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Continuous families of solitons in the nonlinear Schrödinger equation with
non-PT -symmetric complex potentials and general forms of nonlinearity are
studied analytically. Under a weak assumption, it is shown that stationary
equations for solitons admit a constant of motion if and only if the complex
potential is of a special form g2(x) + ig′(x), where g(x) is an arbitrary real
function. Using this constant of motion, the second-order complex soliton
equation is reduced to a new second-order real equation for the amplitude of
the soliton. From this real soliton equation, a novel perturbation technique
is employed to show that continuous families of solitons bifurcate out from
linear discrete modes in these non-PT -symmetric complex potentials. All
analytical results are corroborated by numerical examples.

1. Introduction

Nonlinear wave systems fall into two major categories: conservative and
dissipative. Conservative systems are energy conserving, and their solitary
waves (solitons) exist as continuous families with continuous ranges of
energy values. A typical example is the nonlinear Schrödinger (NLS)
equation. Dissipative systems contain gain and loss, and their solitons are
generally isolated with certain discrete energy values. A typical example of
this type is the Ginzburg–Landau equation. A recent discovery is that, in
dissipative but parity-time (PT ) symmetric systems, solitons can still exist

Address for correspondence: Prof. J. Yang, Department of Mathematics and Statistics, University of
Vermont, Burlington, VT 05401, USA; e-mail: jyang@math.uvm.edu

DOI: 10.1111/sapm.12117 459
STUDIES IN APPLIED MATHEMATICS 136:459–483
C© 2016 Wiley Periodicals, Inc., A Wiley Company



460 S. D. Nixon and J. Yang

as continuous families with continuous energy values [1–19]. An example
in this category is the NLS equation with a complex but PT -symmetric
potential. These soliton families are allowed because the PT symmetry
assures that the gain and loss of the soliton is perfectly balanced at arbitrary
energy levels.

In dissipative and non-PT -symmetric systems, the expectation is that any
solitons will be isolated with discrete energy values, as seen in typical
dissipative systems [20, 21]. However, exceptions were reported numerically
in [22, 23] for the NLS equation with a non-PT -symmetric complex
potential of special form, where families of solitons with continuous energy
values can bifurcate out from the linear modes of the potential. This finding
is very surprising in view of the lack of PT symmetry here. For these
special potentials, a constant of motion was discovered in [23] for the
stationary soliton equation. Using this constant of motion, soliton families
in these special potentials were explained by a numerical shooting argument
[23].

In this article, we analytically investigate solitons of the NLS equation
with non-PT -symmetric complex potentials. We focus on three main
questions: (1) What types of non-PT -symmetric complex potentials admit
soliton families? (2) How can one analytically explain and calculate soliton
families bifurcating from linear modes in such potentials? (3) Do these
soliton families exist under other nonlinearities?

Regarding the first question, we recognize that in the absence of
PT symmetry, the existence of a constant of motion in the stationary soliton
equation plays a crucial role in the existence of soliton families. Assuming
this constant of motion for complex potentials is a continuous deformation
of one that exists in the NLS equation without a potential, we show that
the only complex potentials which admit a constant of motion are those of
the form reported in [22, 23], that is, V (x) = g2(x) + ig′(x), where g(x) is
an arbitrary real function. This strongly suggests that potentials of the above
form are the only one-dimensional non-PT -symmetric complex potentials
that admit soliton families.

On the second question, through use of the constant of motion, we
reduce the second-order complex soliton equation to a new second-order
real equation for the square of amplitude of the soliton, which is then
solved perturbatively for a continuous range of μ values. This way, the
existence of soliton families bifurcating from linear modes in non-PT -
symmetric potentials is analytically explained and explicitly calculated.
Interestingly, this perturbation calculation of solitons differs significantly
from the method used for real and PT -symmetric potentials because the
linearization operator of the new real equation has a distinctly different
kernel structure.
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Regarding the third question, we show that these soliton families still
exist under a more general class of nonlinearities. Furthermore, the choice
of nonlinearity within this class has no effect on the existence of a constant
of motion.

These analytical results are compared with numerical examples, and good
agreement between them is illustrated.

2. Preliminaries

The mathematical model we consider, in most parts of this article, is the
NLS equation with a complex potential,

i�t +�xx + V (x)� + σ |�|2� = 0, (1)

where σ = ±1 is the sign of cubic nonlinearity. This model describes
paraxial nonlinear light propagation in a waveguide with gain and loss
[2, 24], as well as Bose–Einstein condensates with atoms injected into one
part of the potential and removed from another part of the potential [25, 26].
Most of the earlier work focused on the case where the complex potential
V (x) is PT -symmetric, that is, V ∗(x) = V (−x), with the superscript “*”
representing complex conjugation [2–4, 6–9]. In this article, we consider the
case where V (x) is not PT -symmetric, that is,

V ∗(x) �= V (−x). (2)

Soliton solutions of Eq. (1) take the form

�(x, t) = ψ(x)eiμt , (3)

where ψ(x) is a localized function solving the stationary equation

ψxx − μψ + V (x)ψ + σ |ψ |2ψ = 0, (4)

and μ is a real propagation constant. In PT -symmetric potentials, solitons
exist as continuous families parameterized by μ [3, 4, 6–9]. However, in non-
PT -symmetric potentials, soliton families are generically forbidden [21].
Surprisingly, it was reported recently through numerical examples that in
complex potentials of the special form

V (x) = g2(x) + ig′(x), (5)

where g(x) is an arbitrary real function, soliton families can still bifurcate
out from linear modes even when V (x) is non-PT -symmetric (i.e., when
g(x) is not even) [22, 23]. This result is very unintuitive. Indeed, if one per-
forms a regular perturbation calculation of soliton families bifurcating from
linear modes in a general complex potential, it will be seen that infinitely
many nontrivial conditions would have to be satisfied simultaneously, which
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makes such bifurcation almost impossible [21]. However, for the special
complex potential (5), all those conditions are met, which is miraculous. Ob-
viously this phenomenon needs better understanding. A step in this direction
was made in Ref. [23], where through the discovery of a constant of motion
for the soliton equation (4) under the potential (5), soliton families in
Eq. (4) were explained through a numerical shooting argument.

