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A numerical method is proposed for computing time-periodic and relative
time-periodic solutions in dissipative wave systems. In such solutions, the
temporal period, and possibly other additional internal parameters such as the
propagation constant, are unknown priori and need to be determined along
with the solution itself. The main idea of the method is to first express those
unknown parameters in terms of the solution through quasi-Rayleigh quotients,
so that the resulting integrodifferential equation is for the time-periodic solution
only. Then this equation is computed in the combined spatiotemporal domain
as a boundary value problem by Newton-conjugate-gradient iterations. The
proposed method applies to both stable and unstable time-periodic solutions;
its numerical accuracy is spectral; it is fast-converging; its memory use is
minimal; and its coding is short and simple. As numerical examples, this
method is applied to the Kuramoto–Sivashinsky equation and the cubic-quintic
Ginzburg–Landau equation, whose time-periodic or relative time-periodic
solutions with spatially periodic or spatially localized profiles are computed.
This method also applies to systems of ordinary differential equations, as is
illustrated by its simple computation of periodic orbits in the Lorenz equations.
MATLAB codes for all numerical examples are provided in the Appendices to
illustrate the simple implementation of the proposed method.

1. Introduction

In studies of nonlinear waves in physical systems, coherent structures play a
prominent role. The simplest coherent structures are stationary or traveling
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waves, which do not change their shape upon propagation. A familiar example
is solitary waves in various physical wave equations (such as the Korteweg–de
Vries equation). Another important class of coherent structures is time-periodic
solutions, which change their shape periodically upon propagation. A familiar
example is breathers in the sine-Gordon equation. Coherent structures are
important for nonlinear wave equations for obvious reasons. If these structures
are stable, they would serve as attractors and dictate solution dynamics. Even
if they are unstable, they could still exert strong influence on the dynamical
outcome (such as contributing to chaotic behaviors). Thus determination of
coherent structures is a fundamental step toward the understanding of nonlinear
wave systems. This determination is often numerical due to lack of analytical
expressions for these structures.

If the wave system is conservative (i.e., without gain or loss), these
coherent structures generally exist as continuous families, parameterized by
their energy (or a related parameter such as wave height). Solitary waves in the
Korteweg–de Vries equation are such examples, where the height of the wave
is a free parameter. If the wave system is dissipative, however, these coherent
structures generally exist as isolated objects, at discrete energy levels, due to
the requirement that the gain and loss of the energy must balance each other
exactly. Solitary waves in the complex Ginzburg–Landau equation are such
examples, where the height of the solitary wave is fixed [1].

Numerical computations of stationary and traveling waves in nonlinear
systems has a long history, and a large number of effective numerical methods
have been developed (see [2] and the references therein). Most of these methods
were designed for conservative systems, but some methods for dissipative
systems are also available [1, 3].

In this article, we consider computations of time-periodic solutions in
dissipative wave systems. This computation is more challenging than in
conservative systems, because the solution’s temporal period, as well as possibly
other additional parameters, is discrete, but such parameters are not known
priori and have to be computed together with the solution itself. So far, several
numerical methods have been used for these computations. If the solution is
stable, then it can be obtained as the long-time limit of an initial value problem
by evolution simulation. This evolution method is often slow. More seriously,
it cannot access unstable solutions, which are needed in many situations (such
as a bifurcation study or estimation of fractal dimensions of a chaotic attractor
[4]). A second method is the damped Newton’s method, which was used on the
Kuramoto–Sivashinsky (KS) equation [5]. In this method, the KS equation was
discretized in the spatiotemporal domain by finite differences, and the resulting
system of algebraic equations was solved by damped Newton iterations. A
third method is based on error minimization and infinitesimal damped Newton
iterations [6]. This method was developed for ordinary differential equations
(ODEs), and then applied to the KS equation after it was converted to a system
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of ODEs through Fourier-series expansion. A fourth method was used for
computing relative time-periodic solutions of the complex Ginzburg–Landau
equation under periodic boundary conditions [7]. In this method, the solution
was expanded into space–time Fourier series, so that the Ginzburg–Landau
equation was converted into a system of nonlinear algebraic equations, which
was then solved by a nonlinear least squares solver from the MINPACK
software package. One more method was used for computing time-periodic
and space-localized solutions in the damped-driven nonlinear Schrödinger
(NLS) equations [8]. In this method, the wave equation was dicretized in the
spatiotemporal domain by finite differences into a set of nonlinear algebraic
equations, which was then solved by Newton iterations.

Computations of time-periodic solutions in partial differential equations
(PDEs) is closely related to computations of periodic orbits in systems of
ODEs. For systems of ODEs, quite a few numerical methods are available.
Examples include the multipoint shooting method [9], the finite-difference
discretization method, the collocation method [10,11], the multipoint-shooting
with automatic differentiation method [12], and so on (the software package
AUTO uses the B-spline collocation method [13]). In principle, all these
ODE-based methods can be adapted to PDEs if the PDEs are first converted into
a system of ODEs (by finite difference or spatial-mode expansion). However,
the extra cost of PDE-to-ODE conversion and the inevitable large size of the
resulting ODE system make such methods not ideal for PDE applications.

In this article, we develop a new numerical method for computing
time-periodic and relative time-periodic solutions in dissipative wave equations.
This work is motivated by several reasons. First, our view is that the best
way to compute such solutions in PDEs is to do so in the PDE framework,
rather than converting PDEs to large systems of ODEs or algebraic equations.
The advantage of the PDE framework is that the structure of the PDE
is retained, and important quantities such as the linearization operator of
the PDE and its adjoint can be calculated analytically. Second, almost all
numerical methods for time-periodic solutions in PDEs involve solving large
systems of linear equations. Because conjugate-gradient (CG) methods are
widely recognized as probably the fastest numerical method for solving linear
algebraic and operator equations [14], we are motivated to incorporate CG
methods into our algorithm. Third, a good numerical algorithm should also
be simple to implement. Because none of the previous numerical schemes
provided sample codes for the readers to peruse, we are motivated to
provide a set of simple sample codes, so that the readers can directly use
them, or modify them for their own problems. Building upon our previous
experience in designing Newton-conjugate-gradient (Newton-CG) methods for
computing solitary waves and their linear-stability eigenvalues [2,15], we now
develop a method for computing time-periodic solutions which meet the above
goals.
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The main idea of this proposed method is the following. In view of the fact that
the temporal period and possibly other additional parameters in the time-periodic
solutions are unknown priori, our first step is to express those unknown parameters
in terms of the solution through quasi-Rayleigh quotients, so that the resulting
integrodifferential equation is for the time-periodic solution only. Then this
equation is solved in the combined spatiotemporal domain as a boundary value
problem by the Newton-CG method, where Newton corrections are obtained by
preconditioned CG iterations. The benefits of using CG iterations to solve the
Newton-correction equation are threefold: one is that it allows the computation
to be performed entirely in the PDE framework (because these iterations apply
to linear operator equations as well as matrix equations); the second is that
the power of CG iterations for solving large systems of linear equations can be
brought out; and the third is that these iterations use very little memory because
they can be executed without actually forming the matrices involved, thus they
can tackle big problems on personal computers without the memory constraint.

