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It is known that standard multiple-scale perturbation techniques fail to
pinpoint the soliton solution branches that bifurcate at edges of bandgaps
in periodic media, owing to the appearance of exponentially small growing
wave tails when the soliton’s envelope is not properly positioned. When the
bifurcation is from a single wave mode of a band edge, this difficulty has
been handled in recent work by computing these tails via an exponential
asymptotics technique in the wave number domain. However, the same
approach is not directly applicable to the bifurcation of solitons near
the opening of a bandgap, where wave modes from two nearby band
edges interact with each other. Here, we discuss two nontrivial extensions
of the exponential asymptotics technique that enable resolving this issue.
For simplicity, the analysis focuses on two model problems, namely, a
steady-state forced Korteweg–de Vries equation and a steady-state forced
nonlinear Schrödinger equation, with the precise form of forcing and
balance between nonlinear and dispersive terms chosen so as to mimic the
situation encountered in the bifurcation of solitons near a bandgap opening.
Our analysis exhibits a number of new features that are significantly
different from previous exponential asymptotics procedures, such as the
treatments when the nonlinearity dominates dispersion and when the decay
rates of the Fourier-transformed solution are asymmetric. In addition, the
analysis reveals new, and in some cases rather unexpected, functional forms
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for exponentially small wave tails, which are also confirmed by numerical
results.

1. Introduction

In a 1977 paper on nonlinear interactions between long and short waves
[1], David Benney commented that “Theoretical progress in fluid mechanics
is sometimes initiated by making use of the fact that there may be
distinct scales in the problem.” Indeed, exploiting the presence of disparate
length and/or time scales forms the basis of boundary-layer theory and the
method of multiple scales, the two most well-known singular perturbation
techniques in applied mathematics. Benney, in particular, pioneered the use
of multiple-scale techniques for deriving evolution equations, most notably
the nonlinear Schrödinger (NLS) equation and the Benney–Roskes–Davey–
Stewartson equations, in the study of nonlinear waves and fluid flows [2–4].
These evolution equations turn out to be fundamental to nonlinear science
and find applications in various other fields, including nonlinear optics and
Bose–Einstein condensates [5–8].

In spite of numerous successes, however, it is now recognized that
multiple-scale asymptotic techniques also suffer certain limitations. Specif-
ically, in the context of solitary wave propagation, these shortcomings
manifest in: (i) the appearance of short-scale oscillations at the tails of
Korteweg–de Vries (KdV) and NLS solitary waves in the presence of a
higher order dispersion perturbation, which cannot be captured at any order
by standard multiple-scale expansions [9–14]; and (ii) the bifurcation of
solitary wave packets at edges of the linear continuous-wave spectrum,
where standard two-scale perturbation expansions fail to pinpoint the proper
bifurcating solution branches [15]. Physically, the first of these difficulties
is relevant to gravity–capillary solitary waves in shallow water [16–18]
and internal gravity waves in a stratified fluid layer [19]; the second
arises in the bifurcation of gravity–capillary solitary waves on deep water
[20] as well as gap solitons from Bloch band edges in periodic media
[21–25].

In both (i) and (ii) above, standard multiscale perturbation techniques
assume from the outset complete separation of length scales, thus ignoring
the presence of exponentially small long–short wave coupling that lies
beyond all orders of the perturbation series expansion. In the case of KdV
and NLS solitary waves with short oscillatory tails, these tails arise due
to their coupling with the copropagating main solitary-wave core and have
exponentially small amplitude relative to the solitary-wave core [9–14]. In
the bifurcation of solitary wave packets from edges of the continuous-wave
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spectrum, however, the wave packets develop growing tails of exponentially
small amplitude due to coupling of the wave envelope with the underlying
periodic carrier; these growing tails vanish only if the envelope is suitably
placed relative to the carrier [15, 21–25].

The generation of exponentially small short-scale tails by long-wave cores
can be captured by carrying the standard perturbation expansions beyond
all orders. The application of such exponential asymptotics perturbation
techniques to multiscale nonlinear wave problems has attracted considerable
interest in the last 30 years, and two separate methods of attack have
emerged (see [7, 26] and references therein). The first method focuses on
singularities of the standard expansions in the complex plane, where these
“outer” expansions become disordered and rescaling becomes necessary.
Thus, in the vicinity of each singularity, an “inner” problem is formulated,
which, importantly, contains information on the long–short wave coupling.
Solving this problem subject to appropriate inner–outer matching conditions
for the singularity then enables the calculation of the exponentially small
wave tail.

The second approach, proposed in [27], recognizes that the short-
scale wave tails in the physical domain are tied to simple poles on (or
very close to) the real axis in the Fourier (wave number) domain. So,
the analysis focuses on computing the residues of these simple poles,
which have exponentially small amplitude. Unlike the standard expansion
in the physical domain, which shows no sign of tails at any order,
the analogous expansion in the Fourier domain becomes disordered at
large wave numbers, where the poles responsible for the tails reside.
This nonuniformity is then handled by introducing a “stretched” wave
number variable. Thus, by working in the wave number domain, it is
possible to use a standard two-scale perturbation procedure for obtain-
ing a uniformly valid expression for the Fourier transform, and thereby
the pole residues that furnish the tail amplitude upon inversion of the
transform.