Many important questions are currently open regarding soliton families
in non-PT -symmetric complex potentials. For instance, what other non-
PT -symmetric complex potentials admit soliton families? How can one
analytically explain and explicitly calculate soliton families bifurcating from
linear modes in non-PT -symmetric potentials? Do these soliton families
also exist under other nonlinearities? These questions will be investigated in
the remainder of this article.

3. Constant of Motion

A quantity J (x, ψ) is called a constant of motion in the stationary
equation (4) if dJ/dx = 0. The existence of a constant of motion proves
to be important for the existence of soliton families in non-PT -symmetric
potentials. The reason for this can be understood heuristically by a shooting
argument. In localized potentials, the soliton equation (4) shows that
ψ(x) → c±e−√

μ|x | as x → ±∞, where c± are complex constants. Due to
phase invariance of the soliton equation, c− may be normalized to be real.
Thus, for a given μ value, there are three real parameters, c−, Re(c+), and
Im(c+), in the tails of solitons. Shooting from these tails at x = ±∞ to
any interior point x0, the values of ψ(x0) and ψ ′(x0) from the two sides
must match, resulting in four real conditions. This is generically impossible
because there are only three tail parameters to adjust. However, if there is
a constant of motion, the four matching conditions reduce to three, which
makes shooting possible for each given μ, hence a continuous family of
solitons result.

Thus, in this section, we study what complex potentials V (x) admit
a constant of motion. In this study, solutions, ψ(x), to the stationary
equation (4) are allowed to be any solutions, not necessarily solitons. That
is, ψ(x) is allowed to be nonlocal.

First, we split the complex potential V (x) into real and imaginary parts,

V (x) = v1(x) + iv2(x), (6)

where v1(x), v2(x) are real functions. We also express the complex function
ψ(x) in polar forms,

ψ(x) = r (x)ei
∫
θ(x)dx, (7)
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where r (x), θ (x) are real amplitude and phase functions. Substituting these
expressions into the soliton equation (4), we get

rxx − μr + v1r + σr3 − θ2r = 0, (8)

(r2θ )x = −v2r2. (9)

In the absence of the potential (v1 = v2 = 0), it is easy to verify that this
system admits two constants of motion

J1 = r2θ (10)

and

J2 = r2
x − μr2 + σ

2
r4 + r2θ2, (11)

where dJ1/dx = dJ2/dx = 0. Because the system is third order, these are the
only constants of motion the system can allow (because if more than two
constants of motion existed, the solution would have to be a constant). These
two constants of motion are associated with the flux terms of the power and
momentum conservation laws of the potential-free NLS equation, but this
fact is not important to our analysis.

In the presence of the potential, it is reasonable to assume that the
corresponding constant of motion J is a continuous deformation of those
in the potential-free case. In other words, J approaches constants of motion
of the potential-free equation when v1, v2 approach zero. Notice that J1 and
J2 have different ranks [27]. Thus, under the limit v1, v2 → 0, J can only
approach one of (J1, J2), not their linear combination. Our strategy then is
to calculate dJk/dx (k = 1, 2) in the presence of the potential and derive
conditions on (v1, v2) so that dJk/dx is a total derivative of x , that is, a
constant of motion is admitted.

Now, we calculate dJk/dx in the presence of a potential. First, we
consider dJ1/dx. Equation (9) clearly shows that, for dJ1/dx to be a total
derivative, we must have v2 = 0, that is, the potential V (x) is real. This is
not what we want because we exclusively consider complex potentials in
this paper. Thus, there are no constants of motion in Eqs. (8) and (9) that
approach J1 when the complex potential approaches zero.

Next, we consider dJ2/dx. Utilizing Eqs. (8) and (9), we readily find
that

dJ2

dx
= −v1(r2)x − 2v2r2θ. (12)

The right side of this equation can be rewritten as

dJ2

dx
= Wx + r2v1x + 2(r2θ )x

∫
v2dx, (13)
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where

W = −v1r2 − 2r2θ

∫
v2dx.

Then utilizing Eq. (9), the above equation becomes

dJ2

dx
= Wx + r2

(
v1x − 2v2

∫
v2dx

)
. (14)

For the right side of the above equation to be a total derivative, the
necessary and sufficient condition is

v1x = 2v2

∫
v2dx. (15)

This condition can be rewritten as

v1x =
[(∫

v2dx

)2
]

x

, (16)

thus

v1 =
(∫

v2dx

)2

+ C, (17)

where C is an arbitrary constant. Finally, denoting

g =
∫
v2dx, (18)

the potential V (x) which admits a constant of motion then is of the form

V (x) = g2(x) + ig′(x) + C. (19)

Obviously, the constant C in this potential can be eliminated from Eq. (1)
through a simple gauge transformation. The remaining potential is then of
the form (5). Thus we conclude that if the constant of motion for the
stationary equation (4) with a complex potential is a continuous deformation
of J2 without the potential, then this constant of motion exists if and only if
the complex potential V (x) is of the special form (5), and the corresponding
motion constant is