The proposed method applies to both stable and unstable time-periodic
solutions; its numerical accuracy is spectral (because it is compatible with
spectral differentiation [16, 17]), its memory use is minimal, and its coding
is short and simple. As numerical examples, this method is applied to the
KS equation and the cubic-quintic Ginzburg–Landau (CQGL) equation, whose
time-periodic or relative time-periodic solutions with spatially periodic or
spatially localized profiles are computed. This method also applies to systems
of ODEs, as is illustrated by its simple computation of periodic orbits in the
Lorenz equations. These numerical examples reveal that the proposed method
is very fast, as it only takes from a fraction of a second to a couple of
minutes (on a personal computer) to find solutions of varying complexities
to the accuracy of 10−10. The simplicity of coding of the proposed method
is evidenced in the Appendices, where stand-alone MATLAB codes for all
numerical examples are provided.

2. A numerical method for time-periodic solutions with an unknown
period only

We first present a numerical method for computing time-periodic solutions whose
temporal period is the only unknown parameter. For example, time-periodic
solutions in the KS equation [18, 19]

ut + uux + uxx + γ uxxxx = 0 (1)

and the damped parametrically driven NLS equations [8]

iψt + ψxx + 2|ψ |2ψ − ψ = hψ∗ − iγψ (2)
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belong to this category. In the KS equation (1), u(x, t) is a real variable and γ
a real “superviscosity” coefficient. In the damped-forced NLS equation (2),
ψ(x, t) is a complex variable, and h, γ are real coefficients. Both equations
admit solutions that are time-periodic, but the temporal period is not known
priori and needs to be determined along with the solution itself [5,6,8,20,21].

Dissipative systems which admit time-periodic solutions with only an
unknown temporal period can be cast in the following general form:

ut = F(x, ∂x,u), (3)

where x = (x1, x2, · · · , xN ) is the N -dimensional spatial coordinate, u(x, t) is
a real-valued vector variable of x and time t , and F is a real-valued, generally
nonlinear vector function of x, u and its spatial derivatives. Notice here
that we allow F to contain explicit dependence on x (to incorporate spatial
inhomogeneities), but not on time t . The KS equation (1) naturally falls into
this general form, where F(∂x , u) = −(uux + uxx + γ uxxxx), which does not
depend explicitly on x . The damped-forced NLS equation (2) falls into this
general form as well when it is rewritten in terms of the real and imaginary
parts of the complex function ψ (which make up the real vector variable u).

Because Equation (3) admits a time-periodic solution u(x, t) with an
unknown temporal period T , i.e., u(x, t + T ) = u(x, t), it proves convenient to
introduce a time scaling

τ = ωt, ω ≡ 2π/T . (4)

Under this scaling, Equation (3) becomes

ωuτ = F(x, ∂x,u), (5)

where u(x, τ ) is 2π -periodic in τ , i.e.,

u(x, τ + 2π ) = u(x, τ ). (6)

Thus the computational domain for u(x, τ ) can be set explicitly as 0 ≤ τ ≤ 2π
and x ∈ �, where � is the x-domain of the solution u(x, t). In the scaled
equation (5), the frequency ω is the new unknown parameter.

To solve Equation (5) with the temporal periodicity condition (6) and
unknown frequency ω, our idea is to first express this unknown frequency ω in
terms of the periodic solution u(x, τ ) through a Rayleigh-like quotient. That is,
we take the inner product of Equation (5) with function uτ , and then obtain ω as

ω = 〈uτ ,F〉
〈uτ ,uτ 〉 . (7)

Here, the inner product is the standard one in the real-valued vector functional
space

〈f(x, τ ), g(x, τ )〉 =
∫ 2π

0

∫
�

fTg dx dτ, (8)
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where the superscript “T” represents transpose of a vector. In this article, we
call the Rayleigh-like quotient (7) as a quasi-Rayleigh quotient. Inserting this
quasi-Rayleigh quotient (7) into (5), we then get the equation

L0(u) ≡ 〈uτ ,F〉
〈uτ ,uτ 〉uτ − F = 0. (9)

In this equation, the unknown frequency ω is gone, thus the equation is for the
unknown function u(x, τ ) only. The price to pay for this benefit is that this
equation now becomes an integrodifferential equation instead of a differential
equation. However, this is a price worth paying for.

We solve the integrodifferential equation (9) by the Newton-CG method [2].
In this method, CG iterations are used to solve the linear Newton-correction
equation. Suppose un(x, τ ) is the nth approximation to the exact solution, then
the Newton iteration for the next approximation is

un+1 = un +	un, (10)

where the linear Newton-correction equation for 	un is

L1n	un = −L0(un). (11)

Here, L1 is the linearization operator of function L0(u), i.e.,

L0(u + ũ) = L0(u) + L1ũ + O(ũ2), ũ 	 1, (12)

and L1n is L1 evaluated at u = un . This linearization operator L1 is the
counterpart of the Jacobian in systems of nonlinear ODEs.

Now we derive the analytical expression for L1. Suppose the linearization
operator for the function F(x, ∂x,u) is F1, i.e.,

F(x, ∂x, u + ũ) = F(x, ∂x,u) + F1ũ + O(ũ2), ũ 	 1. (13)

When a dissipative wave system (3) is given, the function F(x, ∂x,u) is
known, thus its linearization operator F1 can be analytically obtained (this
calculation for the KS equation (1) will be demonstrated in Section 4). Using
the linearization (13) for F, the linearization for ω(u) in Equation (7) is

ω(u + ũ) = 〈(u + ũ)τ , F(x, ∂x, u + ũ)〉
〈(u + ũ)τ , (u + ũ)τ 〉

= 〈(u + ũ)τ , F(x, ∂x,u) + F1ũ〉
〈(u + ũ)τ , (u + ũ)τ 〉 + O(ũ2).

Utilizing Equation (5), we get

ω(u + ũ) = 〈(u + ũ)τ , ω(u)uτ + F1ũ〉
〈(u + ũ)τ , (u + ũ)τ 〉 + O(ũ2)

= 〈(u + ũ)τ , ω(u)(u + ũ)τ − [ω(u)∂τ − F1]ũ〉
〈(u + ũ)τ , (u + ũ)τ 〉 + O(ũ2),
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thus

ω(u + ũ) = ω(u) − 〈uτ , [ω(u)∂τ − F1]ũ〉
〈uτ ,uτ 〉 + O(ũ2). (14)

Using this ω(u) linearization as well as the F(x, ∂x,u) linearization (13), the
linearization operator L1 for L0(u) can then be found as

L1
 = P
 − 〈uτ , P
〉
〈uτ ,uτ 〉 uτ , (15)

where

P ≡ ω∂τ − F1, (16)

and ω(u) is given through u by the quasi-Rayleigh quotient (7).
It is now time to discuss how to solve the linear Newton-correction equation

(11). Solving this equation using traditional methods (such as turning it into
a linear matrix equation and then solving it by matrix factorizations) could
have its pitfalls [22]. Thus in our Newton-CG method, this equation will be
solved by CG iterations, which is widely recognized as probably the fastest
way to solve large systems of linear inhomogeneous equations [14]. Because
the homogeneous operator L1 in (15) is apparently non-self-adjoint, direct CG
iterations on Equation (11) would fail [14]. In such cases, other CG-related
methods (such as the biconjugate-gradient method) might work [14, 15]. We
have tried the biconjugate-gradient method for solving Equation (11) and
encountered two problems. One is that this method often breaks down due
to zero divisors and nonmonotonic error swings. The other is that in this
method, there seems to be no suitable (positive definite) preconditioner for
operator L1. Due to these reasons, our strategy is to turn Equation (11)
into a sort of normal equation so that its homogeneous operator becomes
self-adjoint.