For KdV solitary waves with oscillatory tails and related problems,
the wave number approach yields a uniformly valid approximate integral
equation for the Fourier transform, which readily furnishes the desired
simple-pole residues [27]. In other situations, however, it turns out that
this leading-order integral equation is not valid very close to the poles;
rather, it serves as an “outer” equation that has to be supplemented with
an “inner” integral equation in order to compute the pole residues. This
significant complication, first brought out in [27] using a steady-state forced
KdV equation as a model problem arises in the bifurcation of solitary
gravity–capillary wave packets at the minimum phase speed on deep water
[15], as well as gap solitons bifurcating from the edge of a bandgap in
periodic media [22, 24, 25].
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In this paper, we discuss two further nontrivial extensions of the wave
number approach for computing exponentially small wave tails. The original
motivation comes from the need to understand the bifurcation of gap
solitons near the opening of a bandgap in periodic media. Specific examples
include the NLS equation in the presence of a weak periodic potential, a
mathematical model for Bose–Einstein condensates loaded in optical lattices
[8, 28] and laser beam transmission in photonic lattices [7], as well as
surface waves over a bottom with small-amplitude periodic corrugations
[29]. In this setting, the expansion of the Fourier transform again becomes
disordered for large wave numbers, suggesting the presence of poles whose
residues give the exponentially small amplitude of the growing tails;
moreover, the reduced integral equations near the poles and away from
them are different, requiring the matching between those “inner” and “outer”
solutions. However, the previous exponential asymptotic technique, as was
successfully developed in [22, 24, 25] for the bifurcation of gap solitons near
edges of finite bandgaps, is not directly applicable. The reason is that near
a bandgap opening, wave modes from two nearby band edges interact with
each other. This mode coupling creates two serious complications for the
application of exponential asymptotics in the wave number domain. The first
one is that the nonlinear terms here make a stronger contribution to the
disordering of the Fourier-transformed solution than the dispersive terms. As
a result, the location of the poles, which is fixed by linear dispersive effects,
is on an even longer wave number scale than the disordering scale of the
Fourier transform. The second complication is that the Fourier-transformed
solution here features different decay rates in the positive and negative wave
number directions, making the derivation of the inner and outer integral
equations, as well as the calculation of the pole residues, significantly more
involved than previous cases.

Here, working in the same spirit as [27], we tackle these issues using two
simple model problems, namely, a steady-state forced KdV equation and a
steady-state forced NLS equation. In each of these models, the precise form
of forcing and balance between nonlinear and dispersive terms are chosen
so as to mimic the situation encountered in the bifurcation of gap solitons
near a bandgap opening. On the issue of nonlinearity dominating dispersion,
we show that both the inner and outer integral equations in the exponential
asymptotics procedure become ε-dependent, where ε is the short scale of
oscillatory tails. As a result, the induced exponentially small tail has a rather
intricate dependence on ε. On the issue of asymmetric decay rates in the
Fourier transform, we show that this asymmetry gives rise to asymmetric
residues of the poles, which necessitates two coupled integral equations in
the inner and outer regions in order to compute these residues and thereby
the generated tails. In all cases, our analytical formulas for the generated
tails are verified by direct numerical results.
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Figure 1. Solution u(x) to Eq. (1) subject to the upstream condition (2) with ε = 0.2 and
σ = 0.5.

2. Oscillatory tails in a steady-state forced KdV equation

In our first example, we consider the steady-state KdV equation with a
localized forcing:

ε2uxx + u − σ
√
εu2 = sech x, (1)

subject to the boundary condition

u(x) → 0, x → −∞. (2)

Here, 0 < ε � 1 and σ is a free positive constant. This problem arises
when one considers the KdV equation under a moving slowly varying
low-amplitude forcing. Looking for steady states (relative to the moving
force) and after variable normalization, one gets Eq. (1). The boundary
condition (2) is the appropriate radiation condition for this steady state
because the resonant radiation has group velocity greater than the speed of
the moving force and thus appears only ahead of the forcing. This model
problem has been analyzed in [27, 30], but with a different scaling (σ = √

ε)
of the nonlinear term. Now, the σ = O(1) scaling makes the nonlinear term
stronger, which has important ramifications for the ensuing analysis.

Solutions to this problem, which decay to zero upstream (x → −∞), will
develop short-scale oscillatory tails downstream (x → ∞). An example is
shown in Fig. 1, where the parameters are chosen as ε = 0.2 and σ = 0.5.
These oscillatory tails are induced by a resonance between the forcing term
sechx and the linear oscillatory waves at large wave numbers k = ±1/ε.
When ε → 0, the amplitudes of these oscillatory tails are exponentially
small in ε because the spectral amplitudes of the forcing term at the
resonant wave numbers k = ±1/ε are exponentially small. For this reason,
these tails cannot be detected by standard perturbation expansions in powers
of ε. Instead, exponential asymptotics is needed.
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The key novel feature here is the imbalance between the nonlinear and
dispersive terms. As nonlinearity dominates dispersion, the disordering of
the asymptotic expansion in the Fourier domain is prominently associated
with the nonlinear effects. However, resonance that gives rise to the
oscillatory tails is a linear effect, and the location of the related poles in
the Fourier domain is dictated by the dispersive term. This incongruity leads
to a novel scenario in which the poles appear on a longer wave number
scale than the disordering scale of the Fourier-transform expansion. In this
section, we develop the analysis to handle this situation and calculate the
more complex ε-dependency of the exponentially small tails.

Looking for a solution in terms of a regular perturbation expansion in ε
yields

u(x) ∼ sechx + √
εσ sech2x + 2εσ 2sech3x + . . . , (3)

which has the Fourier transform

û(k) ∼ 1

2

[
1 + εσ 2(1 + k2) + . . .

