ=ð1þ δ2Þ, where δ ¼ δs=δc. C
achieves unity at δ ¼ 1. This phenomenon was observed in the
experiments of Feng et al. (2011, 2013) at a wavelength of
1.55 μm using Si waveguides with periodic dissipation
implemented by the embedded Ge/Cr structures. In order
not to violate the Lorentz reciprocal theorem [see, e.g., Haus
(1984)], the prediction on differences in the left and right
propagations of a given mode is explained by excitation of the

orthogonal modes, when the input channel is changed to the
opposite one (S. Fan et al., 2012).

4. Nonlinearity

As soon as optical applications are considered, accounting
for nonlinearity becomes a natural step. Considering light
propagation in a Kerr-type medium, where the refractive index
is a function of the field intensity nðx; jψ j2Þ ¼ nðxÞ þ n2jψ j2,
Eq. (33) is generalized to the NLS equation with a potential
UðxÞ, i.e.,

iΨt þΨxx −UðxÞΨþ gjΨj2Ψ ¼ 0; ð39Þ

where g ¼ n0n2=k20 is the nonlinear coefficient which can be
either positive (focusing medium) or negative (defocusing
medium). Equation (39) with focusing nonlinearity and a PT -
symmetric periodic potential was introduced by Musslimani
et al. (2008a). The nonlinear generalization of the coupler
model (36), i.e., a nonlinear PT -symmetric dimer

i _q0 ¼ −iγq0 þ κq1 þ χjq0j2q0;
i _q1 ¼ iγq1 þ κq0 þ χjq1j2q1

ð40Þ

was introduced by Ramezani et al. (2010) and Sukhorukov,
Xu, and Kivshar (2010).

5. Synthetic photonic lattices

An idea of experimental implementation of a fully discrete
(discrete “time-space”) PT -symmetric lattice was proposed
by Miri, Regensburger et al. (2012) and Regensburger et al.
(2012). Such a synthetic lattice is created in the time domain.
It is produced by two fiber loops having slightly different
lengths and coupled by a 50% coupler illustrated in Fig. 5. If
the gain and loss are held constant in each loop, then the lattice
is locally PT symmetric, i.e., symmetric with respect to the P
inversion (n → −n) combined with the complex conjugation
for a fixed value of m. If gain and loss alternate on every other
round trip the synthetic lattice obeys global PT symmetry,

(a) (b)

FIG. 4. Measured density distribution (upper panels) and
relative phase difference between the two components (lower
panels) of the PT -symmetric coupler in (a) unbroken and
(b) broken PT symmetries. Below the PT -symmetry-breaking
threshold the phase difference lies in the interval ½0; π�, depending
on the magnitude of gain, while above the threshold this value is
fixed at π=2. Adapted from Rüter et al., 2010.

(a)

(b)

FIG. 5. Mapping of the pulse propagation in loops consisting
of dispersion compensating fibers into a 2D lattice corresponding
to (a) locally PT -symmetric and (b) globally PT -symmetric
settings. Light (red) and dark (blue) segments correspond to
pulses traveling during the paths with gain and with losses.
Alternating gain and losses are shown by purple rings in
(b). From Wimmer et al., 2015.
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with the above P operator and T operator inverting m → −m
with simultaneous complex conjugation.
Pulses, whose fields are denoted by umn and vmn , travel in

shorter and longer loops, respectively (Regensburger et al.,
2011). Here the upper index m stands for the time interval as
measured in round trips. The subindex n denotes the position
of a single pulse during one cycle. The nonlinearity of the
fibers leads to phase accumulation proportional to the pulse
intensities. The system evolution is modeled by the nonlinear
map (Wimmer et al., 2015)

umþ1
n ¼

ffiffiffiffiffiffiffiffiffiffiffi
Gu=2

p
ðumnþ1 þ ivmnþ1ÞeðiΓ=2Þju

m
nþ1

þivmnþ1
j2eiϕn ;

vmþ1
n ¼

ffiffiffiffiffiffiffiffiffiffiffi
Gv=2

p
ðvmn−1 þ iumn−1ÞeðiΓ=2Þjv

m
n−1þiumn−1j2 ;

ð41Þ

where gain-and-loss factors Gu;v characterize the pulse
amplitudes at the coupler output. The phase function ϕn,
controlled by the phase modulator in the experiment, is the
imposed phase shift governing the PT -symmetric potential
(in addition to the phase shift π=2 generated by the coupler,
which is also accounted for). The case Gu;v ¼ 1 and ϕn ¼ 0

corresponds to the conservative case. The described synthetic
network allowed Wimmer et al. (2015) to report the first
observation of PT -symmetric lattice solitons (see Sec. IV.E).

6. PT symmetry introduced by time management

The idea of inducing PT symmetry by time management
can be developed further by inclusion of nonautonomous
gain-and-loss coefficients θðtÞ in the classical linear oscillator
(Tsironis and Lazarides, 2014):

q̈þ 2θðtÞ _qþ ω2
0q ¼ 0: ð42Þ

If θðtÞ is periodic, θðtþ TÞ ¼ θðtÞ, and acquires positive
and negative values, e.g., θ ¼ γ for 0 ≤ t < T=2 and θ ¼ −γ
for T=2 ≤ t < T, then the system can feature bounded or
unbounded dynamics, depending on the choice of parameters
ω0 and γ, which resembles PT -symmetric behavior.

B. PT lasers

One of the most important applications of PT symmetry is
in the design of new single-mode lasers. Laser cavities
typically support a large number of closely spaced modes,
which is undesirable since it leads to mode competition,
random fluctuations, worse monochromaticity, and worse
laser quality. Recently it was demonstrated experimentally
that utilizing the concepts of PT symmetry and PT -
symmetry breaking, new laser devices with enhanced
single-mode operations and greater tunability can be realized
(Feng et al., 2014; Hodaei et al., 2014). The basic idea is
that, by strategically designing gain and loss to obey PT
symmetry, almost all of the modes in the laser cavity can be
neutralized, except for a single lasing mode which amplifies.
Hence single-mode operation is achieved.
In the experiment by Feng et al. (2014), the PT -symmetric

microring resonator was designed with 500-nm-thick
InGaAsP multiple quantum wells (MQWs) on an InP sub-
strate [Fig. 6(a)]. InGaAsP MQWs have a high material gain
coefficient around 1500 nm. The gain and loss modulation,

satisfying an exact PT -symmetry operation, was periodically
introduced using additional Cr-Ge structures on top of the
InGaAsP MQW along the azimuthal direction (φ):

Δn ¼
8<
:

ngain ¼ −in00
h
lπ
m < φ < ðlþ1=2Þπ

m

i
;

nloss ¼ in00
h
ðlþ1=2Þπ

m < φ < ðlþ1Þπ
m

i
;

ð43Þ

where n00 denotes the index modulation in only the imaginary
part,m is the azimuthal order of the desired whispering-gallery
mode (WGM) in the microring, and l ¼ 0; 1; 2;…; 2m − 1
divides themicroring into 2m periods. Because of the rotational
symmetry of the microring, PT -symmetry breaking in this
resonator is threshholdless, i.e., it occurs even if the strength of
gain and loss modulation is infinitesimal.
In the absence of the Cr/Ge gain-loss modulation (43), a

typical multimode lasing spectrum with different WGM
azimuthal orders was observed [Fig. 6(b)]. But under this
PT -symmetric index modulation, a single lasing mode was
obtained [Fig. 6(c)]. The location of this single mode and its
power efficiency are close to those without the gain-loss
modulation [Fig. 6(b)].
Periodically modulated ring structures with nonzero PT -

symmetry breaking may support stable nonlinear vortex
modes in the unbroken phase (Kartashov, Konotop, and
Torner, 2015).
In a different experiment by Hodaei et al. (2014), a single-

mode PT laser was demonstrated by utilizing two adjacent
microrings, one with gain and the other with loss (the active
ring was based on InGaAsP quantum wells); see Fig. 7. In this
case, due to linear coupling between the two microrings,
PT -symmetry breaking has a gain-loss threshold, which is
equal to the coupling constant between the rings. When the
gain-loss contrast is increased beyond this coupling constant,
PT -symmetry breaking occurs, and an amplifying lasing
mode appears.
The experimental results are summarized in Fig. 7. When

there is only one active ring, or both rings are active, a familiar
multimode lasing spectrum was observed [Fig. 7(a)]. But
when the two rings are placed in PT configuration, a single
dominant spectral peak appears, resulting in single-mode
operation [Fig. 7(c)].
In both experiments, the laser design was based on a linear

model by assuming a steady lasing state with a certain gain
coefficient. But it should be recognized that lasing itself is an

(a) (b) (c)

FIG. 6. (a) Schematic of the PT microring laser. The diameter
and width of the microring resonator are 8.9 μm and 900 nm,
respectively. (b) Multimode lasing spectrum observed from the
typical microring WGM laser, showing a series of lasing modes
corresponding to different azimuthal orders. (c) Single-mode
lasing spectra of the PT microring lasers operating at them ¼ 53
and 55 azimuthal orders. Adapted from Feng et al., 2014.
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intrinsically nonlinear process. Nonlinear modeling of these
PT -laser devices in the broken phase is an important open
question.

C. Atomic gases

Atomic media are intrinsically dissipative. However, it was
suggested by Scully (1991) and Fleischhauer et al. (1992) and
shown experimentally by Zibrov et al. (1996) that by using
destructive interference in the imaginary part of the dielectric
susceptibility it is possible to obtain sufficiently large real
refractive indices at small absorption. This is achievable in a
gas of multilevel atoms subject to two far-off-resonant control
fields (Yavuz, 2005; Proite et al., 2008) or in a mixture of
isotopes of two Λ atoms (O’Brien et al., 2011; Simmons
et al., 2012).
The respective atomic schemes use two Raman resonances,

one of which results in gain and another leads to absorption.
The imaginary part of probe-field susceptibility becomes a
nonmonotonic function of the frequency with positive (gain)
and negative (absorbing) domains. Moreover, real and imagi-
nary parts of the susceptibility can be designed, respectively,
as even and odd functions of probe-field frequency (O’Brien
et al., 2011; Yavuz, 2005; Proite et al., 2008; Simmons et al.,
2012). For a monochromatic beam the change ω → −ω can be
viewed as the time inversion which, when accompanied by the
spatial symmetry, can lead to the PT -symmetric refrac-
tive index.
Hang, Huang, and Konotop (2013) considered a scheme

shown in Figs. 8(a) and 8(b). Ground (jg; si), lower (ja; si),
and excited (je; si) atomic states of two isotopes (s ¼ 1, 2)
with densities N1;2 are coupled by two strong control fields
and by a probe field with the half Rabi frequencies Ω1;2

and Ωp, respectively. All fields are far-off resonance, i.e.,
Δs ≫ Ωs, where Δs ¼ ωe;s − ωa;s − ωc is the one-photon
detuning, ℏωl;s (l ¼ g, a, and e) is the energy of the state
jl; si, and ωp (ωc) is the center frequency of the probe
(control) field. The first scheme (s ¼ 1, δ1 > 0) exhibits

two-photon absorption for the probe field, while the second
one (s ¼ 2, δ2 < 0) provides two-photon gain.
The mixture of isotopes is loaded in an atomic cell with

Bragg cladding [Fig. 8(b)]. Spatial modulation of the suscep-
tibility is achieved by a continuous-wave laser field (Stark
field) ESðxÞ cosðωStÞwith the amplitude ES and frequency ωS.
Such field originates x-dependent shifts of the one-photon
detunings ΔsðxÞ ¼ Δs − ðαe;s − αg;sÞE2

SðxÞ=ð4ℏÞ.
The susceptibility for the probe field is computed from the

density-matrix formalism (O’Brien et al., 2011):

χpðxÞ
χ0

¼ δ1 − iγag
ðδ1 þ Δ1 − iγegÞðδ1 − iγagÞ − jΩ1j2

− η
jΩ2j2ðΔ2 þ iγagÞ−1

ðδ2 þ Δ2 − iγegÞðδ2 − iγagÞ − jΩ2j2
: ð44Þ

Here χ0 ¼ N1d2eg;1=ε0ℏ, and η ¼ N2d2eg;2=N1d2eg;1 character-
izes the ratio between the densities, ε0 is the vacuum
permittivity, deg;s stands for the dipole moment of the
transition between the ground and excited states of the sth
system, and γij are dephasing rates at transitions i ↔ j.
A refractive index satisfying PT symmetry conditions (34)

can be obtained numerically using an optimization procedure
(Hang, Huang, and Konotop, 2013). As an example, imple-
mentation of this algorithm in a gas of rubidium isotopes yields
PT -symmetric permittivity χp≈10−3ð7.5cosξþ i0.394sinξÞ,
where ξ ¼ 2πx=λS and λS is the Stark field wavelength.
The cell confines atoms in space and can be used to cut

undesirable deviations from the PT symmetry. This allows
for construction of refractive indexes of different shapes,
such as parabolic (Hang, Huang, and Konotop, 2013) and
double-hump (Hang et al., 2014); see Figs. 8(c) and 8(d). The
described ideas were further generalized through the use of
more sophisticated atomic schemes, like four-level atoms (Li,
Dou, and Huang, 2013), as well as involving nonlinear effects
(Hang et al., 2013, 2014). The effects of nonlinearity on the
PT -symmetry phase transition in finite-size systems with
various profiles of the complex refractive index were studied
by Walasik, Ma, and Litchinitser (2015).

(a)

(c)

(b)

(d)

FIG. 7. (a) Spectrum obtained from an evenly pumped pair of
microrings. (b) The intensity pattern shows that both resonators
equally contribute. (c) Single-moded spectrum under PT -
symmetric conditions. (d) Lasing exclusively occurs in the active
resonator. Adapted from Hodaei et al., 2014.

(a) (b)

(c) (d)

FIG. 8. (a) Isotopes of Λ atoms and Raman transitions. (b) A
geometry for the atomic cell and fields applied. (c) Locally
parabolic (Hang et al., 2013) and (d) two-channel (Hang et al.,
2014) spatial distributions of the real (solid lines) and imaginary
(dashed lines) parts of the refractive index.

Konotop, Yang, and Zezyulin: Nonlinear waves in PT -symmetric systems

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035002-12



D. Plasmonic waveguides

The model (37) appears to be suitable for description of
plasmonic waveguides. Such systems possess intrinsic Joule’s
loss due to metallic components. On the other hand, they
can be combined with gain mechanisms achieved by
plasmon amplification using stimulated emission of radiation
(Bergman and Stockman, 2003) or with dielectric active
media. These ideas were proposed by Benisty et al. (2011)
and Lupu, Benisty, and Degiron (2013), who suggested to use
long-range surface plasmon polariton waveguides based on
metallic layers. Strongly confined guidance can be achieved
using schemes of hybrid dielectric-plasmonic waveguides
illustrated in Fig. 9.
The first device [Fig. 9(a)] is a long-range plasmonic

waveguide working at the 1.55 μm wavelength. The proto-
typical unit (Degiron et al., 2009) has an Au lossy stripe
36 nm × 4.6 μm cross section and SU8 stripe with gain of the
1.5 μm × 2 μm cross section embedded in a transparent layer
of a benzocyclobutene-based polymer (BCB). The Au stripe
and SU8 waveguide are separated by the distance d ¼ 2.5 μm.
The antisymmetric and symmetric modes, which are almost
TM (transverse-magnetic) polarized, are shown in the upper
and lower panels, respectively.
The second hybrid model [Figs. 9(b)–9(d)] consists of two

waveguides, each representing a high-index (nH) sol-gel
inverse rib optical waveguide linked to a gold (or silver)
metallic plate through the low-refractive-index (nL) filling
(Benisty and Besbes, 2010). The field (at λ ¼ 633 nm) in the
waveguide is concentrated at the tip end [the domain marked
by the shaded (red) color and the transverse width b]. The
figure shows calculations performed for the lossy structure.
Gain can be introduced by pumping the high-index material in
a limited region of the sole inverse rib and is expected to be on
the order of 500 cm−1. Alternately, the gain can be provided
by adding organic elements to the structure (Benisty et al.,
2011) such as optically pumped polymer with dye (Noginov
et al., 2008).

Multilayered plasmonic waveguides can be made of iden-
tical parallel metallic plates separated by dielectrics. To ensure
PT symmetry, the dielectric layers should have alternating
gain and loss (from the two sides of the metallic layer). Such a
structure was theoretically studied by Alaeian and Dionne
(2014a), where the calculations were performed for Ag, as a
lossless metal, whose dielectric permittivity is given by
ϵAg ¼ 1 − ðωp=ωÞ2, and TiO2 layers as dielectric slabs with
n ¼ 3.2� ik, where k is tunable gain or loss. A stack of five
layers of length 150 nm and width 30 nm was considered,
operating at subwavelength frequencies of TM polarized
plasmons. In the absence of gain and loss, the metamaterial
exhibits negative index response resulting in negative dif-
fraction. WhenPT symmetry is imposed, Alaeian and Dionne
numerically obtained several effects including double negative
refraction, unidirectional invisibility, and reflection and trans-
mission coefficients whose moduli simultaneously exceed
unity. A detailed study of spectral characteristics of this stack
was performed by Alaeian and Dionne (2014b). A general
analysis of PT symmetry in subwavelength guiding optical
systems, based on the full system of Maxwell’s equations,
rather than the paraxial approximation, was given by Huang
et al. (2014). In particular, it was found that, on the sub-
wavelength scale, the broken PT symmetry may be restored,
while the paraxial approximation misses this possibility.

E. Metamaterials and transformation optics

1. One-dimensional PT -symmetric metamaterial

Now we turn to an idea of Lazarides and Tsironis (2013) on
implementation of PT symmetry in metamaterials (Smith,
Pendry, and Wiltshire, 2004). The simplest building block for
such systems, meta-atoms, is a planar highly conductive split-
ring resonator (SRR) (Sarychev and Shalaev, 2004). A typical
SRR is characterized by losses. To compensate these losses,
one can consider coupling of a lossy SRR with one incorpo-
rating gain elements [Fig. 10(a)]. Assembling such SRR
dimers in an array, one can build a PT -symmetric metama-
terial [Fig. 10(b)].
Each SRR can be regarded as an RLC circuit with self-

inductance L, Ohmic resistance R, and capacitance C. The

(a)

(c) (d)

(b)

FIG. 9. (a) Antisymmetric and symmetric modes in a long-range
plasmonic waveguide. The color map shows y-electric field
components of the modes. (b) Cross section of a single hybrid
waveguide. (c), (d) Even and odd modes in coupled waveguides,
respectively. Adapted from Benisty et al., 2011.

(a) (c)

(b)

FIG. 10. (a) A PT -symmetric dimer of SSRs, (b) schematic
illustration of a 1D PT metamaterial, and (c) domains of broken
and unbroken PT symmetry for the array shown in (b); the
phase-transition line γPT is computed in Sec. IV.B.3. Based on
ideas of Lazarides and Tsironis, 2013.
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nonlinearity can be introduced by a Kerr dielectric (Zharov,
Shadrivov, and Kivshar, 2003) with εðjEj2Þ ¼ ε0ðεl þ αjEj2=
E2
cÞ, where ε0 is the permittivity of the vacuum, εl is the linear

dielectric permittivity, Ec is a characteristic electric field, and
α ¼ �1 is the sign of nonlinearity. The charge Qn of the nth
SRR and capacitanceC ¼ εðjEgj2ÞA=dg [whereA is the area of
the SRR wire cross section and dg is the size of the gap, see
Fig. 10(a)] are related as CðUnÞ ¼ dQn=dUn, where Un ¼
dgEgn is the voltage across the SRR’s gap (Lazarides,
Eleftheriou, and Tsironis, 2006). In the weakly nonlinear limit,
Un can be expressed by Un=Uc ¼ qn − βq3n þOðq5nÞ, where
qn ¼ Qn=ðClUcÞ, Cl ¼ ε0εlA=dg is the linear capacitance,
Uc ¼ dgEc, and β ¼ α=ð3εlÞ.
The SRRs interact with each other through the near field

due to magnetic dipole-dipole interactions [electric coupling
in the geometry shown in Fig. 10 can be neglected (Hesmer
et al., 2007)]. Then dynamical equations for the charges Qn
and currents In read (n ¼ 1, 2)

dQn

dt
¼ In; L

dIn
dt

− ð−1ÞnRIn þ Un ¼ M
dI3−n
dt

þ En;

where M is the mutual inductance of the SRRs determining
the strength of the coupling, En is the electromotive force
induced in each SRR by the applied field, and Un is expressed
through qn as indicated earlier. It is also taken into account
that the first SRR (n ¼ 1) has losses described by the
resistance R, while the second SRR (n ¼ 2) has gain which
has the same strength as losses, i.e., −R.
Using the dimensionless variable τ ¼ t=

ffiffiffiffiffiffiffiffiffi
LCl

p
and defining

γ ¼ R
ffiffiffiffiffiffiffiffiffiffiffi
Cl=L

p
> 0 and ϵn ¼ En=Uc, one arrives at the system

q̈1 þ λq̈2 þ q1 þ γ _q1 ¼ βq31 þ ϵ1ðτÞ;
λq̈1 þ q̈2 þ q2 − γ _q2 ¼ βq32 þ ϵ2ðτÞ;

ð45Þ

where _qn ¼ dqn=dτ.
In the linear limit (α ¼ 0) and in the absence of the external

driving [ϵnðτÞ≡ 0], eigenfrequencies Ω (q1;2 ∝ eiΩτ) of the
dimer (45) read

Ω2
� ¼ 2 − γ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ2 − 4γ2 þ γ4

p
2ð1 − λ2Þ : ð46Þ

Considering λ2 < 1, which corresponds to a typical physical
setting and ensures stable dynamics in the conservative case
(i.e., at γ ¼ 0), one finds that unbroken PT symmetry (with

real Ω�) corresponds to 0 ≤ γ ≤ γPT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

pp
,

where γPT is the point of phase transition where the real
eigenfrequencies Ωþ and Ω− coalesce. At γ > 2 the dimer is
unstable for arbitrary coupling λ.

2. Transformation optics

Versatility of design of metamaterials allowed for develop-
ment of a new area of the transformation optics. The idea
(Pendry, Schurig, and Smith, 2006; Leonhardt, 2006) consists
of designing a refractive index in a way to guide geometrical
rays at will, in particular, avoiding a chosen domain thus
making it invisible. The required refractive index can be

constructed with help of an appropriate coordinate trans-
formation r0 ¼ FðrÞ to Cartesian coordinates r0, where electric
and magnetic fields fE;Hg are emitted by the given sources
fJ;Mg. Such coordinate transformation results in transfor-
mations of the electric and magnetic fields fE;Hg, source
current and magnetization fJ;Mg, and permittivity and
permeability tensors fε̂; μ̂g, which can be obtained from
the Maxwell equations (Castaldi et al., 2013):

fE;HgðrÞ ¼ ΛTðrÞ · fE0;H0gðr0Þ; ð47aÞ
fJ;MgðrÞ ¼ det½ΛðrÞ�Λ−1ðrÞ · fE;Hgðr0Þ; ð47bÞ

ε̂ðrÞ ¼ μ̂ðrÞ ¼ det½ΛðrÞ�Λ−1ðrÞ · ½Λ−1ðrÞ�T; ð47cÞ

where Λ ¼ ∂ðx0; y0; z0Þ=∂ðx; y; zÞ is the Jacobian of the trans-
formation. In practice the so designed device performs
prescribed optical transformation of the rays in a flat real
space r with inhomogeneous permittivity and permeability to
the homogeneous space r0.
Castaldi et al. (2013) extended these ideas for designing

PT -symmetric metamaterials. In the vectorial problem the
requirement for PT symmetry can be reduced to ε̂ðrÞ ¼
ε̂�ð−rÞ [or μ̂ðrÞ ¼ μ̂�ð−rÞ], which can be fulfilled if the
chosen transformation ensures ΛðrÞ ¼ Λ�ð−rÞ. Thus the
coordinate transformation must be complex. It turns out,
however, that in the described procedure a continuous trans-
formation r0 ¼ FðrÞ leads to PT -symmetric potentials having
no spontaneous PT -symmetry breaking. Potentials with
exceptional points can be designed using suitable discontinu-
ous transformations.
As a simple but important example consider the trans-

formation x0 ¼ x, y0 ¼ y, and z0 ¼ ibð1 ∓ z=dÞ where
Rez ≷ 0, Imz ¼ 0þ, and jzj ≤ d (Castaldi et al., 2013).
Then for the TM polarization the relevant nonzero compo-
nents of the tensors ε̂ and μ̂ are given by εxx ¼ μxx ¼∓ ib=d
and εzz ¼ �id=b. This transformation is particularly interest-
ing for radiation emitted by a line sourceM0

y ¼ δðx0Þδðz0 − ibÞ
in Cartesian coordinates mapping it in the real-space source
My ¼ δðxÞδðzÞ in a medium with complex permittivity.
The real axis z0 ¼ 0 is transformed into the slab boundaries
z ¼∓ d. The respective metamaterial slabs can be fabri-
cated by periodic stacking of subwavelength layers of
material constituents with opposite-signed permittivities
and permeabilities.

3. PT -symmetry breaking in polarization space

Turning now to 2D metamaterials, we describe the direct
observation of PT -symmetry breaking by Lawrence et al.
(2014) using THz time-domain spectroscopy of the meta-
surfaces as the one shown in Fig. 11. They explored the
dependence of the transmitted field polarization E ¼
ðEx; EyÞTeiωt on the metasurface properties defined by the
Lorentzian dipoles p ¼ ðpx; pyÞT , px;y ∝ eiωt, oriented along
perpendicular directions (corresponding to the geometry
of the metamolecules shown in Fig. 11), resonating at the
same frequency ω0, and characterized by the decay rates
γy < γx ≪ ω0. The link between the field and the dipoles is
given by the polarizability matrix written as
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Spþ Gxyσ1p − iΓσ3p ¼ gE: ð48Þ

Here S ¼ δþ Gxx þ iðγx þ γyÞ=2, Γ ¼ ðγx − γyÞ=2, the real
coupling Gxy is the summation of retarded fields from all
x-oriented antennas acting on an y-oriented antenna,Gxx is the
summation of retarded coupling from all antennas oriented
along the same direction, δ ¼ ω − ω0 is small detuning from
the resonance (δ ≪ 1), and g characterizes polarizability.
The eigenstates of the polarizability matrix in the left-hand

side of Eq. (48) are determined by the second matrix, which
in its turn has a typical structure of the PT -symmetric dimer
(the first term scales out the net dissipation; the considered
system is passive). In the unbroken (2Gxy > Γ) and broken
(2Gxy < Γ) PT -symmetric phases the field is elliptically
polarized but has different orientation of the axes as illustrated
in Fig. 11, while at the exceptional point (2Gxy ¼ Γ) the
polarization is circular. These predictions were confirmed
experimentally by Lawrence et al. (2014) on a number of
metasurfaces, fabricated using photolithography, with the
separation between the silver and lead SRRs in each unit
cell varying from 2 to 20 μm.

F. Exciton-polariton condensates

Unlike atomic condensates existing at ultralow temper-
atures, where gain and losses are usually avoided, and
introducing PT symmetry requires special efforts (see
Secs. III.G and III.H), condensates of quasiparticles are
obtained in the excited states (at relatively high temperatures)
and must be supported by the pump since they are usually
subject to appreciable losses. Thus, on the one hand, the
balance between gain and losses is fundamental for supporting
these condensates, and, on the other hand, they are intrinsically
nonlinear systems due to interactions among quasiparticles.

This readily suggests that condensates of quasiparticles are
natural candidates for experimental implementation and explo-
ration of the nonlinear PT -symmetric systems.
Lien et al. (2015) suggested a setting for implementation

of PT symmetry with an exciton-polariton condensate.
The system consists of coupled micropillars as shown in
Figs. 12(a) and 12(b). The junction is described by the Gross-
Pitaevskii equation (GPE) for the vectorial wave function
Ψ¼ðΨ1;Ψ2ÞT¼ð ffiffiffiffiffiffi

N1

p
eiφ1 ;

ffiffiffiffiffiffi
N2

p
eiφ2ÞT : idΨ=dt ¼ HΨ, where

H ≡
�
E1 −J
−J E2

�
; Ej ¼ ϵj þ Vj þ UjjΨjj2; ð49Þ

j ¼ 1, 2, ϵj are the single particle ground states, J character-
izes tunneling between the two sides, Uj is the strength of the
nonlinear interactions of quasiparticles, and the local
dispersion is ignored for the wave functions of the ground
state. The effective potentials in a simplified form are given by
V1 ¼ gNR=Aþ GPþ ði=2ÞðRNR − γ1Þ and V2 ¼ −ði=2Þγ2,
where R is a constant, γ1;2 are the decay rates of the
condensates, G corresponds to the interaction of the con-
densate with high-energy excitons, the g describes interaction
between the condensate and reservoir polaritons, P is the
pump of the first reservoir, andNR is the population of the first
reservoir whose dynamics is determined from

_NR ¼ P − γR1NR − RNRjψ1j2 ð50Þ

with γR being the reservoir decay; the population of the second
reservoir, which is not pumped, is neglected.
The model (49) and (50) admits stationary solutions (i.e.,

Ψ ∝ e−2iΩt and NR constant) with real frequencies

Ω� ¼ ðE1 þ E2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE1 þ E2Þ2 þ 4J2

q
; ð51Þ

if a nonzero dc Josephson current 2J
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
sin ðΔφÞ, where

Δφ ¼ φ2 − φ1 is the relative phase, balances pump from the
one side and loss from the other side. If the pump also
compensates the total loss RNR ¼ γ1 þ γ2, two analytical
solutions can be derived. They exist subject to the condition
J2 ≥ γ22=4, which determines the unbroken PT -symmetric
phase, while J2 ¼ γ22=4 corresponds to the exceptional point
of the system.
Chestnov et al. (2016) showed that PT symmetry of the

coupled exciton-photon system, which can be implemented in
a specific regime of pumping the exciton state and depletion of

FIG. 11. Upper panels: Polarizations corresponding to unbroken
and broken PT -symmetric phases and to the exceptional
point. Lower panel: Photograph of a PT symmetric metasurface
on silicon substrate composed of 300 nm thick silver [light gray
(yellow)] and lead [dark gray (turquoise)] SRRs. From Lawrence
et al., 2014.

(a) (b)

FIG. 12. (a) Semiconductor pillars pumped on the one side form
a polariton Josephson junction. (b) The model for the junction: a
continuous-wave laser excites high-energy excitons pumping to
the reservoir. A resonant laser is used to create the required initial
conditions. Adapted from Lien et al., 2015.
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the reservoir, enables permanent Rabi oscillations of the
condensate in the external magnetic field. For a particular
case of the acoustic phonon assisted pumping RNα, where R is
the pumping rate, α ¼ � corresponds to spin projection
parallel (antiparallel) to the external magnetic field, and N
is the reservoir population, the system of the Boltzmann
kinetic equation governing the condensate, which is supposed
to be at zero momentum state, reads

2_χα ¼ ðRNα − γXÞχα þ 2iδαχα − 2iΩϕα; ð52aÞ
2 _ϕα ¼ −γPϕα − 2iΩχα; ð52bÞ

where ϕα and χα are the photonic and excitonic components of
the condensate wave function, γX and γP are the decay rates of
excitons and polaritons, 2Ω is the Rabi frequency, and δ� ¼
ωP − ωX − ΔZ is the effective detuning of the cavity mode and
exciton frequency in the presence of the Zeeman splitting
ℏΔZ. The evolution of the reservoir populations is described
by Eq. (50) with NR replaced by Nα.
The system (52) reveals PT symmetry if the photonic gain

compensates total loss pX ¼ γX þ γP, and the Zeeman split-
ting results in the zero effective detuning, i.e., δα ¼ 0. Then,
neglecting variation of the pump pXNα on the time scale of the
Rabi oscillations, for pump below some threshold value
P < Pth, one obtains two eigenfrequencies of the condensate
�ω0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ω2 − γ2P=4

p
for the steady state solutions

χ;ϕ ∝ e�iω0t. On the other hand, at large P > Pth and
provided the conditions for the PT symmetry hold, one
can obtain permanently oscillating regimes, where χðtÞ ¼
χ1eiω0t þ χ2e−iω0t and ϕðtÞ ¼ ϕ1eiω0t þ ϕ2e−iω0t.
Finally, we mention that the non-Hermitian nature of

exciton-polariton condensates was explored experimentally
by Gao et al. (2015). A chaotic exciton-polariton billiard was
created, which exhibits multiple exceptional points, crossing
and anticrossing of energy levels, mode switching, and
topological Berry phase, subject to proper changes of system
parameters.