The usual way to turn (11) into a normal equation is to multiply it by the
adjoint operator of L1. However, due to the special structure of L1 in (15), we
can “cut corners” and just multiply (11) by the adjoint operator of P, which is

PA = −ω∂τ − FA
1 , (17)

where FA
1 is the adjoint operator of F1. Here, the superscript “A” represents the

adjoint. With this multiplication, the Newton-correction equation (11) becomes

PA
n L1n	un = −PA

n L0(un), (18)

where PA
n is PA evaluated at u = un . For convenience, we call this equation

a quasi-normal equation. It is easy to check that PAL1 is self-adjoint. In
addition, using the Cauchy–Schwarz inequality, we can show that PAL1 is also
semipositive definite. Thus the quasi-normal equation (18) can be solved by
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preconditioned CG iterations. The numerical algorithm for preconditioned CG
iterations is well known [14] and will not be repeated here (the reader can refer
to the sample MATLAB codes in the Appendices for numerical executions
of these iterations). We do want to mention that, to avoid oversolving, CG
iterations for the quasi-normal equation (18) will be stopped when the error
of the Newton-correction solution 	un drops below a certain fraction of the
error of the solution un itself [15] (in our coding, this fraction is set as
errorCG= 10−4, see the Appendices). This strategy reduces the number of CG
iterations for solving each Newton-correction equation at the expense of losing
the quadratic convergence of Newton iterations, but its benefit outweighs its
cost [15].

To summarize, our numerical algorithm for computing time-periodic solutions
u(x, t) with unknown temporal periods in Equation (3) is:

(1) Turn (3) into an integrodifferential equation (9) for the function u(x, τ )
only, under the time-periodic boundary condition (6);

(2) Solve (9) by Newton iterations

un+1 = un +	un,

where Newton corrections 	un are computed from the quasi-normal
equation

PA
n L1n	un = −PA

n L0(un)

by preconditioned CG iterations. Here, linear operators L1 and PA are
given analytically by Equations (15)–(17);

(3) After u(x, τ ) is obtained, the temporal period T (= 2π/ω) is then derived
from the quasi-Rayleigh quotient (7).

The above numerical algorithm is attractive for a number of reasons. First,
the entire computation is performed in the PDE framework (no truncation to
ODEs or algebraic equations is necessary). Second, it is applicable to both
stable and unstable time-periodic solutions. This contrasts the time-evolution
method which can only converge to stable solutions. Third, its numerical
accuracy can be very high. Indeed, if we use the discrete Fourier transform
or Chebyshev differentiation to compute all spatial and temporal derivatives,
then its numerical accuracy would be spectral [16, 17]. Fourth, this method is
fast-converging and very efficient. This efficiency will be illustrated on several
numerical examples in Section 4, where we will see that this method only
takes from a fraction of a second to a couple of minutes (on a personal
computer) to find solutions of varying complexities to the accuracy of 10−10.
Fifth, the coding of this method is very short and compact, as is evidenced in
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the sample MATLAB codes to be presented in the Appendices. Finally, its
memory use is only proportional to the number of grid points, which is very
little.

In the implementation of the above Newton-CG method, there are two
practical issues. One is the choice of the preconditioning operator for
solving the quasi-normal equation by preconditioned CG iterations. This
preconditioner, say M, must be self-adjoint and positive definite. In addition, it
should make the condition number of M−1PAL1 as small as possible (i.e., to
make M−1PAL1 as close to the identity operator as possible) to get faster
convergence. Furthermore, it should be easy to invert, because this inversion is
needed during iterations. Because the large condition number of PAL1 in the
quasi-normal equation, which slows down CG iterations, is generally caused
by higher space and time derivatives in PAL1, then a general guideline for the
choice of the preconditioner is to retain only the higher derivative terms in
PAL1 and use the resulting operator as M (added by a positive constant to make
M positive definite). Implementation of this guideline on several numerical
examples will be illustrated in Section 4.

The other practical issue in the Newton-CG method is the choice of the
initial condition. It is well known that if the initial condition is not properly
chosen, Newton iterations may not converge. There are various strategies
for choosing the initial condition. The first strategy is to just choose the
initial condition randomly. This strategy may work, especially if the solution
has a simple structure, but one often needs to try many initial conditions
to hit upon one that works. A second strategy is to simulate the time
evolution of the original wave equation and inspect the solution to see if any
time-segment of this solution is close to time-periodic or not. If so, then
that time-segment of the solution will be used as our initial condition for
Newton-CG iterations. Note that this second strategy is applicable to both
stable and unstable time-periodic solutions, because even if the solution is
unstable, time evolution of the wave equation may still get close to this
solution and wander around it for a little while (before veering off), and that
approximate time-periodic segment is often sufficient as our initial condition
for Newton-CG iterations. A third strategy is by continuation. If we have
obtained a time-periodic solution at one parameter value, then by continuously
changing this parameter and using the previous solution as the initial condition,
we can trace a whole family of time-periodic solutions for a continuous range
of this parameter. This continuation strategy is often very useful, especially
for studying bifurcations of solutions as parameters vary. In our numerical
examples of Section 4, we will apply all these strategies to select initial
conditions of Newton-CG iterations for both stable and unstable time-periodic
solutions.
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3. A numerical method for time-periodic solutions with multiple
unknown parameters

In some dissipative wave systems, time-periodic solutions have more
unknown parameters than just the temporal period. One example is the
Ginzburg–Landau-type equations such as

At = χA + γ Axx − β|A|2 A − δ|A|4 A, (19)

where A is a complex variable, and χ, γ, β, δ are complex coefficients. This
equation does not admit truly time-periodic solutions, but it admits the so-called
relative time-periodic solutions of the form

A(x, t) = eiμtU (x, t), (20)

where U (x, t) is a time-periodic complex function, and μ is a real-valued
propagation constant [7, 23, 24]. In this solution, both the temporal period T
of U (x, t) and the propagation constant μ are unknown in addition to the
unknown function U (x, t). To compute these relative time-periodic solutions,
the numerical algorithm of the previous section needs to be modified and
generalized.

In this section, we develop a numerical scheme to compute time-periodic
solutions with multiple unknown parameters (here “time-periodic solutions” is
interpreted in the broader sense, including relative time-periodic solutions).
The basic idea is similar to that of the previous section. That is, we first
express these unknown parameters in terms of the time-periodic function
through quasi-Rayleigh quotients so that the original wave equation becomes
an integrodifferential equation for the unknown time-periodic function only.
Then we use Newton-CG iterations to solve this integrodifferential equation.
However, because the current problem involves multiple unknown parameters,
the linearization operator of the integrodifferential equation will have a different
structure than Equation (15). Because of that, we will have to solve the
linear Newton-correction equation (through CG iterations) by turning it into a
true normal equation instead of a quasi-normal equation. That is, we will
need to multiply the Newton-correction equation by the adjoint of the whole
Newton-linearization operator rather than a partial one.

Even though our basic idea for computing time-periodic solutions with
multiple unknown parameters is easy to state, formulation of this idea for
general dissipative systems can be cumbersome. Thus in the following, we only
formulate this idea for a special (but important) class of equations, namely, the
Ginzburg–Landau-type equations. Extension of this formulation to other types
of equations is straightforward.
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The class of Ginzburg–Landau-type equations that we consider can be
written in the following general form:

At = f (|A|, x, ∂x)A, (21)

where x = (x1, x2, · · · , xN ) is the N -dimensional spatial coordinate, A(x, t) is
a complex-valued scalar variable of x and time t , and f is a complex-valued
function of |A|, x and the spatial derivatives. As before, we allow f to
contain explicit dependence on x (to model spatial inhomogeneities), but
not on time t . The CQGL equation (19) is an example of this general
form, with f (|A|, ∂x ) = χ + γ ∂xx − β|A|2 − δ|A|4, which contains no explicit
x-dependence.