]
sech

πk

2
+ 1

2
σ
√
εkcsch

πk

2
+ . . . . (4)

Here, the Fourier transform is defined as

û(k) = 1

2π

∫ ∞

−∞
u(x)e−ikx dx . (5)

Note that the leading order secular terms above come solely from the
nonlinearity. In the Fourier domain, this expansion becomes disordered at
κ ≡ ε1/2k = O(1), and suggests the following form of the solution for
k 	 1:

û(k) = 1

2
U (κ)sech

πk

2
, (6)

where

U (κ) → 1 as κ → 0, ε → 0. (7)

Here, the function U (κ) depends explicitly on ε as well, and this ε depen-
dence is suppressed for notational simplicity. Substituting this transformation
back in Eq. (1), the equation for U (κ) is found to be

(1 − εκ2)U (κ) − 1

2
σcosh

πκ

2
√
ε

∫ ∞

−∞

U (λ)U (κ − λ)

cosh πλ

2
√
ε
coshπ(κ−λ)

2
√
ε

dλ = 1. (8)

Looking at the linear terms, we readily see that U (κ) has a singularity
at κ0 = ε−1/2. For the scaling used in [27] and other previous works, the
location of the pole has been independent of ε once moving to the long
wave number scaling κ . As we show in the following analysis, here, not
only does the location of the pole depend on ε, but also the residue of the
pole varies with ε.
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2.1. The outer equation

For 0 < κ < κ0, the integral in Eq. (8) can be simplified. Indeed, on the
integration interval 0 < λ < κ , the denominator is approximately a constant
exp(πκ/2

√
ε)/4; while outside the interval 0 < λ < κ , it is exponentially

large, thus making a negligible contribution to the integral. Under this
simplification, the reduced outer equation is

(1 − εκ2)U − σ

∫ κ

0
U (λ)U (κ − λ)dλ = 1, (9)

which proves to be asymptotically accurate (for small ε) over the entire κ
interval of 0 < κ < κ0. It is important to note here that the error in the
approximation of the convolution comes mainly from the two edges of the λ
interval [0, κ] and is O(

√
ε). In contrast, the O(ε) contribution in the linear

terms increases to O(1) as κ → κ0. For this reason, the O(ε) linear term
must be kept to maintain the validity of Eq. (9) for 0 < κ < κ0.

In this outer equation, the constant σ can be scaled out, which will allow
us to analytically obtain the oscillating-tail formula for all values of σ .
This contrasts the original equation (1) where σ cannot be scaled out. The
appropriate scaling to Eq. (9) is

κ = 1

σ
κ̂, λ = 1

σ
λ̂, U (κ) = U

(
1

σ
κ̂

)
≡ Û (κ̂). (10)

Under this scaling, the outer equation reduces to

(1 − ε̂ κ̂2)Û −
∫ κ̂

0
Û (λ̂)Û (κ̂ − λ̂)dλ̂ = 1, (11)

where ε̂ ≡ ε/σ 2. This equation can be solved by power series,

Û (κ̂) =
∞∑

m=1

âm(
√
ε̂ κ̂)m−1, (12)

where the coefficients âm satisfy the following recurrence relation:

âm − âm−2 − 1√
ε̂

m−1∑
r=1

(r − 1)!(m − r − 1)!

(m − 1)!
âr âm−r = 0, m ≥ 3, (13)

and

â1 = 1, â2 = ε̂−1/2, (14)

to be consistent with expansion (4). At large m, the coefficients âm have the
following asymptotics:

âm ∼ D(ε̂) m1/
√
ε̂ , m 	 1, (15)
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Figure 2. Graph of function D(ε̂) for the recurrence problem (13)–(15).

where the positive constant D(ε̂) depends on ε̂ but is independent of m.
This asymptotics will also be confirmed in the next section (by analyzing
the behavior of the inner equation, see Eq. (35)). As we will also show in
the next section, this âm asymptotics indicates that the solution to the outer
equation (9) features a pole at κ = κ0 with order 1/

√
ε̂ + 1 (see Eq. (31)).

This order of the pole may also be obtained directly from the outer equation
through dominant balance. For arbitrary ε̂, this order is not an integer
in general. This contrasts all previous cases of exponential asymptotics
calculations in the wave number domain, where the pole in the solution to
the outer equation always has an integer order [14, 15, 22, 24, 25, 27].

Numerically, we have obtained the graph of function D(ε̂), which is
shown in Fig. 2. Notice that D(ε̂) has a nonsimple functional form, even for
small ε̂ such as ε̂ ∼ 0.02. We have also found that

D(1) ≈ 0.9432, D(∞) = 1/2. (16)

These D values will show that our exponential asymptotics results can
recover those in [27] with weaker nonlinearity or no nonlinearity as special
cases. More will be said on this at the end of this section.

In view of the scaling introduced in (10), the solution to the unscaled
outer equation (9) is

U (κ) =
∞∑

m=1

am(
√
ε κ)m−1, (17)

where

am = âm ∼ D(ε̂)m1/
√
ε̂ , m 	 1. (18)
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2.2. The inner equation

Near the pole (κ ∼ κ0), the outer equation (9) is invalid, and a different
approximation to the original equation (8) is needed. To this end, we
introduce the inner variable ξ = (κ − κ0)/

√
ε. When ξ = O(1), dominant

contributions to the integral of Eq. (8) come from the λ ∼ 0 and λ ∼ κ

regions. Utilizing the asymptotics (7) and the ε-scaling of U (ξ ) to be found
in Eq. (28), Eq. (8) then reduces to

√
ε ξU (ξ ) + 1

2
σ

∫ ∞

−∞
eπλ/2sech

πλ

2
U (ξ − λ)dλ = 0. (19)

This inner equation is almost the same as that derived in [27], except for
the

√
ε factor that proves to be important. This

√
ε factor is a consequence

of nonlinearity dominating dispersion, and it makes the inner solution very
different from that in [27] as we will see below.