J = J2 − W = J2 + g2r2 + 2gr2θ, (20)

or more explicitly,

J = r2
x − μr2 + σ

2
r4 + r2(θ + g)2, (21)

where dJ/dx = 0. This constant of motion agrees with that reported in Ref.
[23] for these special potentials (5).
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It should be pointed out that a constant of motion is necessary only for
soliton families in non-PT -symmetric complex potentials. In PT -symmetric
potentials, soliton families (of PT -symmetric type) generally exist without
constants of motion. The existence of such soliton families in PT potentials
is a consequence of the PT symmetry, which guarantees that for a con-
tinuous range of μ values, all solvability conditions in a perturbation
expansion of solitons are satisfied to all orders [21]. From a shooting
point of view (see the beginning of this section), PT -symmetric solitons
have tails ψ(x) → c±e−√

μ|x |, where c+ = c∗
−, which contain two real pa-

rameters, Re(c−) and Im(c−) (here imposing PT symmetry does not allow
c− normalized to be real by phase invariance). Shooting from the tail at
x = −∞ to x = 0, there are two ending conditions, Im[ψ(0)]=Re[ψ ′(0)]=0,
thus shooting is possible for each given μ. The importance of the PT -
symmetric potential in this process is that, it guarantees when these two
ending conditions are met and a soliton ψ(x) is obtained on the left-half
axis −∞ < x ≤ 0, its PT -symmetric counterpart ψ∗(−x) on the right-half
axis 0 ≤ x < ∞ automatically satisfies the soliton equation (4) as well,
thus a PT -symmetric soliton on the whole x-axis results. From this argu-
ment, we see that soliton families in PT -symmetric potentials are due to
PT symmetry, and no constants of motion are needed.

4. Bifurcation of Soliton Families

In this section, we analytically calculate the bifurcation of solitons from
linear modes in Eq. (1), with potential of the special form (5), and show that
soliton families bifurcate out in such non-PT -symmetric systems.

For the potential (5), when solitons (3) are expressed in polar forms (7),
the equations for r and θ are seen from Eqs. (8) and (9) as

rxx − μr + g2r + σr3 − θ2r = 0, (22)

(r2θ )x = −gxr2, (23)

and these equations admit a constant of motion (21). For solitons, this
constant J can be evaluated at x = ∞ as zero, thus

r2
x − μr2 + σ

2
r4 + r2(θ + g)2 = 0. (24)

From this equation, we get

θ = −g ±
√
μ− 1

2
σr2 − r2

x

r2
. (25)
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Inserting it into Eq. (22) and after simple algebra, we get

rxx − 2μr + 3

2
σr3 + r2

x

r
= ∓2g

√
μr2 − 1

2
σr4 − r2

x , (26)

or equivalently,

(r2)xx − 4μr2 + 3σr4 ± 2g
√

4μr4 − 2σr6 − [
(r2)x

]2 = 0. (27)

Denoting R = r2, we arrive at a single second-order equation for the real
amplitude function R as

Rxx − 4μR + 3σ R2 ± 2g
√

4μR2 − 2σ R3 − R2
x = 0, (28)

which can also be rewritten as(√
4μR2 − 2σ R3 − R2

x

)
x

= ±2gRx . (29)

4.1. Perturbation calculations

The sign in Eq. (28) needs to be chosen appropriately according to the
function g(x). Indeed, if g(x) switches to −g(x), this sign should switch as
well. Without loss of generality, we take the plus sign in Eq. (28),

Rxx − 4μR + 3σ R2 + 2g
√

4μR2 − 2σ R3 − R2
x = 0. (30)

Note that sometimes the same solution R(x) can lead to mixed signs in
Eq. (28) on different x-intervals. This could occur if 4μR2 − 2σ R3 − R2

x
is zero somewhere on the x-axis, because the square root is a possible
mechanism for inducing a sign change so that the square-rooted quantity
remains smooth. We do not consider such mixed cases here. This exclusion
will be assured by Assumption 1 in Section 4.3.

For a localized function g(x), it is easy to see that the large-x asymptotics
of the soliton solution in Eq. (30) are, to leading order,

R(x) → a±e−√
4μ|x |, x → ±∞, (31)

where a± are positive constants. This asymptotics is obtained from the linear
terms Rxx − 4μR ∼ 0 in Eq. (30), and it simultaneously annihilates the
leading-order terms 4μR2 − R2

x under the square root of that same equation.
First, we consider linear modes in Eq. (30), which satisfy the equation

φxx − 4μ0φ + 2g
√

4μ0φ2 − φ2
x = 0. (32)

This equation can be rewritten as(√
4μ0φ2 − φ2

x

)
x

= 2gφx . (33)
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Because g and φ are localized functions, we see that√
4μ0φ2 − φ2

x =
∫ x

−∞
2gφξdξ = −

∫ ∞

x
2gφξdξ (34)

and ∫ ∞

−∞
2gφξdξ = 0. (35)

Equation (32) is scaling-invariant and thus an eigenvalue problem, but
it is nonlinear in both the eigenvalue μ0 and eigenfunction φ. Thus, this
eigenvalue problem differs from most previous ones where the eigenvalue
equation is linear in the eigenfunction and the eigenvalue [28, 29]. Solving
this new eigenvalue problem is equivalent to solving for discrete real
eigenvalues in the original eigenvalue problem from Eq. (4), that is,

ψxx + V (x)ψ = μ0ψ, (36)

and the eigenfunction correspondence is φ = |ψ |2. Previous results in
[22] have shown that for the underlying special potential (5), the linear
eigenvalue problem (36) admits discrete real eigenvalues for a large class
of functions g(x). The new eigenvalue problem (32) also shows that the
existence of such real eigenvalues is plausible for real functions of g(x)
because the initial assumption that μ and φ(x) be real has resulted in a
completely real equation.

From such eigenmodes, families of solitons can bifurcate out under
variation of μ. We will analytically show this by explicitly calculating this
soliton bifurcation from a linear mode (μ0, φ) using perturbation methods.