G. Bose-Einstein condensates

Bose-Einstein condensates (BECs) represent another prom-
ising area for the theoretical and experimental study of
interplay between nonlinearity and phenomena originated
by PT symmetry. Klaiman, Günther, and Moiseyev (2008)
suggested considering a BEC in a double-well potential with
atoms injected into one well and removed from another well.
Removal of the atoms can be achieved in different ways: by
applying laser radiation or an electronic beam to ionize atoms
(Gericke et al., 2008; Barontini et al., 2013), using inelastic
interactions of atoms with the trap potential (Muga et al.,
2004; Cannata, Dedonder, and Ventura, 2007), or by stimu-
lating transitions to higher levels with subsequent removal of
the excited atoms from the trap. Loading of atoms ensuring
exact compensation of the losses can be implemented by an
atomic laser (Spreeuw et al., 1995; Robins et al., 2013) or by a
more sophisticated technique such as combination of tilted
potential wells (Kreibich et al., 2013). Nonlinearity in BECs
stems from two-body interactions and in the mean-field
approximation results in the cubic term in the GPE

(Pitaevskii and Stringari, 2003). To describe the removal or
loading of atoms within the framework of the mean-field
model, one can start with the master equation in the Lindblad
form (Shchesnovich and Konotop, 2010; Witthaut et al., 2011;
Barontini et al., 2013) which shows excellent agreement with
the available experimental data (Barontini et al., 2013). The
GPE with loading and removal of atoms reads

iΨt ¼ −ΔΨþ ½VðrÞ þ iWðrÞ�Ψ − gjΨj2Ψ; ð53Þ

where g ∼ −as characterizes the strength of two-body
interactions (g > 0 and g < 0 correspond to negative and
positive scattering length as), VðrÞ and WðrÞ are the real and
imaginary parts of the external potential, and dimensionless
units (ℏ ¼ 2m ¼ 1) are used. A 1D version of GPE (53) with
PT -symmetric distribution of atomic gain and losses was
suggested by Yan, Xiong, and Liu (2010). In 3D, the model
(53) with a PT -symmetric double-well trap

VðrÞ ¼ ω2
xx2 þ y2 þ z2 þ v0e−σx

2

; WðrÞ ¼ γxe−ρx
2

ð54Þ
with σ ¼ 2ρ lnðv0σ=ω2

xÞ (all parameters are positive) was
investigated by Dast, Haag, Cartarius, and Wunner (2013)
and Dast, Haag, Cartarius, and Wunner et al. (2013). Cartarius
and Wunner (2012) considered a 1D model with a double-well
potential composed of two Dirac δ functions.
An alternative description of PT -symmetric BEC models

can be developed from a non-Hermitian Bose-Hubbard model,
where the gain-loss coefficient γ is introduced explicitly
(Graefe et al., 2008; Graefe, Korsch, and Niederle, 2008;
Graefe and Liverani, 2013):

H ¼ iγða†2a2 − a†1a1Þ þ vða†1a2 þ a†2a1Þ þ cða†1a1 − a†2a2Þ2:
ð55Þ

Here aj and a†j are the bosonic annihilation and creation
operators for the jth mode, v is the tunneling rate, and c is the
strength of two-body interactions.

H. Spin-orbit coupled Bose-Einstein condensates

Now we consider a BEC of two states, j↑i and j↓i,
belonging to the ground manifold and coupled with an excited
state by laser beams, as in the Λ schemes shown in Fig. 8(a).
These can be hyperfine states jF ¼ 1; mF ¼ 0i and jF ¼
1; mF ¼ þ1i of 87Rb atoms (Lin, Jiménez-García, and
Spielman, 2011) or degenerate dark states (Dalibard et al.,
2011). Such a system can emulate the phenomenon of spin-
orbit (SO) coupling in condensed-matter physics (Stanescu,
Anderson, and Galitski, 2008; Galitski and Spielman, 2013)
and gives rise to a SO-coupled BEC, which was produced
experimentally by Lin, Jiménez-García, and Spielman (2011).
Let atoms in the j↓i (j↑i) state be removed from (loaded

into) the system with the rate γ > 0. In the absence of two-
body interactions the system Hamiltonian reads (Kartashov,
Konotop, and Zezyulin, 2014)

H ¼ −
1

2

∂2

∂x2 þ ωσ1 þ iκσ1
∂
∂xþ iγσ3 þ VðxÞ: ð56Þ
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Here κ is the strength of SO coupling, VðxÞ is the external trap
potential, ω is the strength of the linear coupling from the
Zeeman field, and we have added the injection and removal of
atoms to the standard model (Lin, Jiménez-García, and
Spielman, 2011)
According to definitions (2) and (3), the Hamiltomian (56)

acting in the Hilbert space of the vectorsΨ ¼ ðΨ↑;Ψ↓ÞT is not
PT symmetric. However, if we define a charge (or pseudo-
spin) operator C: CΨðx; tÞ ¼ σ1Ψðx; tÞ, then ½CPT ; H� ¼ 0,
i.e., H is CPT symmetric [compare with Eq. (5)]. Interpreting
the states j↑i and j↓i as having negative and positive energies
with respect to the average chemical potential μ, one finds that
C indeed obeys properties of the charge operator: it exchanges
the states with positive and negative energies, C2 ¼ 1,
½C;PT � ¼ 0; it has eigenvalues �1 and changes the direction
of currents [see Fig. 30 and the discussion in Sec. V.I].
In Sec. III.A, σ1 was interpreted as the parity operator since

it was obtained from P defined by Eq. (2). This reflects
ambiguity in definitions of symmetry operators. In particular,
one can consider H as PT symmetric in a more general sense,
where ~P ¼ CP is a new parity operator. We also emphasize
that the C operator used here should not be confused with the C
operator introduced by Bender, Brody, and Jones (2002) as an
observable representing the signature of the PT norm which
allows the definition of an inner product having positive-
definite signatures. Recently the C operator was discussed also
in an optical context (Dana, Bahabad, and Malomed, 2015).
In the model (56), PT symmetry (or CPT symmetry) is

determined by two parameters ω=γ and κ=γl, where l is the
characteristic scale of the wave function j∂Ψ↑;↓=∂xj∼
jΨ↑;↓j=l. Thus a sufficiently broad mode (l ≫ κ=γ) has
effectively SO-decoupled components and cannot balance
gain and loss. Since, however, VðxÞ limits the size of the SO
BEC (i.e., makes l bounded), the unbroken symmetry may
exist even when the homogeneous condensate is unstable, i.e.,
an external potential can control PT -symmetry breaking.
Properties of the Hamiltonian (56) with a parabolic trap

VðxÞ ¼ ν2x2=2 are illustrated in Fig. 13. At γ ¼ 0 the model is
Hermitian and its spectrum is real:

μn;� ¼ νðnþ 1=2Þ � ω − κ2=2; n ¼ 0; 1;… . ð57Þ

At ν ¼ νm, where νm ¼ 2ω=m with m ¼ 1; 2;…, the spec-
trum contains an infinite number of double eigenvalues
μn−m;þ ¼ μn;−, n ¼ m;mþ 1;… [Fig. 13(a)]. When γ is
nonzero, these double eigenvalues become complex leading
to broken PT symmetry [Fig. 13(b)]. For fixed κPT sym-
metry is always broken in a sufficiently broad trap (small ν)
[Fig. 13(c)]. As ν grows, the domains of unbroken symmetry
(shadowed domains d0, d1, …) appear and alternate with the
domains of broken symmetry. In a sufficiently narrow trap
(large ν) the CPT symmetry is unbroken for all κ (domain d0).
This stripelike structure is related to the presence of an infinite
number of double eigenvalues in the spectrum (57). In Fig. 13,
values of ν that correspond to the double eigenvalues are
shown by dashed vertical lines, which always belong to the
region of broken CPT symmetry and “separate” domains
dm−1 and dm of unbroken symmetry.

I. Superconductivity

The Bender-Boettcher potential (10) with N ¼ 1 turns
out to be relevant for the pattern formation of phase slip
centers in superconducting wires (Rubinstein, Sternberg, and
Ma, 2007) and in the theory of fluctuation superconductivity
(Chtchelkatchev et al., 2012).
Considering a superconducting wire in the interval ½−L; L�

along the x axis, one can start with the time-dependent
complex Ginzburg-Landau equation (Ginzburg and Landau,
1950) for the order parameter Ψ. In the dimensionless form,
the model reads

ΨtþHΨþjΨj2Ψ¼ 0; H¼−∂2=∂x2þ iφ−Γ: ð58Þ

Here φ is the electric potential, 1=Γ ∝ ð1 − T=TcÞ−1 is the
characteristic relaxation time of the order parameter, T is the
temperature, and Tc is the transition temperature. The order
parameter is subject to the zero boundary conditions
Ψð�LÞ ¼ 0 (this choice is not crucial). The potential φ
induces constant current I, i.e., φ ¼ −Ix (the Ohmic resistivity
is set to 1).
The normal state corresponds to Ψ ¼ 0, and thus the phase

transition can be characterized by solutions of the linear
version of Eq. (58). Setting L ¼ 1 and Ψðx; tÞ ¼ uðxÞeðΓ−λÞt
one obtains the eigenvalue problem (Rubinstein, Sternberg,
and Ma, 2007)

uxx þ ixIu ¼ −λu; uð�1Þ ¼ 0; ð59Þ

which involves the PT -symmetric potential (10) with N ¼ 1.
The normal state is unstable if Γ < Re½λðIÞ�. At I ¼ 0, the
spectrum is real and discrete: λn ¼ π2n2=4, n ¼ 1; 2;…. The
spectrum remains real for sufficiently small I, which is
guaranteed by Theorem 2. The increase of I eventually results
in the collision of the eigenvalues (with the first collision
occurring at Icr ≈ 12.31), followed by the emergence of
complex eigenvalues.
The complex spectrum at I > Icr implies breaking of the

Cooper pairs. On the other hand, it leads to the energy
difference in the two lowest states resulting in Josephson
oscillations between them and consequently in the symmetry
breaking of the time averaged order parameter. These

FIG. 13. (a) Spectrum (57) for ω ¼ 0.5 and κ ¼ 2. Crossing
eigenvalues occur at νm, m ¼ 1; 2;…. (b) Real parts of eigen-
values for γ ¼ 0.2, ω ¼ 0.5, and κ ¼ 2, which merge pairwise
near νm, and the corresponding imaginary parts become nonzero
at the same time. (c) Domains of unbroken (shadowed regions
d0; d1; ...) and broken (white regions) CPT symmetries shown in
the plane ðκ; νÞ at γ ¼ 0.2 and ω ¼ 0.5. Dashed lines correspond
to ν ¼ νm. From Kartashov, Konotop, and Zezyulin, 2014.
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phenomena were described and experimentally validated by
Chtchelkatchev et al. (2012).

J. Magnetics

Gaididei (2013) suggested a way to implement a PT -
symmetric configuration in a double-wire magnetic structure
in which a spin-polarized current j propagates along the z axis
in positive and negative directions in the first and second
wires, respectively. The spin-transfer torque efficiency func-
tion has the form εn;α ¼ ηΛ2=½ðΛ2 þ 1Þ − ð−1Þαð1 − Λ2ÞSzn;α�,
where Sνn;α with ν ¼ x, y, z is the νth component of the
spin vector Sn;α of the nth site at the αth wire, η is the degree of
spin polarization, α ¼ 1, 2, and the parameter Λ ≥ 1 describes
the mismatch between spacer and ferromagnet resistance
(Slonczewski, 2002; Sluka et al., 2011).
The magnetic energy of the system amounts to

E ¼ E1 þ E2 þ E12, where

Eα ¼ −J1
X
n

Sn;αSnþ1;α −
1

2
A
X
n

ðSzn;αÞ2 ð60Þ

is the magnetic energy of the αth wire with the last term being
the easy axis anisotropy (characterized by the constant A),
E12 ¼ −J2

P
n Sn;1Sn;2 represents an interaction between the

wires, SðzÞn;α is the z component of the spin Sn;α in the αth wire,
and J1;2 are the respective exchange energies. The dynamics
of the system is described by the Landau-Lifshitz equation
augmented with spin-torque terms:

dSn;α

dt
¼ Sn;α ×

δE
δSn;α

þ ð−1Þαjεn;αSn;α × ðSn;α × ẑÞ; ð61Þ

where ẑ is a unitary vector along the z direction. The last term
in Eq. (61) represents spin torques which are due to the
interaction with a spin-polarized current j.
Let us consider weak deviations of spins from the ferro-

magnetic stationary state Sn;α ¼ ð0; 0; 1Þ. To this end we
introduce complex amplitudes ψn;α defined by

Sxn;α ¼ ðψn;α þ ψ�
n;αÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jψn;αj2

q
;

Syn;α ¼ −iðψn;α − ψ�
n;αÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jψn;αj2

q
;

Szn;α ¼ 1 − 2jψn;αj2;

and consider the small-amplitude (linear) limit jψn;αj ≪ 1.
Using the Fourier transform ψn;j ¼ N−1=2 P

k e
iknþiωkt ~ψk;j,

where N is the number of spins in the chain and ωk ¼
ðAþ J2Þ þ 4J1 sin2ðk=2Þ is the dispersion relation of linear
spin waves, one obtains a coupled PT -symmetric system (36)
with q ¼ ð ~ψk;1; ~ψk;2ÞT , γ ¼ jη=2, and κ12 ¼ κ21 ¼ J2.
The model can be generalized to the antiferromagnetic case

Sn;α ¼ (0; 0; ð−1Þn), as well as to the continuum limit.
Another model of two coupled ferromagnetic films,

one with gain and the other with loss placed in an external
magnetic field, was introduced by Lee, Kottos, and
Shapiro (2015).

K. Electronic circuits

The concept of a passive PT -symmetric system (see
Sec. III.A) relies on the existence of an exceptional point
which separates qualitatively different dynamical regimes.
This phenomenon is well known for the simplest mechanical
systems. Indeed, for a damped oscillator ẍþ 2γ _xþ x ¼ 0,
the exceptional point occurs at γ ¼ 1, and it separates under-
damped (γ < 1) and overdamped (γ > 1) oscillations. A PT -
symmetric generalization of such a system corresponds to two
coupled oscillators with damping and gain:

ẍþ 2γ _xþ x ¼ −2κy; ÿ − 2γ _yþ y ¼ −2κx: ð62Þ

This idea was suggested and experimentally implemented
using the RLC circuits by Schindler et al. (2011) (Fig. 14). A
mechanical realization of a dimer of oscillators was reported
by Bender, Berntson et al. (2013).
The scheme in Fig. 14(a) obeys Kirchhoff’s laws

ICn þ IRn þ ILn ¼ 0; IRn ¼ ð−1ÞnΓω0QC
n ;

ω2
0Q

C
1 ¼ _IL1 þ μ_IL2 ; ω2

0Q
C
2 ¼ _IL2 þ μ_IL1 ;

ð63Þ

where I and Q are, respectively, currents and charges in the
amplified (n ¼ 1) and lossy (n ¼ 2) circuits with capacitor
(C), resistor (R), and inductor (I); ω0 ¼ 1=

ffiffiffiffiffiffiffi
LC

p
is the natural

frequency of each isolated coil, μ ¼ M=L characterizes
inductive coupling of the coils, and Γ ¼ ffiffiffiffiffiffiffiffiffi

L=C
p

=R is the
effective gain-loss parameter. The overdot in Eq. (63) stands
for the derivative with respect to time t.
Model (62) follows directly from Eq. (63) with x ¼ QC

2 ,

y ¼ QC
1 , 2γ ¼ Γ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2

p
, κ ¼ −μ, and the overdot for the

derivative with respect to τ ¼ ω0t=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2

p
. Eigenfrequencies

ω of Eq. (62), with x; y ∝ eiωt, are given by

ω2
� ¼ 1 − 2γ2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − γ2 þ γ4

q
: ð64Þ

Thus PT symmetry is unbroken if 0 ≤ γ ≤ γPT , where

γPT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 − κ2

pq
is the phase-transition point.

Unlike the case of a Schrödinger-type PT -symmetric dimer,

(a) (b)

FIG. 14. (a) Electronic PT -symmetric dimer. The left
circuit contains the gain element due to feedback from a
voltage-doubling buffer. (b) Theoretical (solid line) and exper-
imental (circles) values of the eigenfrequency ω [open circles
are reflections of the data with respect to the ImðωÞ ¼ 0

axis]. Here ω0 ¼ 2 × 105 s−1 and μ ¼ 0.2. Adapted from
Schindler et al., 2011.
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where an increase in the coupling favors unbroken symmetry
[see Eq. (13)], here the increase of jκj eventually breaks thePT
symmetry. Figure 14(b) presents the comparison of theoretical
and experimental results of Schindler et al. (2011). For further
theoretical studies of the model see Bender, Gianfreda et al.
(2013) and Nazari et al. (2014).
System (62) admits a Hamiltonian formulation with the

Hamiltonian (Bender, Gianfreda et al., 2013)

H ¼ pqþ γðyq − xpÞ þ ð1 − γ2Þxyþ κðx2 þ y2Þ: ð65Þ
Time reversal and parity operators can be defined as (Bender,
Gianfreda et al., 2013)

T ∶ x → x; y → y; p → −p; q → −q;

P∶ x → −y; y → −x; p → −q; q → −p:

The connection between the velocities and momenta is
given by

_x ¼ ∂H=∂p ¼ q − γx; _y ¼ ∂H=∂q ¼ pþ γy; ð66Þ

while the second pair of Hamilton equations _p ¼ −∂H=∂x
and _q ¼ −∂H=∂y yields Eqs. (62).
Nonlinearity can be included in coupled circuits by taking

into account the internal currents in the electric-circuit dimer.
The resulting system is modeled by coupled Van der Pol
oscillators and features asymmetric transport observed by
Bender, Factor et al. (2013).

L. Microcavities

Coupled PT -symmetric oscillators (66) are a fairly general
model. In particular, it is possible to design an optical scheme
assuring asymmetric transport in analogy with the coupled
RLC circuits considered earlier (Bender, Factor et al., 2013).
Such a scheme extends the idea of all-silicon passive optical
diode with two passive microcavities connected by an optical
waveguide (L. Fan et al., 2012), to a configuration with
mutually balanced active and passive cavities. Experimental
implementations of PT -symmetric microcavities were
reported by Chang et al. (2014), Peng, Özdemir, Rotter et al.
(2014), and Peng, Özdemir, Lei et al. (2014). The prototypical
experimental setup is illustrated in Fig. 15.
Nazari et al. (2014) suggested that the observed non-

reciprocity may reside in nonlinear Fano resonances which
can be captured by a model of a linear conservative array
interacting with two nonlinear sites with gain (g, placed at
n ¼ 0) and loss (l, placed at n ¼ N):

i _ϕn ¼ −Cðϕn−1 þ ϕnþ1Þ − Vgϕgδn;0 − Vlϕlδn;N;

i _ϕg=l ¼ −ðE ∓ iγÞϕg=l − χjϕg=lj2ϕg=l − Vg=lϕ0=N:

Here ϕ are field amplitudes, C is the coupling constant
between the neighboring sites in the linear chain, E ∓ iγ
models eigenmodes of the two microresonators, and Vg;l are
the coupling coefficients between the chain and the impu-
rities. The nonlinear system interacts with the linear one at
sites ϕ0 and ϕN . The left incidence of a monochromatic
wave, with dispersion relation ωðqÞ ¼ 2C cosðqÞ

(ϕn;g;l ¼ An;g;leiωt), is characterized by the reflection and
transmission coefficients

rL ¼ i
VgAg þ VlAleiqN

2C sin q
; tL ¼ I þ i

VgAg þ VlAle−iqN

2C sin q
;

where I is the input amplitude, and the amplitudes Ag;l are
found from the system

ðE − ω − iγÞAg þ χjAgj2Ag þ VgðI þ rLÞ ¼ 0;

ðE − ωþ iγÞAl þ χjAlj2Al þ VleiqNtL ¼ 0:
ð67Þ

For the right incident wave, rR and tR are obtained from
these expressions by the substitution γ → −γ and Vg ↔ Vl.
The coupled active and passive microcavities can also be

studied in optomechanics, where they have promising appli-
cations such as phonon lasers (Jing et al., 2014). Microcavities
driven by blue- and red-detuned laser fields with mechanically
connected movable mirrors were studied by Xu et al. (2015).

M. Acoustics

Zhu, Ramezani et al. (2014) extended the idea of PT
symmetry to the propagation of sound waves. A linear
acoustic wave characterized by the pressure Pðz; tÞ in a bulk
medium with z-dependent density ρðzÞ and bulk modulus
KðzÞ is governed by the wave equation KPzz − ρPtt ¼ 0. In a
general situation, dissipation of sound waves can be described
by a complex bulk modulus with negative imaginary part. In
the meantime, by including piezoelectric elements connected
with electric circuits (Popa and Cummer, 2014), it is possible
to implement gain elements described by the positive imagi-
nary part ofK. Thus, by combining the elements with gain and

FIG. 15. Left column: the system composed of two whispering-
gallery-mode resonators coupled with each other and with two
fiber-taper waveguides. The resonators are silica toroids of
approximately 30 μm radius. One microcavity (μR1) is active
due to E3þ dopants while the other (μR2) is passive. The ions in
the active microcavity are pumped by the laser in the 1.417 μm
band providing gain in the 1.55 μm band. The second, third,
and fourth columns show different operating regimes of the
coupler. The upper and lower lines correspond to left and right
incidences of light. The fourth column illustrates nonreciprocity
of light propagation. From Peng, Özdemir, Lei et al., 2014.
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loss to ensure properties KðzÞ ¼ K�ð−zÞ and ρðzÞ ¼ ρ�ð−zÞ,
for a monochromatic wave P ∝ eiωt one obtains the linear
Helmholtz equation

d2P
dz2

þ ω2UðzÞP ¼ 0; UðzÞ ¼ ρðzÞ
KðzÞ ¼ U�ð−zÞ: ð68Þ

For a particular waveguide configuration of three gain and
three loss sections separated by five passive blocks, such a
medium can become unidirectionally transparent for some
frequencies (Zhu, Ramezani et al., 2014).
Nonlinear phenomena in the sound wave propagation can

be accounted for by considering the complete strain tensor,
which remains an open problem.

IV. PT -SYMMETRIC DISCRETE LATTICES

In this section, we present a detailed analysis of PT -
symmetric lattices. Motivated by physical applications in
Sec. III, our main attention will be on discrete nonlinear
Schrödinger (dNLS)-type equations, although other nonlinear
lattice models are also touched upon.

A. Formalism for discrete nonlinear systems

We focus on the most studied nonlinear networks where a
number of waveguides is either even or infinite. For some
details on arrays with an odd number of waveguides see Li and
Kevrekidis (2011), K. Li et al. (2012), Leykam, Konotop, and
Desyatnikov, 2013, and Li, Kevrekidis et al. (2013).
Mathematical description of the network is based on a

system of ordinary differential equations

i _q ¼ Hqþ FðqÞq; ð69Þ

where q ¼ qðzÞ ¼ ðq−Nþ1;…; qNÞT is a column vector of 2N
elements, H is a 2N × 2N symmetric matrix accounting for
the linear coupling between sites, and FðqÞ is a 2N × 2N
matrix whose elements depend on the field q. In this section,
we consider cubic nonlinearity where entries of matrix FðqÞ
are given by

½FðqÞ�pj ¼
XN

l;m¼1−N
flmpjq

�
l qm; p;j¼−Nþ1;…;N; ð70Þ

and flmpj are constant coefficients.
PT symmetry of H implies the following property: if qðzÞ

is a solution of the underlying linear system [i.e., the system
with FðqÞ≡ 0], then PT qðzÞ ¼ Pq�ð−zÞ is also a solution.
This is not true for the nonlinear case in general. If, however,
the nonlinearity obeys the constraint

PF�ðqÞ ¼ FðPq�ÞP for all q; ð71Þ

then the mentioned property holds also in the nonlinear case
(K. Li et al., 2012; Kevrekidis, Pelinovsky, and Tyugin,
2013b), and we say that the nonlinear system (69) is PT
symmetric.

B. Discrete configurations and their linear properties

1. Arrays with nearest-neighbor linear interactions

Let us start with an infinite array in which a waveguide n is
linked only with its two neighbors, waveguides n − 1 and
nþ 1. The simplest PT -symmetric configuration that allows
for the balance between gain and loss can be assembled using
the following rule: if any site of this network (say, qn) has gain
(loss) characterized by γn, then the site q−nþ1 situated
symmetrically with respect to the “center” of the chain has
loss (gain) characterized by −γn; see Fig. 16(a). Generally
speaking, linear coupling between adjacent sites can also
depend on the site number. In Fig. 16 we showcase a particular
case where the network has alternating coupling which is
equal to κ between 2nth and ð2nþ 1Þth waveguides and equal
to ϵ between ð2n − 1Þth and 2nth waveguides. If κ ¼ ϵ, then
the coupling becomes homogeneous.
Linear properties of the described array are determined by a

bi-infinite tridiagonal matrix H with entries (Pelinovsky,
Zezyulin, and Konotop, 2014)

Hn;m ¼ cnδnþ1;m þ cnþ1δn−1;m − ðcn þ cnþ1 − iγnÞδn;n;
ð72Þ

where n and m run through all integers from −∞ to ∞,
cn ¼ κ for even n, and cn ¼ ϵ for odd n, and the gain-and-
loss coefficients γn obey the property γn ¼ −γ−nþ1. This
lattice is PT symmetric with the parity operator defined
by ½PqðtÞ�n ¼ q1−nðtÞ.
Let us set the nonlinearity FðqÞ as

½FðqÞ�n;m ¼ ½ð1 − χnÞjqnj2 þ χnjq1−nj2�δn;m; ð73Þ

where the real coefficients χn obey the relation χn ¼ χ1−n. The
case with χn ¼ 0 for all n corresponds to on-site Kerr
nonlinearity, while the limit χn ¼ 1 for all n means nonlinear

(a)

(b)

(c)

FIG. 16. (a) Infinite PT -symmetric chain with alternating
coupling defined by κ, ϵ and gain-loss coefficients γ1, γ2.
(b) A clustered closed PT -symmetric chain of six sites.
(c) PT -symmetry-breaking “phase diagram” of the open PT -
symmetric quadrimer (Zezyulin and Konotop, 2012b) which
corresponds to the network shown in (a) truncated at q−1 and q2,
with κ ¼ ϵ ¼ 1.
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coupling between the sites n and 1 − n. This nonlinearity
satisfies Eq. (71), i.e., the corresponding nonlinear system is
PT symmetric.
Problem (69) can also be rewritten in terms of qnðtÞ as a

generalized dNLS equation with gain and dissipation
(Dmitriev, Sukhorukov, and Kivshar, 2010; Konotop,
Pelinovsky, and Zezyulin, 2012)

i _qn ¼ cnðqnþ1 − qnÞ þ cnþ1ðqn−1 − qnÞ þ iγnqn

þ ½ð1 − χnÞjqnj2 þ χnjq1−nj2�qn: ð74Þ

Imposing additional boundary conditions, one can transform
the infinite system (74) into a finite array. Assuming that n in
Eq. (103) runs from −N þ 1 to N for a given N and imposing
zero boundary conditions, i.e., q−NðtÞ≡ qNþ1ðtÞ≡ 0, we
define an open chain of 2N sites. Alternatively, one can
impose periodic boundary conditions, i.e., q−N ¼ qN and
q−Nþ1 ¼ qNþ1, thus defining a closed chain (“necklace”) of
2N sites. An example of the latter configuration is shown in
Fig. 16(b).
The simplest case N ¼ 1 corresponds to a nonlinear PT -

symmetric dimer

i _q0 ¼ q1 − iγq0 þ ½ð1 − χÞjq0j2 þ χjq1j2�q0;
i _q1 ¼ q0 þ iγq1 þ ½χjq0j2 þ ð1 − χÞjq1j2�q1;

ð75Þ

generalizing the model (40). In Eqs. (75), the linear coupling
is set to be equal to 1, and subscripts 1 for γ and χ are omitted.
Setting N ¼ 2, we obtain an array of four waveguides—a

PT -symmetric quadrimer. Its properties are much richer than
the simplest dimer model (75). Indeed, quadrimers allow one
to distinguish between open and closed geometries, to study
effects of inhomogeneous couplings and gain-loss coeffi-
cients, and to observe different types of broken PT symmetry
[or degrees of PT -symmetry breaking in the terminology of
Joglekar et al. (2010) and Scott and Joglekar (2011)], such as
“partially” broken symmetry (two real eigenvalues and
two complex eigenvalues) and “fully” broken PT symmetry
(all four eigenvalues are complex). These features of PT -
symmetric quadrimers were systematically addressed by
Bendix et al. (2010), Li and Kevrekidis (2011), K. Li et al.
(2012), and Zezyulin and Konotop (2012b). As a particular
example, we consider an open quadrimer with homogeneous
linear coupling κ ¼ ϵ ¼ 1 and arbitrary gain and losses
coefficients γ1;2 (Zezyulin and Konotop, 2012b), i.e.,

H ¼

0
BBB@

−iγ2 − 2 1 0 0

1 −iγ1 − 2 1 0

0 1 iγ1 − 2 1

0 0 1 iγ2 − 2

1
CCCA: ð76Þ

The PT -symmetry “phase diagram” for matrix H is shown in
Fig. 16(c). It features three different regions: unbroken PT
symmetry where the spectrum is purely real (black region),
partially broken PT symmetry with two real and two complex
eigenvalues (gray regions), and fully broken PT symmetry
where all eigenvalues are complex (white regions). The

boundaries separating different regions correspond to the
exceptional points. The phase diagram also contains four
triple points where the three regions meet. Another feature
visible in the phase diagram is the reentrant PT symmetry
(say after fixing γ1 ¼ 1.2, the PT symmetry is broken at
γ2 ¼ 0 and is restored when γ2 increases).
In the case of arbitrary finite N, characterization of regions

of unbroken and brokenPT symmetry is a nontrivial problem.
Detailed results on this front have been obtained for several
particular cases. The first case is a chain with alternating gain
and loss: γn ¼ ð−1Þnþ1γ, where γ is a constant. Such a chain
can be considered as N coupled identical dimers with inter-
dimer coupling given by κ and intradimer coupling given by ϵ.
The second case corresponds to a clustered chain with two
segments, one consisting of lossy sites and the other consisting
of active sites, i.e., γn ¼ signðn − 1=2Þγ [see the example in
Fig. 16(b)]. A systematic study of symmetry breaking in these
two chains with homogeneous linear coupling (κ ¼ ϵ ¼ 1) was
performed by Barashenkov, Baker, and Alexeeva (2013) and
Kevrekidis, Pelinovsky, and Tyugin (2013b). It was found that
PT symmetry is unbrokenwhen the parameter γ > 0 is below a
threshold value γPT . When γ > γPT the PT symmetry is
broken. For an open alternating (oa) chain and alternating
necklace (an) the symmetry-breaking thresholds are

γðoaÞPT ¼ sin
π

2ð2N þ 1Þ ; γðanÞPT ¼
�
0; N is even;

sin π
2N ; N is odd;

ð77Þ

while for the open clustered (oc) chain and clustered necklace
(cn) only the asymptotic results at N → ∞ are available
(Barashenkov, Baker, and Alexeeva, 2013):

γðocÞPT ¼ 8.95ð2N þ 1Þ−2 þO(ð2N þ 1Þ−3); ð78Þ
γðcnÞPT ¼ 2.77N−2 þOðN−3Þ: ð79Þ

In all these cases, the region of unbrokenPT symmetry shrinks
to zero as N → ∞.
Another well-studied case is a chain with a PT -symmetric

impurity, i.e., having two “defect” sites γd ¼ −γ1−d ¼ γ for
some integer d (with all other sites having no gain or loss). For
such a chain γPT ¼ 1 if d ¼ 1 or d ¼ N, and γPT ∝ N−1 if
1 < d < N (Jin and Song, 2009; Joglekar et al., 2010; Scott
and Joglekar, 2011).
Estimates for PT -symmetry-breaking thresholds for chains

with arbitrary configurations of sites with gain and losses can
be obtained from the perturbation theory for PT -symmetric
operators (Caliceti, Graffi, and Sjöstrand, 2005). For example,
for an open chain with homogeneous coupling, we separate
matrix H into real and imaginary parts, i.e., H ¼ H0 þ iG
where H0 is self-adjoint, and a diagonal matrix iG defines
a non-self-adjoint perturbation. Then, by Theorem 2, the
spectrum of H is real if

max
1≤n≤N

jγnj ≤ 4sin2½πð4N þ 2Þ−1�: ð80Þ

At large N, this bound behaves as ∼π2ð2N þ 1Þ−2, which is
close to Eq. (78) obtained for the open clustered chain.
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Pelinovsky, Zezyulin, and Konotop (2014) also found a
sufficient condition for broken PT symmetry in a disordered
open chain with homogeneous coupling: for ϵ ¼ κ ¼ 1, PT
symmetry is broken if

P
N
n¼1 γ

2
n > 2N − 1. This condition is

sharp forN ¼ 1. For the quadrimer case (N ¼ 2), this condition
ensures that PT symmetry is broken outside the circle
γ21 þ γ22 ¼ 3. It is interesting to notice that the triple points
Tj in the diagram of Fig. 16(c) lie exactly on this circle. Thus
the condition is not sharp since the regions with broken PT
symmetry can also be found inside the mentioned circle.