Defining the same scaled parameter ε̂ = ε/σ 2, this inner equation be-
comes

√
ε̂ ξU (ξ ) + 1

2

∫ ∞

−∞
eπλ/2sech

πλ

2
U (ξ − λ)dλ = 0. (20)

Since the integral is of convolution type, its solution can be postulated as a
half line Fourier transform [27]

U (ξ ) =
∫ ±∞

0
e−isξφ(s)ds, (21)

where the ± sign in the upper limit is chosen for ξ in the lower and upper
half of the ξ plane, respectively. Inserting this transform into the integral
equation (20), exchanging the order of integration and utilizing the formula∫ ∞

−∞

1

2
sech

πλ

2
eikλdλ = sech k, (22)

this integral equation becomes∫ ±∞

0
e−isξ

[√
ε̂

dφ

ds
− φ

sinh s

]
ds = 0; (23)

thus, the function φ(s) satisfies the differential equation

√
ε̂

dφ

ds
− φ

sinh s
= 0. (24)

This differential equation may be solved exactly as

φ(s) = C
[
2tanh

s

2

]1/
√
ε̂

, (25)
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where C is a constant to be found by matching with the outer solution.
Substituting Eqs. (21) and (25) into (19), exchanging the order of integration
and utilizing the formula (22) again, we find an alternative expression for
the solution U (ξ ) that has a wider domain of analyticity,

U (ξ ) = −i√
ε̂ ξ

∫ ±∞

0
e−isξ φ(s)

sinh s
ds, (26)

or equivalently,

U (ξ ) = −iC√
ε̂ ξ

∫ ±∞

0
e−isξ

[
2tanh s

2

]1/
√
ε̂−1

cosh2 s
2

ds. (27)

Below, we will only take the plus sign in the upper limit of the integral,
which yields a solution for U (ξ ) valid in the lower half of the ξ plane and
analytically extendable to the strip 0 < Im(ξ ) < 1 in the upper half plane.
This solution will be suitable for calculating the physical solution u(x) that
decays upstream (x → −∞) and has an oscillating tail downstream.

The asymptotics of this solution for U (ξ ) can be readily obtained. When
ξ → 0, the integral in the solution expression (27) approaches a constant
and gives us the asymptotics

U (ξ ) → −iC
21/

√
ε̂

ξ
, ξ → 0, (28)

which has a simple pole of residue −i21/
√
ε̂C at ξ = 0. When ξ → −∞,

by changing the path of integration in the solution expression (21) to the
upper imaginary s-axis (which is the path of steepest descent), we find that
the dominant contribution to the integral comes from the s ≈ 0 region, and
thus

U (ξ ) → Ĉ

(−ξ )1/
√
ε̂+1
, ξ → −∞, (29)

where

Ĉ ≡ i1/
√
ε̂+1	

(
1√
ε̂

+ 1

)
C. (30)

This large-ξ asymptotics of the inner solution needs to match the
asymptotics of the outer solution as κ → κ0. In terms of the outer variable
κ , the asymptotics (29) reads

U (κ) ∼ Ĉε1/
√
ε̂+1 1(

1 − κ
κ0

)1/
√
ε̂+1
, κ ∼ κ0, (31)
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which shows that the solution to the outer equation (9) has a pole at κ = κ0

with order 1/
√
ε̂ + 1. To connect the above behavior with the power series

solution (17) of the outer equation, we Taylor-expand the above function as

U (κ) ∼ Ĉε1/
√
ε̂+1(

1√
ε̂

)
!

∞∑
m=1

(
1√
ε̂

+ m − 1
)

!

(m − 1)!
(
√
ε κ)m−1. (32)

Comparing this with the Taylor series (17) of the outer solution, we see
that

am ∼ Ĉε1/
√
ε̂+1

	
(

1√
ε̂

+ 1
) 	

(
1√
ε̂

+ m
)

	(m)
, m 	 1. (33)

Using the large-x asymptotics of the 	(x) function,

	(x) ∼
√

2π x x− 1
2 e−x , x 	 1, (34)

we find that

am ∼ Ĉε1/
√
ε̂+1

	
(

1√
ε̂

+ 1
) m1/

√
ε̂ , m 	 1. (35)

Comparing this asymptotics with (18) and utilizing the Ĉ expression (30),
we then find that

C = D(ε̂)

(iε)1/
√
ε̂+1
. (36)

Inserting this C formula into (28), we obtain the behavior of the solution
U (ξ ) near the pole as

U (ξ ) → − D(ε̂)

ε

(
2

iε

)1/
√
ε̂ 1

ξ
, ξ → 0. (37)

Substituting this into (6), we then get the pole behavior in the original
Fourier transform û(k) as

û(k) ∼ − D(ε̂)

ε

(
2

iε

)1/
√
ε̂ e− π

2ε

k − 1
ε

, k → 1

ε
. (38)

Since u(x) is real, its Fourier transform û(k) admits the symmetry

û(−k) = û∗(k) (39)

for real k. Using this symmetry, we can easily derive the behavior of the
solution û(k) at the other pole k = −1/ε.
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2.3. Oscillating tails

Finally, we take the inverse Fourier transform

u(x) =
∫ ∞

−∞
û(k)eikx dk (40)

to recover the physical solution. To make u(x) decay upstream, we choose
the integration path to pass below the two poles at k = ±1/ε. Then, using
the residue theorem, we find that downstream,

u(x) ∼ −2π i D(ε̂)

ε

(
2

iε

) 1√
ε̂

e− π
2ε+i x

ε + c.c., x 	 1, (41)

which simplifies to

u(x) → R sin
1

ε
(x − θ ), x → ∞, (42)

where the tail amplitude R and phase θ are given by

R = 4πD
(
ε
σ 2

)
ε

e− π
2ε+ σ√

ε
ln( 2

ε ), θ = πσ
√
ε

2
. (43)

The R formula shows that the tail amplitude is indeed exponentially small,
which is expected. However, an unexpected feature of this R formula is
that, in addition to the usual exp(− π

2ε ) factor, it also contains a factor
exp( σ√

ε
ln( 2

ε
)), which has not been seen before. This latter factor is induced

by the nonlinearity dominating dispersion, and is one of the main new
aspects of this exponential asymptotics analysis.