The perturbation expansion is

R = ε
(
R0 + εR1 + ε2 R2 + . . .

)
, (37)

μ = μ0 + ε, (38)

where ε > 0 is a small parameter. Here, we have assumed the bifurcation
occurs to the right side of μ0. As we will see later, this assumption dictates
the sign of nonlinearity σ . If the bifurcation occurs to the left side of μ0,
then only trivial modifications to our analysis are needed, and the bifurcation
will occur for the opposite sign of nonlinearity.

Inserting the above expansion into Eq. (30), at order ε, we find

R0 = c0φ, (39)

where c0 is a positive constant to be determined.
At order ε2, we get

L R1 = F, (40)
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where

L = ∂xx + p1∂x + p2, (41)

p1 = − 2gφx√
4μ0φ2 − φ2

x

, p2 = 4μ0

(
2gφ√

4μ0φ2 − φ2
x

− 1

)
, (42)

F = c0( f1 − c0σ f2), (43)

and

f1 = 4φ

(
1 − gφ√

4μ0φ2 − φ2
x

)
, f2 = φ2

(
3 − 2gφ√

4μ0φ2 − φ2
x

)
. (44)

Now it is time to analyze the properties of homogeneous solutions
and adjoint homogeneous solutions of the operator L and the solvability
condition of Eq. (40).

4.2. Kernels of linearization operators L and L A

First, it is easy to verify that φ is a homogeneous solution of L , that is,

Lφ = 0. (45)

Let us suppose the other homogeneous solution of L is φ2, then according
to Abel’s formula, the Wronskian of (φ, φ2) is

W (φ, φ2) = W0e− ∫ p1dx (46)

or

W (φ, φ2) = W0

√
4μ0φ2 − φ2

x (47)

in view of Eqs. (33) and (42). Here, W0 is a constant. Utilizing Eq. (34), the
above Wronskian can be rewritten as

W (φ, φ2) = W0

∫ x

−∞
2gφξdξ = −W0

∫ ∞

x
2gφξdξ. (48)

From this formula we see that, if g(x) is a localized function, then the decay
rate of this Wronskian at large |x | is faster than that of φ, and thus φ2 is
also a localized function.

Using these homogeneous solutions of L , we can build homogeneous
solutions of the adjoint operator L A, where

L A = ∂xx − ∂x p1 + p2, (49)
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that is,

L A f ≡ ∂xx f − ∂x (p1 f ) + p2 f.

LEMMA 1. The two homogeneous solutions (φA, φA
2 ) of the adjoint

operator L A are

φA = − φ2

W (φ, φ2)
, φA

2 = φ

W (φ, φ2)
. (50)

Proof: We first turn the second-order homogeneous equation of operator
L into a system of first-order equations,

X ′ =
[

0 1
−p2 −p1

]
X, (51)

where the prime stands for derivative to x . The fundamental matrix solution
to this system is

X =
[
φ φ2

φx φ2x

]
. (52)

The adjoint system of Eq. (51) is

Y ′ = −
[

0 −p2

1 −p1

]
Y. (53)

Notice that if Y = [y1, y2]T , where the superscript “T ” represents vector or
matrix transpose, then it is easy to verify that

L A y2 = 0, (54)

that is, the second component of the vector solution Y is in the kernel of the
adjoint operator L A.

It is well known that the fundamental matrix solution to the adjoint vector
system (53) is (X−1)T . This can be proved by calculating (X X−1)′, where
upon utilizing Eq. (51), a homogeneous differential equation for X−1 would
be obtained. Taking the transpose of this equation would reveal that (X−1)T

satisfies the adjoint equation (53). Notice that

(X−1)T = 1

W (φ, φ2)

[
φ2x −φx

−φ2 φ

]
. (55)

Because the second-row functions in this matrix are in the kernel of the
adjoint operator L A, the functions φA and φA

2 defined in Eq. (50) are then
homogeneous solutions of the adjoint operator L A. �

In view of Lemma 1, if g(x) is a localized function, then both adjoint
homogeneous solutions φA, φA

2 are unbounded, because the decay rates of φ
and φ2 at large |x | are slower than that of the Wronskian W (φ, φ2).
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The fact that L has only localized solutions and L A has only unbounded
solutions in their kernels makes the solvability condition for the first-order
equation (40) novel, as we will delineate below.

4.3. Solvability conditions for certain potentials

In this subsection, we show how to impose the solvability condition on
Eq. (40) under the following assumptions:

ASSUMPTION 1. For the linear eigenmode (μ0, φ), 4μ0φ
2 − φ2

x is strictly
positive for all x.

ASSUMPTION 2. The function g(x) decays exponentially at large x as

g(x) → b±e−β|x |, x → ±∞, (56)

where b± and β (> 0) are constants.

ASSUMPTION 3. For these potentials,
√

4μ0 > β.

Assumption 1 assures that the coefficients in linear operators L and L A

are nonsingular. In addition, there will be no sign change on the x-interval
in Eq. (28). This assumption will be made throughout the text.

Assumptions 2 and 3 are introduced to make our analysis more explicit.
If the function g(x) does not satisfy these assumptions, an alternative
analysis will be outlined in the next subsection.

REMARK 1. In some sense Assumptions 2 and 3 represent the most
common case, because for practical purposes the exact decay rate at large x
should have minimal effect on the dynamics of the system. Hence modifying
the small tails of the potential to have a suitably exponentially decaying rate
should not make a meaningful difference. However, we will still show in the
next subsection that these perturbation calculations may be performed for
general potentials, and then verify all results numerically.