2. Infinite lattices with unbroken PT symmetry

The results (77)–(80) for the finite chains indicate that PT
symmetry tends to be more fragile as the number of sites in the
network increases, and the PT -symmetry-breaking threshold
can approach zero in the limit N → ∞. This indeed happens in
chains with PT -symmetric disorder (Bendix et al., 2009) and
in an infinite chain with homogeneous coupling and alter-
nating gain and loss (Dmitriev, Sukhorukov, and Kivshar,
2010; Zheng et al., 2010). Pelinovsky, Kevrekidis, and
Frantzeskakis (2013) demonstrated that this situation is quite
general and can be encountered in different examples of
infinite PT -symmetric networks with extended gain and loss.
There are, however, situations where an infinite linear lattice
has a nonzero PT -symmetry-breaking threshold. Some
known examples are listed next.

a. An open chain with alternating coupling and dissipation

If γn ¼ ð−1Þnγ and alternating coupling is characterized by
the parameters κ and ϵ, as in Fig. 16(a), the linear spectrum is
real if γ ≤ γPT ¼ jκ − ϵj and is complex otherwise (Dmitriev,
Sukhorukov, and Kivshar, 2010; Zheng et al., 2010).

b. An open chain with embedded defect

Consider now an infinite chain from Fig. 16(a) with
homogeneous coupling κ ¼ ϵ ¼ 1 and an embedded finite
PT -symmetric defect in a form of a dimer, i.e., γ0 ¼ −γ1 ≠ 0,
and γn ¼ 0 if n∉f0; 1g. Then PT symmetry is unbroken if
jγ0;1j ≤ γPT ¼ ffiffiffi

2
p

(Suchkov, Sukhorukov et al., 2012;
Sukhorukov et al., 2012; Kevrekidis, Pelinovsky, and
Tyugin, 2013b). Note that this PT -symmetry-breaking thresh-
old γPT ¼ ffiffiffi

2
p

is larger than that for the isolated dimer
(γPT ¼ 1). It is also possible to consider a defect in the form
of several adjacent dimers, but the domain of the unbroken
PT symmetry gradually shrinks as the “width” of the
defect grows.
A different case when a pair of impurities �γ are separated

by one or several conservative sites was addressed by Bendix
et al. (2009), who found that the PT -symmetry-breaking
threshold becomes exponentially small as the distance 2d
between the impurities tends to infinity γPT ≈ e−d.

c. Array of dimers

If gain and loss are alternating, γn ¼ ð−1Þnγ, then the open
chain in Fig. 16(a) can be viewed as an array of identical
PT -symmetric dimers, where the active site of each dimer is
coupled to the lossy site of the adjacent one. Bendix et al.

(2010) proposed another assembling of PT -symmetric dimers
in an array which possess unbroken PT symmetry even if all
couplings are equal. Such an array is illustrated in Fig. 17
(1D). This setup is described by the system

i _un ¼ iγun þ κvn þ Cðun−1 þ unþ1Þ − χjunj2un;
i _vn ¼ −iγvn þ κun þ Cðvn−1 þ vnþ1Þ − χjvnj2vn;

ð81Þ

where κ > 0 and C > 0 describe interdimer and intradimer
couplings, and χ is the coefficient used to account the effect of
the Kerr nonlinearity. In the linear case (χ ¼ 0), the condition
of unbroken PT symmetry for Eq. (81) is γ ≤ γPT ¼ κ, i.e.,
PT -symmetry breaking does not depend on C (Bendix et al.,
2010). The nonlinear system with χ ≠ 0 supports propagation
of solitons (Suchkov et al., 2011). Inverting gain and loss in a
half of the chain produces a model with the domain wall.
Scattering of linear waves in the latter system was studied by
Suchkov, Dmitriev et al. (2012).
For a staggered modification shown in Fig. 17 (1D,

staggered) with the orientations of the dimers alternating
between the adjacent sites, PT symmetry is unbroken if
γ ≤ γPT ¼ κ−2C, where κ;C;γ> 0 (D’Ambroise, Kevrekidis,
and Malomed, 2015).

3. Array of metamaterial dimers

Now we turn to a different type of an infinite PT -
symmetric chain—the model of 1D metamaterials which
consists of PT -symmetric dimers of SRRs discussed in
Sec. III.E [see Figs. 10(a) and 10(b)]. Assuming that n
enumerates the dimers ðq2n−1; q2nÞ in the array, where odd
and even SRRs have loss and gain, respectively [Fig. 10(b)],
and neglecting electric coupling, the model describing the
metamaterial can be written in the following dimensionless
form (Lazarides and Tsironis, 2013):

λ0q̈2n þ q̈2nþ1 þ λq̈2nþ2 þ q2nþ1 þ γ _q2nþ1 þ αq22nþ1 þ βq32nþ1

¼ ϵ0 sinðΩτÞ;
λq̈2n−1 þ q̈2n þ λ0q̈2nþ1 þ q2n − γ _q2n þ αq22n þ βq32n

¼ ϵ0 sinðΩτÞ; ð82Þ

where λ0 and λ describe interdimer and intradimer couplings. It
is assumed the driving force is the same for all SRRs and has

FIG. 17. 1D and 2D arrays of identical PT -symmetric dimers.
Interdimer and intradimer couplings are characterized by κ and C.
Open red and filled blue circles correspond to the sites with gain
and losses, respectively. Based on ideas of Bendix et al. (2010)
(1D), Chen et al. (2014) (2D), and D’Ambroise, Kevrekidis, and
Malomed (2015) (1D, staggered).
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frequency Ω, and the nonlinearity is generalized to include
quadratic terms.
The dispersion relation for the array (82) in the linear limit

(α ¼ β ¼ 0) and in the absence of the driving force (ϵ0 ¼ 0)
is readily found from the substitution ðq2n−1; q2nÞ ∼
ðA; BÞ exp½ið2nk − ΩτÞ� with constants A and B (Wang and
Aceves, 2013):

Ω2
k ¼

2 − γ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ4 − 4γ2 þ 4ðλ − λ0Þ2 þ 16λλ0 cos2 k

p
2½1 − ðλ − λ0Þ2 − 4λλ0 cos2 k� :

At λ0 ¼ 0 (i.e., when all dimers are decoupled), this formula
recovers the eigenfrequencies of PT -symmetric SRR dimer
(46). In the case of equal coupling λ ¼ λ0, PT symmetry of
the array is broken. The most unstable mode is the one with
k ¼ π=2 corresponding to out-of-phase oscillating dimers
(i.e., with π-phase shift for the nearest SRRs). Thus PT -

symmetry breaking occurs at γPT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðλ − λ0Þ2

pq
and γPT ∼ jλ − λ0j → 0 as λ0 → λ. Domains of broken and
unbroken PT -symmetric phases are shown in Fig. 10(c).
Wang and Aceves (2013) considered the dynamics of

metamaterial dimers in the long-wavelength and small-
amplitude limits and derived coupled-mode equations sup-
porting Bragg soliton solutions (see Sec. VII.F).

C. Nonlinear stationary modes

An important class of solutions of Eq. (69) consists of
nonlinear stationary modes. They have the form qðzÞ ¼
e−iEzw, where E is a real parameter and w is a z-independent
vector solving the algebraic system

Ew ¼ Hw þ FðwÞw: ð83Þ

Note that the equality FðwÞ ¼ FðqÞ follows from Eq. (70).

1. Exact solutions and the main features of nonlinear modes

In some simple cases (like dimer or quadrimer models)
solutions of system (83) can be found explicitly (Li and
Kevrekidis, 2011; Miroshnichenko, Malomed, and Kivshar,
2011; Graefe, 2012; Rodrigues et al., 2013). For the PT -
symmetric dimer (40), this system is

Ew0 ¼ κw1 − iγw0 þ jw0j2w0;

Ew1 ¼ κw0 þ iγw1 þ jw1j2w1:
ð84Þ

Using polar representations w0;1 ¼ A0;1eiϕ0;1 , A0;1 ≥ 0, one
can see that in addition to the trivial solution A0 ¼ A1 ¼ 0,
other nonlinear modes are determined by

A2
0 ¼ A2

1 ¼ E�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − γ2

q
; sinðϕ1 − ϕ0Þ ¼ γ=κ: ð85Þ

This result reveals several features. First, there exist two
branches of nonlinear modes [corresponding to “þ” and “−”
signs in Eq. (85)] when γ < κ. At the exceptional point κ ¼ γ,
these two branches coalesce, and above the phase transition
(γ > κ), nonlinear modes do not exist. Below the phase

transition, these modes constitute two continuous families:
even if parameters of the model γ and κ are fixed, one still can
find a continuous set of solutions by varying the free
parameter E. Amplitudes of the nonlinear modes tend to
infinity as E increases. On the other hand, amplitudes of the

modes vanish at E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − γ2

p
, which corresponds to the

eigenvalues of the linear problem. Therefore both solution
families bifurcate from the linear limit. Any nonlinear mode is
PT invariant (up to a gauge transformation w → wiθ), i.e.,
PT w ¼ w, which in the case at hand means w1 ¼ w�

0.
Linear stability of a nonlinear mode is examined by

linearizing Eq. (69) in the vicinity of the stationary solution
w and evaluating eigenvalues of the resulting linear problem.
For the dimer model, the branch corresponding to the “−” sign
is stable only if E2 ≤ 4ðκ2 − γ2Þ, while the “þ” branch is
always stable (Li and Kevrekidis, 2011).
The example of a dimer showcases several prototypical

properties of discrete nonlinear modes, but not all of them.
Indeed, for quadrimer models (N ¼ 2) nonlinear modes
(including stable ones) can exist even if PT symmetry of
the underlying linear system is broken. Furthermore, there exist
nonlinear modes that do not bifurcate from the linear limit and
in the limit E → ∞ some families of nonlinear modes can
disappear (Li andKevrekidis, 2011;K. Li et al., 2012; Zezyulin
and Konotop, 2012b; Kevrekidis, Pelinovsky, and Tyugin,
2013b; Li, Zezyulin, Konotop, and Kevrekidis, 2013).

2. Nonlinear modes as continuous families and isolated points

As emphasized, nonlinear modes of the PT -symmetric
nonlinear dimer exist as continuous families. This property is
typical for conservative systems, but is quite unusual for
systems with gain and loss. On the other hand, PT -symmetric
arrays can also feature properties of dissipative systems
(Akhmediev and Ankiewicz, 2005), i.e., they can admit
another type of solutions which are isolated points. For such
solutions, E is no longer a free parameter but is determined by
the balance between dissipation and gain, i.e., by the system
parameters. This feature can be illustrated in a PT -symmetric
dimer with nonlinear gain and loss (Miroshnichenko,
Malomed, and Kivshar, 2011)

i _q0 ¼ κq1 − iγq0 þ iΓjq0j2q0 þ jq0j2q0;
i _q1 ¼ κq0 þ iγq1 − iΓjq1j2q1 þ jq1j2q1;

ð86Þ

where in addition to linear gain and loss (γ ≥ 0) one also has
PT -symmetric nonlinear gain and loss characterized by
Γ ≥ 0. Looking for stationary nonlinear modes in the form
of q0;1 ¼ A0;1eiϕ0;1e−iEz, one can classify possible solutions
into three groups (Miroshnichenko, Malomed, and Kivshar,
2011; Duanmu et al., 2013; Chen et al., 2015):

a. Continuous families of PT -symmetric solutions

In this case E is a free parameter, A2
0 þ A2

1 ≠ γ=Γ, A0 ¼ A1

are determined from the equation

ð1þ Γ2ÞA4
0 − 2ðEþ γΓÞA2

0 þ γ2 þ E2 − κ2 ¼ 0;

and phases ϕ0;1 can be computed from A0.
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b. Isolated asymmetric solutions

For solutions of this type, E ¼ γ=Γ, A2
0 ≠ A2

1, and
A2
0 þ A2

1 ¼ γ=Γ. Note that these solutions have no counter-
parts in the dimer model without nonlinear dissipation
(Γ ¼ 0), because they require γ=Γ > 0 and exist only due
to the competition between linear and nonlinear dissipation
and gain.

c. Isolated PT -symmetric solutions

In this case, E is determined from ð2ΓE − γÞ2=ð2κΓÞ2þ
ðγ=2κÞ2 ¼ 1, and A2

0 ¼ A2
1, A2

0 þ A2
1 ¼ γ=Γ. These modes

exist only if both linear and nonlinear gain and loss are
present.
A similar classification of solutions can be elaborated for

quadrimers with nonlinear gain and loss (Li, Kevrekidis, and
Malomed, 2014).

3. Continuous families of discrete solitons

In a general case, families of nonlinear modes and their
stability analysis require numerical treatments. However, in
some limiting cases the problem can be investigated by means
of an asymptotic expansion or by the technique of analytical
continuation.

a. Bifurcation from the linear limit

If the underlying linear problem possesses a real eigen-
value, one can search for a family of nonlinear modes of
Eq. (83) bifurcating from this eigenvalue. Let us consider the
case when ~E is a simple real eigenvalue of H and ~w is the
corresponding eigenvector, i.e., H ~w ¼ ~E ~w. Up to a phase
multiplier eiφ (see discussion in Sec. II), the eigenvector can
be chosen to be PT invariant, i.e., PT ~w ¼ ~w. This property
implies that the product h ~w�; ~wi is real.
In the vicinity of the linear limit nonlinear modes bifurcat-

ing from the eigenstate ~w can be searched using the pertur-
bation expansion (Zezyulin and Konotop, 2012b)

w ¼ ϵ ~w þ ϵ3wð3Þ þ oðϵ3Þ; E ¼ ~Eþ ϵ2Eð2Þ þ oðϵ2Þ;
ð87Þ

where ϵ is a small real parameter, ϵ ≪ 1. The coefficients wð3Þ

and Eð2Þ of the expansions are to be determined.
Substituting expansions (87) into Eq. (83) and noticing

from Eq. (70) that FðwÞ ¼ ϵ2Fð ~wÞ þOðϵ3Þ, one obtains
Eð2Þ ~w ¼ ðH − ~EÞwð3Þ þ Fð ~wÞ ~w. This equation allows one
to compute Eð2Þ ¼ h ~w�; Fð ~wÞ ~wi=h ~w�; ~wi (Zezyulin and
Konotop, 2012b, 2013). Bifurcation of a family of nonlinear
modes is possible only if Eð2Þ is real. Hence, bearing in mind
that h ~w�; ~wi is real, one obtains a necessary condition for a
family of nonlinear modes to bifurcate from a simple
eigenstate ~E: Imh ~w�; Fð ~wÞ ~wi ¼ 0. If the nonlinearity is PT
symmetric, i.e., Eq. (71) holds, then this condition is satisfied
automatically.
Validity of formal perturbation expansions (87) for the

particular case of the open chain with Kerr nonlinearity was
proven by Kevrekidis, Pelinovsky, and Tyugin (2013b) using
the standard Lyapunov-Schmidt method. Dohnal and Siegl

(2015) developed a more general analysis and proved exist-
ence of nonlinear stationary modes bifurcating from a simple
eigenvalue in systems with antilinear symmetry. Expansions
(87), however, must be modified if the eigenvalue ~E is not
simple. Nonlinear modes bifurcating from semisimple eigen-
values (i.e., eigenvalues with equal algebraic and geometric
multiplicities) were addressed by Li, Zezyulin, Konotop, and
Kevrekidis (2013) and Zezyulin and Konotop (2013).
Bifurcations from double and triple eigenvalues (with alge-
braic multiplicity larger than the geometric one) were studied
by Zezyulin and Konotop (2013).

b. Anticontinuum limit

Existence of continuous families can also be rigorously
proven in the so-called anticontinuum limit (ACL), developed
in the seminal work of MacKay and Aubry (1994) for a
conservative dNLS equation. The method consists of con-
tinuation from the limit of strong nonlinearity where the linear
coupling can be neglected and exact solutions of effectively
decoupled oscillators can be found. The solution family is
constructed using analytical continuation.
This idea can be extended to infinite PT -symmetric arrays

(Konotop, Pelinovsky, and Zezyulin, 2012) as well as to finite
PT -symmetric chains and PT -symmetric defects embedded
in finite chains (Kevrekidis, Pelinovsky, and Tyugin, 2013b;
Pelinovsky, Zezyulin, and Konotop, 2014). As an example,
let us consider the system (74) with all coupling coefficients
cn scaled to unity and zero boundary conditions q−N ¼
qNþ1 ¼ 0. Substituting qn ¼ wne−iðE−2Þz yields the following
system of algebraic equations ð−N þ 1 ≤ n ≤ NÞ:

Ewn ¼ wnþ1 þ wn−1 þ iγnwn

þ ½ð1 − χnÞjwnj2 þ χnjw1−nj2�wn; ð88Þ

with w−N ¼ wNþ1 ¼ 0. Looking for PT -invariant stationary
modes, PT w ¼ w, we obtain wn ¼ w�

1−n, which reduces
Eq. (88) to the system of N equations (1 ≤ n ≤ N)

Ewn ¼ wnþ1 þ wn−1 þ iγnwn þ jwnj2wn; ð89Þ

with boundary conditions w0 ¼ w�
1 and wNþ1 ¼ 0. Note that

the coefficients χn are not present in Eq. (89).
To enable the consideration of ACL, we rescale variables as

E ¼ 1=δ and wn ¼ Wn=δ1=2 with δ ≥ 0, and rewrite Eq. (89)
in the form

ð1 − jWnj2ÞWn ¼ δðWnþ1 þWn−1 þ iγnWnÞ; ð90Þ

where the boundary conditions now read W0 ¼ W�
1 and

WNþ1 ¼ 0. In the limit δ → 0 (i.e., E → ∞), Eq. (90) becomes
decoupled and can be solved analytically. The solutions
obtained for δ ¼ 0 can then be analytically continued to
the δ > 0 case by the implicit function theorem. Using this
approach, Pelinovsky, Zezyulin, and Konotop (2014) proved
that if the coefficients γ1; γ2;…; γN satisfy constraints

����XN
n¼K

γn

���� < 1 for all K ¼ 1; 2;…; N; ð91Þ

Konotop, Yang, and Zezyulin: Nonlinear waves in PT -symmetric systems

Rev. Mod. Phys., Vol. 88, No. 3, July–September 2016 035002-24



then in the limit E → ∞ there exist 2N unique PT -invariant
nonlinear modes such that

jjwnj2 − Ej ≤ C for each n ¼ 1; 2;…; N; ð92Þ

where C is a positive E-independent constant.
The modes described by Eq. (92) are characterized

by unbounded amplitudes jwnj2 at all sites n ¼ 1; 2;…; N
when E → ∞. They, however, do not exhaust all possible
nonlinear modes, and for a proper choice of the coefficients
γ1; γ2;…; γN one can also construct 2M (M ¼ 1; 2;…; N − 1)
solutions whose amplitudes in the limit of E → ∞ grow
unbounded only at 2M central sites but vanish for other
2N − 2M sites, i.e.,

jjwnj2 − Ej ≤ C for all n ¼ 1; 2;…;M;

jwnj2 ≤ CE−1 for all n ¼ M þ 1;M þ 2;…; N;

where again C is a positive constant which does not depend
on E.
Pelinovsky, Zezyulin, and Konotop (2014) proved that

under certain (not very restrictive) conditions on coefficients
γ1; γ2;…; γN the system (88) admits altogether 2Nþ1 − 2
PT -invariant stationary solutions (unique up to a gauge
transformation) for all sufficiently large E.
ACL can also be used to classify linear stability of nonlinear

modes in the limit E → ∞. Stability can be affected by the
choice of nonlinear coefficients χn [recall that χn do not
enter the stationary system (89)]. Pelinovsky, Zezyulin, and
Konotop (2014) showed that 2N nonlinear modes that exist in
the limit E → ∞ under the conditions (91) contain exactly one
spectrally stable mode if χn < 1=2 for all n ¼ 1; 2;…, and
exactly two spectrally stable modes if χn ¼ 1=2 for all n.
The ACL approach can also be used in infinite PT -

symmetric lattices to prove the existence of discrete solitons,
i.e., nonlinear modes satisfying boundary conditions jwnj → 0

as jnj → ∞ (Konotop, Pelinovsky, and Zezyulin, 2012).
Consider an infinite network (74) with Kerr nonlinearity
(χn ¼ 0), alternating gain and loss γn ¼ ð−1Þnγ, and alternat-
ing coupling constants: cn ¼ κ for even n and cn ¼ ϵ for odd n
(n runs through all integers from −∞ to ∞). In this case, the
ACL can be introduced as the limit ϵ → 0, when the infinite
chain decouples into a set of identical PT -symmetric dimers.
Each dimer bears either the trivial zero solution or one of the
two nonzero solutions defined by Eq. (85). In the simplest
situation, only one dimer is excited (with a nonzero amplitude)
in the ACL, while all other dimers have zero amplitudes.
Using the implicit function theorem, one can prove that the
obtained configuration can be continued analytically from the
limit ϵ ¼ 0 to ϵ > 0. The obtained solution for ϵ > 0 repre-
sents a discrete PT -symmetric soliton. Depending on the
choice of sign in Eq. (85), one can construct two types of
solutions, termed below as “þ” solitons and “−” solitons.
These solitons can be continued to finite values of ϵ numeri-
cally, up to a certain threshold value of ϵ at which the Jacobian
matrix of the implicit function theorem becomes degenerate
and further continuation is not possible. An example of the
bifurcation diagram is shown in Fig. 18(a), where the branch
of − solitons terminates at some critical value of ϵ, and power

P ¼ P
n jwnj2 of solitons vanishes. The branch of þ solitons

merges with another branch of solitons designated as −þ −.
In the ACL, solitons of the −þ − branch reduce to the
configuration where all decoupled dimers bear zero ampli-
tude, except for three consecutive dimers, the central one
having amplitude (85) with the þ sign and the two others
having the − sign. Solutions from the þ branch are stable for
sufficiently small ϵ, but lose stability at ϵ ¼ κ − γ, i.e., at the
point of PT -symmetry breaking. However, the (unstable)
discrete solitons can be continued to the region of broken PT
symmetry, and even up to the case where κ ¼ ϵ ¼ 1 when the
coupling becomes homogeneous [Fig. 18(b)]. Stable solitons
in the infinite chain with homogeneous coupling can also be
found if the chain includes only a finite number of sites with
gain and loss (i.e., a PT -symmetric defect) (Kevrekidis,
Pelinovsky, and Tyugin, 2013b). If the defect consists of only
two sites, localized modes can be obtained analytically
(Dmitriev et al., 2011; Zhang et al., 2014).
Discrete solitons in a lattice with saturable nonlinearity

have been considered by Song et al. (2014).

4. Discrete compactons

Compactons were introduced by Rosenau and Hyman
(1993) and Rosenau (1994) as excitations whose field is
concentrated on a finite support and is exactly zero outside
this region. Such objects cannot exist in systems with linear
dispersion. However, linear dispersion can be completely
suppressed in specially designed PT -symmetric arrays of
waveguides (Yulin and Konotop, 2013). Indeed let us consider
an infinite network shown in Fig. 19(a). It consists of lossy (un),
active (vn), and conservative (wn) waveguides. The coupling
coefficients are κ (real and positive) and κ1 ¼ ~κeiϕ=2 with real ~κ
and ϕ. Gain and loss are described by the single parameter γ.
The array is governed by the dynamical system

i _un ¼ κvn − iγun þ κ1ðwn−1 þ wnÞ þ χjunj2un;
i _vn ¼ κun þ iγvn þ κ�1ðwn−1 þ wnÞ þ χjvnj2vn;
i _wn ¼ κ1ðun þ unþ1Þ þ κ�1ðvn þ vnþ1Þ þ χjwnj2wn;

ð93Þ

where χ is the coefficient of Kerr nonlinearity.

(a) (b)

FIG. 18. (a) Bifurcations of discrete PT -symmetric solitons
from the ACL which corresponds to ϵ ¼ 0. Solid blue and dashed
red fragments correspond to stable and unstable solitons, re-
spectively. (b) Profile of an unstable soliton on the homogeneous
lattice ϵ ¼ κ. Open (red) and filled (blue) circles correspond to the
sites with gain and losses, respectively. For both panels, κ ¼ 1,
γ ¼ 0.1, and μ ¼ 10. Adapted from Konotop, Pelinovsky, and
Zezyulin, 2012.
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The linear dispersion relation is obtained by the ansatz
ðun; vn; wnÞ ¼ ðu; v; wÞeiðbz−knÞ with χ ¼ 0:

b3 − ðκ2 − γ2Þb − 8~κ2½b cosϕþ γ sinϕþ κ� cos2ðk=2Þ ¼ 0:

In order to have a (linear) compacton, there must exist a
dispersion branch where the propagation constant b is
independent of k. This is possible if γ ¼ −κ sinϕ. Then there
is a k-independent dispersion branch b ¼ −κ cosϕ which
describes the dipole mode with wdip ¼ 0 and

udip ¼ αvdip; α¼ κ2− ~κ2ð1þ icoskÞ
~κ2ð1þ icoskÞ− κ2 cosϕ

eiϕ: ð94Þ

This mode corresponds to the excitation of only one “cell”
(say at n ¼ 0), i.e., represents a linear compacton.
In the presence of nonlinearity, one can construct a

continuous family of nonlinear solutions bifurcating from
the dipole mode (94). The nonlinear solutions persist as
compactons if one follows along the line γ ¼ −κ sinϕ. A
bifurcation diagram for nonlinear PT -symmetric compac-
tons with χ ¼ 1 is illustrated in Fig. 19(b). Moving along
the bifurcation curve, one arrives at another bifurcation
point (indicated by a red dot) where the compacton branch
intersects a branch of conventional nonlinear PT -symmetric
modes. At this intersection point the compacton and soliton
coexist.

5. Vortices in closed arrays

A discrete circular array of N waveguides representing a
system with rotational symmetry supports vortex modes
(Desyatnikov, Dennis, and Ferrando, 2011). These objects
are characterized by the phase ∼ expði2πmn=NÞ with m ¼
ð1=2πÞPN

n¼1 Argðq�nqnþ1Þ being the topological charge (TC)
and n ¼ 1; 2;…; N being the waveguide number. The charge-
flipping transformation m ↔ −m can be viewed as complex
conjugation or time reversion. Discrete vortices persist in
arrays with embedded PT -symmetric defects similar to the
one illustrated in Fig. 20(a) (Leykam, Konotop, and
Desyatnikov, 2013). Interplay between nonlinearity and gain
and loss breaks the PT symmetry and thus degeneracy of the
vortex modes.
Propagation of the monochromatic fields qnðzÞ (n¼ 1;…;N)

is governed by the system (χ ¼ �1)

i _q1 þ CqN þ q2 − iγq1 þ χjq1j2q1 ¼ 0;

i _qn þ qn−1 þ qnþ1 þ χjqnj2qn ¼ 0;

i _qN þ Cq1 þ qN−1 þ iγqN þ χjqN j2qN ¼ 0;

ð95Þ

subject to the cyclic boundary conditions qnþN ¼ qn.
The equations for linear stationary solutions qn ¼ wneiβz

can be cast in the general form βw ¼ Hw, where
H ¼ H0 þ iγH1, H0 is a matrix describing the array without
dissipation and loss, and H1 has the only nonzero entries
ðH1Þ11 ¼ ðH1ÞNN ¼ γ. H is PT symmetric, and the PT -
symmetry-breaking threshold is γPT ¼ jC − 1j (Sukhorukov
et al., 2012; Leykam, Konotop, and Desyatnikov, 2013). The
spectrum of the linear problem for a ring with N ¼ 4 is
illustrated in Fig. 20(b). At γ ¼ 0 vortex modes exist only at
C ¼ 1, and they are degenerate (i.e., the modes with opposite
TCs have the same energy). At γ > 0 the degeneracy is broken
and vortex branches with jmj ¼ 1 appear.
Typical families of nonlinear modes in an array with N ¼ 3

and C > 1 are shown in Figs. 20(c) and 20(d) for unbroken
and broken PT symmetries, respectively. For γ < γPT non-
linear m ¼ −1 modes bifurcate from the linear modes, and
a pair of m ¼ þ1 vortices is created from a saddle-node
bifurcation [Fig. 20(c)]. For γ > γPT the m ¼ −1 modes are
destroyed, while the saddle-node bifurcation for m ¼ þ1

remains [Fig. 20(d)].
Finally we note that stable vortices as well as lifting of their

degeneracy were also reported in continuous azimuthally

(a) (b)

FIG. 19. (a) Array of waveguides that supports discrete com-
pactons. (b) Bifurcation diagram of branches of compactons and
solitons for κ ¼ 1, ~κ ¼ 0.25, and χ ¼ 1. The point where the
branches intersect is indicated by a dot. Adapted from Yulin and
Konotop, 2013.
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FIG. 20. (a) Array of N waveguides with one active (n ¼ 1)
and one lossy (n ¼ N) waveguide. Phase circulation direction
is indicated by anticlockwise (red, m > 0) and clockwise
(blue, m < 0) arrows. (b) Linear propagation constants β vs C
for a conservative (γ ¼ 0, upper panel) and PT -symmetric
(γ ¼ 0.2 < γPT , lower panel) ring of N ¼ 4 waveguides. Degen-
erate vortex modes occur at the intersection marked by the black
dot. Curves labeled with “þ1” and “−1” consist of the modes
with the respective TC. Stable (unstable) nonlinear modes of
N ¼ 3 ring are shown with solid (dashed) lines for (c) C ¼ 1.3,
γ ¼ 0.2 < γPT and (d) C ¼ 1.3, γ ¼ 0.6 > γPT . TCs are indi-
cated next to the curves,m ¼ þ1 in red (purple), m ¼ −1 in blue
(brown), and m ¼ 0 in black (gray). Adapted from Leykam,
Konotop, and Desyatnikov, 2013.
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modulated PT -symmetric rings (Kartashov, Konotop, and
Torner, 2015).