This class of Ginzburg–Landau-type equations admit relative time-periodic
solutions of the form

A(x, t) = eiμtU (x, t), (22)

where U (x, t) is a time-periodic complex function, and μ is a real-valued
propagation constant. These solutions can be spatially localized or periodic
[7,23,24]. Both the temporal period T and the propagation constant μ are not
known priori and must be determined along with the time-periodic function
U (x, t).

Substituting (22) into Equation (21), we get the equation for the time-periodic
function U (x, t) as

Ut + iμU = G, (23)

where

G ≡ f (|U |, x, ∂x)U. (24)

As before, we employ a time scaling

τ = ωt, ω ≡ 2π/T, (25)

where T is the temporal period of the function U (x, t). Under this scaling,
Equation (23) becomes

ωUτ + iμU = G, (26)

where U (x, τ ) is 2π -periodic in τ , i.e.,

U (x, τ + 2π ) = U (x, τ ). (27)

Thus the computational domain for U (x, τ ) will be set explicitly as 0 ≤ τ ≤ 2π
and x ∈ �, where � is the x-domain of the solution U (x, t).

To solve Equation (26), we first express the unknown real parameters ω
and μ in terms of U (x, τ ) through quasi-Rayleigh quotients. For this purpose, it
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is convenient to split the complex functions U and G into real and imaginary
parts as

U = u + iv, G = g + ih. (28)

Inserting this split into Equation (26), equations for the real and imaginary
parts u, v of the solution can be readily obtained as

ωuτ − μv − g = 0, (29)

ωvτ + μu − h = 0. (30)

Taking inner products of these equations with u, v, uτ , vτ , adding or subtracting
the resulting equations, and utilizing the τ -periodicity of (u, v), parameters μ
and ω can be expressed through the following quasi-Rayleigh quotients:

μ = 〈v, h〉 − 〈u, g〉
2〈u, v〉 , ω = 〈uτ , h〉 + 〈vτ , g〉

2〈uτ , vτ 〉 . (31)

Here, the inner product is the same as that defined in Equation (8). Inserting
these quasi-Rayleigh quotients into (29)–(30), these equations then become the
following integrodifferential equations for the unknown functions u ≡ [u, v]T

only:

L0(u) ≡
[
ωuτ − μv − g
ωvτ + μu − h

]
= 0, (32)

where μ(u) and ω(u) are given in Equation (31).
We use Newton-CG methods to solve the integrodifferential equations (32).

As before, the Newton iterations are

un+1 = un +	un, (33)

where the linear Newton-correction equation for 	un is

L1n	un = −L0(un), (34)

and L1 is the linearization operator of function L0(u). The key question now
is the analytical expression for this linearization operator, which is certainly
different from (15) of the previous section. This expression of L1 is given in
the following lemma.

LEMMA 1. The linearization operator L1 of L0(u) in Equation (32) is

L1
 = P
 −

〈[
vτ
uτ

]
,P


〉
2〈uτ , vτ 〉

[uτ
vτ

]
+

〈[ u
−v

]
,P


〉
2〈u, v〉

[−v
u

]
, (35)
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where

P =
[
ω∂τ −μ
μ ω∂τ

]
− G1, (36)

and G1 is the linearization operator of the vector function [g, h]T , i.e.,[ g(u + ũ, v + ṽ)
h(u + ũ, v + ṽ)

]
=

[ g(u, v)
h(u, v)

]
+ G1

[ ũ
ṽ

]
+ O(ũ2, ũṽ, ṽ2). (37)

The proof of this lemma will be provided later in this section. For the example
of the CQGL equation (19), calculation of the linear operator G1 will be
illustrated in Section 4.

We can notice that the linearization operator L1 in this lemma has a more
complex structure than that in (15) of the previous section. Because of that, to
turn L1 into a self-adjoint operator, we have to multiply it by its full adjoint
LA

1 . In other words, to solve the linear Newton-correction equation (34) by CG
iterations, we need to turn it into the usual normal equation

LA
1nL1n	un = −LA

1nL0(un). (38)

Compared with the previous quasi-normal equation (18), we have no “corners
to cut” here. Obviously, the linear operator LA

1nL1n in the above normal
equation is self-adjoint and semipositive definite, thus this equation can be
solved effectively by preconditioned CG iterations.

The normal equation (38) involves the adjoint operator LA
1 . This adjoint

operator can be derived from L1 in Lemma 1, and its analytical expression is
provided by the following lemma.

LEMMA 2. The adjoint operator of L1 in Lemma 1 is

LA
1
 = PA
 −

〈

,

[uτ
vτ

]〉
2〈uτ , vτ 〉 PA

[
vτ
uτ

]
+

〈

,

[−v
u

]〉
2〈u, v〉 PA

[ u
−v

]
, (39)

where

PA =
[−ω∂τ μ

−μ −ω∂τ
]

− GA
1 (40)

is the adjoint operator of P, and GA
1 is the adjoint operator of G1.

The proof for this lemma will follow shortly.
To summarize, our numerical algorithm for computing relative time-periodic

solutions (22), with unknown temporal period T and propagation constant μ,
in the class of Ginzburg–Landau-type equations (21) is
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(1) Turn (21) into an integrodifferential equation (32) for the real and
imaginary parts u ≡ [u, v]T of the solution U (x, τ ) only, under the
time-periodic boundary condition (27);

(2) Solve (32) by Newton iterations

un+1 = un +	un,

where Newton corrections 	un are computed from the normal equation

LA
1nL1n	un = −LA

1nL0(un)

by preconditioned CG iterations. Here, linear operators L1 and LA
1 are

given analytically in Lemmas 1 and 2;
(3) After u(x, τ ) is obtained, the temporal period T (= 2π/ω) and the

propagation constant μ are then calculated from the quasi-Rayleigh
quotients (31).

This numerical method shares the same attractive features as that described
in the previous section (such as high accuracy, efficiency, short coding, and so
on). In the implementation of this method, we also face the two practical issues
discussed in the end of Section 2, which are choices of the preconditioner and
the initial condition. Our guidelines for these choices are the same as those
spelled out there.

Now we prove Lemmas 1 and 2.

Proof of Lemma 1: We first derive linearizations for the quasi-Rayleigh
quotients of μ and ω. For this purpose, we rewrite the μ formula as

μ(u, v) =

〈[−u
v

]
,
[ g(u, v)

h(u, v)

]〉
2〈u, v〉 .

Utilizing the linearization (37) for [g, h]T, we get

μ(u + ũ, v + ṽ) =

〈[−(u + ũ)
v + ṽ

]
,
[ g(u, v)

h(u, v)

]
+ G1

[ ũ
ṽ

]〉
2〈u + ũ, v + ṽ〉 + O(ũ2, ũṽ, ṽ2).