At large |x |, the asymptotics of the eigenfunction φ(x) can be readily
seen from Eq. (32) as

φ(x) → γ±e−√
4μ0|x |, x → ±∞, (57)

where γ± are constants. Then under Assumption 2, it is easy to see from
Eq. (34) that the large-x asymptotics of

√
4μ0φ2 − φ2

x is√
4μ0φ2 − φ2

x → s±e−(β+√
4μ0)|x |, x → ±∞, (58)

where

s± = 2b±γ±
√

4μ0

β + √
4μ0

.
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Thus

p1(x) → ± (β +
√

4μ0), x → ±∞, (59)

p2(x) → β
√

4μ0, x → ±∞, (60)

hence the asymptotics of operators L and L A are

L → ∂xx ± (β +
√

4μ0)∂x + β
√

4μ0, x → ±∞ (61)

and

L A → ∂xx ∓ (β +
√

4μ0)∂x + β
√

4μ0, x → ±∞. (62)

From these asymptotics, it is seen more explicitly that all solutions of
L f = 0 are localized (with decaying tails as e−β|x |, e−√

4μ0|x |, or their linear
combinations), and all solutions of L A f = 0 are unbounded (with growing
tails as eβ|x |, e

√
4μ0|x |, or their linear combinations).

Regarding the second homogeneous solution φ2(x), in view of the
asymptotics (57) of the first homogeneous solution φ(x), without loss of
generality we can set the large negative-x asymptotics of φ2(x) as

φ2(x) → eβx , x → −∞. (63)

Then its large positive-x asymptotics is

φ2(x) → κ1e−βx + κ2e−√
4μ0x , x → +∞, (64)

where κ1, κ2 are constants. Substituting these asymptotics into the Wron-
skian function and using the Wronskian formula (48), the value of κ1 can be
determined. However, this κ1 value is not needed in our analysis.

From Lemma 1 and Eq. (47), we rewrite the adjoint homogeneous
solutions φA and φA

2 equivalently as

φA = − φ2√
4μ0φ2 − φ2

x

, φA
2 = φ√

4μ0φ2 − φ2
x

. (65)

Then using the asymptotics (57), (58), (63), and (64), we find that the
large-x asymptotics of φA and φA

2 are

φA(x) →
⎧⎨⎩−d−e−√

4μ0x , x → −∞,

−d+
(
κ1e

√
4μ0x + κ2eβx

)
, x → +∞,

(66)

and

φA
2 (x) → j±eβ|x |, x → ±∞, (67)
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where

d± = β + √
4μ0

2b±γ±
√

4μ0
, j± = d±γ±. (68)

Notice that both adjoint solutions are unbounded and grow exponentially at
large x .

The asymptotics of functions f1 and f2 in the first-order equation (40)
can be similarly obtained as

f1(x) → q±e−√
4μ0|x |, x → ±∞, (69)

and

f2(x) → w±e−2
√

4μ0|x |, x → ±∞, (70)

where

q± = 2

(
1 − β√

4μ0

)
γ±, w± =

(
2 − β√

4μ0

)
γ 2

±. (71)

Now we consider the solvability condition of the first-order equation (40).
We see from Eqs. (31), (40), (43), and (70) that the large-x asymptotics of
R1(x) must be

R1(x) → P±
1 (x)e−√

4μ0|x | + C±
1 e−2

√
4μ0|x |, x → ±∞, (72)

where P±
1 (x) are certain linear functions of x (these linear functions come

about when one expands the tail function e−√
4μ|x | of (31) into a perturbation

series around μ = μ0), and C±
1 are constants. Note that the tails e−2

√
4μ0|x |

in the above equation are induced by the nonlinearity-related forcing term
f2 and are admissible. They do not contradict the leading-order R(x)
asymptotics (31) because they are of higher order. Enforcement of this tail
behavior for R1(x) will yield the solvability condition, which determines the
c0 value.

We begin by taking the inner product of Eq. (40) with φA
2 (x) to get〈

φA
2 , L R1

〉 = 〈
φA

2 , c0( f1 − c0σ f2)
〉
, (73)

where the inner product is defined as

〈 f, g〉 ≡
∫ ∞

−∞
f ∗gdx. (74)

Performing integration by parts, the left side of this equation becomes〈
φA

2 , L R1
〉 = 〈

L AφA
2 , R1

〉+ (
φA

2 R1x − φA
2x R1 + p1φ

A
2 R1

)∣∣+∞
−∞

= (
φA

2 R1x − φA
2x R1 + p1φ

A
2 R1

)∣∣+∞
−∞ . (75)
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In view of the asymptotics of φA
2 , R1, and p1 in Eqs. (59), (67), and (72),

as well as Assumption 3, we see that the right side of the above equation is
zero, hence we obtain a solvability condition from Eq. (73) as〈

φA
2 , f1 − c0σ f2

〉 = 0. (76)

This solvability condition is the analog of Fredholm Alternatives condition,
and it quickly yields the formula for c0 as

c0 =
〈
φA

2 , f1
〉

σ
〈
φA

2 , f2
〉 . (77)

Notice that f1 and f2 decay at large x as e−√
4μ0|x | or faster (see Eqs. (69)

and (70)), and φA
2 (x) grows at large x as eβ|x | (see Eq. (67)). Thus under

Assumption 3, both integrals in the inner products of the above equation
converge, and hence c0 is well defined.

Equation (77) is a necessary condition for the existence of the first-order
solution R1(x) with suitable asymptotics (72). Because c0 must be positive,
Eq. (77) then shows that, for the soliton bifurcation to occur to the right side
of μ0 (see Eq. (38)), the sign of nonlinearity σ must be chosen as the sign
of the ratio 〈φA

2 , f1〉/〈φA
2 , f2〉.