6. Solitons and vortices in coupled dNLS equations

PT -symmetric dimers in an infinite array (81) are described
by two coupled 1D dNLS equations, whose soliton solutions
were reported by Suchkov et al. (2011). A natural extension of
that model is an infinite 2D array of coupled dimers, i.e., in a
plane as shown schematically in Fig. 17(b). This leads to a
model of coupled 2D dNLS equations (Chen et al., 2014)

i _un;m ¼ iγun;m þ κvn;m þ CΔð2Þun;m − jun;mj2un;m;
i _vn;m ¼ −iγvn;m þ κun;m þ CΔð2Þvn;m − jvn;mj2vn;m;

where Δð2Þ is a 2D second-order difference operator, i.e.,
Δð2Þun;m ¼ un−1;m þ unþ1;m þ un;m−1 þ un;mþ1 − 4un;m. If
γ < κ (i.e., PT symmetry is unbroken), the system admits
solutions with vn;m ¼ eiδun;m, where

δ ¼ − arcsinðγ=κÞ or δ ¼ π þ arcsinðγ=κÞ; ð96Þ

and un;m satisfies a single conservative 2D dNLS equation

i _un;m ¼ κ cosðδÞun;m þ CΔð2Þun;m − jun;mj2un;m:

Each nonlinear mode of the latter equation yields two
solutions of the original system corresponding to two different
δ in Eq. (96). A conservative 2D dNLS equation admits on-
and off-site vortex solitons characterized by nontrivial phase
circulations along a closed contour (Malomed and Kevrekidis,
2001; Kevrekidis, 2009). Their counterparts in the 2D PT -
symmetric system were considered by Chen et al. (2014), who
found that off-site vortices are unstable for almost any C,
while on-site vortices can be stable in a wide range of
parameters. An example of a stable PT -symmetric vortex
is shown in Fig. 21.

D. Nonlinear dynamics of PT -symmetric arrays

1. Conservative versus dissipative dynamics

PT -symmetric dynamical systems generally do not con-
serve energy, which allows them to possess unbounded
solutions (which are forbidden in conservative discrete
lattices). The unbounded growth is a typical scenario of
evolution of an unstable PT -symmetric stationary mode
subjected to a small initial perturbation. Alternatively, unstable

PT -symmetric modes break up into long-lived transient
structures, but typically do not evolve to an attractor (in
this way PT -symmetric dynamics has some features of
conservative andHamiltonian systems). If the initial conditions
correspond to a slightly perturbed stable nonlinear mode, then
the evolution also resembles that in a conservative system, i.e.,
the amplitude of the perturbation remains nearly constant.
Numerical evidences of such behavior can be found in Li and
Kevrekidis (2011), K. Li et al. (2012), Li, Zezyulin, Konotop,
andKevrekidis (2013), and Pelinovsky, Zezyulin, andKonotop
(2014) for finite lattices, and in Kevrekidis, Pelinovsky, and
Tyugin (2013b) and Zhang et al. (2014) for infinite chains.
Explanation of this behavior might stem from the symplectic
structure of the linear operator that describes evolution of
small perturbations of stationary states (Alexeeva et al., 2012)
(see Sec. V.A). Despite the absence of energy conserva-
tion, PT -symmetric systems can conserve other quantities
(Ramezani et al., 2010) and admit a Hamiltonian representa-
tion. A variety of completely integrable Hamiltonian PT -
symmetric dimers were reported by Barashenkov (2014),
Barashenkov and Gianfreda (2014), and Barashenkov,
Pelinovsky, and Dubard (2015). In fact, some such systems
have been known much earlier outside the domain of the PT
symmetry (Jørgensen, Christiansen, and Abou-Hayt, 1993;
Jørgensen and Christiansen, 1994).
The best studied case corresponds to a finite PT -symmetric

open chain with Kerr nonlinearity and alternating gain and
loss. Kevrekidis, Pelinovsky, and Tyugin (2013a) proved that
solutions of the underlying configuration exist globally (i.e.,
do not blow up in finite time) for any initial condition. At the
same time, there exist initial conditions that evolve to
exponentially growing solutions, even if PT symmetry of
the underlying linear system is unbroken [see Eq. (77)]. More
results on nonlinear dynamics of PT -symmetric oligomers
(including categorization of different dynamical scenarios)
can be found in Dmitriev et al. (2011), Li and Kevrekidis
(2011), D’Ambroise, Kevrekidis, and Lepri (2012), K. Li
et al. (2012), Suchkov, Sukhorukov et al. (2012), Duanmu
et al. (2013), Li, Kevrekidis et al. (2013), Li, Zezyulin,
Konotop, and Kevrekidis (2013), Rodrigues et al. (2013),
D’Ambroise, Malomed, and Kevrekidis (2014), Zhang et al.
(2014), and Xu, Kevrekidis, and Saxena (2015).
Dynamics of solitons in infinite PT -symmetric chains was

discussed by Dmitriev, Sukhorukov, and Kivshar (2010) and
Suchkov et al. (2011). Scattering on a PT -symmetric defect
embedded in an infinite conservative chain was studied by
Dmitriev et al. (2011), D’Ambroise, Kevrekidis, and Lepri
(2012), Suchkov, Sukhorukov et al. (2012), D’Ambroise et al.
(2014), and Zhang et al. (2014).
We also mention the possibility for the existence of

conserved quantities in PT -symmetric networks with an
arbitrary number of sites. Recall that any linear PT -symmetric
(and hence P-pseudo-Hermitian) system admits an integral of
motion Q ¼ hPq; qi (see Sec. II.C). This quantity is not
conserved in a nonlinear system (69) with generic nonlinearity
FðqÞ. However if the nonlinear operator FðqÞ is pseudo-
Hermitian, i.e.,

F†ðqÞ ¼ PFðqÞP for any q; ð97Þ

FIG. 21. (a) Real and (b) imaginary parts, and the (c) phase
structure, of field um;n for a typical stable on-site PT -symmetric
vortex soliton with ðC; κ; γÞ ¼ ð−0.03;−1; 0.4Þ. FromChen et al.,
2014.
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then the nonlinear system (69) also conserves the same
quantity Q (Zezyulin and Konotop, 2013). This observation
allows one to construct nonlinear arrays with at least one
integral of motion. Note that if PF�ðqÞ ¼ FðqÞP for all q and
FðqÞ is a symmetric matrix, i.e., FTðqÞ ¼ FðqÞ for any q, then
Eq. (97) automatically holds.

2. PT -symmetric dimer

Dynamics of the nonlinear dimer model (75) can be
conveniently described using Stokes variables

S0 ¼ jq0j2 þ jq1j2; S1 ¼ q0q�1 þ q�0q1;

S2 ¼ iðq0q�1 − q�0q1Þ; S3 ¼ jq1j2 − jq0j2;
ð98Þ

which satisfy the identity S20 ¼ S21 þ S22 þ S23. From system
(75) one obtains

_S0 ¼ 2γS3; _S1 ¼ ð1 − 2χÞS2S3;
_S2 ¼ 2S3 − ð1 − 2χÞS1S3; _S3 ¼ 2γS0 − 2S2:

ð99Þ

a. Conserved quantities, integrability, and Hamiltonian structure

Ramezani et al. (2010) discovered that the PT -symmetric
dimer (75) with χ ¼ 0 admits two integrals of motion. Indeed,
using the new variable r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 þ S22

p
=2, the first conserved

quantity is found to be ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − S1 þ 1

p
. The second

constant of motion J is obtained from 2ρ sin½ðJ − S0Þ=
ð2γÞ� ¼ S1 − 2. Pickton and Susanto (2013) used the integrals
ρ and J to construct the phase portrait and to classify the
behavior of all solutions of the system. Further, Barashenkov
(2014) found that the dimer model admits a Hamiltonian
representation, and the Hamiltonian

H ¼ −2
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ 1þ 2ρ sin θ
q

coshPθ þ γθ



ð100Þ

is expressed in terms of polar coordinates ρ and θ, defined as
ρ sin θ ¼ S1=2 − 1 and ρ cos θ ¼ −S2=2, and momentum Pθ,
defined by 2r sinhPθ ¼ S3 and 2r coshPθ ¼ S0 (since ρ is a
conserved quantity, the conjugate momentum Pρ does not
enter the Hamiltonian). The Hamiltonian equations read

_θ ¼ ∂H
∂Pθ

¼ −S3; _Pθ ¼ −
∂H
∂θ ¼ 2

�
γ þ ρ cos θ

r
coshPθ

�
;

_ρ ¼ ∂H
∂Pρ

¼ 0; _Pρ ¼ −
∂H
∂ρ ¼ 2

ρþ sin θ
r

coshPθ:

The PT -symmetric dimer (75) with χ ¼ 1=2 is also inte-
grable (Pelinovsky, Zezyulin, and Konotop, 2014). In this case
substitution q0;1 ¼p0;1 exp ½ð1=2iÞ

R ðjp0j2þjp1j2Þdz� trans-
forms the model into a linear system: i _p0 ¼−iγp0þp1,
i _p1 ¼ iγp1 þ p0, meaning that all solutions are bounded for
γ < 1 and generically unbounded for γ ≥ 1.

b. Global existence, bounded, and unbounded solutions

Turning back to the general model (99) with arbitrary χ, one
concludes that solutions for any initial condition exist globally

as Gronwall’s inequality implies that S0ðzÞ ≤ S0ð0Þe2γjzj
for all z.
For χ ¼ 0 and γ < 1, there exist sufficiently small initial

conditions with globally bounded solutions (Kevrekidis,
Pelinovsky, and Tyugin, 2013a). On the other hand, for χ ≠
1=2 the system admits infinitely growing solutions, even in the
case of unbroken PT symmetry (Kevrekidis, Pelinovsky, and
Tyugin, 2013a; Pelinovsky, Zezyulin, and Konotop, 2014).
For χ ¼ 0, Barashenkov, Jackson, and Flach (2013) found
an exact unbounded solution q0;1 ¼ exp f∓ γðz − z0Þ − i=
γ sinh½2γðz − z0Þ�g, where z0 is a free parameter. For γ > 1,
all trajectories are generically unbounded, except for initial
conditions that lie on the stable manifold of the saddle point
q0 ¼ q1 ¼ 0 (Barashenkov, Jackson, and Flach, 2013).

c. Unidirectional propagation

A linear PT -symmetric coupler displays nonreciprocal
behavior characterized by the field growth in the two arms
(see Sec. III.A). The nonlinearity changes the situation leading
to effectively unidirectional light propagation (Ramezani
et al., 2010; Sukhorukov, Xu, and Kivshar, 2010), i.e., to a
light diode functionality. More specifically, if the nonlinearity
coefficient χ exceeds some threshold value χth, the output
radiation almost entirely concentrates in the arm with gain [the
q1 component in Eq. (40)] independent of which arm the input
radiation is applied; while for the nonlinearity below the
critical value, the output radiation is distributed between the
two arms. The critical nonlinearity χth ¼ 4 − 2πγ was esti-
mated from the heuristic argument that for energy exchange to
occur, there must exist a maximum of S0, i.e., a point z where
relations _S0 ¼ 0 and S̈0 < 0 hold simultaneously (Ramezani
et al., 2010). A description of possible evolution scenarios can
be found in Sukhorukov, Xu, and Kivshar (2010).

3. Two coupled nonlinear oscillators

Now we turn to nonlinear generalizations of the coupled
oscillator model (62). These studies were initiated by Cuevas
et al. (2013), who considered periodic orbits of the model

ẍþ 2γ _xþ xþ 2κyþ x3 ¼ 0;

ÿ − 2γ _yþ yþ 2κxþ y3 ¼ 0;

and showed that, under the so-called rotating wave approxi-
mation, this model is reduced to the nonlinear PT -symmetric
dimer (40).
Another way to generalize the linear coupled oscillator

model (62) is based on a nonlinear extension of the
Hamiltonian (65):

H ¼ pqþ γðyq − xpÞ þ ð1 − γ2Þxyþ κðx2 þ y2Þ
þ
X
n;m

gnmxnym; ð101Þ

which preserves the same Hamiltonian structure as described
in Sec. III.L for the linear case. By choosing gnm ¼ δn;1δm;3 þ
δn;1δm;3, one obtains the relation between momenta and
velocities given by Eq. (66), as well as the following
dynamical equations (Barashenkov and Gianfreda, 2014):
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ẍþ 2γ _xþ xþ 2κyþ x3 þ 3xy2 ¼ 0;

ÿ − 2γ _yþ yþ 2κxþ y3 þ 3yx2 ¼ 0:
ð102Þ

This system leads to a new integrable nonlinear PT -
symmetric dimer. It was derived by Barashenkov and
Gianfreda (2014) using a multiple-scale perturbation expan-
sion under the scaling 2κ ¼ 3Kϵ2 and 2γ ¼ Γϵ2, where ϵ ≪ 1
is a small parameter, and K;Γ ¼ Oð1Þ. Looking for a solution
of Eq. (102) in the form of perturbation expansions x ¼
ϵx1 þ ϵ3x3 þ � � � and y ¼ ϵy1 þ ϵ3y3 þ � � �, and using
the scaled time variables T2n ¼ ϵ2nt (n ¼ 0; 1;…), one
obtains the leading order solution as x1 ¼

ffiffiffiffi
K

p
q0eiT0 þ c:c:,

y1 ¼
ffiffiffiffi
K

p
q1eiT0 þ c:c:, where q0;1 solve the equations

i _q0 þ q1 þ ðjq0j2 þ 2jq1j2Þq0 þ q21q
�
0 ¼ −iΓq0;

i _q1 þ q0 þ ðjq1j2 þ 2jq0j2Þq1 þ q20q
�
1 ¼ iΓq1:

ð103Þ

Here the overdot denotes the derivative with respect to
τ ¼ 3KT2=2, and gain and loss are characterized by
Γ ¼ γ=ð3KÞ. The system (103) is Hamiltonian, i.e., can be
obtained from the equations of motion i _q0 ¼ −∂H=∂q�1 and
i _q1 ¼ −∂H=∂q�0, with the Hamiltonian H as

H ¼ ðjq0j2 þ jq1j2Þð1þ q�0q1 þ q0q�1Þ þ iΓðq�1q0 − q�0q1Þ:
ð104Þ

The system also conserves the quantity S1 ¼ q0q�1 þ q�0q1 and
is therefore integrable.
Another interesting feature of the system (103) is the

existence of stable nonlinear stationary modes for any value
of Γ, even for jΓj > 1 when stable propagation of linear waves
is not possible. Another modification of a PT -symmetric
dimer with a similar property was reported by Cuevas-
Maraver et al. (2015). Moreover, it is possible to find a
family of dimers for which all nonlinear trajectories remain
bounded, irrespectively of the value of the gain-loss coef-
ficient Γ (Barashenkov, Pelinovsky, and Dubard, 2015).
This phenomenon can be termed as nonlinearity-induced
PT -symmetry restoration.

4. Scattering on a PT -symmetric defect

An infinite conservative lattice with a PT -symmetric defect
supports propagation of linear modes which undergo scatter-
ing by the defect (Dmitriev et al., 2011; Suchkov, Sukhorukov
et al., 2012). The simplest case corresponds to a PT -
symmetric dimer embedded in a conservative lattice. It can
be represented schematically by a chain in Fig. 16(a), where
all γn ¼ 0 except for γ1 ¼ γ, and all coupling constants are
equal: κ ¼ ϵ ¼ 1, except for the one between q0 and q1 which
is equal to some constant C. If all couplings are equal, i.e.,
C ¼ 1, the transmission and reflection coefficients of a plane
wave in the linear limit χ ¼ 0 incident from the left are

TðkÞ ¼ 2ie−ik sin k
e−2ik þ γ2 − 1

; RðkÞ ¼ −γ2 þ 2γ sin k
e−2ik þ γ2 − 1

;

where real k is the Bloch-wave number of the incident wave.

Since jTðkÞj2 and jRðkÞj2 can be larger than unity, the
reflected and/or transmitted waves can be amplified after
the scattering. This property is verified in the nonlinear case as
well. Numerical study shows that the PT -symmetric
dimer defect can substantially amplify the incident soliton
(Suchkov, Sukhorukov et al., 2012). It was also found that
soliton scattering can occur without [Fig. 22(a)] or with
[Fig. 22(b)] excitation of an internal localized mode, depending
on the amplitude of the incident soliton. Defect modes
localized on a nonlinear PT -symmetric dimer were described
by Zhang et al. (2014).
Asymmetric scattering of left and right incident plane waves

by nonlinear PT -symmetric defects embedded in a linear
conservative infinite chain was considered by D’Ambroise,
Kevrekidis, and Lepri (2012). Scattering by a nonlinear defect
embedded in a linear ladder configuration, similar to that
shown in Fig. 17(a), was described by D’Ambroise
et al. (2014).

5. PT -symmetric dimers with varying parameters

A practically relevant issue is the management of nonlinear
systems by means of varying parameters. D’Ambroise,
Malomed, and Kevrekidis (2014) numerically investigated
the effect of time-periodic gain on dynamics of the nonlinear
dimer (40) with periodic coupling κ ¼ V0 þ V1 cosðωzÞ. In the
linear limit, such a system is characterized by the presence of
parametric resonance, and its long-term linear behavior is
determined by the Floquet multipliers. On the plane of
parameters ðV0; V1Þ one can distinguish regions of stable
and unstable dynamics. The inclusion of nonlinearity signifi-
cantly affects the dynamics, i.e., the same initial data can be
bounded in the linear case and unbounded in the nonlinear case
and vice versa. The effect of the varying gain-loss profile was
investigated by Horne et al. (2013) and Battelli et al. (2015).
Another question of practical relevance is the effect of

random modulations of system parameters which preserve
the PT symmetry only on average. Considering the PT -
symmetric dimer (40) with coupling κ þ KðzÞ and gain-loss
coefficients γ þ Γ1;2ðzÞ, where KðzÞ and Γ1;2ðzÞ are delta-
correlated white noises, Konotop and Zezyulin (2014a)
demonstrated that the statistically averaged intensity of the
field in the coupler grows exponentially. The growth occurs
independently of whether the average PT symmetry is broken
or not, but the broken PT symmetry boosts the growth rate.
Stability regions for the model of coupled oscillators (62)

with periodically modulated gain-loss coefficients were inves-
tigated by Psiachos, Lazarides, and Tsironis (2014).

(a) (b)

FIG. 22. Two scenarios of discrete soliton scattering on a
PT -symmetric dimer defect. (a), (b) Feature the same model
parameters, but different amplitudes of the incident discrete
soliton: A ¼ 0.2 vs A ¼ 0.5. In both panels, n runs from n ¼
−75 to n ¼ 75. Adapted from Suchkov, Sukhorukov et al., 2012.
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E. Observation of PT -synthetic solitons

Now we turn to the experimental observation of solitons in
PT -symmetric synthetic lattices reported by Wimmer et al.
(2015). The experimental setting was briefly described in
Sec. III.A (see Fig. 5). It is modeled by the nonlinear map (41),
meaning that the temporal (i.e., evolution) coordinate (m in
this case) is also discrete.
Discrete solitons in lattices with local symmetry [see

Fig. 5(a)] are described by the model (41) with Gu ¼ 1=Gv ¼
G and ϕn ¼ 0. Neglecting the nonlinearity in the map (41) and
using the ansatz ðumn ; vmn Þ ∼ eiðQnþθmÞ, one obtains the linear
dispersion relation

θ ¼ � arccos fcos ½Q − ði=2Þ lnG�=
ffiffiffi
2

p
g ð105Þ

illustrated in Fig. 23(a). Although the imaginary part of θ is
not exactly zero in the infinite lattice, numerical results of
Wimmer et al. (2015) show that in the finite lattice the
eigenvalues remain real as long as the gain does not exceed a
certain critical value.
When nonlinearity is taken into account, increasing of the

input power leads to a formation of a discrete soliton, as
shown in Fig. 23(c). A stationary soliton is of the form
ðumn ; vmn Þ ¼ ðUn; VnÞeiθm and can be characterized by the
energy E ¼ P

n ðjUnj2 þ jVnj2Þ. One can identify a family
of stationary solitons which can be visualized on the plane
ðθ; EÞ; see Fig. 23(b).
Discrete solitons in lattices with global PT symmetry [see

Fig. 5(b)] are described by the map (41) where the phase
alternates as n varies according to the following rule: ϕn ¼ ϕ0

for modðnþ 3; 4Þ < 2, and ϕn ¼ −ϕ0 otherwise. The spec-
trum of the linear lattice in this case is determined by

cosð4QÞ ¼ 3 cos2ð2θÞ þ 8 cosh ðlnGÞ cosðϕ0Þ cosð2θÞ
þ cosh ð2 lnGÞ − 4 sin2ðϕ0Þ: ð106Þ

The examples of the numerical solution of the obtained
equation are shown in Figs. 24(a) and 24(b). Formation and
propagation of a discrete soliton at large intensity of a broad

Gaussian pulse applied to the network input are shown in
Fig. 24(c).

V. PT -SYMMETRIC COUPLED NLS EQUATIONS

A. The model and its basic properties

Generalization of discrete PT -symmetric networks is given
by distributed couplers, modeled by two linearly coupled
NLS equations with gain and loss

iψ1;z ¼−ψ1;xx− κψ2þ iγψ1þðχjψ1j2þ ~χjψ2j2Þψ1;

iψ2;z ¼−ψ2;xx− κψ1− iγψ2þð~χjψ1j2þχjψ2j2Þψ2;
ð107Þ

where all coefficients are real and we assume κ ≥ 0 and γ ≥ 0.
Following optical terminology, the terms with χ and ~χ are
referred to as self-phase modulation (SPM) and cross-phase
modulation (XPM), respectively.
The model (107) is PT symmetric with the parity operator

P ¼ σ1. This means that for a given solution ψ1;2ðx; zÞ
of Eq. (107) there exists a solution ψ ðPT Þ

1 ðx; zÞ ¼ ψ�
2ðx;−zÞ

and ψ ðPT Þ
2 ðx; zÞ ¼ ψ�

1ðx;−zÞ.
Using substitution ψ1;2 ∼ eikx−ibz, we obtain the dispersion

relation of the underlying linear system (χ ¼ ~χ ¼ 0) as

b ¼ k2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − γ2

p
. Thus PT symmetry is unbroken for

γ ≤ κ, and γ ¼ γPT ¼ κ is the exceptional point.
In the context of optical applications, model (107) with

χ ¼ 0 was introduced by Driben and Malomed (2011b) for
constant gain-and-loss coefficient γ, by Abdullaev, Konotop
et al. (2011) for a PT -symmetric defect with localized
γ ¼ γðzÞ, and by Driben and Malomed (2011a) for periodic
γðzÞ and κðzÞ. Pelinovsky, Zezyulin, and Konotop (2015)
proved that the Cauchy problem for Eq. (107) has a unique
global solution in the energy space ðψ1;ψ2Þ∈H1ðRÞ×H1ðRÞ,
with the H1 norm defined by ‖ψ‖2H1 ¼

R
Rðjψ j2 þ jψxj2Þdx.

This global existence, however, does not rule out the pos-
sibility of indefinitely growing total H1 norm, ‖ψ1‖H1þ
‖ψ2‖H1 . In the particular case of χ ¼ ~χ, Eqs. (107) represent
a PT -symmetric extension of the exactly integrable model
introduced by Manakov (1973). In this case, the system can be
conveniently treated in terms of integral Stokes variables [cf.
Eq. (98)]

FIG. 23. Solitons in locally PT -symmetric lattices. (a) The
linear dispersion relation (105) with G ¼ 1.1. Black and red lines
with labels “Re” and “Im” correspond to real and imaginary parts
of θ, respectively. (b) Family of solitons in gap of the spectrum
(shaded blue domain) on the diagram θ vs E. (c) Formation and
propagation of a discrete soliton as the input power P ≈ 120 mW.
The color bar shows log10 (intensity). Adapted from Wimmer
et al., 2015.

FIG. 24. Band-gap spectrum (106) for (a) the broken PT
symmetry at G ¼ 1.4, ϕ0 ¼ 0, and (b) unbroken PT symmetry
at G ¼ 1.4, ϕ0 ¼ 0.4π. Black and red lines with labels Re and Im
show real and imaginary parts of θ. (c) Formation of a broad
single-hump soliton for G ¼ 1.4 and ϕ0 ¼ −0.4π. The color bar
shows log10 (intensity). Adapted from Wimmer et al., 2015.
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S0 ¼
Z
R
ðjψ1j2 þ jψ2j2Þdx; S1 ¼

Z
R
ðψ�

1ψ2 þ ψ�
2ψ1Þdx;

S2 ¼ i
Z
R
ðψ�

1ψ2 − ψ�
2ψ1Þdx; S3 ¼

Z
R
ðjψ1j2 − jψ2j2Þdx;

which for χ ¼ ~χ solve

_S0 ¼ 2γS3; _S1 ¼ 0; _S2 ¼ −2κS3;
_S3 ¼ 2γS0 þ 2κS2;

where the overdot stands for the derivative with respect to z.
Thus the model conserves two quantities: S1 and C¼ κS0þ
γS2, which allows one to obtain a general solution

S0 ¼ κC=ω2 þ A1 cosð2ωzÞ þ A2 sinð2ωzÞ; ð108Þ

with ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − γ2

p
and constant C and A1;2. Hence the total

power S0ðzÞ is bounded for γ < κ and generically unbounded
otherwise. On the basis of numerical simulations, Pelinovsky,
Zezyulin, and Konotop (2015) also conjectured that the H1

norm of all solutions in the system with χ ¼ ~χ is also bounded
for γ < κ.
Let us also point out that if γ ≤ κ, then substitution

ψ2 ¼ eiδψ1; δ ¼ arcsin γ=κ or δ ¼ π − arcsin γ=κ

ð109Þ

reduces Eq. (107) to a single conservative NLS equation for
function ψ1ðx; zÞ (Driben and Malomed, 2011b; Alexeeva
et al., 2012; Bludov et al., 2013):

iψ1;z ¼ −ψ1;xx þ ðχ þ ~χÞjψ1j2ψ1 − κ cosðδÞψ1: ð110Þ

B. Modulational instability

The system (107) admits a solution in the form of a carrier-
wave (CW) background (Bludov, Konotop, and Malomed,
2013)

ψCW
j ¼ ρeikx−ibzþið−1Þjδ=2; b ¼ k2 þ ρ2ðχ þ ~χÞ − cos δ;

ð111Þ
where k and ρ are constants. To study its linear stability, we
use the standard substitution,

ψ j ¼ ψCW
j þ ρðηje−iðβz−κxÞ þ ν�je

iðβ�z−κxÞÞeikx−ibz;

with jηjj; jνjj ≪ 1. The linearization gives two branches
β1;2ðκÞ of the stability eigenvalues:

β1 ¼ 2kκ � κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 2ρ2ðχ þ ~χÞ

q
; ð112Þ

β2 ¼ 2kκ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ2 þ 2 cos δÞ½κ2 þ 2 cos δþ 2ρ2ðχ − ~χÞ�

q
;

ð113Þ

which feature several sources of modulational instability (MI).
One source of MI stems from Eq. (112) and corresponds to

χ þ ~χ < 0: ð114Þ

This is the MI due to long-wavelength excitations; it is not
influenced by gain and loss and is present also in a
conservative system of NLS equations without linear cou-
pling. Another source of MI stems from Eq. (113):

cos δ < maxf0; ρ2ðχ − ~χÞg; ð115Þ

and arises due to the linear coupling and is significantly
affected by the gain and loss.
Different origins of the MI manifest themselves through

different dynamical scenarios illustrated in Fig. 25. In
Fig. 25(a), XPM nonlinearity is focusing, and we observe
a “standard” scenario of MI which is very similar to its
Hamiltonian counterpart where the power is distributed
between the two waveguides. If the XPM is defocusing,
but the condition (114) is satisfied, one observes relatively
fast power transfer from the lossy waveguide to the active
one, accompanied by fast growing peaks [Fig. 25(b)]. Such
behavior is induced by the focusing SPM, and therefore is
not significantly changed even when one passes from the
domain of parameters (114) [Fig. 25(b)] to the one defined
by Eq. (115) (not shown in Fig. 25). The third distinctive
scenario of the MI takes place when both XPM and SPM
are defocusing [Fig. 25(c)]. In this case the MI occurs only
due to the imbalance between the gain and loss, induced by
the nonlinearity and resulting in nearly homogeneous
growth (decay) of the field in the waveguide with gain
(loss), respectively.