Then using Equations (29)–(30), we can calculate μ(u + ũ, v + ṽ) as

μ(u + ũ, v + ṽ) =

〈[−(u + ũ)
v + ṽ

]
,
[
ωuτ − μv

ωvτ + μu

]
+ G1

[ ũ
ṽ

]〉
2〈u + ũ, v + ṽ〉

+ O(ũ2, ũṽ, ṽ2)



434 J. Yang

=

〈[−(u + ũ)
v + ṽ

]
, ω

[u + ũ
v + ṽ

]
τ
+ μ

[−(v + ṽ)
u + ũ

]
− P

[ ũ
ṽ

]〉
2〈u + ũ, v + ṽ〉

+ O(ũ2, ũṽ, ṽ2),

where μ,ω on the right sides of these equations are abbreviations for
μ(u, v), ω(u, v), and operator P is as defined in (36). Recalling the τ -periodicity
of functions u + ũ and v + ṽ, the above expression for μ(u + ũ, v + ṽ) can be
simplified as

μ(u + ũ, v + ṽ) = μ(u, v) −

〈[−u
v

]
, P

[ ũ
ṽ

]〉
2〈u, v〉 + O(ũ2, ũṽ, ṽ2),

which is the linearization for the quasi-Rayleigh quotient of μ. Performing
similar calculations, the linearization for the quasi-Rayleigh quotient of ω is
found as

ω(u + ũ, v + ṽ) = ω(u, v) −

〈[
vτ
uτ

]
, P

[ ũ
ṽ

]〉
2〈uτ , vτ 〉 + O(ũ2, ũṽ, ṽ2).

Using these linearizations of μ and ω as well as the linearization (37) of
[g, h]T, the linearization operator L1 for Equation (32) is then found to be
(35) in Lemma 1. �

Proof of Lemma 2: The definition for adjoint operators is that

〈�,L1
〉 = 〈LA
1�,
〉.

Using the expression of L1 in Lemma 1 as well as the basic relation of
〈�,P
〉 = 〈PA�,
〉, we find that

〈�,L1
〉 = 〈�,P
〉 −

〈[
vτ
uτ

]
,P


〉 〈
�,

[
uτ
vτ

]〉
2〈uτ , vτ 〉

+

〈[
u

−v
]
,P


〉 〈
�,

[−v
u

]〉
2〈u, v〉

= 〈PA�,
〉 −

〈
�,

[
uτ
vτ

]〉 〈
PA

[
vτ
uτ

]
, 


〉
2〈uτ , vτ 〉

+

〈
�,

[−v
u

]〉 〈
PA

[
u

−v
]
, 


〉
2〈u, v〉 ,

which is the same as 〈LA
1�,
〉 with LA

1 given in Lemma 2.
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To prove PA in Equation (40) is the adjoint operator of P, we only need to
use the definition of adjoint operators, together with integration by parts and
the fact that all admissible functions are τ -periodic. �

Before concluding this section, we would like to make a remark. As the
reader may notice, the expressions of μ and ω through quasi-Rayleigh quotients
are not unique. Indeed, from Equations (29)–(30) we can also derive other
quasi-Rayleigh quotients of μ and ω different from (31). For instance, by
taking the inner products of (29) with u and (30) with uτ , and utilizing the
τ -periodicity of the involved functions, we can obtain the following alternative
expressions:

μ = −〈u, g〉
〈u, v〉 , ω = 〈uτ , h〉

〈uτ , vτ 〉 .

Substituting these alternative quasi-Rayleigh quotients into Equations
(29)–(30), we can still use Newton-CG iterations to solve them, except that the
linearization operator L1 and its adjoint LA

1 will be different from those in
Lemmas 1 and 2. We have implemented this and several other versions of
quasi-Rayleigh quotients on the CQGL equation (19), and found that their
performances are slightly inferior to the quasi-Rayleigh quotients in Equation
(31). The reason is probably that μ and ω in formulae (31) are derived by
taking the average of inner products from Equations (29) and (30). This
averaging may give more accurate approximations for μ and ω from an
approximate solution (un, vn), thus rendering the numerical scheme superior to
some other alternatives.

4. Numerical examples

In this section, we apply the proposed numerical methods of previous sections
to three well-known dissipative systems, the KS equation, the CQGL equation,
and the Lorenz equations. Both stable and unstable time-periodic solutions
in these equations will be computed. All our computations are performed in
MATLAB on a Desktop PC (Dell Optiplex 990 with CPU speed 3.3 GHz).
MATLAB codes for these computations can be found in the Appendices.

EXAMPLE 1. Our first example is the KS equation (1), i.e.,

ut + uux + uxx + γ uxxxx = 0, (41)

where u is a scalar real variable, and γ is a real “superviscosity” coefficient.

This equation was derived in various physical contexts as a model for
wave dynamics near long-wavelength instabilities in the presence of certain
symmetries [18, 19, 25]. However, it is also used to study spatiotemporal
complexity [5, 6, 20, 21, 26]. In these studies, it is customary to impose the



436 J. Yang

periodic boundary condition

u(x + 2π, t) = u(x, t). (42)

Under this boundary condition, we seek time-periodic solutions in this
equation. Thus the numerical domain of our algorithm will be set as
0 ≤ x, τ ≤ 2π . Because the only unknown parameter in these solutions is the
temporal period, the algorithm in Section 2 will be suitable. This algorithm is
capable of obtaining both stable and unstable time-periodic solutions. Below we
will apply it to determine unstable solutions, because such solutions cannot be
obtained by the time-evolution method and are thus more challenging to find.

For the KS equation (41), the function F in the algorithm of Section 2 is

F(∂x , u) = −(uux + uxx + γ uxxxx).

Linearization of this function is

F(∂x , u + ũ) = − [(u + ũ)(u + ũ)x + (u + ũ)xx + γ (u + ũ)xxxx]

= F(∂x , u) − [u∂x + ux + ∂xx + γ ∂xxxx] ũ + O(ũ2),

thus the linearization operator of F is

F1 = − [u∂x + ux + ∂xx + γ ∂xxxx] .

Its adjoint operator FA
1 can be easily derived from the basic condition

〈φ,F1ψ〉 = 〈FA
1 φ,ψ〉 as

FA
1 = − [−u∂x + ∂xx + γ ∂xxxx] .

Using these formulae, the quasi-normal Newton-correction equation (18) for
the KS equation is

PA
n L1n	un = −PA

n L0(un), (43)

where

L0(u) = ωuτ − F, L1ψ ≡ Pψ − 〈uτ ,Pψ〉
〈uτ , uτ 〉 uτ ,

P = ω∂τ − F1, PA = −ω∂τ − FA
1 , ω = 〈uτ ,F〉

〈uτ , uτ 〉 ,

and the quantities with subscript “n” in (43) are the corresponding quantities
evaluated at the nth approximate solution un .

Regarding the preconditioner M in preconditioned CG iterations on the
quasi-normal equation (43), we take

M = c − ω2∂ττ + (∂xx + γ ∂xxxx)2,
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where c is a positive constant (which we choose as c = 30; other c values
deliver comparable performances). Our choice of this preconditioner follows
the guidelines at the end of Section 2. Specifically, neglecting lower derivative
terms in PAL1, we get

PAL1 ≈ −ω2∂ττ + (∂xx + γ ∂xxxx)2.

Because the preconditioner must be positive definite, it is sensible to add a
positive constant to the above approximation and hence choose M as above.
Notice that this M is self-adjoint (as required). In addition, its inversion is very
simple by using the Fourier transform. The frequency ω in this preconditioner
is given through the quasi-Rayleigh quotient in the equation below (43).