We have compared these formulas with numerics for a fixed value of
σ = 1/2 and various values of ε, and the comparison results are presented
in Fig. 3. One can see that the analytical and numerical results approach
each other as ε decreases, confirming the asymptotic nature of our formulas.

In the analysis above, the nonlinear coefficient σ was treated as an
arbitrary but O(1) parameter. Interestingly, our results are also valid when
σ = √

ε and 0. The former case has a weaker nonlinearity and has been
treated before [27]. In this case, our formulas (42) and (43) reduce to

u(x) → −8πD(1)

ε2
e− π

2ε cos
x

ε
, x → ∞, (44)

where D(1) is given in Eq. (16). This formula exactly matches that in
[27]. In the latter case, σ = 0, there is no nonlinearity. Utilizing the value
D(∞) = 1/2 in (16), our formulas (42) and (43) reduce to

u(x) → 2π

ε
e− π

2ε sin
x

ε
, x → ∞, (45)

which again matches the linear tail in [27] exactly.
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Figure 3. Comparison of the amplitude and phase of the oscillating tail between numerics
and the analytical formulas (43) for σ = 0.5 and various ε in the problem (1)–(2). Upper
left: numerical tail versus 1/ε. Upper right: numerical phase versus ε. Lower left: the ratio
between numerical tail size and the analytical formula (43) versus ε. Lower right: the ratio
between numerical phase and analytical formula (43) versus ε.

3. Oscillatory tails in a steady-state forced NLS equation

In our second example, we consider the steady-state NLS equation with a
complex forcing:

u + ε2uxx − εσ |u|2u = sech
(

x − i
α

2

)
, (46)

subject to the boundary condition

u(x) → 0, x → −∞. (47)

Here, 0 < ε � 1, σ is a positive free parameter, and 0 < α < π is another
free parameter. This choice of forcing is motivated by the so-called coupled
mode equations, which are the appropriate envelope equations near the
opening of a bandgap in periodic media and admit soliton solutions with
the same complex “sech” form [6]. Equation (46) admits solutions that
decay upstream and exhibit oscillatory tails downstream (x → ∞). An
example of such a solution is displayed in Fig. 4. Again, the amplitudes
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Figure 4. A solution u(x) to Eqs. (46) and (47) with σ = 0.7, α = π/2, and ε = 0.09.
Solid blue: Re(u); dashed red: Im(u).

of these oscillatory tails are exponentially small in ε, and we will develop
exponential asymptotics below to calculate them.

In this example, the Fourier transform of the forcing decays faster for
k → −∞ than for k → ∞. As a result, in the perturbation expansion in
the wave number domain, the dominant behavior for k → −∞ is dictated
by higher order terms that decay more slowly (see Eq. (49)). Because of
this, approximating the convolution integrals in the wave number domain
resulting from the nonlinear term in Eq. (46) becomes more complicated
than before, and reductions to a single outer or inner equation are no longer
possible.

A straightforward perturbation expansion of the solution in ε gives

u(x) ∼ u0 + εσ |u0|2u0 − ε2u0xx + 3ε2σ 2|u0|4u0 + . . . , (48)

where u0(x) = sech(x − iα2 ). The Fourier transform of this perturbation
solution is

û(k) ∼ û0(k)

[
1 + εσ csc(α)k + ε2k2 + 3

2
ε2σ 2 csc2(α)k2 + . . .

]
+ εσ v̂0(k) csc2α [1 + 3εσ csc(α)k + . . .] , (49)

where

û0(k) = 1

2
sech

(π
2

k
)

ekα/2 (50)

is the Fourier transform of u0(x), and v̂0(k) = û0
∗(−k) is the Fourier

transform of v0(x) ≡ u∗
0(x).
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It is important to notice that û0(k) has different decay rates along the
positive and negative k directions,

û0(k) →
{

e−(π−α)k/2, k → ∞,

e(π+α)k/2, k → −∞;
(51)

i.e., it decays slower along the positive k direction. Since v̂0(k) = û0
∗(−k),

v̂0(k) decays faster along the positive k direction. As a consequence, the
Fourier transform û0(k) has differing asymptotic behaviors as k → ±∞.

(1) For k 	 1, since v̂0(k) decays more rapidly than û0(k), the εv̂0(k)
terms in (49) are subdominant.

(2) For k � −1, however, v̂0(k) decays slower than û0(k). Thus, the
εv̂0(k) terms actually become dominant.

These disparate asymptotic behaviors of û(k) in the positive and negative
k directions will be important when computing convolution integrals in the
wave number domain.

The perturbation series (49) becomes disordered for κ ≡ εk = O(1).
Upon taking the Fourier transform of the original equation (46), using
v ≡ u∗ and the κ scaling, we get the following set of coupled integral
equations:

û − κ2û − σ

ε

∫ ∞

−∞

∫ ∞

−∞
û(κ − λ)̂u(λ− r )̂v(r )drdλ = û0, (52a)

v̂ − κ2v̂ − σ

ε

∫ ∞

−∞

∫ ∞

−∞
v̂(κ − λ)̂v(λ− r )̂u(r )drdλ = v̂0. (52b)

Here, the solution û(k) does not exhibit the same symmetry (39) as the
previous example because u(x) is complex now. As a consequence, the pole
behaviors at κ = ±1 will be different and coupled.