(a)

(b)

(c)

FIG. 25. Intensity evolution of the field components jψ1j2 and
jψ2j2 (left and right columns) of the plane wave with
(a) ρ ¼ 1.604, χ ¼ 0.5, and ~χ ¼ −1; (b) ρ ¼ 0.76, χ ¼ −1.5,
and ~χ ¼ 1; and (c) ρ ¼ 0.98, χ ¼ 0.25, and ~χ ¼ 1. For all panels,
k ¼ 0, δ ¼ π=4. Adapted from Bludov, Konotop, and
Malomed, 2013.
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C. Bright solitons

When a CW background is unstable, a system can admit
solitonic solutions. Using substitution (109), one can find a
one-soliton exact solution which for ~χ ¼ 0 and χ ¼ −2 reads
(Driben and Malomed, 2011b)

ψ s
1 ¼ eiδ−ibz

a
coshðaxÞ ; ψ s

2 ¼ e−ibz
a

coshðaxÞ ; ð116Þ

where the propagation constant b ¼ −a2 − cos δ, amplitude
a > 0, and we set κ ¼ 1. Equation (116) actually describes
two types of solutions which can be termed symmetric
(0 < δ < π=2) and antisymmetric (π=2 < δ < π) in accor-
dance with the respective conservative limits δ ¼ 0 and δ ¼ π
(Wright, Stegeman, and Wabnitz, 1989). Bright solitons in the
presence of SPM and XPM, i.e., for nonzero χ and ~χ, were
considered by Bludov et al. (2013).
Driben and Malomed (2011b) found that the symmetric

soliton is stable for

a2 < a2max ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

q
=3; ð117Þ

which agrees with the known result for the conservative case
γ ¼ 0 (Wright, Stegeman, and Wabnitz, 1989). At γ > 0, the
condition (117) can be obtained from the linear-stability
analysis (Alexeeva et al., 2012) which starts with the sub-
stitution

ψ1 ¼ ψs
1 þ eiδ−ibzðpþ qÞ=

ffiffiffi
2

p
;

ψ2 ¼ ψs
2 þ e−ibzðp − qÞ=

ffiffiffi
2

p
;

where p¼Re½p1ðxÞeμz�þ iRe½p2ðxÞeμz�, q ¼ Re½q1ðxÞeμz�þ
iRe½q2ðxÞeμz�, μ ¼ ν − iω, and p1;2, q1;2 are complex func-
tions. The linearization with respect to p and q gives the
eigenvalue problem

ðL− cosδÞpþ2γJq¼ μJp; ðLþ cosδÞq¼ μJq; ð118Þ

where p ¼ ðp1; p2ÞT , q ¼ ðq1; q2ÞT , and J ¼ −iσ2 [see
Eq. (12)],

L ¼
�
Lþ 0

0 L−

�
; L� ¼ −

d2

dx2
− b − ð4� 2Þjψ s

2j2:

In fact, the stability analysis reduces to the second equation in
Eq. (118), since the first equation has a bounded solution p for
any bounded q and μ ≠ 0. The obtained symplectic eigenvalue
problem pertains to Hamiltonian evolution, and thus scenarios
of evolution of instabilities are expected to be characteristic of
conservative systems, despite the presence of gain and loss.
For the soliton (116), by introducing X ¼ ax, λ ¼ μ=a2,

and η ¼ cos δ=a2, the second equation in Eq. (118) can be
rewritten as

ðL− þ ηÞðLþ þ ηÞq1 ¼ −λ2q1; ð119Þ

where L� ¼ −d2=dX2 þ 1 − ð4� 2Þsech2X. For the symmet-
ric soliton (116) with cos δ > 0, the lowest eigenvalue of L− is

zero, and hence L− þ η is positive definite and the inverse
ðL− þ ηÞ−1 exists. The symmetry of the eigenvalue prob-
lem (119) implies that if λ is an eigenvalue, so are −λ and�λ�.
Hence stability of the solitons requires that the minimal
eigenvalue expressed through the Rayleigh quotient

−λ2 ¼ minfhq1; ðLþ þ ηÞq1i=hq1; ðL− þ ηÞ−1q1ig

must be positive. This occurs if the lowest eigenvalue of the
operator Lþ þ η, i.e., ν ¼ −3þ η, is positive. Recalling the
definition of η one recovers Eq. (117).
Numerical studies of antisymmetric solitons show that all

such solutions are unstable (Driben and Malomed, 2011b;
Alexeeva et al., 2012). However, lifetimes of the solitons with
small amplitudes are exponentially long so for some purposes
they can be regarded as stable. Dynamics of unstable solitons,
either symmetric or antisymmetric, is divided into two
asymptotic regimes: unbounded growth and formation of
breathers. Unbounded growth typically occurs when ampli-
tudes of unstable solitons are sufficiently large.
While bright solitons (116) correspond to the most funda-

mental localized excitations in nonlinear PT -symmetric
couplers, Li, Li, and Malomed (2014) demonstrated that
the model also supports stable propagation of “supersolitons”
(Novoa et al., 2008), i.e., localized excitations consisting of
many identical solitons which feature Newton-cradle-like
dynamics. Dynamics and stability of a 2-soliton solution,
i.e., the input ψ1ðz ¼ 0Þ ¼ eiδψ2ðz ¼ 0Þ ¼ 2a= coshðaxÞ, in a
PT -symmetric coupler, as well as switching of a 2-soliton
initial pulse applied to only one of the arms were considered
by Driben and Malomed (2012).

D. Breathers

In numerical studies of soliton stabilization at the excep-
tional point (see Sec. V.E.1), Driben and Malomed (2011a)
found breathers featuring persistent irregular oscillations. In
further studies of bright solitons Alexeeva et al. (2012) found
two main scenarios of the development of instabilities:
unbounded growth of a soliton amplitude and emergence of
periodic breatherlike excitations. This naturally poses a
question on the existence of breathers in PT -symmetric
coupled NLS equations (107). We address this question
following Barashenkov et al. (2012), for the case of
χ ¼ −2, ~χ ¼ 0, and κ ¼ 1, in Eq. (107). First, let us observe
that the global rotation

�
q1
q2

�
¼ U

�
ψ1

ψ2

�
; U ¼ 1

2 cos δ

�
eiδ −1
e−iδ 1

�
; ð120Þ

where δ is defined by Eq. (109), transforms Eq. (107) into a
new system of two NLS-like equations without any linear
dissipation and coupling. In the limit of small amplitudes
jq1;2j ≪ 1, the new system decouples into two linear equa-
tions: iqj;z ¼ −qj;xx � cosðδÞqj, where j ¼ 1, 2. Thus at small
amplitudes one can look for a solution of the nonlinear
problem in the form of a multiple-scale expansion

qj ¼
ffiffiffi
ϵ

p
eð−1Þji cosðδÞzðAj þ ϵAð1Þ

j þ � � �Þ; ð121Þ
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where AðnÞ
j depend on Z ¼ ϵz, X ¼ ffiffiffi

ϵ
p

x, as well as the rest of

the scale variables Zn ¼ ϵnþ1z and Xn ¼ ϵnþ1=2x with
n ¼ 1; 2;…. Substituting Eq. (121) into the nonlinear equa-
tions for q1;2, collecting all terms with the same power of ϵ,
and eliminating the secular terms, one obtains

iAj;Z þ Aj;XX þ 2ðjAjj2 þ 2jA3−jj2ÞAj ¼ 0; ð122Þ
where j ¼ 1, 2. This system has two obvious solutions:
ðA1; 0Þ and ð0; A2Þ which in terms of the original functions
ψ1;2 yield antisymmetric and symmetric bright solitons. The
system (122) also admits vector solitons with A1 ¼ A2. Taking
the latter solution and inverting rotation (120), one obtains a
breather

�
ψ1

ψ2

�
¼ 2a expðia2zÞffiffiffi

3
p

coshðaxÞ

�
cos ½cosðδÞz�

i sin ½δþ cosðδÞz�

�
; ð123Þ

where the amplitude a must be small enough (a ∼ ϵ1=2 ≪ 1).
The frequency of the breather in the leading order is

determined by cosðδÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
.

Linear-stability analysis and numerical simulations indicate
that breathers are stable. Moreover, breathers appear to be
rather common objects which are excited when unstable
solitons break up (Alexeeva et al., 2012), after interaction
of symmetric and antisymmetric solitons [Fig. 26(a)], and
after interaction of a soliton with a defect (Bludov et al.,
2014). Numerical studies of interaction of breathers show
appreciable inelastic effects as illustrated in Fig. 26(b)
(Barashenkov et al., 2012; Rysaeva, Suchkov, and
Dmitriev, 2014).

E. Solitons in couplers with varying parameters

1. Stabilization of a soliton at an exceptional point

The exceptional point of the linearized (χ ¼ ~χ ¼ 0) system
(107) corresponds to γPT ¼ κ. It is evident from the sub-
stitution (109) that at this point symmetric and antisymmetric
solitons merge into the same solution with ψ2 ¼ iψ1 which
appears to be unstable. However, by introducing simultaneous
periodic modulations of the gain, loss, and coupling, i.e., by
considering the model

iψ1;z ¼ −ψ1;xx þ fðzÞðψ2 þ iψ1Þ þ χjψ1j2ψ1;

iψ2;z ¼ −ψ2;xx þ fðzÞðψ1 − iψ2Þ þ χjψ2j2ψ2;
ð124Þ

where fðzÞ describes the modulations, the soliton can be
stabilized. This fact was established by Driben and
Malomed (2011a) who studied numerically the case
fðzÞ ¼ f0 sinð2πz=LÞ, where f0 and L are the amplitude
and period of the modulation. It was found that the soliton
can indeed be stabilized and can even become an attractor with
a significantly broad basin.
The existence of stable solitons at the exceptional point was

also reported by Li and Xie (2014) for the case where the
coupling constant is modulated periodically whereas the
dissipation is constant (or vice versa).

2. Interaction of a soliton with an exceptional point

By modulating the coupling constant one can implement a
situation where the coupled waveguides have parameters
corresponding to the exceptional point or to the broken PT
symmetry only at a single point or on a finite segment of the
propagation distance. Such a localized modulation of the
coupling can be referred to as a coupling defect. Following
Bludov et al. (2014), now we consider the interaction of a
bright vector soliton with a coupling defect of the form
κðzÞ ¼ κ0 − ðκ0 − κminÞe−z2=l2

, where κmin and κ0 are the
minimum and maximum of the coupling, and l is a defect-
length parameter. We consider the system (107) in the absence
of XPM (~χ ¼ 0), set χ ¼ −1, and take γ ¼ 1 without loss of
generality. The introduced defect is centered at z ¼ 0, where
the strength of coupling κð0Þ ¼ κmin is the weakest. Thus
when κmin ¼ 1, the exceptional point is achieved at z ¼ 0. Far
from the defect the NLS equations are homogeneous, and thus
one can consider incidence of a soliton initially given by
Eq. (116) on the defect. Numerical simulations revealed
various scenarios visualized in Fig. 27.
If the defect length l exceeds some critical value lcrðκminÞ

(which depends on κmin), then the soliton energy grows
without bound after interaction with the defect, i.e., the soliton
cannot “overcome” the defect. If l is below lcrðκminÞ, then

(a) (b)

FIG. 26. (a) Collision of antisymmetric (initially left) and
symmetric (initially right) solitons for γ ¼ 0.5 and a ¼ 0.3.
A pair of breathers emerge from the collision. (b) Inelastic
collision of two breathers for γ ¼ 0.3 and a ¼ 0.3. Adapted from
Barashenkov et al., 2012.

(a) (b) (c) (d)

FIG. 27. (a) Symmetric soliton passing the defect at κ0 ¼ 2,
l ¼ 1 (in this case lcr ≈ 7). The interaction of an antisymmetric
soliton with the defect at κ0 ¼ 4, (b) l ¼ 1.1, (c) l ¼ 2.2, and
(d) l ¼ 2.7 (in this case lcr ≈ 3.4). In (b) broadening is repeated
with period ≈10 while the breather period ≈0.8. In all panels the
initial conditions are taken in the form (116) with a ¼ 1=

ffiffiffi
2

p
, the

defect is centered at z ¼ 0, and κmin ¼ 1. Only the first compo-
nent jψ1j2 is shown; the behavior of jψ2j2 is similar. Adapted from
Bludov et al., 2014.
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after passing the defect a symmetric soliton is transformed into
a breather propagating along the homogeneous coupler
[Fig. 27(a)]. When an antisymmetric soliton interacts with
the coupling defect, possible scenarios include the emergence
of (quasi)breathers with periodic broadening of the shape
[Fig. 27(b)], splitting of a soliton into two outgoing breathers
[Fig. 27(c)], as well as splitting of the soliton into two
breathers which after some distance start moving toward each
other [Fig. 27(d)].

3. Soliton switching by a PT -symmetric defect

Now we turn to propagation of a soliton in a coupler having
constant coupling but localized gain-loss defects. The problem
is modeled by

iψ1;z ¼ −ψ1;xx − ψ2 − iγ1ðzÞψ1 − jψ1j2ψ1;

iψ2;z ¼ −ψ2;xx − ψ1 − iγ2ðzÞψ2 − jψ2j2ψ2;
ð125Þ

where the coefficients γ1ðzÞ and γ2ðzÞ are arbitrary so far.
Soliton switching can be described by the Lagrangian

approach [see Pare and Florjanczyk (1990) for the conser-
vative coupler]. This approach relies on the ansatz ψ j ¼
Ajeϕj= coshðaxÞ [cf. Eqs. (116)] where amplitudes A1;2 and
phases ϕ1;2 are considered as slow functions of the propaga-
tion distance z. The Lagrangian equations are (Abdullaev,
Konotop et al., 2011)

Fz ¼ −ðγ1 − γ2Þð1 − F2Þ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F2

p
sinðϕÞ; ð126aÞ

ϕz ¼ δFQ − 2F cosðϕÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F2

p
; ð126bÞ

Qz ¼ −γ1Qð1þ FÞ − γ2Qð1 − FÞ: ð126cÞ

Here F ¼ ðP1 − P2Þ=ðP1 þ P2Þ is the relative distribution of
the power [P1;2ðzÞ ¼

R
∞
−∞ jψ1;2j2dx] between the two arms of

the coupler, QðzÞ ¼ ½P1ðzÞ þ P2ðzÞ�=½P1ð0Þ þ P2ð0Þ� is the
total power normalized to the input one, ϕ ¼ ϕ1 − ϕ2 is the
relative phase, and δ ¼ a½P1ð0Þ þ P2ð0Þ�=3. Equations (126)
are similar to those describing a coupler operating in the
stationary regime (Abdullaev, Konotop, and Shchesnovich,
2011). Thus one can expect various types of dissipative
dynamics of a soliton, reproducing light propagation in the
x-independent dimer model. One of such effects, the switching
of a soliton by a dissipative defect localized on the distance
interval ½za; zb�, is illustrated in Fig. 28(a). The input soliton is
mainly concentrated in the dissipative arm (P1 ≫ P2), but the
output is concentrated in the active arm, resembling unidirec-
tional propagation described in Sec. IV.D.2. By adding a new
defect with inverted gain and loss the switching can be repeated
[see the inset of Fig. 28(a)].
Note that PT symmetry is not necessary for switching

since it can be achieved even in a purely dissipative coupler
[Fig. 28(b)]. Moreover, decay of the total power can be
strongly suppressed by increasing the strength of the dis-
sipative defect. This phenomena can be termed a macroscopic
Zeno effect (Shchesnovich and Konotop, 2010) which is a
macroscopic (mean-field) manifestation of the well-known
quantum Zeno effect (Facchi and Pascazio, 2008; Daley,

2014). A macroscopic Zeno effect in a BEC subject to an
ionizing electronic beam was experimentally observed by
Barontini et al. (2013).

F. Rogue waves

In the regime of MI, the system (107) supports another type
of localized excitation known as a rogue wave (Kharif,
Pelinovsky, and Slunyaev, 2009). Here we are interested in
deterministic rogue waves, which are nonlinear excitations
propagating on a nonzero background and localized in space
and time. The simplest rogue-wave solution is the Peregrine
soliton of the NLS equation (Peregrine, 1983). In order to
construct a counterpart of the Peregrine soliton in the PT -
symmetric coupled NLS equations (107), one can employ the
reduction (109) and (110). Then if the condition of the MI
(114) is satisfied, the exact Peregrine soliton of Eqs. (107)
reads (Bludov et al., 2013)

ψ jðx;zÞ¼ ρeð−1Þjiδ=2−ibz

×

�
1−

4½1−2iðχþ ~χÞρ2z�
1−2ðχþ ~χÞρ2x2þ4ðχþ ~χÞ2ρ4z2

�
: ð127Þ

When jzj → ∞ or jxj → ∞, this solution approaches the
constant background given by Eq. (111) with k ¼ 0.
The analytical solution (127) is illustrated in Fig. 29. Direct

numerical simulations on the dynamics of Peregrine solitons
subject to different initial conditions were performed by
Bludov et al. (2013). In a generic situation due to the
instability an emergence of a single peak follows by the
development of the modulational instability, reflecting differ-
ent scenarios corresponding to different relations among the
nonlinear parameters described in Sec. V.B. An example of
such evolution is shown in Figs. 29(b) and 29(c).
The system (107) also admits more complex rogue-wave

solutions called higher-order rogue waves. They can be
readily obtained from higher-order rogue waves of the NLS
equation through the reduction (109) and (110) (Akhmediev,
Ankiewicz, and Soto-Crespo, 2009; Dubard et al., 2010; Guo,
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FIG. 28. (a) Soliton switching between arms by the PT -
symmetric segment γ2ðzÞ ¼ −γ1ðzÞ ¼ Γ(arctan½5ðz − zaÞ�−
arctan½5ðz − zbÞ�)2 with Γ ¼ 0.065, za ¼ 1.5, and zb ¼ 3.0.
In the inset of (a) a gain-loss segment is added at z ∼ 10. The
parameters were engineered in order to keep QðzÞ ≈ 1. (b) The
same as in (a) but with the only dissipative segment included
in the first arm [γ2ðzÞ≡ 0] and with Γ ¼ 0.135. The inset shows
the relative phase. In both panels ψ1ð0Þ ¼ 20sechð10 ffiffiffi

2
p

xÞ and
ψ2ð0Þ ¼ 5sechð5x= ffiffiffi

2
p Þ [i.e., Fð0Þ ¼ 3=5�. Adapted from

Abdullaev, Konotop et al., 2011.
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Ling, and Liu, 2012; Ohta and Yang, 2012; Dai and
Huang, 2014).

G. Dark solitons

Dark solitons in coupled PT -symmetric NLS equations can
exist if the CW background is stable (Bludov, Konotop, and
Malomed, 2013). Under substitution (109) we again obtain
Eq. (110), but now we assume χ þ ~χ > 0. Dark-soliton
solutions of the NLS equation are well known (Tsuzuki,
1971; Faddeev and Takhtadjan, 1987). In the particular case of
zero velocity, the respective soliton (also known as a black
soliton) reads ψdsðx; zÞ ¼ u0ðxÞe−ibz, where

u0ðxÞ ¼ ρ tanh ½ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~χ þ χÞ=2

p
x�: ð128Þ

As in the case of bright solitons (see Sec. V.C), the linear
stability of a slightly perturbed soliton (with perturbations
∝ eiλz) is reduced to two separate eigenvalue problems
(Bludov, Konotop, and Malomed, 2013): L1;2ψ ¼ Λ1;2ψ ,
where Λ ¼ λ2, and the operators are defined by

L1 ¼ðLþ−LÞðL−þ cosδÞ; L2 ¼ðL− − cosδÞðLþþLÞ;

with L≡ 2χu20 − cos δ and

L� ¼ −
d2

dx2
− bþ ½ð2� 1Þχ1 þ χ�u20:

The dark soliton is linearly stable if all eigenvalues Λ1;2

are real and positive. The eigenvalue problem for L2 is the
well-studied stability problem for the black soliton in the
conservative defocusing medium. It is known that Lþ þ L is
positive definite, and L− − cos δ has only one negative
eigenvalue and one zero eigenvalue (Barashenkov, 1996). It
is also known that the minimal eigenvalue of L2 is positive
(Chen, 1996). Thus, L2 does not give instability, and the
analysis is reduced to the study of operator L1.
The linear stability of PT -symmetric dark solitons was

studied by Bludov, Konotop, and Malomed (2013). Stable
dark solitons are robust and their collision is almost elastic. If
the system has a weak imbalance between gain γ1 and loss γ2
in the two waveguides, dark solitons can still survive for a
long time.

H. Generalized PT -symmetric coupled NLS equations

These studies do not exhaust rich dynamics governed by
coupled PT -symmetric NLS equations, including, in particu-
lar, resonant mode interactions (Wasak et al., 2015).
Furthermore, generalizations of the model itself are possible,
which are considered in this section.

1. Circular arrays

As in Sec. IV where a dimer model was generalized to
PT -symmetric oligomers, two coupled PT -symmetric NLS
equations can be generalized to an array of N waveguides.
Barashenkov, Baker, and Alexeeva (2013) studied NLS
equations assembled in open and closed PT -symmetric arrays
with alternating and clustered gain-loss configurations (see
Sec. IV.B.1). Here we consider the alternating closed
(necklace) configuration, modeled by

iψn;z þ ψn;xx þ 2jψnj2ψn þ ψn−1 þ ψnþ1 ¼ 2ið−1Þnγψn;

ð129Þ

with n ¼ 1;…; 2N, under boundary conditions ψ2Nþ1 ¼ ψ1

and ψ2N ¼ ψ0. The PT -symmetry-breaking threshold of this
system is not affected by the dispersive terms ψn;xx. Therefore

the linear waves are stable if γ < γðanÞPT in Eq. (77). [Note that in
a system with alternating dispersion, i.e., with alternating
signs in front of the second derivative, PT symmetry is
always broken (Gupta and Sarma, 2014b).]
If PT symmetry is unbroken, a solitonic solution can be

searched in the form ψn ¼ eiϕnþia2zasechðaxÞ, where phases
ϕn are determined from

e−iφn−1 þ eiφn ¼ 2ið−1Þnγ; φn ¼ ϕnþ1 − ϕn:

These equations yield ϕn ¼ ð−1Þn arcsin γ þ πnþ ϕ, where ϕ
is a constant phase (appearing due to the phase invariance of
the system).

2. Multidimensional NLS equations and wave collapse

Another extension of the PT -symmetric coupler model is
coupled PT -symmetric multidimensional NLS equations
with more general nonlinearities, i.e.,

iψ1;z ¼ −∇2ψ1 − κψ2 − F1ðjψ1j; jψ2jÞψ1 þ iγψ1;

iψ2;z ¼ −∇2ψ2 − κψ1 − F2ðjψ1j; jψ2jÞψ2 − iγψ2;
ð130Þ

where x ∈ RD,∇ ¼ ð∂=∂x1;…; ∂=∂xDÞ, and Fjð·; ·Þ describe
the nonlinearities.
Starting with the case of cubic nonlinearities F1 ¼ χjψ1j2 þ

~χjψ2j2 and F2 ¼ ~χjψ2j2 þ χjψ1j2, we recall that for focusing
SPM and XPM (χ; ~χ ≥ 0), solutions of a single NLS equation
withD ≥ 2 suffer finite-time blowup for a wide range of initial
conditions (Sulem and Sulem, 2000), even in the presence of
linear dissipation (Tsutsumi, 1984). For the PT -symmetric
system (130) with critical dimensionality D ¼ 2, no exact
result on the global existence or blowup of the solution is
available for general coefficients κ, γ, χ, and ~χ. However, a

(a) (b) (c)

FIG. 29. (a) Vector Peregrine soliton (127) with ρ ¼ 1, χ ¼ 0.5,
and ~χ ¼ −1. (b), (c) Intensities of the Peregrine solitons for
ρ ¼ 1.604, χ ¼ 0.5, ~χ ¼ −1, and δ ¼ π=4, initiated with slightly
perturbed initial conditions at z ¼ zini ¼ −4. The shown scenario
of the evolution corresponds to the scenario of MI shown in
Fig. 25(a). Adapted from Bludov et al., 2013.
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sufficient condition for global existence can be formulated
in the particular case of γ < κ and χ ¼ ~χ. In this case,
extending the arguments presented in Sec. V.A on the
2D case, one can show that there exists a priori upper
bound Smax ¼ supzS0ðzÞ < ∞ for the Stokes component
S0ðzÞ ¼ ‖ψ1‖2L2ðR2Þ þ ‖ψ2‖2L2ðR2Þ. The value of Smax depends

on the initial conditions. Using this fact, Pelinovsky, Zezyulin,
and Konotop (2015) showed that if χ ¼ ~χ ¼ 1 and the initial
conditions satisfy the requirement Smax < 1

2
‖R‖2L2 , then a

global solution in H1ðR2Þ ×H1ðR2Þ does exist. Here
R ¼ RðxÞ is the (unstable) Townes soliton (Chiao, Garmire,
and Townes, 1964), i.e., the localized positive solution of the
2D stationary problem ∇2R − Rþ R3 ¼ 0.
The study of 2D bright solitons within the framework of

Eq. (130) with focusing cubic nonlinearity and defocusing
quintic nonlinearity, i.e., Fj ¼ jψ jj2 − jψ jj4 (j ¼ 1, 2), was
reported by Burlak and Malomed (2013). Using the sub-
stitution (109), the system is reduced to a single 2D NLS
equation whose radially symmetric solutions provide the
shapes for PT -symmetric solitons. It was found that the
2D solitons can be dynamically stable for γ < γC, where γC is
some critical value which depends on the coupling strength.
Solitons in a closed array of three 2D waveguides with the
cubic-quintic nonlinearity were studied by Feijoo, Zezyulin,
and Konotop (2015).
In the supercritical case D ≥ 3, the PT -symmetric coupled

NLS equations with cubic nonlinearity may undergo a finite-
time blowup, whose sufficient conditions were established by
Dias et al. (2014). Numerical studies reveal that the model
features different evolution scenarios, including decay of the
initial pulses, growth of the solution in the active or lossy
component, or both.

I. Localized modes in CPT -symmetric BECs

Following Kartashov, Konotop, and Zezyulin (2014) we
now turn to the NLS equations with gain and loss and linear
SO-type coupling discussed in Sec. III.H. The two-body
interactions can be approximated by almost equal nonlinear
coefficients [in an experiment the difference was less than 1%
(Lin, Jiménez-García, and Spielman, 2011)]. This leads to the
coupled GPEs iΨt ¼ HΨ − χðΨ†ΨÞΨ, where the linear
Hamiltonian H is given by Eq. (56).
Stationary modes Ψ ¼ e−iμtψðxÞ can bifurcate from the

linear eigenstates. From properties of the underlying linear
system, one can identify two fundamental (one-hump) non-
linear modes, two two-hump modes, etc. The SO coupling
induces nonzero currents

j↑↓ ¼ 1

2i

�
Ψ�

↑↓

∂Ψ↑↓

∂x −
∂Ψ�

↑↓

∂x Ψ↑↓

�
;

whose directions in the j↑i and j↓i components coincide. At
the same time, directions of the currents in the two funda-
mental modes are opposite (the same being true for the two-
hump modes, three-hump modes, etc). Families of nonlinear
modes (see Fig. 30) consist of alternating intervals of stable
and unstable segments, and stable nonlinear modes exist for
both attractive and repulsive nonlinearities. Moreover, stable

nonlinear modes exist even if the CPT symmetry of the linear
problem is broken. CPT symmetry (specifically, the property
CPT σ3 ¼ −σ3CPT ) implies that the nonlinear modes have
zero (pseudo)magnetization M ¼ R∞

−∞ Ψ†σ3Ψdx ¼ 0.

VI. NONLINEAR MODES IN COMPLEX POTENTIALS

In this section, we consider nonlinear modes supported
by complex potentials UðxÞ in the NLS equation (39).
More specifically, we focus on potentials which are either
localized UðxÞ → 0 or unbounded UðxÞ → ∞ as x → �∞.
Stationary nonlinear modes in this equation are of the form
Ψðx; tÞ ¼ ψðxÞeiμt, where μ is a real propagation parameter
and ψðxÞ solves

ψxx − UðxÞψ þ gjψ j2ψ ¼ μψ ; ð131Þ

subject to the zero boundary conditions limjxj→∞ψ ¼ 0.
If the underlying liner equation, i.e., Eq. (131) with g ¼ 0,

admits a guided mode with a real propagation constant, then a
question of interest is the possibility for nonlinear modes to
bifurcate from that mode.

A. Localized potentials

1. Exact solutions

Starting with localized potentials, we note that linear
spectra of some of them are available analytically (Cooper,
Khare, and Sukhatme, 1995; Znojil, 2000). Moreover, many
of such potentials admit exact expressions for nonlinear
modes. The first known example corresponds to a PT -
symmetric Scarff II potential

UðxÞ ¼ −V1sech2x − iV2sechx tanh x; ð132Þ

with V1 > 0 and V2 ≠ 0, which is a complexification of the
real Scarff II potential (Cooper, Khare, and Sukhatme, 1995).
The spectrum of Eq. (132) was found analytically by Ahmed
(2001a, 2001b) through a transformation of the corresponding

(a) (b)

FIG. 30. (a) Families of nonlinear modes of a SO BEC in a
parabolic trap VðxÞ ¼ ν2x2=2 bifurcating from the linear mode
μ2 (see Fig. 13) for κ ¼ 1, ν ¼ 2, γ ¼ 0.2, and ω ¼ 0.5. Solid
blue (dashed red) curves correspond to stable (unstable) modes.
Here N ¼ R

∞
−∞ Ψ†Ψdx, and curves with labels Na and Nr

correspond to attractive and repulsive nonlinearities, respec-
tively. The circle in (a) corresponds to a two-hump nonlinear
mode shown in (b). Here n↑↓ ¼ jψ↑↓j2. Adapted from
Kartashov, Konotop, and Zezyulin, 2014.
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Schrödinger equation to the Gauss hypergeometric equation
and by Bagchi and Quesne (2000, 2002) using complex Lie
algebras. If jV2j < Vcr ¼ V1 þ 1=4, then the discrete spec-
trum consists of a sequence of real eigenvalues. At jV2j ¼ Vcr
the real eigenvalues merge pairwise and split into complex-
conjugate pairs as jV2j exceeds Vcr, i.e., PT symmetry
becomes broken.
The nonlinear model (131) and (132) admits an exact

particular solution for the focusing (g > 0) and defocusing
(g < 0) nonlinearities at μ ¼ 1 (Musslimani et al., 2008a; Shi
et al., 2011):

ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1 − ðV2=3Þ2 − 2

g

s
exp ½iðV2=3Þ arctanðsinh xÞ�

cosh x
:

ð133Þ
In Eq. (133) it is assumed that parameters V1;2 and g are
chosen so that the expression under the radical is positive.
The nonlinear mode (133) is PT symmetric, i.e.,

ψðxÞ ¼ ψ�ð−xÞ. This mode belongs to a continuous family
of localized PT -symmetric modes (fundamental solitons)
which can be obtained numerically by varying the propagation
constant μ at fixed model parameters V1, V2, and g. A
numerical study of fundamental and multipole solitons and
their stability in the potential (132) was performed for
focusing (Musslimani et al., 2008a) and defocusing (Shi
et al., 2011; Chen, Hu, and Qi, 2014) Kerr nonlinearities,
as well as for nonlocal nonlinearity (Shi et al., 2012).
A PT -symmetric extension of the Rosen-Morse II potential

UðxÞ ¼ −V1sech2xþ iV2 tanh x is another potential which
admits explicit expressions for particular nonlinear modes
(Midya and Roychoudhury, 2013). Note that in this case only
the real part of the potential vanishes as x → �∞, while the
imaginary part approaches constant values. The linear spec-
trum of this Rosen-Morse II potential was obtained by Lévai
and Magyari (2009). Explicit expressions for nonlinear modes
in a more sophisticated potential UðxÞ ¼ −V1sech2xþ
V2
2sech

4xþ 4iV2sech2x tanh x were reported by Musslimani
et al. (2008b) and generalized by Khare, Al-Marzoug, and
Bahlouli (2012) and Midya and Roychoudhury (2014). More
generally, potentials allowing for exact solutions can be
constructed systematically using the “inverse engineering”
approach (Abdullaev et al., 2010) which consists of assuming
the given field pattern and finding a potential shape sustaining
such a pattern, or using the similarity transformation (Serkin
and Hasegawa, 2000; Pérez-García, Torres, and Konotop,
2006) reducing a nonautonomous NLS equation [with a
potential Uðx; tÞ and time-dependent coefficients] to the
autonomous NLS equation (39) (Chen, Dai, and Wang,
2014; Dai, Wang, and Zhou, 2014; Dai and Wang, 2014a,
2014c; Xu and Dai, 2014).
Exact particular solutions are also available in multidimen-

sional PT -symmetric potentials (see also Sec. IX), including
2D and 3D versions of Scarff and Rosen-Morse potentials
(Dai, Wang, and Zhou, 2014; Dai and Wang, 2014b, 2014c;
Hu and Chen, 2014; Wang, Dai, and Wang, 2014a, 2014b).
One more example admitting explicit nonlinear solutions is

PT deformation of a parabolic potential (Midya, 2015; Yan,
Wen, and Konotop, 2015)

UðxÞ ¼ Ω2x2 − V0e−2x
2 þ iγxe−x

2

: ð134Þ

A numerical study of the linear spectrum for the PT -
symmetric Gaussian potential [which corresponds to Ω ¼ 0
in Eq. (134)] was performed by Ahmed (2001a), and non-
linear modes were computed numerically by Hu et al. (2011)
and Jisha, Devassy et al. (2014). More complex exactly
solvable PT extensions of the parabolic potential have been
discussed by Yan, Xiong, and Liu (2010), Yan (2013), and
Yan, Wen, and Konotop (2015).
Kartashov, Malomed, and Torner (2014) demonstrated

that stable solitons in the defocusing nonlinearity can be
found in the absence of any real symmetric part, i.e., when
UðxÞ ¼ iγxe−x

2

, provided that the nonlinearity is spatially
modulated, and its profile grows rapidly enough as x → �∞,
e.g., g ¼ gðxÞ ¼ −ðg1 þ g2x2Þex2 . The existence of bright
solitons in such self-defocusing nonlinearity can be explained
by “nonlinearizability” of the respective NLS equation at the
soliton tails. For γ ¼ 0 the exact soliton solution can be found
in the analytical form.
Exact solutions have been also found for some double-well

(Wen and Yan, 2015; Yan, Wen, and Konotop, 2015) and
multiwell (Yan, Wen, and Hang, 2015) PT -symmetric
potentials.