The above solvability condition (77) turns out to be also sufficient for
the existence of solution R1(x) with suitable asymptotics (72). To show this,
we notice that the general solution to the first-order equation (40) can be
derived by variation of parameters as

R1(x) = φ(x)
∫ x

0
φA(ξ )F(ξ )dξ + φ2(x)

∫ x

0
φA

2 (ξ )F(ξ )dξ + c1φ(x) + c2φ2(x),

(78)
where c1 and c2 are real constants. Using the asymptotics detailed earlier
in this section and under Assumption 3, we find that at large x , φA(x)F(x)
approaches a constant, and φA

2 (x)F(x) decays exponentially. Thus∫ x

0
φA(ξ )F(ξ )dξ → P̃±

1 (x), x → ±∞, (79)

where P̃±
1 (x) are linear functions of x , and∫ x

0
φA

2 (ξ )F(ξ )dξ →
∫ ±∞

0
φA

2 (ξ )F(ξ )dξ, x → ±∞. (80)

In view of the large-x asymptotics of φ(x) and φ2(x), for R1(x) in (78) to
exhibit the suitable asymptotics (72), the necessary and sufficient conditions
are ∫ ±∞

0
φA

2 (ξ )F(ξ )dξ + c2 = 0, (81)
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which leads to the equation∫ +∞

−∞
φA

2 (x)F(x)dx = 0. (82)

Substituting the expression (43) for F(x) into this equation, we then obtain
the c0 formula (77). Hence this c0 formula is a necessary and sufficient
condition for the existence of solution R1(x) with suitable asymptotics (72).

In the R1 formula (78), while c0 is given by formula (77) and c2

given by Eq. (81), c1 is still a free parameter. This c1 parameter will be
fixed by requiring the second-order solution R2(x) to have suitable large-x
asymptotics (similar to (72) but with linear functions P±

1 (x) replaced by
quadratic functions P±

2 (x)). This calculation of c1 is in the same spirit of the
c0 calculation, thus details will not be pursued in this article.

4.4. Extension to general potentials

In the event that Assumptions 2 and 3 of the previous subsection do not
hold, that is, the decay rate of the potential is not simply exponential, or
the exponential decay rate is too fast, that is, β >

√
4μ0, then the simple

c0 formula (77) in the previous subsection will be invalid. For instance,
when β >

√
4μ0, the integral in the numerator of (77) would be divergent in

view of the asymptotics of its integrand. The quantity on the right side of
Eq. (75) would not vanish either. Thus the solvability condition for these
more general potentials needs a different treatment.

In our new treatment, we consider the R1(x) solution (78) and demand
that its tail asymptotics match (72). Suppose the tail asymptotics of the
second homogenous solution φ2(x) has the form

φ2 →
{
τ−(x), x → −∞,

κ2e−√
4μ0x + τ+(x), x → +∞,

(83)

where κ2 is a certain real constant, and τ±(x) are the other decaying tail
functions. If g(x) decays exponentially as b±e−β|x | at large |x |, then it
is seen from the Wronskian formula (48) that τ±(x) also decays at the
same exponential rate, which matches the asymptotics (63) and (64) in the
previous subsection. If g(x) decays as a Gaussian b±e−ax2

at large |x |,
where a is a positive constant, then from Eq. (48) and the asymptotics
of φ(x) in Eq. (57), we can find through integration by parts that the
leading-order asymptotics of τ±(x) is

τ±(x) → α±
e−ax2

x2
, x → ±∞, (84)
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where α± are certain constants. From these two examples, we see that the
tails τ±(x) decay at the same, or roughly the same, rates as the function
g(x).

We now substitute the F formula (43) into (78). Then, this R1 solution
can be rewritten as

R1(x) = c0 [R11(x) − c0σ R12(x)] + c1φ(x) + c2φ2(x), (85)

where R11(x) and R12(x) are particular solutions of equations

L R11(x) = f1, L R12(x) = f2. (86)

For definiteness, we impose zero initial conditions on R11 and R12 at x = 0,
that is,

R1k(0) = R′
1k(0) = 0, k = 1, 2. (87)

Notice that both particular solutions R11 and R12 approach zero at large x ,
because the forcing terms f1 and f2 approach zero, and the homogeneous
solutions are all localized.

The tails of the particular solutions R11 and R12 each have terms that
decay exponentially and a term which decays like τ±(x), due to the
exponentially decaying forcing terms and exponential as well as τ±(x) tails
inside the homogeneous solutions. Specifically,

R11(x) →
{

P−
11(x)e

√
4μ0x + χ−

1 τ
−(x), x → −∞,

P+
11(x)e−√

4μ0x + χ+
1 τ

+(x), x → +∞,
(88a)

R12(x) →
{

P−
12 e

√
4μ0x + C−

1 e2
√

4μ0x + χ−
2 τ

−(x), x → −∞,

P+
12 e−√

4μ0x + C+
1 e−2

√
4μ0x + χ+

2 τ
+(x), x → +∞.

(88b)

Here P±
11 are linear functions and P±

12, C±
1 are constants.

Substituting these asymptotics into the R1(x) formula (85) and comparing
its tails with Eq. (72), we see that the coefficients on τ±(x) must be zero as
x → ±∞, even if τ±(x) decay more quickly than e−√

4μ0|x | and e−2
√

4μ0|x |,
as is the case when g(x) decays like a Gaussian, see Eq. (84). The reason
for it is that the R1(x) term in the soliton solution can only contain tails
P±

1 (x)e−√
4μ0|x | and C±

1 e−2
√

4μ0|x |, and nothing else (no matter how small
they are). This leads to the following system of equations

c0χ
−
1 − c2

0σχ
−
2 + c2 = 0, c0χ

+
1 − c2

0σχ
+
2 + c2 = 0. (89)

From these, we obtain the necessary and sufficient solvability condition as

c0 = χ+
1 − χ−

1

σ (χ+
2 − χ−

2 )
. (90)
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For potentials with exponential decay rates, the constants χ±
1 , χ

±
2 can be

found analytically with a bit of effort. In general, they may not be known
analytically, but can be efficiently evaluated numerically, as examples in the
next subsection will show.