We first look for time-periodic solutions in the KS equation (41) with
γ = 0.054. At this γ value, the KS equation admits an unstable time-periodic
solution [26]. After many random trials (the first strategy described in the last
paragraph of Section 2), we arrive at a successful initial condition

u0(x, τ ) = −7 sin 3x − 3(sin 4x − sin 5x) sin τ − sin x cos τ, (44)

where 0 ≤ x, τ ≤ 2π . In our Newton-CG iterations, we use 64 evenly spaced
grid points along each of the x and τ directions. Due to the periodic conditions
of u(x, τ ), we use the discrete (fast) Fourier transform to evaluate all spatial
and temporal derivatives, which gives spectral accuracy for this algorithm
[16, 17]. Due to this spectral accuracy, we find that 64 grid points are already
sufficient to yield solutions accurate within 10−10. The MATLAB code of this
algorithm is provided in Appendix A (this code is also posted at the author’s
homepage: http://www.cems.uvm.edu/~jxyang/codes.htm).

The numerical result of this MATLAB code is displayed in Figure 1.
In panel (a), the initial condition (44) is shown (for two τ periods). From
this initial condition, the accurate time-periodic solution obtained by the
Newton-CG method is displayed in panel (b) for two periods of real time t ,
and the accurate period is found to be T = 1.3297045458. As one can see
from these two panels, our initial condition differs significantly from the
accurate solution, but the iteration still converges, meaning that the attraction
basin of our Newton-CG method is quite large. Convergence speed of these
Newton-CG iterations is displayed in the lower panels, where the error versus
the number of CG iterations is plotted in panel (c), while the error versus the
time spent is plotted in panel (d). The error here is defined as max|L0(un)|,
i.e., maximum magnitude of the equation’s residue L0(un) at the numerical
solution un . Panel (c) shows that this error drops from the initial value of
about 300 to the final value of 10−10 under 5000 CG iterations, while panel (d)
shows that this drop of the error from 300 to 10−10 takes about 6 seconds.

As the γ value decreases, unstable time-periodic solutions with more
complex spatiotemporal structures appear, and determination of such solutions
is supposed to be more challenging [6]. However, we find that the Newton-CG
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Figure 1. Numerical computation of the time-periodic solution in the KS equation (41) at
γ = 0.054. (a) The initial condition u0(x, τ ) in (44). (b) The accurate solution u(x, t). (c) The
graph of error versus number of CG iterations. (d) The graph of error versus the time spent.
In (a, b), two time periods are shown. In (c, d), circles are Newton-iteration points. This figure
is produced by the MATLAB code in Appendix A.

method can handle such solutions with ease as well. To demonstrate, we now
take γ = 0.015. Regarding the initial condition for Newton-CG iterations, the
strategy of random trials has difficulty now due to the complex structure of the
solution. Thus we switch to the “looking for approximate recurrence” strategy
(the second strategy described in the last paragraph of Section 2). Specifically,
we simulate the evolution of the KS equation (41) from the initial condition
u(x, 0) = − sin x . We notice that the evolution solution in the time interval of
3.49 ≤ t ≤ 4.21 is approximately time-periodic, thus we use this time-segment
of the evolution solution as the initial condition for Newton-CG iterations. This
initial condition proves to converge to an exact time-periodic solution under
Newton-CG iterations, and the numerical results are displayed in Figure 2
(here we use 128 grid points rather than 64 points along each of the x and τ
directions because the spatiotemporal structure of the present solution is more
complex). The MATLAB code for this figure is the same as that in Appendix
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Figure 2. Numerical computation of the time-periodic solution in the KS equation (41) at
γ = 0.015. (a) Difference between the initial condition u0(x, t) and the accurate solution
u(x, t). (b) The accurate solution u(x, t). (c) Error versus the number of CG iterations. (d) Error
versus time. In (a, b), two time periods are shown. In (c, d), circles are Newton-iteration points.

A, except for the γ value, the initial condition u0, the number of grid points in
(x, τ ), and one of the plotting commands.

Panel (a) of Figure 2 shows the difference u0(x, t) − u(x, t) between our
initial condition u0(x, t) and the accurate time-periodic solution u(x, t) (for
two time periods). One can see that this difference is not small, meaning that
our initial condition is not very close to the exact solution; but Newton-CG
iterations still converge. The converged (accurate) solution is displayed in panel
(b), and the accurate temporal period is found to be T = 0.7294854797. Notice
that this time-periodic solution is more complex than the one in Figure 1.
Convergence rates of Newton-CG iterations are shown in panels (c, d), where
the error versus the number of CG iterations and versus time are plotted,
respectively. One can see that this error drops from the original 280 to the final
10−9 in about 50,000 CG iterations, or 2.6 minutes.
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EXAMPLE 2. Our second example is the CQGL equation (19), i.e.,

At = χ A + γ Axx − β|A|2 A − δ|A|4 A, (45)

where coefficients γ, β, δ are complex, and χ real (note that if χ is complex,
its imaginary part can be eliminated by a trivial gauge transformation).

This equation admits relative time-periodic solutions A(x, t) = eiμtU (x, t),
where U (x, t) is time-periodic and spatially localized [7, 23, 24]. Both the
propagation constant μ and the temporal period T in these solutions are
unknown priori and need to be determined along with the solution U (x, t).
Below we use the numerical algorithm of Section 3 to determine these relative
time-periodic solutions.

The CQGL equation (45) is of the form (21), thus the numerical algorithm of
Section 3 directly applies. In this algorithm, the function G, as defined in (24), is

G = χU + γUxx − β|U |2U − δ|U |4U.

Splitting the real and imaginary parts of the complex constants γ, β, δ, and
complex functions U , G as

γ = γ1 + iγ2, β = β1 + iβ2, δ = δ1 + iδ2, U = u + iv, G = g + ih,

we get

g = γ1uxx − γ2vxx + χu − (β1u − β2v)(u2 + v2) − (δ1u − δ2v)(u2 + v2)2,

h = γ1vxx + γ2uxx + χv − (β1v + β2u)(u2 + v2) − (δ1v + δ2u)(u2 + v2)2.

The linearization operator G1 of functions [g, h]T is

G1 =
[
γ1∂xx + G11 −γ2∂xx + G12

γ2∂xx + G21 γ1∂xx + G22

]
, (46)

where

G11 = χ − β1(u2 + v2) − 2u(β1u − β2v) − δ1(u2 + v2)2

− 4u(δ1u − δ2v)(u2 + v2),

G12 = β2(u2 + v2) − 2v(β1u − β2v) + δ2(u2 + v2)2

− 4v(δ1u − δ2v)(u2 + v2),

G21 = −β2(u2 + v2) − 2u(β1v + β2u) − δ2(u2 + v2)2

− 4u(δ1v + δ2u)(u2 + v2),

G22 = χ − β1(u2 + v2) − 2v(β1v + β2u) − δ1(u2 + v2)2

− 4v(δ1v + δ2u)(u2 + v2).
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The adjoint operator of G1 is then GA
1 = GT

1 , i.e.,

GA
1 =

[
γ1∂xx + G11 γ2∂xx + G21

−γ2∂xx + G12 γ1∂xx + G22

]
. (47)

Using the above formulae, the normal equation for Newton corrections
	un = [	un,	vn]T is

LA
1nL1n	un = −LA

1nL0(un), (48)

where L1 is given by Equations (35), (36), and (46), LA
1 given by Equations

(39), (40), and (47), and L0(u) given by Equation (32). This normal equation
will be solved by preconditioned CG iterations.