2. Scattering on a PT -symmetric defect

A localized PT -symmetric potential can be viewed as a
defect which scatters an incident wave. For certain cases,
including the PT -symmetric Scarff II potential (132), the
scattering data for the linear problem can be found in an
explicit form (Lévai, Cannata, and Ventura, 2001; Cannata,
Dedonder, and Ventura, 2007). In the nonlinear setting, one
can consider incidence of a soliton on a PT -symmetric defect.
The numerical study of soliton scattering by Eq. (132) reveals
several dynamical scenarios (Nazari, Nazari, and Moravvej-
Farshi, 2012; Karjanto et al., 2015). They include swinging
and self-trapping of the normally incident soliton, as well as
nonreciprocity of left and right incidences. Asymmetric
evolution of two simultaneously launched solitons on a

FIG. 31. Scattering of a soliton by the potential UðxÞ ¼
−V2

0sechðV0xÞ þ iW0xsechðV0xÞ with V0 ¼ W0 ¼ −2. (a) Al-
most perfect reflection of the soliton moving from the left.
(b) Almost perfect transmission of the soliton moving
from the right. In both cases the velocity of the incident
soliton is jv0j ¼ 0.25, and the initial position is at jx0j ¼ 10.
From Al Khawaja et al., 2013.
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PT -symmetric defect was reported by Nazari et al. (2013). It
was also found by Al Khawaja et al. (2013) and Al-Marzoug
(2014) that in a certain range of the parameters of the potential
and the incident soliton, one can observe a unidirectional
soliton flow, i.e., the soliton moving from the left to the right is
almost perfectly reflected, while the soliton moving in the
opposite direction is almost perfectly transmitted (see Fig. 31).
Unidirectional transmission, amplification, and destruction of
gap solitons (supported by a real periodic potential) on a PT -
symmetric defect was also observed by Abdullaev, Brazhnyi,
and Salerno (2013).

B. Parabolic potential

Now we turn to stationary nonlinear modes of Eq. (131)
with a parabolic PT -symmetric potential (8). Linear eigenm-
odes of this potential are given by ~μn ¼ −ð2nþ 1Þ,
n ¼ 0; 1;…, and the eigenfunctions ~ψnðxÞ can be expressed
in terms of Hermite polynomials [see Eqs. (9)]. We first look
for small-amplitude nonlinear modes bifurcating from the
linear eigenstates ~ψnðxÞ. In this case, the nonlinear modes can
be constructed by an asymptotic expansion

ψnðxÞ ¼ ε ~ψn þ ε3ψ ð3Þ
n þ oðε3Þ;

μ ¼ ~μn þ gε2μð2Þn þ oðε2Þ;
ð135Þ

where ε ≪ 1 is a small real parameter. Substituting this
expansion into Eq. (131) and collecting terms of order ε3

one obtains an equation for ψ ð3Þ
n :

ðψ ð3Þ
n Þxx − ~μnψ

ð3Þ
n − ðx − iαÞ2ψ ð3Þ

n ¼ gμð2Þn ~ψn − gj ~ψnj2 ~ψn:

The solvability condition (Fredholm alternative) for this
equation requires its right-hand side to be orthogonal to the
kernel of the adjoint operator in the left-hand side, i.e.,

orthogonal to ~ψ�
n. This allows one to compute μð2Þn as

(Zezyulin and Konotop, 2012a; Yang, 2014b)

μð2Þn ¼
Z

∞

−∞
~ψ3
nðxÞ ~ψ�

nðxÞdx
�Z

∞

−∞
~ψ2
nðxÞdx: ð136Þ

For expansions (135) to be meaningful, μð2Þn must be real (a
similar constraint also arises for discrete systems in
Sec. IV.C.3.a). When α ¼ 0, the eigenfunctions ~ψnðxÞ are

real valued, hence the coefficients μð2Þn are positive for all n.
When α ≠ 0, ~ψnðxÞ are complex valued. However, parity of

their real and imaginary parts ensures that the coefficient μð2Þn

is still real for any n and α. Thus for each n one can identify a
continuous family of nonlinear modes ψnðxÞ bifurcating from
the nth linear eigenstate ~ψnðxÞ.
Further analysis of these nonlinear modes can be performed

numerically. The continuous families can be visualized as
curves gPnðμÞ, where Pn ¼

R
∞
−∞ jψnj2dx is the power of the

nth mode; see Fig. 32. Each point above (below) the axis
gP ¼ 0 corresponds to a nonlinear mode under focusing
(defocusing) nonlinearity. A striking difference between the
two panels in Fig. 32 is coalescence of nonlinear modes
bifurcating from different linear eigenstates, which does not
occur in the conservative parabolic potential (α ¼ 0) (Kivshar,

Alexander, and Turitsyn, 2001; Kevrekidis et al., 2005), but
becomes possible in its PT -symmetric counterpart (α ≠ 0)
(Zezyulin and Konotop, 2012a). This coalescence can be
described in terms of a saddle-node bifurcation (Gallo and
Pelinovsky, 2014). A similar scenario of collisions of non-
linear modes can be observed if instead of the propagation
constant μ one varies parameters of the PT -symmetric
potential. Such collisions were observed in the PT -symmetric
potential (134) with V0 ¼ 0 and varying values of γ at a fixed
propagation constant (Achilleos et al., 2012) (see Fig. 33), in a
PT -symmetric double-well potential (Cartarius et al., 2012;
Dast, Haag, Cartarius, and Wunner, 2013; Dast, Haag,
Cartarius, and Wunner et al., 2013), and in a slab waveguide
with a piecewise constant complex potential (Tsoy,
Tadjimuratov, and Abdullaev, 2012). In a way this behavior
is reminiscent of linear PT phase transition: cf. the PT -
symmetry-breaking diagram in Fig. 1.

C. Symmetry breaking of solitons

The continuous families of nonlinear modes discussed
above are PT symmetric, i.e., satisfy PT ψ ¼ ψ (up to a
phase shift ψ → ψeiθ, θ ∈ R). This observation raises a
question: can PT -symmetric systems admit continuous fam-
ilies of non-PT -symmetric solitons? In conservative systems
continuous families of asymmetric solutions can exist due to
symmetry-breaking bifurcations, where asymmetric solitons

FIG. 32. Families of nonlinear modes in the conservative
(α ¼ 0) and PT -symmetric (α ¼ 1) parabolic potential (8) and
focusing (g ¼ 1) and defocusing (g ¼ −1) nonlinearities. Bold
segments on the power curves correspond to stable nonlinear
modes. Adapted from Zezyulin and Konotop, 2012a.

FIG. 33. The power P as a function of the strength γ of the
imaginary potential in Eq. (134) with V0 ¼ 0. The bifurcation
diagram shows the merging of different solution branches
through saddle-node bifurcations. Solid (dashed) lines indicate
dynamically stable (unstable) solutions. Here g ¼ −1, Ω ≈ 0.07,
and μ ¼ −3. Adapted from Achilleos et al., 2012.
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bifurcate out from the base family of symmetric solitons as the
power (L2 norm) of symmetric solitons exceeds a certain
threshold. This symmetry breaking usually occurs in a double-
(or multi)well real potential or in a periodic potential (Jackson
and Weinstein, 2004; Kirr et al., 2008; Sacchetti, 2009;
Akylas, Hwang, and Yang, 2011; Yang, 2012; Malomed,
2013). However, most of the studies of double-well and
periodic PT -symmetric potentials (Musslimani et al.,
2008a; Cartarius and Wunner, 2012; Cartarius et al., 2012;
C. Li et al., 2012; Nixon, Ge, and Yang, 2012; Dast, Haag,
Cartarius, and Wunner, 2013; Dast, Haag, Cartarius, and
Wunner et al., 2013; Mayteevarunyoo, Malomed, and
Reoksabutr, 2013; Rodrigues et al., 2013) did not report
non-PT -symmetric nonlinear modes with real propagation
constants. Indeed, continuous families of non-PT -symmetric
solitons cannot be expected intuitively, since it is “difficult”
for those solitons to balance gain and loss. This intuition is
supported by mathematical analysis of Yang (2014a), who
showed that for non-PT -symmetric soliton families to exist in
a PT -symmetric potential infinitely many nontrivial condi-
tions must be satisfied simultaneously, which is generically
impossible. However, in a generalized Wadati potential (31)

UðxÞ ¼ −½w2ðxÞ þ αwðxÞ þ iw0ðxÞ�; ð137Þ

where wðxÞ is a real and even function and α is a real constant,
symmetry breaking of solitons can occur, and continuous
families of non-PT -symmetric solitons are possible (Yang,
2014d). As an example, we consider

wðxÞ ¼ A−e−ðxþx0Þ2 þ Aþe−ðx−x0Þ
2

; ð138Þ

where A� and x0 are constants. When A− ¼ Aþ, this function
generates a PT -symmetric double-well potential UðxÞ plotted
in Fig. 34(a). The linear spectrum of this potential is all real
(see Sec. II.F) and contains three positive isolated eigenvalues,
the largest being ≈3.6614. From this largest discrete eigen-
mode, a family of PT -symmetric solitons bifurcates out.
Under focusing nonlinearity (g ¼ 1), the power curve of this
family is shown in Fig. 34(b), and the soliton profile at the
marked point c is displayed in Fig. 34(c). At the propagation
constant μc ≈ 3.9287 of this base power branch, a family of
non-PT -symmetric solitons bifurcates out. The power curve
of this non-PT -symmetric family is also shown in Fig. 34(b).
At the marked point d of the bifurcated power branch, the non-
PT -symmetric solution is displayed in Fig. 34(d). Most of the
energy in this soliton resides on the right side of the potential.
From Eq. (131) one can see that if ψðxÞ is a solution, so is

ψ�ð−xÞ. Thus for each of the non-PT -symmetric solitons
ψðxÞ in Fig. 34(b), there is a companion soliton ψ�ð−xÞwhose
energy resides primarily on the left side of the potential. Thus
this symmetry-breaking bifurcation is pitchfork type.
Linear-stability analysis shows that the base family of PT -

symmetric solitons is stable before the bifurcation point
(μ < μc) and becomes unstable when μ > μc due to the
presence of a real positive eigenvalue. However, the bifurcated
family of non-PT -symmetric solitons is stable. To corrobo-
rate these linear-stability results, in Figs. 34(e) and 34(f) we
show direct simulations of soliton evolutions under initial 1%
random-noise perturbations. It is seen from Fig. 34(e) that the

PT -symmetric soliton in Fig. 34(c) breaks up and becomes
non-PT -symmetric. Upon further propagation, the solution
bounces back to almost PT symmetric again, followed by
another breakup. In contrast, Fig. 34(f) shows that the asym-
metric soliton in Fig. 34(d) is stable against perturbations.
Note that this symmetry-breaking bifurcation also occurs

for many other potentials of the form (137), including periodic
potentials (Yang, 2014d).

D. Soliton families in asymmetric complex potentials

In a generic complex non-PT -symmetric potential
[UðxÞ ≠ U�ð−xÞ], continuous families of solitons are not
expected even if UðxÞ has all-real linear spectra (Yang,
2014b). Indeed, let us suppose that UðxÞ is a complex
potential which admits a simple isolated real eigenvalue ~μn,
with the corresponding localized eigenfunction ~ψnðxÞ. If a
soliton family bifurcates out from this linear eigenmode, then
in the small-amplitude limit one can expand these solitons into
a perturbation series analogous to Eq. (135) and, following the
analysis of Sec. VI.B, we recover that the bifurcation of the
continuous family from the real eigenvalue ~μn is possible only

if the coefficient μð2Þn defined by Eq. (136) is real. As seen in
Sec. VI.B on the example of a parabolic potential, if UðxÞ is
PT symmetric, the reality of μð2Þn is satisfied automatically.

(a) (b)

(c) (d)

(e) (f)

FIG. 34. (a) Inverted plot of the PT -symmetric potential (137)
generated by Eq. (138) with A− ¼ Aþ ¼ 2, x0 ¼ 1.2, x0 ¼ 1.2,
and α ¼ 1. (b) Power diagram for nonlinear modes with g ¼ 1
(solid blue: stable solitons; dashed red: unstable solitons). (c),
(d) PT -symmetric and asymmetric solitons corresponding to
points c and d on the power diagram with μ ¼ 4.3. (e),
(f) Evolution of the solitons shown in (c) and (d) under 1%
random-noise perturbations. Adapted from Yang, 2014d.
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However, for a generic complex potential UðxÞ this condition
is likely to fail. Moreover, reality of μð2Þn is only the first
condition for a soliton family to bifurcate out from a linear
mode. As we pursue this perturbation calculation to higher
orders, infinitely many more nontrivial conditions would
need to be met (Yang, 2014b). This shows that in a generic
non-PT -symmetric potential UðxÞ soliton families should
not exist.
These generic arguments, however, do not apply if the

system has hidden symmetries. Tsoy, Allayarov, and
Abdullaev (2014) found numerically that continuous families
of nonlinear modes do exist in a one-hump asymmetric
Wadati potential (137) generated by wðxÞ ¼ η= cosh½aðxÞx�,
where η is a real constant and aðxÞ is a step function:
aðxÞ ¼ a− at x < 0, and aðxÞ ¼ aþ at x > 0, with a� being
real unequal constants. An explanation for this observation
given by Konotop and Zezyulin (2014b) consists of the
existence of an additional conservation law. Indeed, using
the polar representation for the stationary nonlinear mode

ψðxÞ ¼ ρðxÞei
R

vðxÞdx, we rewrite the stationary equation (131)
with potential (137) in the hydrodynamic form (without loss
of generality, we assume α ¼ 0 in this section)

ρxx − μρþ w2ρþ gρ3 − v2ρ ¼ 0;

2ρxvþ ρvx þ wxρ ¼ 0:
ð139Þ

It is straightforward to verify that these equations admit a
conserved quantity

I¼ ρ2xþρ2ðvþwÞ2−μρ2þgρ4=2; dI=dx≡0: ð140Þ
Because of the existence of this integral of motion, for each
value of the propagation constant μ, all localized nonlinear
modes can be identified through a solution of a system of two
equations with two real unknowns (“shooting constants”)
which determine the asymptotic behavior of ψðxÞ at x → �∞.
This observation allows one to confirm the existence of
continuous families of nonlinear modes using a shooting-type
argument: the number of constraints (matching conditions at
x ¼ 0) is equal to the number of available free parameters.
Using this approach, Konotop and Zezyulin (2014b) found
families of nonlinear modes in an asymmetric complex
double-hump potential defined by Eq. (138) with A− ≠ Aþ,
as illustrated in Fig. 35.

Bifurcation of soliton families from linear modes in
asymmetric complex potentials was also studied analytically
by Nixon and Yang (2016b). Under a weak assumption, it was
shown that the stationary equation (131) admits a constant of
motion if and only if the complex potential UðxÞ is of Wadati
type (137). Using this constant of motion, the soliton
equation (139) was reduced to a second-order equation for
the amplitude of the soliton. From this new soliton equation, it
was shown by perturbation methods that continuous families
of solitons bifurcate out from linear eigenmodes. It was also
found that these results hold not only for the cubic non-
linearity, but also for all nonlinearities of the form FðjΨj2ÞΨ in
Eq. (39), where Fð·Þ is an arbitrary real-valued function.

VII. NONLINEAR WAVES IN PERIODIC POTENTIALS

In this section, we review properties of solitons in 1D and 2D
PT -symmetric periodic potentials. For the 1D case, we explore
the NLS equation (39) with a potential UðxÞ≡U1DðxÞ, where
U1DðxÞ is a periodic and PT -symmetric function, while in 2D
the model is

iΨt þΨxx þΨyy −U2Dðx; yÞΨþ gjΨj2Ψ ¼ 0; ð141Þ

where U2Dðx; yÞ is periodic in x and y and satisfies the PT -
symmetry condition U�

2Dðx; yÞ ¼ U2Dð−x;−yÞ.
Similar to their real-valued counterparts, PT -symmetric

periodic potentials feature band-gap spectra (Bender, Dunne,
and Meisinger, 1999; Jones, 1999). For many familiar PT -
symmetric periodic potentials, it has been shown that when the
imaginary component of the potential is below a certain
threshold, then all the spectral bands lie on the real axis, and
the spectrum of the potential is all real. Above this threshold,
phase transition occurs, and complex eigenvalues appear
(Musslimani et al., 2008a; Makris et al., 2011; Nixon, Ge,
and Yang, 2012). Sometimes, this threshold is zero, meaning
that complex eigenvalues exist for any imaginary strength of
the periodic potential (Musslimani et al., 2008b).
In PT -symmetric periodic potentials, special periodic

solutions can be found analytically (Musslimani et al.,
2008b; Abdullaev et al., 2010). Continuous families of bright
solitons were found numerically by C. Li et al. (2012), Nixon,
Ge, and Yang (2012), and Zeng and Lan (2012) in pure
periodic potentials, and by Lu and Zhang (2011) and Wang
and Wang (2011) in a PT -symmetric periodic potential
with local defects. Some of these soliton families bifurcate
out from edges of Bloch bands, while others do not. Above the
phase transition, these solitons are all unstable; but below the
phase transition, they can be stable in certain parameter
regions. In addition to soliton families, distinctive linear
diffraction patterns were reported by Makris et al. (2010)
and Regensburger et al. (2012), and periodic bound states
were reported by Nixon, Zhu, and Yang (2012). The locali-
zation-delocalization transition of light propagating in quasi-
periodic PT -symmetric lattices was numerically obtained by
Hang et al. (2015).
In two dimensions, a distinctive pyramid diffraction pattern

was reported in both linear and nonlinear regimes near the
phase transition (Nixon and Yang, 2013). In addition to these
results, other interesting phenomena such as nonreciprocal

(a) (b) (c)

FIG. 35. (a) Inverted plot of the asymmetric potential UðxÞ for
wðxÞ defined by Eqs. (137) and (138) with A− ¼ 2.3, Aþ ¼ 2,
x0 ¼ 1.5, and α ¼ 0. (b) Power diagram for nonlinear modes.
Solid blue (dashed green) lines correspond to defocusing (focus-
ing) nonlinearity. (c) Intensity ρ2 and current j ¼ vρ2 for the
nonlinear mode marked as c in (b). Adapted from Konotop and
Zezyulin, 2014b.
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Bloch oscillations (Longhi, 2009b), rectification and dynami-
cal lozalization (Kartashov et al., 2016), and unidirectional
propagation discussed in Secs. III.A and IV.D.2 have also
been found in linear PT -symmetric periodic potentials.

A. Linear spectrum of periodic potentials

1. 1D lattice

Spectral properties of one-dimensional Schrödinger
operators with complex periodic potentials have been
intensively studied [for a recent review, see Djakov and
Mityagin (2006) and Makris et al. (2008)]. In particular,
Gasymov (1980) considered the Schrödinger operator
H ¼ −d2=dx2 þ U1DðxÞ, where

U1DðxÞ ¼
X∞
n¼1

uneinx;
X∞
n¼1

junj < ∞ ð142Þ

is the 2π-periodic potential which becomes PT symmetric if
all coefficients un are real. It was proven that the spectrum of
H is real and fills the semiaxis ½0;∞Þ. Eigenfunctions of H
constitute a complete basis in a properly defined linear space.
We illustrate the typical properties of linear periodic

PT -symmetric lattices using as an example the potential in
the form

U1DðxÞ ¼ −V0½cos2ðxÞ þ iW0 sinð2xÞ�: ð143Þ

For this π-periodic lattice, V0 characterizes the strength of the
real component of the potential, and W0 ≠ 0 is the relative
magnitude of the imaginary component.
Linear modes of Eq. (33) with the potential (143) are

Ψðx; tÞ ¼ ψðxÞe−iμt; ψðxÞ ¼ pðx; kÞeikx; ð144Þ

where ψðxÞ is a Bloch mode solving the eigenvalue problem

μψ þ ψxx þ V0½cos2xþ iW0 sinð2xÞ�ψ ¼ 0; ð145Þ

pðx; kÞ is a π-periodic function in x, k is the wave number in
the irreducible Brillouin zone (BZ) −1 ≤ k ≤ 1, and μ is the
propagation constant. The function μ ¼ μðkÞ is the diffraction
(or dispersive) relation, and all admissible values of μ
constitute the Bloch bands. The dispersion relations μ ¼
μðkÞ for three values of W0 are displayed in Fig. 36. At
W0 ¼ 0.4, PT symmetry is unbroken, and the Bloch bands
are all real and separated by gaps. At W0 ¼ 1=2 (the excep-
tional point), all Bloch bands touch each other and gaps
disappear. When W0 > 1=2, PT symmetry is broken, and
complex eigenvalues appear in the Bloch bands.
AtW0 ¼ 1=2, one can introduce the variable transformation

ξ ¼ i
ffiffiffiffiffiffiffiffiffiffiffi
V0=2

p
eix which reduces Eq. (145) to the Bessel

equation,

ξ2ψξξ þ ξψξ þ ðξ2 − μ − V0=2Þψ ¼ 0; ð146Þ

whose solution is ψðxÞ ¼ Jkði
ffiffiffiffiffiffiffiffiffiffiffi
V0=2

p
eixÞ, where k ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ V0=2

p
(Berry, 1998; Bender, Dunne, and Meisinger,

1999; Graefe and Jones, 2011; Midya, Roy, and

Roychoudhury, 2010; Nixon, Ge, and Yang, 2012). Using a
power-series expansion of the Bessel function, the solution
can be rewritten as ψðxÞ ¼ eikx ~pðx; kÞ, where ~pðx; kÞ is a
π-periodic function of x. In order for this solution to be a
Bloch mode, k should be real. If we also restrict k to be in the
first BZ −1 ≤ k ≤ 1, then the exact diffraction relation is
μ ¼ −V0=2þ ðkþ 2mÞ2, where m ¼ 0;�1;�2;…. This dif-
fraction function matches that shown in Fig. 36 for W0 ¼ 0.5.
It shows that all Bloch bands are real valued. In addition,
these Bloch bands are connected at either the center (k ¼ 0) or
edge (k ¼ �1) of the BZ, where μ ¼ −V0=2þ n2, and
n ¼ 0; 1; 2;….
We now consider the case where W0 is near 1=2, i.e.,

V0ðW0 − 1=2Þ≡ ϵ ≪ 1. In this case, Eq. (145) becomes

ðμþ V0=2Þψ þ ψxx þ V0=2ðe2ixÞψ þ ϵi sinð2xÞψ ¼ 0:

Since complex eigenvalues first appear near band intersections
we only need to calculate the eigenvalue at k ¼ 0 and �1,
where the Bloch modes are π or 2π periodic. These solutions
and the associated μ values can be expanded as a power series
in ϵ1=2,

μ ¼ −V0=2þ n20 þ ϵ1=2n1 þ ϵn2 þ � � � ;
ψ ¼ ψ0 þ ϵ1=2ψ1 þ ϵψ2 þ � � � ;

ð147Þ

where n0 ¼ 0; 1; 2;…, and the coefficients n1; n2; n3;… are
constants shown in Table I (Nixon, Ge, and Yang, 2012).
When n0 ¼ 1, 3, the coefficient n1 or n3 is imaginary, thus
complex eigenvalues bifurcate out simultaneously above the
phase-transition point (ϵ > 0). The imaginary part of these
complex eigenvalues at n0 ¼ 3 (∼ϵ3=2) is much smaller than
that at n0 ¼ 1 (∼ϵ1=2), and no complex eigenvalues bifurcate
out when n0 ¼ 0, 2. Continuing these calculations to higher n0
values, one can find that the coefficient n2mþ1 is always
imaginary for n0 ¼ 2mþ 1, where m ¼ 0; 1; 2;…. Thus

−1 0 1
−4

0

4

8

−1 0 1
−4

0

4

8

−1 0 1
−4

0

4

8

−1 0 1
−1

0

1

2

0.996 1

−0.02
0

0.02

FIG. 36. Diffraction relations of 1D PT lattice (143) for three
values of W0 (V0 ¼ 6). The inset in the lower right panel is an
amplification of the small boxed region near k ¼ 1 and Im½μ� ¼ 0
of the same panel. From Nixon, Ge, and Yang, 2012.
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complex eigenvalues bifurcate out simultaneously from all
odd values of n0 at the phase-transition point W0 ¼ 1=2.
Table I also shows that below the phase-transition point

(W0 < 1=2, or ϵ < 0), the eigenvalue μ is real for all
integers n0.

2. 2D lattices

In 2D, we focus on the separable potential

U2Dðx; yÞ ¼ U1DðxÞ þ U1DðyÞ; ð148Þ

whose linear spectrum can be obtained directly from the
spectrum of the 1D problem (143). In this case, μ ¼ μðk1Þ þ
μðk2Þ is the 2D diffraction relation, k1, k2 are Bloch wave
numbers in the x and y directions which are located inside the
first BZ, and

Ψðx; y; tÞ ¼ eik1xþik2y−iμtpðx; k1Þpðy; k2Þ; ð149Þ

where pðx; kÞ is the 1D π-periodic function as given in
Eq. (144). This diffraction relation shows that complex
eigenvalues appear in the 2D PT lattice if and only if
complex eigenvalues appear in the 1D PT lattice (143).
Thus Bloch bands in the 2D potential (148) are all real when
W0 ≤ 1=2, and a phase transition occurs at W0 ¼ 1=2 above
which complex eigenvalues arise.

B. Solitons and their stability

Solitons in PT -symmetric periodic potentials exist as
continuous families (Musslimani et al., 2008a; C. Li et al.,
2012; Nixon, Ge, and Yang, 2012). The simplest soliton
families are those that bifurcate out from edges of Bloch
bands, and they can be established analytically by exponential
asymptotics methods (Nixon and Yang, 2014). In addition to
these simplest soliton families, an infinite number of other
soliton families were reported numerically (C. Li et al., 2012;
Nixon, Ge, and Yang, 2012).

1. Solitons in 1D lattices

Let us consider the 1D NLS equation (39) with PT -
symmetric periodic potential (143). Solitons are searched in
the form Ψðx; tÞ ¼ e−iμtψðxÞ, where ψðxÞ is a stationary
localized wave function solving Eq. (131), and μ is a real
propagation constant. In full analogy with the conservative
case (Brazhnyi and Konotop, 2004; Yang, 2010; Pelinovsky,
2011), exponentially decaying soliton solutions (alias gap
solitons) exist when μ lies inside band gaps of the underlying
linear system. For broken PT symmetry, all solitons are

unstable since small tails of solitons will be amplified. Thus
next we consider only the unbroken PT -symmetry case
where W0 ≤ 1=2.
In Fig. 37 (left) we illustrate two families of solitons in the

semi-infinite gap under focusing nonlinearity (Nixon, Ge, and
Yang, 2012). The lower power curve is for the fundamental
solitons which are PT symmetric, i.e., ψ�ðxÞ ¼ ψð−xÞ, and
whose real parts possess a single dominant peak. The profile
of such a soliton at μ ¼ −3.5 is displayed in Fig. 37 (right).
This soliton family bifurcates out of the first Bloch band, and
in the vicinity of the bifurcation the solitons can be described
as low-amplitude Bloch-wave packets. The entire family of
fundamental solitons is linearly stable.
The upper power curve in Fig. 37 consists of dipole

solitons. This power curve features double branches which
terminate through a saddle-node bifurcation before reaching
the first Bloch band. Profiles of two such solitons on the lower
power branch are displayed in Fig. 38 (two left panels). The
real parts of these dipole solitons possess two dominant peaks
of opposite sign. This however does not violate PT symmetry,
as due to phase invariance we have that ϕðxÞ ¼ ψðxÞeiπ=2 is a
PT -symmetric solution.
Dipole solitons are linearly stable only in a certain portion

of their existence region. Specifically, only dipole solitons on
the lower branch with μ ≤ μa ≈ −3.8 are stable (see Fig. 37,

TABLE I. Coefficients in the μ expansion (147).

n0 n1 n2 n3

0 0 V0=8 0
1 �iV1=2

0 =2 V0=32 �iðV−1=2
0 =4þ V3=2

0 =29Þ
2 0 −5V0=48, V0=48 0
3 0 −V0=64 �iV3=2

0 =29

N 0 −V0=8ðN2 − 1Þ−1 0

FIG. 37. 1D solitons in the semi-infinite gap of Eq. (143) under
focusing nonlinearity (g ¼ 1) for V0 ¼ 6 and W0 ¼ 0.45. (left)
Power curves of these solitons; solid blue and dashed red lines
represent stable and unstable solitons, respectively; the shaded
region is the first Bloch band. (right) A fundamental soliton at
μ ¼ −3.5 (marked by a dot on the lower curve of the left panel);
the solid blue line is for the real part and the dashed pink line for
the imaginary part. From Nixon, Ge, and Yang, 2012.

FIG. 38. Two left panels: dipole solitons at the marked points of
the lower power curve in Fig. 37. Right panel: linear-stability
spectrum for the dipole soliton in the middle panel. From Nixon,
Ge, and Yang, 2012.
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left panel). For dipole solitons in this region, their spectra are
entirely imaginary. At μ ¼ μa, stability switching occurs
where a quadruple of complex eigenvalues bifurcates off
the edge of the continuous spectrum (see Fig. 38, right panel).
Within this unstable region, there is a second eigenvalue
bifurcation at μ ≈ −3.4 of the lower branch (near and on the
left side of the power minimum) where a pair of real
eigenvalues bifurcate out from zero.
Beside these soliton families, the model also admits other

types of solitons such as truncated-Bloch-mode solitons
(C. Li et al., 2012) which are stable in certain parameter
regimes. Stable dissipative solitons exist at the surface between
a homogeneous Kerr medium and a truncated lattice (143)
supported by the linear dissipation (He, Mihalache et al., 2012).

2. 2D solitons

Solitons and their stability in 2D PT -symmetric periodic
potentials (148) have also been studied (Nixon, Ge, and Yang,
2012). These solitons are of the formΨðx; y; tÞ ¼ e−iμtψðx; yÞ.
Figure 39 (left panel) shows fundamental 2D solitons in the
semi-infinite gap under focusing nonlinearity (g ¼ 1).
Similar to the conservative case, there exists a threshold
power (L2 norm) necessary for the existence of such solitons.
The profiles of the solitons possess PT symmetry,
ψ�ðx; yÞ ¼ ψð−x;−yÞ, and their real parts have a single
dominant peak [Fig. 39, right panel]. These fundamental
solitons are stable only in a finite μ interval, even though
their existence region is infinite. For large negative values of
μ, the instability is due to a quadruple of complex eigen-
values, whereas for μ values near the first band, the
instability is due to a pair of real eigenvalues.
Beside the fundamental solitons in Fig. 39, other types of

solitons such as vortex solitons and multipole solitons have
also been reported in 2D PT -symmetric lattices (Zhu, Wang
et al., 2013; Li et al., 2014; Ren et al., 2014; Wang
et al., 2015).