In the above analysis, the c0 coefficient was derived as a ratio (see Eqs.
(77) and (90)), and we have tacitly assumed that the denominators in those
ratios were nonzero. If those denominators are zero, then the solitons would
be larger than O(ε), hence the perturbation expansion (37) of the solitons
would need to be modified.

4.5. Numerical examples

Now, we numerically confirm the above analysis with two examples.

EXAMPLE 1. For the first example, we choose the complex potential (5)
with an uneven double-hump function

g(x) = 0.8 [sech(x + 2) + h sech(x − 2)] , (91)

where h is a positive constant, and σ = 1 (focusing nonlinearity). Notice
that this potential is exponentially decaying, satisfying our Assumption 2
with β = 1.

When h = 1.2, the function g(x) and the corresponding complex potential
V (x) are displayed in Figs. 1(a) and (b), respectively. Notice that this
potential is non-PT -symmetric. Eigenvalues of the eigenmode problem (32)
are shown in panel (c), where two real eigenvalues are found. The larger
of these eigenvalues is μ0 ≈ 0.3708, whose eigenfunction φ(x) is plotted in
panel (d). For this eigenvalue,

√
4μ0 > 1, thus Assumption 3 is met, and the

analysis in Section 4.3 applies.
From this linear eigenmode, we have verified numerically that a continu-

ous family of solitons bifurcates out. The power curve of this soliton family
is shown in panel (e). Here the power is defined as P = ∫∞

−∞ |ψ |2dx. The
analytical prediction for the power slope P ′(μ0) at the bifurcation point can
be obtained from Eqs. (37)–(39) as

P ′
anal(μ0) = c0

∫ ∞

−∞
φdx, (92)

where c0 is given by formula (77). For h = 1.2, this analytical power
slope is found to be approximately 5.8961. The line with this power slope
is plotted as dashed red line in panel (e), and good agreement with the
numerical power slope can be seen. In panel (f), the amplitude profile
R = |ψ |2 of the soliton at the marked point of the power curve (with
μ = 0.6) is displayed.
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Figure 1. (a) The example function g(x) in Eq. (91) with h = 1.2; (b) complex potential
V (x) for the g(x) function in (a); (c) eigenvalues μ0 of the eigenmode problem (32); (d)
eigenfunction φ of the largest eigenvalue in (c); (e) power curve of solitons bifurcating
from the linear mode in (d) under focusing nonlinearity (solid blue: numerical values;
dashed red: the line with the theoretical slope value (92)); and (f) soliton (|ψ |2) at the
marked point of the power curve.

Figure 2. (a) Linear eigenvalue μ0 in Eq. (32) for the g(x) function (91) at various h
values; the horizontal dashed line is at μ0 = 1/4; (b) comparison on the slope of the power
curve at the bifurcation point μ0 between numerical values (solid blue) and analytical
predictions (red dots).

As parameter h in the g(x) function (91) varies, the discrete eigenvalue
μ0 will change (see Fig. 2(a)). When h drops below 0.926, μ0 will fall
under 0.25, entering the

√
4μ0 < β regime (where Assumption 3 does not

hold). To test our theory for both
√

4μ0 > β and
√

4μ0 < β cases, we
have plotted in Fig. 2(b) the theoretical predictions for the power slope
P ′

anal(μ0) in Eq. (92) for 0.5 ≤ h ≤ 1.5, which encompasses both cases.
The reader is reminded that the c0 formula is given by Eq. (77) when



478 S. D. Nixon and J. Yang

Figure 3. (a) Complex potential V (x) for the g(x) function in Example 2; (b) power
curve of solitons under focusing nonlinearity (solid blue: numerical values; dashed red: the
line with the theoretical slope (92)); and (c) soliton (|ψ |2) at the marked point of the
power curve.

√
4μ0 > β and by Eq. (90) when

√
4μ0 < β. In the same fig., numerically

obtained power slopes P ′(μ0) for each h value are shown as well. It
is seen that numerical and analytical slope values exactly match each
other, confirming the accuracy of our theoretical analysis in Sections 4.3
and 4.4.

EXAMPLE 2. As for the second example, we consider the potential (5)
with

g(x) = 2e−x2/4 + e−(x−3)2
. (93)

The resulting potential V (x) is displayed in Fig. 3(a). The tails of this
potential decay like a Guassian, which is faster than exponential. Thus the
results in Section 4.4 apply. In this case, we first select the φ2(x) function
by requiring that for x → −∞ the function decay as in Eq. (84) and take
this tail to be τ−(x). Now for x → +∞, the dominant decay of this tail
is exponential, that is, the tail term τ+(x) decays faster than e−√

4μ0x in
Eq. (83), thus one must first find the coefficient κ2 of the exponential tail
from large-x values of φ2(x). Then subtracting away this exponential tail
from φ2(x), the remaining tail is τ+(x). To obtain χ±

1 and χ±
2 in Eq. (88),

we first compute R11(x) and R12(x) from the inhomogeneous equation (40),
with F replaced by f1 and f2, under the initial conditions (87). This is done
by integrating the inhomogeneous equation from x = 0 out to x = ±∞.
By subtracting their (slower decaying) exponential tails and comparing the
remaining tails with τ±(x) in φ2, χ±

1 and χ±
2 can then be ascertained. From

these numbers, the c0 value is calculated from formula (90).
Now, we compare these analytical predictions against numerical results.