3.1. Outer equation

For κ > 0, due to the subdominant nature of the εv̂0(k) terms in (49), we
assume the leading-order solution of û(k) in the form

û(k) ∼ U (κ)û0(k). (53)

For the solution v̂(k) = û(−k)∗, however, its tail contains both rapidly
decaying terms starting at O(1) and slowly decaying terms starting at O(ε).
Thus, v̂(k) for κ > 0 is assumed to take the form

v̂(k) = U ∗(−κ)v̂0(k) + εV (κ)û0(k). (54)
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Since v̂0(k) decays much more rapidly than û0(k) as k grows large, the
proper approximation is

v̂(k) ∼
{
v̂0(k)U ∗(−κ), 0 < κ � 1,

εû0(k)V (κ), κ = O(1).
(55)

Our idea for simplifying the double convolutions in Eqs. (52) can be
understood from treating a single convolution. Specifically, consider the
single convolution

∫ ∞
−∞ û(κ − λ)̂v(λ)dλ, which is∫ ∞

−∞
U (κ − λ)û0

(
κ − λ

ε

) [
U ∗(−λ)v̂0

(
λ

ε

)
+ εV (λ)û0

(
λ

ε

)]
dλ.

Contributions to this integral can be broken into four intervals,

(−∞,−δ), (−δ, δ), (δ, κ), (κ,∞),

where δ is an introduced parameter to split the intervals. We choose
ε � δ � 1, which allows δ to be large enough for the exponential decay to
dominate the solution behavior, but small enough to avoid encroachment on
the interval 0 < λ < κ . Next, we calculate these four contributions when κ
is away from any poles.

The contribution from the second interval (−δ, δ) is

I2 =
∫ δ

−δ
û(κ − λ)̂v(λ)dλ

≈
∫ δ

−δ

(
U (κ − λ)e−(π−α)(κ−λ)/2ε

)
U ∗(−λ)̂v0(λ/ε)dλ

≈ εU (κ)U ∗(0)e−(π−α)κ/2ε
∫ δ/ε

−δ/ε
e(π−α)r/2v̂0(r )dr

≈ εU (κ)(1)e−(π−α)κ/2ε
∫ ∞

−∞

1

2
sech

(πr

2

)
e( π2 −α)r dr

= εe−(π−α)κ/2εU (κ) csc(α).

In the third interval (δ, κ), v̂(λ) is approximated by its slowly decaying tail
terms at order ε, see Eq. (55). Thus,

I3 =
∫ κ

δ

û(κ − λ)̂v(λ)dλ

≈
∫ κ

δ

(
e−(π−α)(κ−λ)/2εU (κ − λ)

) (
εe−(π−α)λ/2εV (λ)

)
dλ

≈ εe−(π−α)κ/2ε
∫ κ

0
U (κ − λ)V (λ)dλ.
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The remaining two regions make smaller contributions and may be ignored,
since

I1 =
∫ −δ

−∞
û(κ − λ)̂v(λ)dλ ∼ O

(
εe−(π−α)δ/εe−(π−α)κ/2ε

)
,

I4 =
∫ ∞

κ

û(κ − λ)̂v(λ)dλ ∼ O
(
ε2e−(π−α)κ/2ε

)
.

Collecting all these contributions, we get a final approximation for the single
convolution integral as∫ ∞

−∞
û(κ − λ)̂v(λ)dλ ≈ εe−(π−α)κ/2ε

(
csc(α)U (κ) +

∫ κ

0
U (κ − λ)V (λ)dλ

)
.

Using the above procedure as a guide, approximating the double convolu-
tion integrals in (52) gives the following outer equations for κ > 0 and away
from any poles,

U − κ2U − σ

∫ κ

0

∫ λ

0
U (κ − λ)U (λ− r )V (r )drdλ

− σ csc(α)
∫ κ

0
U (κ − λ)U (λ)dλ = 1, (56a)

V − κ2V − σ

∫ κ

0

∫ λ

0
V (κ − λ)V (λ− r )U (r )drdλ

− 2σ csc(α)
∫ κ

0
V (κ − λ)U (λ)dλ− σ csc2(α)U = 0. (56b)

To be consistent with (49), the initial conditions to these outer equations
are

U (0) = 1, V (0) = σ csc2(α). (57)

Using dominant balance, we find that near the pole singularity (κ → 1),
the leading order behaviors of U (κ) and V (κ) are

U (κ) ∼ Â(1 − κ)−(p+1), (58a)

V (κ) ∼ B̂(1 − κ)−(p+2), (58b)

where constants p, Â, and B̂ satisfy the system of equations

0 = 2 Â − σ
B̂

p(p + 1)
− 2σ csc(α)

Â

p
, (59a)

0 = 2B̂ − 2σ csc(α)
B̂

(p + 1)
− σ csc2(α) Â. (59b)
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For nontrivial solutions to be possible, we find that

p = 1

2

(
−1 + 2σ csc(α) +

√
1 + σ 2 csc2(α)

)
, (60)

and B̂ can be expressed in terms of Â as

B̂ = 2

σ
(p + 1)[p − σ csc(α)] Â, (61)

where Â is a constant that can be determined by solving the coupled outer
equations (56) numerically. For generic values of σ and α, p is not an
integer. Thus, in this problem, the orders of the poles in the outer solution
are again noninteger in general, which resembles the first example in the
previous section but contrasts exponential asymptotics calculations done
before in the wave number domain [14, 15, 22, 24, 25, 27].