3. Nonlinear periodic solutions and constant-intensity waves

As mentioned earlier, a PT -symmetry threshold can be
zero. This fact, however, does not prohibit the existence of
nonlinear periodic solutions, which do not require the propa-
gation constant to belong to a band gap of the linear spectrum.
For instance, the phase transition for the PT -symmetric
periodic potential U1DðxÞ ¼ −½V0 sin2 xþ 3iW0 sin x�, where
V0 and W0 are real constants, has zero threshold (complex
eigenvalues appear in Bloch bands for any nonzero W0).
However, in the presence of focusing nonlinearity, it admits a
stationary x-periodic solution found in exact form by
Musslimani et al. (2008b),

Ψðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 þW2

0

q
cos xeiW0 sin x−iμt; μ ¼ 1 − V0;

provided that V0 > −W2
0. These periodic solutions may be

stable, even though the periodic potential is above the phase
transition (Lumer et al., 2013). Examples of stable periodic
solutions in defocusing medium can also be found (Abdullaev
et al., 2010).
The complex Wadati potentials U1DðxÞ ¼ −½w2ðxÞ þ

iwxðxÞ� (see also Secs. VI.C and VI.D) support exact
constant-intensity solutions Ψ¼Aexp½−iRwðxÞdxþigA2t�,
where A is a real amplitude (Makris et al., 2015). These
solutions can be generalized to the 2D case, where the PT -
symmetric potential reads U2Dðx; yÞ ¼ −jWj2 − i∇ ·W, with
a vector potentialW ¼ ðW1;W2Þ constrained by the condition
ðW1Þy ¼ ðW2Þx. Then the 2D exact solutions have the
form Ψðx; y; tÞ ¼ A exp½−i RC W · drþ igA2t�, where C is a
smooth open curve between any two points in the ðx; yÞ plane.
The constant-amplitude solutions were explored by Makris
et al. (2015) in the context of modulational instability.

C. Nonlinear dynamics near the phase-transition point

Beyond the question of stationary modes, a more general
question is how an initial wave evolves in a PT -symmetric
periodic potential. Here we review linear and nonlinear
dynamics of wave packets near the phase-transition point,
investigated analytically by Nixon, Zhu, and Yang (2012) and
Nixon and Yang (2013), and describe new phenomena such as
wave blowup, periodic bound states, and linear or nonlinear
pyramid diffraction patterns.

1. 1D dynamics

We first consider the model (39) with the potential (143),
which in this section is rewritten as UðxÞ ¼ U1DðxÞ ¼
−V2

0½cosð2xÞ þ iW0 sinð2xÞ�. For this form of the potential,
the phase transition occurs atW0 ¼ 1. At this phase-transition
point, the diffraction relation is μ ¼ ðkþ 2mÞ2, where k is in
the first BZ k ∈ ½−1; 1�, andm is any non-negative integer (see
Fig. 36 for W0 ¼ 1=2).
At k ¼ 0 and�1, adjacent Bloch bands intersect each other.

At these intersection points, Bloch solutions are degenerate
and π or 2π periodic in x. Posed as an eigenvalue problem for
Ψ ¼ ϕðxÞe−iμt in the linear equation (33), we get Lϕ ¼ −μϕ,
where L≡ ∂2

x − UðxÞjW0¼1. Then at these band-intersection
points, the eigenvalues are μ ¼ n2, where n is any positive

FIG. 39. (Left) Power curve of fundamental 2D solitons in the
semi-infinite gap under focusing nonlinearity (g ¼ 1) for V0 ¼ 6
and W0 ¼ 0.3. The inset is amplification of the power curve near
the first Bloch band in the same panel. Solid blue lines indicate
stable solitons, while dashed red lines indicate unstable solitons.
(Right) Real and imaginary parts of the soliton ψðx; yÞ at μ ¼
−8.5 (marked by a dot on the power curve). From Nixon, Ge, and
Yang, 2012.
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integer. These eigenvalues all have geometric multiplicity 1
and algebraic multiplicity 2, thus there exists a generalized
eigenfunction ϕg satisfying ðLþ μÞϕg ¼ ϕ [for construction
of the complete basis at an exceptional point see Gasymov
(1980) and Graefe and Jones (2011)].
To study nonlinear dynamics of wave packets near the

phase-transition point (i.e., W0 ∼ 1), one can use the asymp-
totic expansion Ψ¼ e−in

2t½ϵAðX;TÞϕðxÞþ ϵ2ψ1þ�� ��, where
AðX; TÞ is an envelope of the degenerate Bloch mode ϕðxÞ,
X ¼ ϵx, T ¼ ϵt are slow variables, and 0 < ϵ ≪ 1. From the
multiple-scale perturbation analysis one finds that near n ¼ 1

and W0 ¼ 1 − cϵ2, where c is a constant, the envelope is
governed by a nonlinear Klein-Gordon (KG) equation,

ATT − 4AXX þ αAþ γjAj2A ¼ 0: ð150Þ
Here α ¼ cV4

0=2 and γ ¼ ð2g=πÞ R π
−π jϕj2ϕ2dx are real con-

stants. At higher n values, similar envelope equations can be
derived under appropriate scalings of W0ðϵÞ.
Envelope dynamics in the nonlinear KG equation (150)

proves to closely mimic the corresponding wave packet
dynamics in the original PT model (39).
First, at the phase-transition point (c ¼ 0), solutions for the

left and right propagating waves (resembling solutions of the
wave equation ATT − 4AXX ¼ 0) can be found in the original
linear PT model (39) with g ¼ 0. Two examples are shown in
Fig. 40. The spreading-shelf solutions in this wave equation
were reported experimentally by Regensburger et al. (2012).
Next we consider envelope solutions in the KG equa-

tion (150) with self-defocusing nonlinearity (γ < 0) near the
lowest band-intersection point (n ¼ 1). Nixon, Zhu, and Yang
(2012) numerically found that below the phase-transition
point (c > 0) envelope solutions blow up to infinity [first
panel in Fig. 41]. With the full model (39), similar growing

solutions were found and displayed in Fig. 41 (second panel).
With the full model, this blowup may eventually be suppressed,
but that is already beyond the asymptotic regime of the KG
model (150). Under self-defocusing nonlinearity Eq. (150) also
admits breatherlike solutions shown in the third panel of
Fig. 41, as well as stationary solitons AðX; TÞ ¼ FðXÞeiωT
with ω ∈ ½− ffiffiffi

α
p

;
ffiffiffi
α

p �. The corresponding breather solution in
the full model is shown in the fourth panel of Fig. 41.
If the nonlinearity is self-focusing (g ¼ 1), envelope sol-

utions do not blow up, periodic bound states cannot be found,
and stationary solitary waves do not exist in the envelope
equation. In this case, breathers as well as nonlinear dif-
fracting solutions similar to the linear diffracting pattern
reported by Makris et al. (2010) can be found. Dynamics
near the breaking point appears to be rich even in the linear
limit, allowing, in particular, for the resonant mode conversion
(Vysloukh and Kartashov, 2014).

2. 2D dynamics

Next we consider dynamics of wave packets in a 2D PT -
symmetric periodic potential near the phase-transition point
(Nixon and Yang, 2013). The mathematical model is taken as
Eq. (141) with U2Dðx; yÞ ¼ U1DðxÞ þ U1DðyÞ, where U1DðxÞ
is the same periodic potential used in the 1D dynamics. At the
phase-transition point W0 ¼ 1, the linear diffraction relation
reads μ ¼ ðkx þ 2m1Þ2 þ ðky þ 2m2Þ2, where ðkx; kyÞ are
Bloch wave numbers in the first BZ −1 ≤ kx; ky ≤ 1, and
m1;2 are non-negative integers. The most complex degener-
acies occur at points kx ¼ 0;�1 and ky ¼ 0;�1, where the
diffraction surface intersects itself fourfold as illustrated in
Fig. 42. When a linear Bloch waveΨ ¼ ϕðx; yÞe−iμt is chosen
at one of these degeneracies, ϕðx; yÞ satisfies an eigenvalue
equation Lϕ¼−μϕ, where L¼∇2−Uðx;yÞjW0¼1, μ¼n21þn22,
and ðn1; n2Þ are any pair of positive integers.
We conduct the analysis at the lowest intersection point

μ ¼ 2. The perturbation expansion for the wave packet near
this point is Ψ ¼ ϵ3=2e−iμt½AðX; Y; TÞϕ01ðx; yÞ þ ϵψ1 þ � � ��,
where ϕ01 is the Bloch mode at the point ðkx; ky; μÞ ¼
ð1; 1; 2Þ, ðX; Y; TÞ ¼ ðϵx; ϵy; ϵtÞ are slow variables, and
0 < ϵ ≪ 1. Near the phase-transition point we express
W0 ¼ 1 − ηϵ2=V2

0, where ηmeasures the deviation from phase
transition. Through a perturbation calculation we obtain
(Nixon and Yang, 2013)

FIG. 41. Nonlinear wave packet solutions below the phase-
transition point (c ¼ 1) under self-defocusing nonlinearity. From
left to right: a blowup solution in the envelope equation and the
full equation; a periodic bound state in the envelope equation and
the full equation. From Nixon, Zhu, and Yang, 2012.

(a) (b)

FIG. 40. (a) Linear unidirectional wave packet and (b) linear
wave packet splitting at the phase-transition pointW0 ¼ 1. Other
parameters are ϵ ¼ 0.1, μ ¼ 1, and V0 ¼

ffiffiffi
6

p
. From Nixon, Zhu,

and Yang, 2012.

FIG. 42. (Left) Diffraction relation near intersection point
ðkx; ky; μÞ ¼ ð1; 1; 2Þ (marked by red dot). (Right) Linear pyramid
diffraction of initial Gaussian envelope at phase-transition point in
the envelope equation (151). From Nixon and Yang, 2013.
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∂4
TA − 8ð∂2

X þ ∂2
YÞ∂2

TAþ 16ð∂2
X − ∂2

YÞ2A
þ α∂2

TAþ i~g∂TðjAj2AÞ ¼ 0; ð151Þ

where α ¼ 2V2
0η and ~g is a real constant. Equation (151)

reveals important physical features, which are demonstrated
next using the initial conditions

A ¼ A0e−ðX
2þY2Þ; AT ¼ ATT ¼ 0; ∂3

TA ¼ −i~gjAj2A
ð152Þ

in the envelope equation [and the corresponding initial
conditions in the full equation (141)]. Further, we take
V2
0 ¼ 6, ϵ ¼ 0.1, and η ¼ 0 or 1 (at or below the phase

transition, respectively), which yields α ¼ 12η and ~g ≈ 7.3g.
In the linear limit g ¼ 0 and at the phase-transition point

α ¼ 0, Eq. (151) becomes linear and is readily solved. Its
general solution corresponds to an expanding square wave
front propagating with speeds �2 in both X and Y directions,
which is termed pyramid diffraction. For the initial conditions
(152), this pattern is illustrated in Fig. 42.
In the presence of nonlinearity (~g ≈ 7.3g) and below the

phase transition, the wave packet diffracts away if its initial
amplitude is below a certain threshold value, as displayed in
the upper left panel of Fig. 43. If the initial amplitude is above
this threshold, the envelope solution blows up to infinity in
finite time. For example, with the initial condition (152),
the envelope solution in Eq. (151) blows up when A0 > 3.2
(Fig. 43, upper middle and right panels). Remarkably, this
blowup is independent of the sign of nonlinearity, a fact which
is clear from the envelope equation (151), since a sign change
in ~g can be accounted for by taking the complex conjugate of
this equation. In the full equation (141), it was confirmed that
similar growth occurs for both signs of the nonlinearity as well
(see Fig. 43, lower row) at initial stages of evolution, although
the finite-time blowup is ruled out in the defocusing medium
at longer times.

D. Nonlinear PT -symmetric lattices

So far we considered nonlinear models whose linear parts
obey PT symmetry. Now we turn to wave propagation in a
nonlinear PT -symmetric lattice governed by

iΨt þΨxx þ g½1þ UNLðxÞ�jΨj2Ψ ¼ 0; ð153Þ

where UNLðxÞ ¼ U�
NLð−xÞ is a PT -symmetric nonlinear

potential. Equation (153) can be considered as a PT -
symmetric deformation of conservative nonlinear lattice mod-
els studied intensively during the last decade [see Kartashov,
Malomed, and Torner (2011) for a review]. This model with a
periodic PT -symmetric potential UNLðxÞ ¼ V0 cosðxÞ þ
iW0 sinðxÞ was introduced by Abdullaev, Kartashov et al.
(2011). It supports continuous families of stable solitons [a
detailed linear-stability analysis was performed by Zezyulin,
Kartashov, and Konotop (2011)]. Interestingly, stable solitons
can be found even if periodic modulation of the real part
of the potential is absent, i.e., V0 ¼ 0. Stable solitons also exist
in nonperiodic nonlinear landscapes, such as UNLðxÞ ¼
iW0 tanh x or UNLðxÞ ¼ iW0x.
Further natural generalization is a model of combined linear

and nonlinear PT -symmetric lattices (He et al., 2012b):

iΨt þΨxx − ULðxÞΨþ g½1þ UNLðxÞ�jΨj2Ψ ¼ 0; ð154Þ

where ULðxÞ ¼ U�
Lð−xÞ and UNLðxÞ ¼ U�

NLð−xÞ. The pres-
ence of both linear and nonlinear modulations enriches the
problem and makes it possible to consider a general case
where linear and nonlinear modulations are different from
each other and the special case where the two lattices are
identical (He et al., 2012b). Stable gap solitons can be found
in both cases, as well as in the case of real-valued functions
UNLðxÞ (He and Mihalache, 2012; He et al., 2012a; Meng and
Liu, 2013). It is of interest to consider in-phase modulations,
i.e., ULðxÞ ¼ UNLðxÞ (He et al., 2012b) and out-of-phase
modulations, i.e., ULðxÞ ¼ −UNLðxÞ. The latter type of
modulation can support stable fundamental and multipole
solitons whose counterparts in in-phase lattices are unstable
(Huang, Li, and Dong, 2013).

E. Solitons in generalized lattice models

The basic PT -symmetric nonlinear models described allow
for numerous generalizations accounting for more complex
forms of nonlinearities and periodic lattices, as well as for
multicomponent situations. Such generalized models also
support a variety of solitons whose properties were studied
systematically. Here we provide a succinct review of the
available results [some generalizations were also summarized
by He and Malomed (2013)].

1. Vector mixed-gap solitons

A model describing two incoherently coupled fields (Ψ1;2)
in a PT -symmetric lattice UðxÞ,

i
∂Ψ1;2

∂t þ ∂2Ψ1;2

∂x2 −UðxÞΨ1;2 þ ðjΨ1j2 þ jΨ2j2ÞΨ1;2 ¼ 0;

FIG. 43. Nonlinear dynamics of wave packets below phase
transition. Upper row: envelope solutions in Eq. (151) at T ≈ 2
for three values of A0 in Eq. (152). Lower row: solutions of the
full equation (141) for the initial wave packet with A0 ¼ 6 (left)
at later times under focusing (middle) and defocusing (right)
nonlinearities. From Nixon and Yang, 2013.
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was studied by Kartashov (2013). Since the model does not
include linear coupling between the two fields, it supports
the so-called mixed-gap solitons characterized by different
propagation constants for the two field components
Ψjðx; tÞ ¼ e−iμjtψ jðxÞ, where μ1 ≠ μ2 lie in different gaps
of the PT -symmetric potential. A further generalization of
this model accounting for both linear and nonlinear periodic
lattices was considered by Zhu, Cao et al. (2014).

2. Generalized nonlinearities

A PT -symmetric lattice model with a more general form of
nonlinearity is

iΨt þΨxx − UðxÞΨþ Fðx; jΨj2ÞΨ ¼ 0: ð155Þ

The case of nonlocal nonlinearity corresponds to
Fðx; jΨj2Þ ¼ gðxÞ R∞

−∞ Kðx − yÞjΨðxÞj2dy, where KðxÞ ≥ 0

is a kernel function describing nonlocal properties of the
medium and gðxÞ is the nonlinear coefficient. Stable nonlocal
gap solitons were found for both self-focusing [gðxÞ≡ 1]
(H. Li et al., 2012) and self-defocusing [gðxÞ≡ −1] (Zhu, Li
et al., 2013; Jisha, Alberucci et al., 2014) nonlocal non-
linearities. A spatially modulated nonlocal nonlinearity with a
periodic function gðxÞ was also considered (Yin et al., 2012).
“Accessible solitons” (Snyder and Mitchell, 1997) in a
strongly nonlocal 2D PT -symmetric medium were reported
by Zhong, Belić, and Huang (2012).
Saturating nonlinearity Fðx; jΨj2Þ ¼ gjΨj2=ð1þ jΨj2Þ also

supports gap solitons (Cao et al., 2014; Hong and Jung, 2015).
Multistable solitons in PT -symmetric lattices in the presence
of cubic-quintic nonlinearity Fðx; jΨj2Þ ¼ g1jΨj2 þ g2jΨj4
were reported by Li, Liu, and Dong (2012). He and
Mihalache (2013) studied soliton propagation in the cubic-
quintic Ginzburg-Landau model with a PT -symmetric lattice.

3. PT -symmetric superlattices

Superlattices are combinations of several periodic poten-
tials with different periods. Zhu et al. (2011) considered
a PT -symmetric superlattice with the potential UðxÞ
having real and imaginary parts VðxÞ ¼ εsin2ðxþ π=2Þ þ
ð1 − εÞsin2½2ðxþ π=2Þ� and WðxÞ ¼ W0 sinð2xÞ and found
that such a superlattice supports stable gap solitons. The
extension of this study to the case where both real and
imaginary parts of the complex potential are dual-periodic
superlattices was addressed by H.-C. Wang et al. (2014).

4. Defect solitons

Periodic lattices or superlattices locally perturbed by a
defect can support defect solitons. As an example, one can
consider a periodic lattice whose real part is given as
VðxÞ ¼ cos2ðxÞ½1þ εfDðxÞ�, where fDðxÞ is a localized
function and the coefficient ε controls the defect strength
(Wang and Wang, 2011). If the imaginary part is an unper-
turbed periodic function, say, WðxÞ ¼ W0 sinð2xÞ, then the
resulting PT -symmetric defect lattice is known to support
stable defect solitons under self-focusing (Wang and Wang,
2011; Hu and Hu, 2012) and self-defocusing (Hu and Hu,
2013a) nonlinearities. Further developments in this directions

include defect solitons in superlattices (Lu and Zhang, 2011;
Hu, Lu et al., 2012; S.-M. Hu and Hu, 2013; Fang et al., 2014;
H. Wang et al., 2014), as well as in nonlocal (Hu, Lu et al.,
2012; Hu, Ma et al., 2012; Fang et al., 2014), saturable (Hu
and Hu, 2013b), and PT -symmetric (Wang et al., 2012;
H. Wang et al., 2014) nonlinearities. Defect solitons in 2D
PT -symmetric lattices were reported by Xie et al. (2014).
Finishing this review of generalized PT -symmetric lattice

models, we also mention other possibilities such as chirped
(quasiperiodic) PT lattices (Chun-Yan, Chang-Ming, and
Liang-Wei, 2013) and effects of higher-order diffraction on
PT models (Ge et al., 2014).

F. Bragg solitons

The NLS-type models considered above do not account for
waves reflected from the periodic structure, i.e., they are only
valid away from the Bragg resonance. If a stop gap is
relatively narrow and the carrier-wave frequency falls inside
that gap, the interference of forward and backward propagat-
ing waves

E ¼ Efðz; tÞeiðβ0z−ω0tÞ þ Ebðz; tÞe−iðβ0zþω0tÞ ð156Þ
must be considered. Here ω0 is the carrier-wave frequency and
β0 ¼ n0ω0=c is the unperturbed propagation constant. Then
under Kerr nonlinearity the medium supports the so-called
Bragg solitons (Acevez and Wabnitz, 1989; Christodoulides
and Joseph, 1989). Bragg solitons persist also in the case of a
periodic PT -symmetric grating and are described by the
coupled equations (Miri, Aceves et al., 2012):

i
v

∂Ef

∂t þ i
∂Ef

∂z þ ðκ þ gÞEb þ γðjEfj2 þ 2jEbj2ÞEf ¼ 0;

i
v
∂Eb

∂t − i
∂Eb

∂z þ ðκ − gÞEf þ γð2jEfj2 þ jEbj2ÞEb ¼ 0;

ð157Þ
where v ¼ c=n0, κ is the coupling arising from the real Bragg
grating itself, g is the antisymmetric coupling arising from
the complex PT -symmetric potential, and γ is a nonlinear
coefficient.
In the linear limit (γ ¼ 0), the substitution Ef;b ¼

Ψf;beiðKz−ΩtÞ yields the dispersion relation Ω2 ¼
v2ðK2 þ κ2 − g2Þ. Thus PT symmetry is unbroken (Ω is real
for any K) if g ≤ κ; the case g ¼ κ corresponds to the excep-
tional point, and PT symmetry is broken if g > κ. When PT
symmetry is unbroken, the nonlinear model (157) supports
traveling soliton solutions

Ef;b ¼ �α

ffiffiffiffiffi
κρ
2γ

r
Δ∓1 sinðσÞsech

�
θ ∓ σ

2

�
eiηðz;tÞ; ð158Þ

where κρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − g2

p
, θ ¼ κρ sinðσÞðz −mvtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

p
,

m ¼ ð1 − Δ4Þ=ð1þ Δ4Þ, and Δ, σ ∈ ð0; πÞ are free parame-
ters. The amplitude α and phase ηðz; tÞ can also be found in
analytical form (Miri, Aceves et al., 2012).
The nonlinear model (157) also supports plane wave

solutions whose modulational instability was classified by
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Sarma (2014) in different parameter regimes. Families of more
general traveling-wave solutions (including bright solitons in
forward waves and dark solitons in backward waves) were
reported by Gupta and Sarma (2014a).

VIII. PT -SYMMETRIC χ ð2Þ MEDIA

In this section, we consider PT -symmetric optical media
with quadratic (i.e., χð2Þ) nonlinearity. Our main concern is the
existence and stability of nonlinear modes. We have seen
before that the existence of continuous solution families
requires not only balance between linear gain and loss, but
also a specific form of nonlinearity. This balance can be
achieved either in spatially extended systems or in linearly
coupled multicomponent systems. χð2Þ media appear as a
special case since they arise due to frequency conversion and
intrinsically have two components having “different non-
linearities.” In addition, they do not allow linear coupling
between the two components due to different frequencies.
Therefore PT -symmetric optics of quadratic media can be
developed either on the basis of coupled extended systems
where one (or each) component is subject to gain and loss or
as a combination of (at least two) PT -symmetric models
where the first two components are linearly coupled with the
second two components. Next we consider the respective
examples.

A. Quadratic media with PT -symmetric potentials

The dimensionless mathematical model for quadratic media
with PT -symmetric potentials reads

iq1;z ¼ −q1;xx þ VðxÞq1 þ 2q�1q2; ð159aÞ

iq2;z ¼ −ð1=2Þq2;xx þ 2½ ~VðxÞ þ β�q2 þ q21; ð159bÞ

where q1 and q2 are the fundamental-frequency (FF) and
second-harmonic (SH) fields, β is the mismatch parameter,
and VðxÞ, ~VðxÞ are PT -symmetric potentials. Stationary
localized solutions of Eq. (159) are searched in the form q1 ¼
w1ðxÞeibz and q2 ¼ w2ðxÞe2ibz, where w1, w2 can be required
to obey the symmetries fw1ðxÞ; w2ðxÞg ¼ fw�

1ð−xÞ; w�
2ð−xÞg

or fw1ðxÞ; w2ðxÞg ¼ f−w�
1ð−xÞ; w�

2ðxÞg. In the so-called cas-
cade limit corresponding to large β for which the approximate
solution w2 ≈ −w2

1=2β of Eq. (159b) is valid (Stegeman,
Hagan, and Torner, 1996), Eq. (159a) for the FF is reduced
to the stationary NLS equation (131) with a PT -symmetric
potential. This suggests the existence of localized modes in the
model (159) with PT -symmetric potentials. Such modes
indeed were found (Moreira et al., 2012) in the case of the
Scarff II potential (132) for the FF and ~V ¼ 2V1= cosh2 x for
the SH. On the other hand, exact sech-shaped or cnoidal-
shaped solutions can be found by “inverse engineering”
(Abdullaev and Umarov, 2014; Truong Vu et al., 2015).
Another case where stationary modes in PT -symmetric

quadratic media were found (Moreira, Konotop, and
Malomed, 2013) corresponds to the periodic PT -symmetric
potential VðxÞ given by Eq. (143) in the FF and a real periodic

potential ~VðxÞ ¼ ~V1 cos2ð2xÞ in the SH. The resulting

periodic model supports families of gap solitons which
bifurcate from band edges of the underlying linear model.
Such bifurcations are always characterized by vanishing fields
in the FF (w1 → 0), while the asymptotics of SH may be
different. More precisely, there exist three possibilities for
bifurcation of gap solitons from band edges.
Case 1: Both components are of the same order, i.e., w2 ∼

w1 and w1 → 0. In this case (see left column of Fig. 44), in the
vicinity of the bifurcation the nonlinearity is negligible, and
both components are governed by linear equations: the FF is
described by a solution of the stationary equation (145) with
the pair (μ, ψ) replaced by (b, w1), i.e., w1 ∼ ψ , while w2 ∼ ~ψ ,
where ~ψ solves the linear Mathieu equation with the potential
~VðxÞ. For the existence of a gap soliton, the propagation
constant b should belong to the gaps of both FF and SH, which
requires a nonempty overlap of the stop gaps of both
components; such an overlap can be termed a total gap.
Moreover, the adopted scaling implies that band edges of FF
and SH should coincide exactly. This constraint makes this
case uncommon, although in practice it can always be
achieved by adjusting the mismatch parameter β.
Case 2: The SH field remains finite: w2 ¼ Oð1Þ and

w1 → 0. In this case (see middle column of Fig. 44), the
vicinity of the total gap must coincide with the respective
SH gap edge. Then, while the FF component is vanishing
(w1 → 0) as b approaches the total gap edge, the amplitude of
the SH w2 remains finite and its width increases (i.e., the SH in
this limit becomes delocalized). This explains divergent
powers of the SH P2 (shown in the inset in the middle panel
of Fig. 44) and, respectively, the divergence of the total power.
Case 3: The SH amplitude scales as the square of the FF

amplitude: w2 ¼ Oðw2
1Þ and w1 → 0. This case (see right

column of Fig. 44) takes place when an edge of the total gap,
from which gap solitons bifurcate, is determined by one of the

FIG. 44. Upper panels: families of fundamental solitons in the
semi-infinite gap. Left, center, and right panels correspond to
cases 1, 2, and 3 with β ¼ −0.316, 0, and −0.5134, respectively.
Thick and thin lines correspond to stable and unstable solitons.
Shaded regions denote bands of the FF and/or SH. Insets show
powers of the FF (P1) and SH (P2) fields close to the band edge.
Lower panels: intensities of stable fundamental solitons indicated
by black circles in the respective upper panels: b ¼ 1.25 (case 1),
1.43 (case 2), and 1.21 (case 3). Other parameters are V0 ¼
~V0 ¼ 2 and W0 ¼ 0.35. Adapted from Moreira, Konotop, and
Malomed, 2013.
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respective edges of the gap of the FF. Then in the small-
amplitude limit the SH is determined by the field distribution
in the FF and the total power vanishes at the bifurcation point.

B. PT -symmetric coupler with quadratic nonlinearity

A model of a PT -symmetric coupler with χð2Þ nonlinearity,
introduced by Li, Zezyulin, Kevrekidis et al. (2013), reads

i _u1 ¼ k1u2 − 2u�1v1 þ iγ1u1;

i _v1 ¼ k2v2 − u21 − βv1 þ iγ2v1;

i _u2 ¼ k1u1 − 2u�2v2 − iγ1u2;

i _v2 ¼ k2v1 − u22 − βv2 − iγ2v2:

ð160Þ

Here two modes propagate in each waveguide: the FF uj and
the SH vj, and j ¼ 1, 2 enumerates the coupler arm. The linear
coupling between two FFs (two SHs) is described by k1 (k2),
the gain (loss) strength in the arms is given by γj, and β is the
mismatch parameter.
Stationary modes of Eq. (160) are searched in the form

ðu1; v1; u2; v2ÞT ¼ e−iΛbzw, where Λ ¼ diagð1; 2; 1; 2Þ, b is
the propagation constant, and w¼ðwð1Þ;wð2Þ;wð3Þ;wð4ÞÞT sol-
ves the stationary nonlinear problem EΛw¼Hw−FðwÞw,
where the matrix H describes the linear part of the system
(160) and the matrix function FðwÞ has F1;2 ¼ 2½wð1Þ��,
F2;1 ¼ wð1Þ, F3;4 ¼ 2½wð3Þ��, and F4;3 ¼ wð3Þ with other
entries being zero. H is PT symmetric with P ¼ σ1 ⊗ σ0.
From a physical point of view Eq. (160) represents a

coupler with each of the arms guiding two modes; from a
mathematical point of view, it is a quadrimer similar to the one
considered in Sec. IV.B. Eigenvalues of H are given by

~b1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 − γ21

q
; ~b3;4 ¼ 1

2

	
−β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 − γ22

q 

;

and its eigenvectors are

~w1 ¼ ðeiθ1 ; 0; e−iθ1 ; 0ÞT; ~w2 ¼ iðe−iθ1 ; 0;−eiθ1 ; 0ÞT;
~w3 ¼ ð0; eiθ2 ; 0; e−iθ2ÞT; ~w4 ¼ ið0; e−iθ2 ; 0;−e−iθ2ÞT;

where θ1;2 ¼ ð1=2Þ arctan ðγ1;2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21;2 − γ21;2

q
Þ. If PT sym-

metry is unbroken, i.e., jγ1;2j < k1;2, then eigenvectors ~wj

are PT invariant, i.e., PT ~w ¼ ~w.
In the nonlinear problem, one looks for nonlinear modes

obtained by continuation from the linear eigenvectors (see
Sec. IV.C.3.a). Note that Fð ~w3;4Þ ¼ 0, which means that the
eigenvectors ~w3;4 also solve the nonlinear problem (160). As a
result, one can construct nonlinear modes of two different
types. For the first type, one looks for nonlinear continuation
of ~w1;2 in the form of expansions wj ¼ ε ~wj þ ε2Wj þ � � � and
bj ¼ ~bj þ εbð2Þj þ � � �, where the coefficients Wj and bð2Þj

(j ¼ 1, 2) are computed from the solvability conditions at
higher orders. This is the standard expansion: in the linear
limit (ε ¼ 0), the power of nonlinear modes P ¼ jwð1Þj2 þ
jwð3Þj2 þ 2ðjwð1Þj2 þ jwð3Þj2Þ (which corresponds to the
Manley-Rowe invariant of the conservative coupler with

γ1;2 ¼ 0) vanishes. For modes of the second type, which
bifurcate from ~w3;4, the expansions are of the form

wj ¼ αj ~wj þ εWj þ � � �, bj ¼ ~bj þ ε2bð2Þj þ � � �, where αj
(j ¼ 3, 4) are (generically nonzero) coefficients. In this case,
at ε ¼ 0 the mode amplitudes do not vanish. Admissible
values of the coefficients αj are found from compatibility
conditions that arise from the underlying expansions.
Generally speaking there exist two admissible values of αj,
thus ~w3 and ~w4 admit two continuous families of nonlinear
modes (Li, Zezyulin, Kevrekidis et al., 2013).
The numerical results are illustrated in Fig. 45. In both

conservative and PT -symmetric cases there are two solution
families bifurcating from the eigenstates ~w1 and ~w2. These
bifurcations take place at the limit P ¼ 0. Bifurcations of
nonlinear modes from ~w3;4 occur at finite P (in some cases
these values of P are quite small and hardly distinguishable
from P ¼ 0 on the scale of the figure). In the conservative
case, either ~w3 or ~w4 gives rise to one physically distinct
family. In the PT -symmetric case two distinct solution
families originate from either of ~w3 or ~w4.