Regarding the choice of the preconditioner M, we follow the general
guideline in the end of Section 2. Specifically, by retaining only the highest
(x, τ )-derivatives of
 in the normal-equation’s linear operator LA

1 L1
, we get

LA
1 L1 ≈ (|γ |2∂xxxx − ω2∂ττ

)
I2,

where I2 is a 2 × 2 identity matrix. Because the preconditioner must be positive
definite, we then choose the preconditioner as

M = (
c + |γ |2∂xxxx − ω2∂ττ

)
I2, (49)

where c is a positive constant (which we set as c = 8). In execution, the ω
value in this preconditioner will be obtained from the numerical solution un

through the quasi-Rayleigh quotient (31).
We now apply the above Newton-CG method to compute relative time-periodic

solutions. First, we choose the parameter values in the CQGL equation (45) as

γ = 0.9 − 1.1i, β = −3 − i, δ = 2.75 − i, χ = −0.1. (50)

For this set of parameter values, the CQGL equation admits a stable relative
time-periodic and spatially localized solution [23]. Because this solution is
stable, we can use the time-evolution method (the second strategy in the end of
Section 2) to prepare our initial condition for Newton-CG iterations. Specifically,
we numerically simulate the evolution of equation (45) from a Gaussian
initial condition A(x, 0) = e−x2/10. This evolution gradually converges to a
relative time-periodic solution with temporal period of approximately 7.98 and
propagation constant of approximately 2.04. Thus we take the time-segment
200 ≤ t ≤ 207.98 of this solution A(x, t), multiplied by the phase factor
of e−2.04i t , as our initial condition U (x, t) for Newton-CG iterations. The
x-interval is taken as −50 ≤ x ≤ 50, discretized evenly by 512 grid points, and
the τ direction is discretized evenly by 32 grid points. Because the solution
is spatially localized and temporally periodic, we will use discrete Fourier
transform to compute all derivatives. The MATLAB code for this computation
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Figure 3. Numerical computation of the relative time-periodic solution in the cubic-quintic
Ginzburg–Landau equation (45) with parameter values (50). (a, b) Amplitude and phase of
solution U (x, t). (c) Error versus the number of CG iterations. (d) Error versus time. In (a, b),
two time periods are shown. In (c, d), circles are Newton-iteration points. This figure is
produced by the MATLAB code in Appendix B.

is displayed in Appendix B. This code, together with the initial condition
U0(x, t), is also posted at the author’s homepage.

The numerical result from this MATLAB code is given in Figure 3.
This code converges to a time-periodic solution U (x, t), whose amplitude
and phase fields are shown in panels (a, b) (for two temporal periods).
The accurate temporal period is found to be T = 7.9820986731, and the
accurate propagation constant is μ = 2.0422917024. Convergence speeds of
these Newton-CG iterations are displayed in panels (c, d), where the error
versus number of CG iterations and versus time are plotted. The error here
is also defined as the maximum magnitude of the equation’s residue, i.e.,
max|L0(un)|. Panel (c) shows that this error drops from the initial value of
about 0.3 to the final value below 10−10 under 2800 CG iterations, while panel
(d) shows that this drop of the error takes about 1.3 minutes.
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Figure 4. Continuation of Newton-CG methods for tracing the entire family of a relative
time-periodic solution in the CQGL equation (45), starting from the stable solution in Figure
3 (at Re(γ )=0.9). Here parameters are as given in Equation (50), except that Re(γ ) is allowed
to vary. (a, b) Graphs of the propagation constant μ and temporal period T versus Re(γ ); (c)
Amplitude field of the solution U (x, t) at Re(γ )= 0.85 [marked by a red dot in (a, b)].

When parameters in the CQGL equation (45) change, this stable relative
time-periodic solution in Figure 3 can lose its stability. For instance, when
Re(γ ) decreases below 0.88 and the other parameters fixed, this solution would
become unstable [23]. Such unstable solutions can be computed accurately by
our Newton-CG method as well. Indeed, starting from the stable solution of
Figure 3 and using the continuation method (the third strategy in the end of
Section 2), we can track the entire branch of this solution family parameterized
by Re(γ ), and the results are shown in Figure 4. Here dependences of the
propagation constant μ and temporal period T on Re(γ ) are displayed in
panels (a, b), and the accurate unstable solution at Re(γ ) = 0.85 (with error
less than 10−10) is plotted in panel (c). As can be seen, this continuation by
Newton-CG methods is very suitable for studying bifurcations of time-periodic
solutions.

Our numerical algorithms for time-periodic solutions were intended for
dissipative wave equations, such as the KS equation (41) and the CQGL
equation (45). However, they certainly apply to systems of ODEs as well.
For systems of ODEs, a number of numerical methods have already been
developed to compute their periodic orbits (see [6, 9–13] for instance). Here,
we apply our numerical methods to systems of ODEs and demonstrate their
easy computation of periodic orbits in such systems.

EXAMPLE 3. The example of systems of ODEs we consider is the familiar
Lorenz equations [27]

dx

dt
= σ (y − x), (51)
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dy

dt
= r x − y − xz, (52)

dz

dt
= xy − bz, (53)

where (x, y, z) are real variables of time, and σ, r, b are real constants.

These equations admit many types of periodic orbits in wide ranges of
parameter values (see [28] and the references therein). Below we formulate
our numerical algorithm to compute these periodic orbits.

Periodic orbits in Lorenz equations contain a single unknown parameter,
which is their period. Thus the algorithm of Section 2 applies. In this case, the
function F in the algorithm of Section 2 is

F(u) =
⎛
⎝σ (y − x)

r x − y − xz
xy − bz

⎞
⎠ ,

where u = [x, y, z]T. The linearization operator of this function (i.e., the
Jacobian) is

F1 =
⎛
⎝ −σ σ 0

r − z −1 −x
y x −b

⎞
⎠ ,

and its adjoint operator is FA
1 = FT

1 . The quasi-normal Newton-correction
equation (18) for the Lorenz equations then is

PA
n L1n	un = −PA

n L0(un), (54)

where

L0(u) = ωuτ − F, L1
 ≡ P
 − 〈uτ ,P
〉
〈uτ ,uτ 〉 uτ ,

P = ω∂τ − F1, PA = −ω∂τ − FA
1 , ω = 〈uτ ,F〉

〈uτ ,uτ 〉 ,

and we solve it using preconditioned CG iterations.
Regarding the preconditioner, by retaining only the derivative terms of 
 in

PAL1
, we get PAL1 ≈ −ω2∂ττ I3, where I3 is the 3 × 3 identity matrix. Thus
we choose the preconditioner as

M = (
c − ω2∂ττ

)
I3, (55)

where c is a positive number (which we take as c = 30).
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Figure 5. Numerical computation of an unstable limit cycle in the Lorenz equations for
parameter values of σ = 10, b = 8

3 , and r = 24. (a) Bifurcation diagram near the subcritical
Hopf bifurcation point r = rH ≈ 24.74. (b) Numerically obtained limit cycle. (c) Error versus
number of CG iterations. (d) Error versus time. This figure (b– d) is produced by the
MATLAB code in Appendix C.

Now we apply the above Newton-CG method to compute periodic orbits
in the Lorenz equations. As an example, we take σ = 10 and b = 8

3 , the
same values Lorenz used in his pioneering paper [27]. At these σ and b
values, a subcritical Hopf bifurcation occurs at r = rH ≈ 24.74, where the
pair of fixed points (xc, yc, zc) = (±√

b(r − 1),±√
b(r − 1), r − 1) lose their

stability when r > rH . When r < rH , an unstable limit cycle appears [28].
This behavior is illustrated in Figure 5 [panel (a)].