3.2. Inner equation

Near the pole at k0 = 1/ε, we define the inner variable ξ = (k − k0)/ε, and
propose the inner solutions in the form

û(ξ ) = ε−(p+1)û0(k)φ(ξ ), (62a)

v̂(ξ ) = ε−(p+1)û0(k)ψ(ξ ). (62b)

The ε scaling here is deduced from the requirement that this inner solution
at |ξ | 	 1 should match the outer solution near the pole (κ ∼ 1), with
the latter provided by Eqs. (53), (54), and (58). In fact, this matching
condition provides not only the correct ε scaling above, but also the large-ξ
asymptotics of the inner solution, which coincides with the one obtained
independently from the analysis of the inner equation below (see (70)).

For k values near the pole, the main contributions to the double
convolutions in (52) come from the three regions: (i) λ ≈ r ≈ 0; (ii)
λ ≈ 1, r ≈ 0; and (iii) λ ≈ r ≈ 1. In these regions, one of the three terms in
the integrand is near the pole, and the other two terms are in the small wave
number regimes. In this case, the full equations (52) reduce to the following
coupled inner equations for φ(ξ ) and ψ(ξ ):

2ξφ + σ

∫ ∞

−∞
eλ(π−α)/2

(
2û0v0(λ)φ(ξ − λ) + û2

0(λ)ψ(ξ − λ)
)

dλ = 0, (63a)

2ξψ + σ

∫ ∞

−∞
eλ(π−α)/2

(
2û0v0(λ)ψ(ξ − λ) + v̂2

0(λ)φ(ξ − λ)
)

dλ = 0. (63b)

These are solved by half-line Fourier transforms

φ(ξ ) =
∫ ∞

0
φ̃(s)e−isξds, (64a)
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ψ(ξ ) =
∫ ∞

0
ψ̃(s)e−isξds, (64b)

for ξ in the lower half plane. This transform converts the coupled integral
equations (63) into coupled differential equations

0 = −2i
dφ̃

ds
− σ2csch(s)csch(s + iα)̃φ − σcsch2(s)ψ̃, (65a)

0 = −2i
dψ̃

ds
− σ2csch(s)csch(s + iα)ψ̃ − σcsch2(s + iα)̃φ. (65b)

To solve these homogeneous differential equations, initial conditions are
needed. These initial conditions can be obtained from local analysis of these
equations in the limit of s → 0. Using dominant balance, we find that

φ̃(s) ∼ As p, s → 0, (66a)

ψ̃(s) ∼ Bs p+1, s → 0, (66b)

where p is the same constant found in (60), and the parameters A and B are
related by

B = −2i

σ
[p − σ csc(α)]A. (67)

These parameter values will be determined by matching the inner solutions
to the outer ones (see Eq. (71)).

The set of differential equations (65) do not seem to admit a closed-form
analytical solution; so, instead, we settle for a numerical solution. Once
φ̃(s) and ψ̃(s) have been computed, we insert the transform (64) back into
the inner equations (63). Then, upon exchange of order of integration and
simple manipulation, the solution to the inner equations can be expressed
alternatively as

φ(ξ )= σ

2ξ

∫ ∞

0

(
2csch(s)csch(s+iα)̃φ(s) + csch2(s)ψ̃(s)

)
e−isξds, (68a)

ψ(ξ )= σ

2ξ

∫ ∞

0

(
2csch(s)csch(s+iα)ψ̃(s) + csch2(s + iα)̃φ(s)

)
e−isξds, (68b)

which have a wider domain of analyticity in the ξ plane. These formulas
show that φ(ξ ) and ψ(ξ ) have a simple pole at ξ = 0, and their residues are

Rφ = σ

2

∫ ∞

0

(
2csch(s)csch(s + iα)̃φ(s) + csch2(s)ψ̃(s)

)
ds, (69a)

Rψ = σ

2

∫ ∞

0

(
2csch(s)csch(s + iα)ψ̃(s) + csch2(s + iα)̃φ(s)

)
ds. (69b)



242 S. D. Nixon et al.

As ξ → ±∞, the dominant contributions in the solution expressions (64)
come from the s ≈ 0 region. Inserting the s → 0 asymptotics (66) of φ̃ and
ψ̃ into (64), large-ξ asymptotics of φ and ψ are found to be

φ(ξ ) ∼ A
	(p + 1)

(iξ )p+1
, (70a)

ψ(ξ ) ∼ B
	(p + 2)

(iξ )p+2
. (70b)

This large-ξ asymptotics of the inner solution should match the κ → 1
asymptotics (58) of the outer solution. This matching yields

A = (−i)p+1

	(p + 1)
Â, (71a)

B = (−i)p+2

	(p + 2)
B̂, (71b)

which allows us to find the correct choice of parameter A in terms of
the numerically computed Â from the outer equation. After the value of
A is obtained, the inner differential equations (65), subject to the initial
conditions (66), can be uniquely solved. Then, the residues Rφ and Rψ can
be derived from (69).