IX. PARTIAL PT SYMMETRY

Multidimensional complex potentials considered so far
obey the PT symmetry with the canonical P operator (2)
resulting in inversion of all spatial variables. Now we discuss
situations where the complex potential is not PT symmetric in
this sense but is partially PT symmetric meaning that the
potential is invariant under complex conjugation and reflec-
tion in a single spatial direction. Such potentials can still admit
all-real spectra and support continuous families of solitons
(Yang, 2014c; Kartashov, Konotop, and Torner, 2015).
The mathematical model we use is a 2DNLS equation (141)

with a potential U2Dðx; yÞ which is partially PT symmetric
with respect to x:

U�
2Dðx; yÞ ¼ U2Dð−x; yÞ: ð161Þ

No symmetry is assumed in the y direction.
First, we argue that the linear spectrum of a partially PT -

symmetric potential can be all real. If the potential is
separable, i.e., U2D ¼ U0

2D ¼ V1ðxÞ þ V2ðyÞ, then the partial

(a) (b)

FIG. 45. Families of nonlinear modes in χð2Þ coupler (160) for
(a) k1 ¼ 1, k2 ¼ 2, β ¼ 0.5, and γ1;2 ¼ 0; and (b) γ1 ¼ 0.1 and
γ2 ¼ 0.9. Solid blue and dashed red segments correspond to
stable and unstable modes, respectively. Adapted from Li,
Zezyulin, Kevrekidis et al., 2013.
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PT -symmetry condition (161) implies that V�
1ðxÞ ¼ V1ð−xÞ,

V�
2ðyÞ ¼ V2ðyÞ, and its eigenvalues are λ ¼ Λ1 þ Λ2, where

Λj are eigenvalues of 1D potentials VjðxÞ. Since V1ðxÞ is PT
symmetric, its eigenvalues Λ1 can be all real. Since V2ðyÞ is
strictly real, i.e., the respective Hamiltonian is Hermitian, its
eigenvalues Λ2 are all real as well. Thus eigenvalues λ of the
separable potential U2Dðx; yÞ can be all real.
Next, we consider a separable potential with all-real

spectra perturbed by a localized potential Up
2Dðx; yÞ:

U2D ¼ U0
2D þ ϵUp

2D, where ϵ is a small real parameter, and
both U0

2D and Up
2D satisfy the partial PT symmetry (161).

Since Up
2D is localized, the continuous spectrum of the

perturbed potential U2D coincides with that of U0
2D and is

thus all real. Regarding isolated eigenvalues of U2D, they can
be shown to be real as well by a perturbation calculation
(Bender and Jones, 2008; Yang, 2014c).
Partially PT -symmetric potentials possess some typical

feature of standard PT -symmetric potentials, such as a phase
transition in the linear case and the existence of continuous
families of stationary solitons in the nonlinear case. One can
show that from each simple real discrete eigenvalue ~μn of a
partially PT -symmetric potential, a continuous family of
solitons bifurcates out under both focusing and defocusing
nonlinearities. Indeed, introducing small-amplitude expan-
sions for nonlinear modes bifurcating from a linear eigenvalue
~μn with an eigenfunction ~ψnðx; yÞ, similar to those in
Eqs. (135), one can show that bifurcations are governed by

the coefficient μð2Þn defined by Eq. (136), where the integrals
should be taken over dxdy. For a real eigenvalue ~μn, its
eigenfunction ~ψn inherits the partial PT symmetry of the

potential. Thus both integrals in the expression for μð2Þn are

real, so μð2Þn is also real. Pursuing the perturbation calculation
to higher orders, one can construct a perturbation solution to
all powers of ϵ, and thus a continuous family of solitons,
parametrized by μ, bifurcates out from the linear eigen-
mode ð ~μn; ~ψnÞ.
The existence of soliton families can be verified numeri-

cally. For this purpose, we take the partially PT -symmetric
potential

U2D ¼ −3ðe−jr−rþj2 þ e−jr−r−j2Þ − 2ðe−jrþrþj2 þ e−jrþr−j2Þ
þ iγð−e−jrþr−j2 þ e−jrþrþj2 − 2e−jr−rþj2 þ 2e−jr−r−j2Þ;

where r� ¼ ð�x0; y0Þ: ð162Þ

For γ ¼ 0.1 and x0 ¼ y0 ¼ 1.5, this potential has three
discrete eigenmodes, from each of which a soliton family
bifurcates out. Soliton families bifurcated from the first and
second linear eigenmodes of the potential under focusing
nonlinearity (g ¼ 1) are displayed in Fig. 46(a). Interestingly,
these two power curves are connected through a fold bifur-
cation and have an upper bound. The profile of a stable soliton
on the power curve is displayed in Figs. 46(b) and 46(c).
Results of numerical linear-stability analysis show that

most solitons of the upper power branch are stable. This is
surprising, since in conservative potentials solitons on the
upper power branch are generally less stable. The increased
stability of the upper power branch here is due to the complex

partially PT -symmetric potential (162), which stabilizes
solitons at higher powers.
Solitons in Fig. 46 are partially PT symmetric as the

underlying potential (162) itself. In special classes of partially
PT -symmetric potentials, symmetry breaking of solitons can
occur, where families of nonpartially PT -symmetric sol-
itons can bifurcate out from the base branch of partially
PT -symmetric solitons (Yang, 2015). This situation is
analogous to 1D PT -symmetric potentials [see Sec. VI.C
and Yang (2014d)].

X. SPECTRAL SINGULARITIES

A. Spectral singularities in the linear theory

A non-Hermitian Hamiltonian at an exceptional point does
not admit a complete biorthonormal basis and cannot be
diagonalized. Alternatively, completeness of the basis is lost
if the continuum spectrum features a spectral singularity
(Naimark, 1954), which may be relevant for physical appli-
cations (Longhi, 2009a, 2009b, 2010; Mostafazadeh and
Mehri-Dehnavi, 2009; Mostafazadeh, 2009b, 2009c, 2011a,
2011b); see also Mostafazadeh (2015) for a recent review.
Consider an eigenvalue problem H ~ψk ¼ k2 ~ψk for the

Schrödinger operator (6) with a localized complex potential
limx→�∞jUðxÞj ¼ 0 (the tilde stands for eigenstates of the
linear problem). The associated Jost solutions ~ψk�ðxÞ are
defined by their asymptotics ~ψk�ðxÞ ∼ e�ikx for x → �∞,
while an arbitrary eigenfunction of the continuous spectrum
has asymptotics ~ψkðxÞ → A�eikx þ B�e−ikx at x → �∞. The
constants A� and B� are not independent: the link among
them defines the transfer matrix MðkÞ:

ðAþ; BþÞT ¼ MðkÞðA−; B−ÞT: ð163Þ

TheWronskian of the Jost solutionsW½ ~ψk−; ~ψkþ�¼2ikM22ðkÞ
is x independent and detMðkÞ ¼ 1. If M22ðk�Þ ¼ 0 for some
real k� ≠ 0, then the number k2� > 0 is said to be a spectral
singularity (Mostafazadeh and Mehri-Dehnavi, 2009). The
explicit form of the Wronskian implies that the linear
dependence of the Jost solutions is necessary and sufficient
for the spectral singularity (Mostafazadeh, 2013a). Note that
bound states of H, if any, are also defined by the roots of
M22ðkÞ which, however, are located in the upper half plane of
the complex k: ImðkÞ > 0.

FIG. 46. (a) Power diagram of soliton families in the potential
(162) under focusing nonlinearity (solid blue segments are stable
and dashed red unstable); (b), (c) amplitude and phase fields of
the soliton at the marked point of the power curve. Adapted from
Yang, 2014c.
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Spectral singularities are known for a number of particular
cases, including the steplike potential (35) (Mostafazadeh,
2009b, 2011a, 2014), δ-function potentials (Mostafazadeh and
Mehri-Dehnavi, 2009), PT -symmetric Scarff II potentials
(Ahmed, 2009), and special types of periodic potentials
(Gasymov, 1980; Longhi, 2010).
Consider now a monochromatic wave incident on the

potential UðxÞ either from the left or from the right and
suppose that there exists a real k� solving M22ðk�Þ ¼ 0, i.e.,
there exists a spectral singularity. The relations (38) among the
scattering characteristics still hold. Thus at the spectral singu-
larity the reflection and transmission coefficients diverge,
behaving like zero-width resonances (Mostafazadeh, 2009b).
It follows from Eq. (163) that there exists a solution with
A−ðk�Þ ¼ Bþðk�Þ ¼ 0. This is a solution where only radiation
propagating away from the potential exists, i.e., it means
that the potential operates as a laser (Longhi, 2010;
Mostafazadeh, 2011a).
On the other hand, if a medium allows for a zero of

M11ð~k�Þ ¼ 0 with real ~k�, then there exists a solution with
Aþð~k�Þ ¼ B−ð~k�Þ ¼ 0 meaning the absence of radiation
propagating away from the potential. Such a medium operates
as a coherent perfect absorber (CPA), which was predicted by
Chong et al. (2010) and observed experimentally by Wan
et al. (2011). ð~k�Þ2 is referred to as time-reversed spectral
singularity (Longhi, 2011; Mostafazadeh, 2015). Realization
of a CPA using a pair of passive resonators was reported by
Sun et al. (2014). They observed complete absorption of light
when the system was in a (passive) PT -symmetric phase;
however, the complete absorption was not observed when the
PT phase was broken.
In a generic case, there may exist either spectral singular-

ities or time-reversed spectral singularities, or both with
k� ≠ ~k�. However, if a complex potential is PT symmetric,
then for each k� there exist ~k� ¼ k� giving origin to so-called
self-dual spectral singularity. Such a potential can operate
either as a laser or as an absorber, i.e., as a CPA laser (Longhi,
2010; Chong, Ge, and Stone, 2011; Mostafazadeh, 2012).
Furthermore, the interplay between PT symmetry and Fano
resonances can result in singularities emerging from the
coincidence of two independent singularities and having
highly directional responses (Ramezani et al., 2014).

B. Spectral singularities of a nonlinear layer

Generalization of spectral singularities to nonlinear media
is justified by at least two reasons. First, in a realistic system
infinite transmission or reflection coefficients are the ideali-
zation, and regularizing mechanisms must be involved, non-
linearity being one of them. Second, the nonlinearity is
expected to become a dominating mechanism at large field
amplitudes.
Effects of nonlinearity on spectral singularities were con-

sidered by Mostafazadeh (2013a, 2013b, 2014) for the non-
linear eigenvalue problem

Hnlψk ¼ k2ψk; Hnlψ ≡ −ψ 00 þ UðxÞψ þ Fðψ 0;ψ ; xÞψ ;
ð164Þ

where ψðxÞ is a complex-valued function, UðxÞ is a rapidly
decaying complex potential, and Fðψ 0;ψ ; xÞ describes the
nonlinearity, which is confined to the interval [0, 1]:
Fðψ 0;ψ ; xÞ≡ 0 for x < 0 and x > 1. In this case one can
still exploit Jost solutions ~ψk� of the underlying linear
problem and define a nonlinear spectral singularity as follows
(Mostafazadeh, 2013a): a positive real number k2 is a spectral
singularity of Hnl if there exists a solution ψk of the nonlinear
problem (164) such that limx→�∞ψkðxÞ ¼ C� ~ψk�ðxÞ, where
C� are complex numbers.
Continuity of the field and its derivative at the boundaries of

the nonlinear medium requires

ψkð0Þ ¼ ψk−ð0Þ; ψ 0
kð0Þ ¼ ψ 0

k−ð0Þ; ð165aÞ

ψkð1Þ ¼ ψkþð1Þ; ψ 0
kð1Þ ¼ ψ 0

kþð1Þ: ð165bÞ

This suggests an algorithm for obtaining spectral singularities
(Mostafazadeh, 2013a, 2013b). Consider a solution ψk−ðxÞ
[or ψkþðxÞ] of Eq. (164) on the semiaxis x ∈ ½0;∞Þ [or
x ∈ ð−∞; 1�] with the “initial” conditions (165a) [or (165b)].
Compute k ensuring the asymptotics ψkðxÞ ∼ Cþeikx as
x → ∞ [or ψkðxÞ ∼ C−e−ikx as x → −∞]. If the problem
has a real solution for either of ψkðxÞ, the respective k then
yields a spectral singularity k2.
Let us consider an example of a non-PT -symmetric poten-

tial UðxÞ ¼ ζδðx − aÞ, where ζ is a complex number, a ∈
ð0; 1Þ is the position of the defect inside the nonlinear layer, and
Kerr nonlinearity F≡ χjψ j2 with real χ for x ∈ ð0; 1Þ and
F≡ 0 otherwise (Mostafazadeh, 2013a). Assuming χjψ j2 to be
small, one finds that a nonlinear spectral singularity occurs
at k satisfying ζ ≈ 2ikþ iχjA−j2ðe2ikð1−aÞ þ e2ika − 2Þ=ð2kÞ
[at χ ¼ 0 one recovers the linear spectral singularity
(Mostafazadeh andMehri-Dehnavi, 2009)]. The field intensity
can be found from

χjA−j2 ≈ −kReðζÞ=ðcos½kð1 − 2aÞ� sin kÞ; ð166Þ

which is valid for ReðζÞ ≪ 1 and k ≠ πm; πðmþ 1=2Þ=
ð1 − 2aÞ. The obtained nonlinear spectral singularities obey
parity symmetry, i.e., they are invariant under the transforma-
tion a → 1 − a; they are amplitude dependent and sensitive to
the location of the defect a. One also observes that the right-
hand side of Eq. (166) has a minimal value, which means that
no singularities arise if the amplitude is below a certain
threshold.
A nonlinear PT -symmetric bilayered structure with the

potential (35) was considered by Mostafazadeh (2014). It was
found that for V0 ¼ 1 the lossy layer results in a decrease of
the lasing threshold of the gain. On the other hand, when
V0 − 1 ≫ γ the threshold value of the gain-loss coefficient,
considered as a function of the real part of the refractive index,
has a minimum (for a homogeneous active layer the lasing
threshold decreases with V0).
From these examples, one can conclude that while the

cubic nonlinearity makes the spectral singularity amplitude
dependent, it does not regularize the scattering characteristics.
Similar conclusions can be reached from the study of
steplike potentials (35) (Mostafazadeh, 2013b, 2014).
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However, regularization of the spectral singularity is indeed
possible. It was obtained by Liu, Gupta, and Agarwal (2014)
for a PT -symmetric bilayered structure with saturable non-
linearity modeled by

d2ψ
dx2

þ k2ξðxÞ ðδþ iÞψ
1þ δ2 þ αjψ j2 ¼ 0; ð167Þ

where ξðxÞ ¼ −1 for x ∈ ð−L; 0Þ and ξðxÞ ¼ 1 for x ∈ ð0; LÞ,
and δ, α are real constants.
The described algorithm of obtaining nonlinear spectral

singularities relies on the solution of the scattering problem
where the output radiation is fixed, rather than on the solution
of a problem with the fixed amplitude of the incident wave.
These are two different statements of the nonlinear scattering
problem, referred to as the fixed-output and fixed-input
problems [see, e.g., Konotop and Vázquez (1994) and
references therein]. The fixed-input problem manifests multi-
stability phenomenon, while the fixed-output problem
does not. In the numerical study of transmission-coefficient
dependence on the input intensity, bistability was reported by
Liu, Gupta, and Agarwal (2014).

XI. PT SYMMETRY IN KLEIN-GORDON MODELS

PT symmetry can be introduced in KGmodels which in the
conservative case read

utt − uxx þ fðuÞ ¼ 0; ð168Þ

where fðuÞ is a nonlinear function of the field uðx; tÞ. The two
celebrated examples are the sine-Gordon (SG) equation given
by fðuÞ¼ sinðuÞ and the ϕ4 model given by fðuÞ¼ 2ðu3−uÞ.
Now the PT symmetry is defined by the transformation
ðx; tÞ → ð−x;−tÞ. To preserve this symmetry, gain and loss
can be introduced by adding a spatially inhomogeneous
dissipative term γðxÞut with γðxÞ being an odd function:
γðxÞ ¼ −γð−xÞ (Demirkaya et al., 2013, 2014). This yields
the model

utt − uxx þ γðxÞut þ fðuÞ ¼ 0; ð169Þ

where lossy and gain domains correspond to regions with
γðxÞ > 0 and γðxÞ < 0, respectively.
For the PT -symmetric KG model (169), the Galilean

invariance is broken. Therefore, unlike its conservative
counterpart (168), the model does not admit traveling-wave
solutions. Nevertheless, stationary solutions are not affected
by the dissipation and gain and are given by u ¼ ϕðxÞ, where
ϕðxÞ solves ϕxx ¼ fðϕÞ. The most interesting solution is the
kink, which is a topological object given by ϕðxÞ ¼
4 arctanðex−x0Þ in the SG model, and ϕðxÞ ¼ tanhðx − x0Þ
in the ϕ4 model (x0 stands for the position of the kink center).
To study linear stability of these kinks, one substitutes

uðt; xÞ ¼ ϕðxÞ þ vðxÞeλt, with vðxÞ ≪ 1, into Eq. (169) and
obtains a linear eigenvalue problem

λ2vþ λγðxÞv − vxx þ f0ðϕÞv ¼ 0: ð170Þ

Demirkaya et al. (2014) performed a general analysis of
Eq. (170) as well as a numerical study of stability for
γðxÞ ¼ ϵxe−x

2=2, where the constant ϵ characterizes the
strength of gain and loss. The main findings for SG and ϕ4

kinks can be summarized as follows. The linear-stability
spectrum is unaffected by γðxÞ (except for a possible shift
of the discrete spectrum along the imaginary axis) if the kink
center x0 coincides with the boundary between the domains
with gain and loss, i.e., with x ¼ 0. If, however, the kink
center is shifted to the lossy or to the gain region, then the kink
becomes spectrally stable and unstable, respectively. Behavior
of kinks in PT -symmetric SG and ϕ4 models can also be
described by means of a generalized collective coordinate
method which was developed by Kevrekidis (2014) on the
basis of a proposition of Galley (2013) who suggested an
approach to formulation of the Lagrangian and Hamiltonian
dynamics of generic nonconservative systems.
The conservative SG equation is also known to admit a

breather solution

ϕ ¼ 4 arctan
σ cos½aðt − t0Þ�
a cosh½σðx − x0Þ�

;

where σ ¼ ffiffiffi
a

p
, 0 < a < 1, x0 is the center of the breather, and

t0 is a constant. Lu, Kevrekidis, and Cuevas-Maraver (2014)
addressed the existence and stability of breathers in the PT -
symmetric SG model. Unlike kinks, breathers are always
affected by the gain and loss because of their time-periodic
nature. This, in particular, makes their persistence in the PT -
symmetric model possible only if they are centered at the
boundary between the gain and loss. Numerical analysis
shows that even for a small amplitude of the gain and loss
jγðxÞj the breather becomes unstable through a Hopf bifurca-
tion. It was also found that if a breather is initially centered at
the lossy side, then it will decay away. If, however, the
breather is initially shifted toward the gain region, then its
energy will grow until a pair of a kink and an antikink is
nucleated.

XII. PT DEFORMATIONS OF NONLINEAR EQUATIONS

The nonlinear models we considered so far were con-
structed by adding nonlinear terms (physically, by accounting
for nonlinear interactions) to linear models with complex
potentials, dissipation, or gain. In this section, we address
another possibility, where the so-called PT deformation (alias
PT extension) is performed by extending purely real coef-
ficients of a nonlinear equation to the complex plane.

A. Deformed KdV equation

The idea was formulated by Bender et al. (2007) and can be
described as follows. Consider wave dynamics governed by
the KdV equation

ut þ uux þ uxxx ¼ 0: ð171Þ

Now under parity transformation (x → −x), u also has to
change its sign u → −u. Since we are dealing with a classical
Hamiltonian system, the time reversal operator T results in the
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change t → −t with simultaneous change u ↦ −u. Then in
order to continue u from the real axis to the complex plane,
one can “borrow” from the quantum mechanics the rule of
changing i → −i when applying time reversal. This suggests
to introduce a PT -symmetric extension of the KdV equation
as (Bender et al., 2007)

ut − iuðiuxÞε þ uxxx ¼ 0; ε ∈ R: ð172Þ
Obviously, both Eqs. (171) and (172) are invariant under the
PT transformation. At ε ¼ 1, Eq. (172) reduces to Eq. (171).
Other physically relevant cases include ε ¼ 0, which leads to
the dispersive equation vtþvxxx ¼ 0with v¼ e−itu, and ε¼ 3,
which leads to the nonlinear equation ut − uðuxÞ3 þ uxxx ¼ 0
(Fushchych, Serov, and Amerov, 1991; Bender et al., 2007).
Another PT deformation of the KdV equation can be

obtained using the Hamiltonian formulation. The original
KdV equation (171) can be written in a Hamiltonian form as

ut ¼
∂
∂x

δH
δuðxÞ ¼ fu;Hg; ð173Þ

where

HðtÞ ¼
Z

∞

−∞
Hðx; tÞdx; Hðx; tÞ ¼ 1

2
u2x þ u3: ð174Þ

Fring (2007) considered a PT -symmetric generalization of
the Hamiltonian density Hðx; tÞ as

Hðx; tÞ ¼ −ð1þ εÞ−1ðiuxÞεþ1 þ u3; ð175Þ
which satisfies the relation HðuðxÞÞ ¼ H�ðuð−xÞÞ. The latter
property ensures that the energy on each symmetric interval
½−a; a� is real:

E ¼
Z

a

−a
H(uðxÞ)dx ¼

Z
a

−a
H�(uðxÞ)dx ¼ E�: ð176Þ

Equation (173) with the Hamiltonian (175) yields another PT
deformed KdV equation (Fring, 2007)

ut − 6uux þ iεðε − 1ÞðiuxÞε−2u2xx þ εðiuxÞε−1uxxx ¼ 0:

ð177Þ

While the physical relevance of models like Eq. (172) or
(177) for arbitrary values of the deformable parameter ε
remains an open question, the systems themselves possess
some interesting properties which justify the attracted interest.
One of them is the existence of integrals of motion, which is a
nontrivial issue for nonconservative systems. In particular,
model (172) with ε ¼ 3 admits two integrals of motion
(Bender et al., 2007)

I� ¼
Z

dx
Z

21=3uðx;tÞ

0

ds½BiðsÞ �
ffiffiffi
3

p
AiðsÞ�; ð178Þ

where Aið·Þ and Bið·Þ are the Airy functions. The quantity I−
is strictly positive [when uðx; tÞ is not identically zero] and
therefore can be interpreted as the energy.
For other PT deformations of the KdVequation, as well as

for examples of their solutions, see Bagchi and Fring (2008)

and Cavaglia, Fring, and Bagchi (2011). General aspects of
preservation of integrability under PT -symmetric deforma-
tions were considered by Assis and Fring (2009, 2010) by
means of the Painlevé analysis.

B. Deformed Hopf and Burgers equations

Cavaglia and Fring (2012) studied a PT -deformed Hopf
equation

ut − ifðuÞðiuxÞε ¼ 0; ð179Þ

where fðuÞ is a well-behaved function, and ε is a real rational
number. For ε ¼ 1, Eq. (179) reduces to the real-valued Hopf
equation

wt þ fðwÞwx ¼ 0: ð180Þ

This deformation extends the earlier results of Bender and
Feinberg (2008) on the PT deformation vt − ivðivxÞε ¼ 0 of
the inviscid Burgers equation wt þ wwx ¼ 0.
The PT -deformed Hopf equation (179) can be obtained

from its original version (180) for arbitrary rational ε through
an explicit map, i.e., change of variables (Curtright and Fairlie,
2008; Cavaglia and Fring, 2012). For the particular case of
fðwÞ ¼ wn, the map reads w ↦

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εuðiuxÞnn

p
. This direct

mapping allows for the straightforward analysis of wave
dynamics in the deformed model on the basis of the knowl-
edge about the “seed” real nonlinear equation. We illustrate
this on the example of shock formation (Bender and Feinberg,
2008; Cavaglia and Fring, 2012). Suppose the initial condition
to the Hopf equation (180) is wðx0; 0Þ ¼ w0ðx0Þ, and consider
a characteristic, i.e., a curve in the plane ðx; tÞ for which
wðx;tÞ¼w0ðx0Þ. The characteristic has the form x¼fðw0Þtþ
x0. At the point of gradient catastrophe two characteristics
cross and wx tends to infinity. Then by computing

wx ¼ w0
0ðx0Þ

dx0
dx

¼ w0
0ðx0Þ

1þ t½dfðw0Þ=dx0�
ð181Þ

and utilizing the described map, one finds that for fðwÞ ¼ wn

the earliest time for shock formation in the PT -deformed
Hopf equation (179) is

tws ¼ −ε−1=n
�
d
dx0

½u1=n0 ðiux0Þðε−1Þ=n�
�
−1
: ð182Þ

Requiring the time tws to be real, one finds that this condition is
satisfied under the replacement u0 → iα ~u0, where ~u0 ∈ R,
α ¼ ð4m� 1Þn=ε, and m ∈ Z. Thus for certain combinations
of ε and n one cannot observe shock wave formation for real
solutions of the deformed equation (179). On the other hand,
the deformed model offers other possibilities for singularities
of the solutions to occur (Cavaglia and Fring, 2012). Such
possibilities correspond to a curvature catastrophe. For the
inviscid Burgers equation [fðwÞ ¼ w] this phenomenon stems
from the relation wx ¼ iεðiuxÞε−2½u2x þ ðε − 1Þuuxx�, meaning
that the shock of the u field (ux → ∞) always corresponds
to the shock of w. In the meantime, the converse is not
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necessarily true because wx → ∞ can also occur when
uxx → ∞.
For PT -symmetric deformations of the Burgers equation

see Yan (2008, 2013).

C. Deformed short pulse equation

PT deformation of yet another model, the short pulse
equation uxt ¼ uþ 1

2
ðu2uxÞx (Schäfer and Wayne, 2004), was

constructed by Yan (2012):

i½ðiuxÞσ �t ¼ uþ bum þ ic½unðiuxÞε�x: ð183Þ

Here the parameters b, c, σ, n, m, and ε are all real. For their
specific choices Eq. (183) admits soliton, kink, or compacton
solutons.

D. Nonlocal NLS equation

The NLS equation (28) belongs to the so-called Ablowitz-
Kaup-Newell-Segur (AKNS) scheme (Ablowitz et al., 1973),
which allows one to obtain a wide class of equations
integrable by the inverse scattering transform. More specifi-
cally, the NLS equation (28) with g ¼ 2 is a particular case of
the more general integrable system (Ablowitz and Segur,
1981; Novikov et al., 1984)

iψ t þ ψxx þ 2ϕψ2 ¼ 0; iϕt − ϕxx − 2ψϕ2 ¼ 0; ð184Þ

subject to the reduction ϕðx; tÞ ¼ ψ�ðx; tÞ.
Ablowitz and Musslimani (2013) considered yet another

reduction ϕðx; tÞ ¼ �ψ�ð−x; tÞ leading to the following
equation with nonlocal nonlinearity (σ ¼ �1):

iψ tðx; tÞ ¼ ψxxðx; tÞ þ 2σψðx; tÞψ�ð−x; tÞψðx; tÞ: ð185Þ

Note that in this equation the nonlinear term can be repre-
sented as FðψÞψ , where FðϕÞ ¼ 2σϕðx; tÞϕ�ð−x; tÞ. For any
ψ , the nonlinearity satisfies the identity ½FðψÞ�� ¼ PFðψÞP,
and thus commutes with PT and can be termed as PT
symmetric or P-pseudo-Hermitian in the sense of the defi-
nition (97). In the discrete case this property guarantees the
existence of at least one integral of motion. For the continuous
model (185), one can find an infinite number of conserved
quantities. The first one is given by Eq. (18), and the second
and third ones read

Q2 ¼
Z

∞

−∞
½ψxðx; tÞψ�ð−x; tÞ þ ψðx; tÞψ�

xð−x; tÞ�dx; ð186Þ

Q3 ¼
Z

∞

−∞
½ψxðx; tÞψ�

xð−x; tÞ − σψ2ðx; tÞψ�2ð−x; tÞ�dx:
ð187Þ

The one-soliton solution for Eq. (185) reads

ψðx; tÞ ¼ −
2ðηþ η̄Þeiθ̄e−4iη̄2te−2η̄x

1þ eiðθ̄þθÞe4iðη2−η̄2Þte−2ðη̄þηÞx ; ð188Þ

where η; η̄ð> 0Þ, θ and θ̄ are constants.

Being a particular case of the model (184), Eq. (185) is only
the first equation in a hierarchy of integrable nonlocal models.
It can be generalized to the vectorial case and to include a
wider class of symmetries through the reductions of the type
ϕðx; tÞ ¼ ψ�ðϵ1x; ϵ2tÞ, where ϵ1 and ϵ2 take values �1
(Yan, 2015).
Furthermore, one can construct a discrete analog of Eq. (185),

which was reported by Ablowitz and Musslimani (2014) and
Yan (2015).

XIII. CONCLUSIONS AND PERSPECTIVES

In this article, we reviewed recent progress on nonlinear
wave dynamics in PT -symmetric systems. We showed that
the interplay between nonlinearity and PT symmetry creates a
host of new phenomena which sets nonlinear PT -symmetric
systems apart from traditional conservative or dissipative
systems. For instance, even though PT systems contain
gain and loss and are dissipative in nature, they admit
continuous families of nonlinear modes and integrals of
motion—properties which are common in conservative sys-
tems but rare in dissipative systems. PT -symmetry breaking
of nonlinear modes in certain types of PT systems is another
surprising property which is highly nonintuitive. Stabilization
of nonlinear modes in PT -symmetric systems above phase
transition is a fascinating property as well.
Most of the materials reviewed in this article are on

theoretical aspects of PT -symmetric systems. But a number
of experimental validations of the main concepts as well as
several practical applications were also described. Since PT
symmetry is prevalent in a wide range of physical systems,
further experimental studies are expected to continue. A
reason PT symmetry can be physically useful is that it allows
for overcoming losses while still preserving guidance proper-
ties of the system. In addition, under PT symmetry, the gain
and loss can be varied, thus paving the way for optimal and
flexible control of wave-guiding systems. Exciting applica-
tions of PT symmetry have already appeared. They include
optical switches, unidirectional reflectionless PT -symmetric
metamaterials at optical frequencies, single-mode PT -
symmetric microring lasers, CPA lasers, and phonon lasers.
In those applications, the effects of nonlinearity can be an
important issue. For instance, it is well known that lasing
is an intrinsic nonlinear process. Thus studies of nonlinear
effects in those emerging applications are important open
questions.
We anticipate that nonlinear PT systems may find further

applications in the near future, especially because the para-
digm is relevant practically to all branches of contemporary
physics. We also expect growing interest in this subject from
the mathematical community, which is justified by the novelty
and beauty of properties of PT -symmetric models and, more
generally, of non-Hermitian systems.
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