Solving the eigenvalue problem (32), we find three discrete real eigenvalues,
the largest being μ0 ≈ 2.6923. From this eigenmode, we have confirmed
that a soliton family indeed bifurcates out. If the nonlinearity is focusing
(σ = 1), the power curve of this soliton family is plotted in Fig. 3(b), and
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the profile of the soliton at the marked point of the power curve (with
μ = 3.5) is illustrated in panel (c). On the power curve, the line with
analytically predicted power slope at the bifurcation point from Eqs. (90)
and (92) is also plotted. It is seen that this analytical power slope matches
the numerical one very well.

5. Extension to More General Nonlinearities

In this section, we show that the results in the previous sections can be
readily extended to a wider class of nonlinearities

i�t +�xx + V (x)� + G(|�|2)� = 0, (94)

where G(·) is an arbitrary real function, and V (x) is a complex potential.
Solitons (3) in this equation satisfy the stationary equation

ψxx − μψ + V (x)ψ + G(|ψ |2)ψ = 0. (95)

Just as in the case of cubic nonlinearity, in the absence of the potential
[V (x) = 0], this soliton equation admits two constants of motion. Assuming
that the constant of motion in the presence of the complex potential V (x)
is a continuous deformation of those without the potential, we can show by
the same technique employed in Section 3 that the only complex potentials
which admit a constant of motion are those in the special form of (5), and
the corresponding constant of motion is

J = r2
x − μr2 + H (r2) + r2(θ + g)2, (96)

where H (z) = ∫
G(z)dz, and dJ/dx = 0.

We can also show that for these general nonlinearities, with potentials
of the form (5), continuous families of solitons still bifurcate out from
linear discrete eigenmodes. Without loss of generality, we require H (0) = 0.
Then for solitons, J = 0. Using this relation, the equation for the complex
soliton ψ(x) is reduced to the following second-order equation for the real
amplitude variable R(x) = |ψ(x)|2:

Rxx − 4μR + 2R G(R) + 2H (R) ± 2g
√

4μR2 − 4R H (R) − R2
x = 0. (97)

This equation is the analog of Eq. (28) for the cubic NLS equation (1).
Repeating similar analysis as in the earlier text, these soliton bifurcations
can be explicitly calculated.

To illustrate these analytical results for general nonlinearities, we consider
the following example with a saturable nonlinearity.
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Figure 4. (a) Power curve of solitons bifurcating from a linear mode in Example 3; and
(b) soliton (|ψ |2) at the marked point of the power curve.

EXAMPLE 3. Consider the NLS equation (94) with a saturable nonlinear-
ity and complex potential,

i�t +�xx + V (x)� + |�|2
1 + |�|2� = 0, (98)

where the potential V (x) is of the special form (5) with g(x) chosen the
same as in Example 1 (i.e., g(x) is given by Eq. (91)), with h fixed as
h = 1.2. Solitons in this equation are sought of the form (3), where ψ(x)
solves

ψxx − μψ + V (x)ψ + |ψ |2
1 + |ψ |2ψ = 0. (99)

Because the potential here is the same as that in Example 1, discrete
eigenvalues in the linear equation (32) remain the same as those shown in
Fig. 1(c), with the larger one being μ0 ≈ 0.3708. From this eigenmode, we
have confirmed that a continuous family of solitons bifurcates out, whose
power curve is displayed in Fig. 4(a). At the marked point of the power
curve, the corresponding soliton is plotted in Fig. 4(b). This example verifies
that the bifurcation of soliton families in complex potentials (5) occurs for a
wider class of nonlinearities (94).

6. Summary and Discussion

In this paper, we have analyzed soliton families in NLS-type equations with
non-PT -symmetric complex potentials. Under a weak assumption, we have
shown that stationary forms of these equations admit a constant of motion
if and only if the complex potential is of the special form (5). Using this
constant of motion, we reduced the second-order complex soliton equation
to a new second-order real equation for the amplitude of the soliton.
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From this new soliton equation, we showed, by perturbation methods, that
continuous families of solitons bifurcate out from linear eigenmodes for
this special form of complex potentials. These results hold not only for
the cubic nonlinearity, but also for all nonlinearities of the form G(|�|2)�,
where G(·) is an arbitrary real function. While it has been known that
PT -symmetric dissipative systems share some important properties with
conservative systems, the results in this paper reveal that certain types of
non-PT -symmetric dissipative systems can also share such properties of
conservative systems (such as the existence of soliton families).

Our results also shed light on a more general question: what non-
PT -symmetric complex potentials in the NLS-type equations (1) and (94)
admit continuous families of solitons? In the absence of PT symmetry, the
existence of a constant of motion in the stationary soliton equation is critical
for the existence of soliton families. We have shown that such a constant
of motion exists only for special potentials of the form (5), assuming this
constant of motion is a continuous deformation of that from the potential-
free equation. Because this assumption is reasonable, we conjecture that the
only non-PT -symmetric complex potentials which admit soliton families are
those of the special form (5).

It should be pointed out that the question of solitons in non-PT -
symmetric potentials is closely related to the question of non-PT -symmetric
solitons in PT -symmetric potentials. Indeed, for PT -symmetric potentials
of the same special form (5), where g(x) is taken to be even, it has been
shown numerically that symmetry breaking of solitons can occur [30]. As
a consequence, continuous families of non-PT -symmetric solitons exist in
a PT -symmetric potential. This symmetry breaking is surprising because
it is forbidden in generic PT -symmetric potentials [31, 32]. Analytical
understanding of this symmetry breaking is still an open question; however,
based on the analysis in this paper, it is hopeful that this symmetry breaking
can now be analytically studied. However, this lies outside the scope of the
present article.

In the end, we mention that bifurcation of soliton families from linear
modes occurs in special forms of two-dimensional non-PT -symmetric com-
plex potentials as well [33]. Analytical understanding of such bifurcations in
two spatial dimensions is a more challenging question, which merits further
investigation.
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