3.3. Tail calculation

The formula for the oscillating tails comes from the poles of û(k) at
k = ±1/ε. After the residues Rφ and Rψ are obtained, the near-pole
behaviors of φ(k) and ψ(k) are

φ(k) ∼ Rφ
k − 1/ε

, k ∼ 1/ε, (72a)

ψ(k) ∼ Rψ
k − 1/ε

, k ∼ 1/ε. (72b)

Substituting these into Eqs. (62) and utilizing the relation v̂(k) = û(−k)∗, we
obtain the behavior of û(k) near the two poles k = ±1/ε as

û(k) ∼ ε−(p+1) Rφ
k − 1/ε

e−(π−α)/2ε, k → 1

ε
(73a)

û(k) ∼ −ε−(p+1)
R∗
ψ

k + 1/ε
e−(π−α)/2ε, k → −1

ε
. (73b)

Finally we perform the inverse Fourier transform to recover the physical
solution u(x). As before, we pick a contour of integration for the inverse
Fourier transform that passes below the two poles. From the residue
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Figure 5. Solutions to the outer equations (56) and (57) for σ = 0.7 and α = π/2. Left:
the unscaled solutions U (κ) (solid blue) and V (κ) (dashed red). Right: the scaled solutions
U (κ)(1 − κ)p+1 (solid blue) and V (κ)(1 − κ)p+2 (dashed red).

theorem, these two poles produce a tail of the form

u(x) ∼ 2π iε−(p+1)
(
Rφeix/ε − R∗

ψe−ix/ε
)

e−(π−α)/2ε, x 	 1. (74)

The amplitude of this tail is

R = 2π
(|Rφ| + |Rψ |) ε−(p+1)e−(π−α)/2ε, (75)

which is exponentially small as anticipated.
We have compared these analytical oscillating tails with numerical results

for a range of σ and α values and found good agreement. To illustrate, we
take σ = 0.7 and α = π/2. In this case, the solutions to the outer equations
(56) and (57) are obtained numerically and displayed in Fig. 5. From the left
panel, it is seen that these solutions develop singularities as κ → 1. From
the scaled solutions plotted in the right panel, we obtain the constants Â and
B̂ as

Â ≈ 1.12, B̂ ≈ 0.64.

These numbers satisfy the relation (61) as predicted. From these constants,
the A and B values are derived from Eq. (71). Using these A, B values, the
inner differential equations (65) and (66) are then numerically solved, which
yields the residues

Rφ ≈ 1.00i, Rψ = −0.32,

and the analytical tail formulas (74) and (75) are thus fully prescribed.
We now compare these analytical tail formulas with numerical results. For

this purpose, the wave tails are numerically computed for various values of
ε, and the tail amplitude (defined as the maximum of the absolute value of
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Figure 6. Comparison of the amplitude of the oscillating tail between numerics and the
analytical formula (75) for σ = 0.7 and α = π/2 and various ε in the problem (46)–(47).
Left: the numerical tail size versus 1/ε. Right: the ratio between the numerical tail size
and the analytical formula (75) versus ε. This ratio converges to 1 (dotted red) as ε → 0.

the oscillating tail) is plotted against ε in the left panel of Fig. 6. In the
right panel, the ratio of the numerically computed tail amplitude and the
asymptotic prediction (75) is plotted. It is seen that this ratio approaches
1 as ε → 0, which confirms the asymptotic accuracy of our analytical
formulas.

4. Conclusion

We have presented exponential asymptotics techniques for computing short-
scale oscillatory wave tails in two simple forced nonlinear wave problems.
Our motivation for analyzing these model problems was to pave the way for
understanding the bifurcation of gap solitons near the opening of a bandgap
in periodic media, as the approach we successfully applied to gap solitons
near edges of finite bandgaps in earlier work [22, 24, 25] encounters serious
difficulties in this setting. Near the opening of a bandgap, two new obstacles
arise: (i) the location of the poles in the wave number domain happens
to be on a longer wave number scale than the nonlinear effects; (ii) the
Fourier transform of the envelope solution features different decay rates in
the positive and negative wave number directions, which causes the poles to
be coupled and their residue calculation much more involved.

The examples discussed here were selected with the express purpose
of addressing these two issues. Specifically, the first issue was tackled
by considering a steady-state KdV equation with “sech” forcing, where
nonlinearity is taken to be stronger than dispersion. In this model, the
poles also appear on a longer wave number scale. As a consequence,
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both the inner and outer reduced equations are ε-dependent, and the
induced exponentially small tail has a rather intricate dependence on ε, as
indicated by Eqs. (42) and (43). These asymptotic results are supported
by numerical computations and also reduce to the already known tail
expressions in the linear limit and in the case when nonlinearity balances
dispersion [27].

The second issue was dealt with by considering a steady-state NLS
equation with a complex “sech” forcing, whose Fourier transform decays
faster for k → −∞ than k → ∞. This asymmetry affects the analysis in the
wave number domain in a highly nontrivial way, necessitating the solution
of two coupled equations in the outer and inner regions in order to finally
compute the pole residues and thereby the generated tails.

The exponential asymptotics techniques discussed here for simple model
problems have laid the groundwork for analyzing the bifurcation of gap
solitons near the opening of a bandgap in periodic media. As a specific
example, consider the NLS equation with a weak spatially periodic potential.
The linear spectrum comprises a countable infinity of bandgaps that emanate
from specific frequencies when the potential strength tends to zero. Near the
opening of each bandgap, a standard multiple-scale bifurcation theory shows
that weakly nonlinear solutions are in the form of modulated wave packets
whose envelope is governed by the so-called coupled-mode equations. These
envelope equations admit envelope-soliton solutions that are translation-
invariant, suggesting the existence of gap solitons irrespective of the position
of the envelope relative to the periodic carrier. This, of course, is not true
owing to the appearance of growing tails of exponentially small amplitude,
necessitating the use of exponential asymptotics. The soliton solutions of the
coupled-mode equations have the same complex “sech” form as the forcing
of the NLS equation (46) treated in Section 3, where the Fourier transform
of the solutions exhibits different decay rates along the positive and negative
wave number directions. Accordingly, the exponential asymptotics procedure
for computing these tails is expected to follow along similar lines as this
model problem, taking also into account the modifications discussed in
Section 2 due to the fact that nonlinearity also dominates dispersion in this
setting. Details of the analysis of gap solitons near a stop-band opening will
be reported elsewhere.
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