We now compute this unstable limit cycle below rH , with r = 24 for
definiteness. The initial condition for Newton-CG iterations is chosen by
random trials, which yield many successful choices, one of which being

x0(τ ) = xc − 2.5 cos(τ + 0.5),

y0(τ ) = yc + 3 sin(τ − 0.4),

z0(τ ) = zc − 4 cos(τ − 0.3).
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We also discretize time evenly by 256 points. The MATLAB code for this
computation is provided in Appendix C.

The numerical outcome of this MATLAB code is given in Figure 5 [panels
(b, c, d)]. In panel (b), the accurate limit cycle is displayed. The accurate
period is found to be T = 0.6793367642. Convergence speeds of Newton-CG
iterations are shown in panels (c, d). We see that the error (defined by
max|L0(un)| as before) drops from the initial value of about 12 to the final
value below 10−11 in 150 CG iterations, or under 0.04 seconds.

When r = 28 (above the Hopf bifurcation point rH ), a strange attractor
appears [27]. On this strange attractor, an infinite number of unstable periodic
orbits exist. To look for these periodic orbits, we apply the above numerical
algorithm, starting from initial conditions

x0(τ ) = xc +
2∑

k=1

[A1k cos(kτ ) + B1k sin(kτ )] ,

y0(τ ) = yc +
2∑

k=1

[A2k cos(kτ ) + B2k sin(kτ )] ,

z0(τ ) = zc +
2∑

k=1

[A3k cos(kτ ) + B3k sin(kτ )] ,

where coefficients Ai j and Bi j are taken randomly from the interval [−10, 10].
Repeatedly running the MATLAB code of Appendix C, with r changed to 28,
the initial condition changed to the above random functions, and errorCG
changed to 10−2, we found 20 distinct periodic orbits with period below 10
and accuracy 10−10 in 5 minutes.

5. Summary

A numerical method was proposed for computing time-periodic and relative
time-periodic solutions in general dissipative wave systems. Because the
temporal period and possibly other additional internal parameters in the solution
are unknown priori, our idea was to first express those unknown parameters in
terms of the solution through quasi-Rayleigh quotients, so that the resulting
integrodifferential equation is for the time-periodic solution only. Then this
integrodifferential equation is computed in the combined spatiotemporal domain
by Newton-CG iterations, where the Newton-correction equation is solved by
preconditioned CG iterations. Linearization operators and their adjoints in the
Newton-correction equation were derived analytically for general systems, so
that CG iterations for Newton corrections can be readily implemented.
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As numerical examples, we applied this method to the KS equation and the
CQGL equation, whose time-periodic or relative time-periodic solutions with
spatially periodic or spatially localized profiles were computed. We also used
this method to compute periodic orbits in the Lorenz equations, because this
method applies to systems of ODEs as a special case.

Numerical examples showed that first, both stable and unstable time-periodic
solutions can be obtained by this method. Second, the numerical accuracy of
this method is spectral, because we used spectral differentiation (the discrete
Fourier transform) to compute spatial and temporal derivatives. Third, this
method only took from a fraction of a second to a couple of minutes (on a
personal computer) to find solutions of varying spatiotemporal complexities to
the accuracy of 10−10, thus this method is fast-converging and time-efficient.
Fourth, the coding of this method is short and simple. To make it evident,
stand-alone MATLAB codes for our numerical examples are provided in the
Appendices. Fifth, this method uses very little memory, which makes it suitable
for solving large problems without memory constraints.

This proposed method can be a powerful tool for numerically studying
time-periodic (and relative time-periodic) solutions and their bifurcations in
physical systems.
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Appendix A: MATLAB code for the Kuramoto–Sivashinsky (KS) equation

In this appendix, we provide the MATLAB code for computing an unstable
time- and space-periodic solution in the KS equation (41) with γ = 0.054.
The output of this code is shown in Figure 1.

% Newton-CG method for time-space-periodic solutions
% in the KS equation: u_t+uu_x+u_{xx}+gamma*u_{xxxx}=0.
% In this code, z represents scaled time tau in the paper.

gamma=0.054;
Nx=64;Nz=64;Lx=2*pi;Lz=2*pi;errormax=1e-9;errorCG=1e-4;
dx=Lx/Nx; x=0:dx:Lx-dx; kx=[0:Nx/2-1 -Nx/2:-1]*2*pi/Lx;
dz=Lz/Nz; z=0:dz:Lz-dz; kz=[0:Nz/2-1 -Nz/2:-1]*2*pi/Lz;
[X,Z]=meshgrid(x,z); [KX,KZ]=meshgrid(kx,kz);
KX2=-KX.*KX+gamma*KX.^4;
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u0=-7*sin(3*X)-3*sin(Z).*(sin(4*X)-sin(5*X))-cos(Z).*sin(X);
u=u0;

tic;
nnt=0; % nnt: # of Newton steps
ncg=0; % ncg: # of CG iterations
while 1 % Newton-CG iterations start
nnt=nnt+1;
ufft=fft2(u);
F=-real(u.*ifft2(i*KX.*ufft)+ifft2(KX2.*ufft));
uz=real(ifft2(i*KZ.*ufft));
omega=sum(sum(uz.*F))/sum(sum(uz.*uz));
L0u=omega*uz-F;
uerror(nnt)=max(max(abs(L0u))); uerror(nnt)
numcg(nnt)=ncg; time(nnt)= toc;
if uerror(nnt) < errormax
break

end

P=@(W) real(ifft2(( omega*i*KZ+KX2).*fft2(W)) ...
+ifft2(i*KX.*fft2(u.*W)));

PA=@(W) real(ifft2((-omega*i*KZ+KX2).*fft2(W)) ...
-u.*ifft2(i*KX.*fft2(W)));

c=30; fftM=omega^2*KZ.*KZ+KX2.*KX2+c; % Preconditioner
du=0*Z; % CG iterations start
R=-PA(L0u);
MinvR=real(ifft2(fft2(R)./fftM));
R2=sum(sum(R.*MinvR)); R20=R2;
D=MinvR;
while (R2 > R20*errorCG^2)
PD=P(D);
L1D=PD-sum(sum(uz.*PD))/sum(sum(uz.*uz))*uz;
PAL1D=PA(L1D);
a=R2/sum(sum(D.*PAL1D));
du=du+a*D;
R=R-a*PAL1D;
MinvR=real(ifft2(fft2(R)./fftM));
R2old=R2;
R2=sum(sum(R.*MinvR));
b=R2/R2old;
D=MinvR+b*D;
ncg=ncg+1;
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end % CG iterations end
u=u+du;

end % Newton-CG iterations end

% plotting of numerical results
subplot(221); imagesc(x, [z z+Lz], [u0; u0]);
axis xy; colorbar;
xlabel(’x’); ylabel(’\tau’,’rotation’,0); title(’(a)’);
subplot(222); imagesc(x, [z z+Lz]/omega, [u; u]);
axis xy; colorbar;
xlabel(’x’); ylabel(’t’,’rotation’,0); title(’(b)’);
subplot(223); semilogy(numcg, uerror, numcg, uerror, ’o’);
xlabel(’number of CG iterations’); ylabel(’solution error’);
title(’(c)’);
subplot(224); semilogy(time, uerror, time, uerror, ’o’);
xlabel(’time (seconds)’); ylabel(’solution error’);
title(’(d)’);
format long; period=2*pi/omega

Appendix B: MATLAB code for the cubic-quintic Ginzburg-Landau
(CQGL) equation

In this appendix, we provide the MATLAB code for computing a (stable) relative
time-periodic and space-localized solution in the CQGL equation (45) with
parameters (50). The initial condition U0_fig3.mat in this code is obtained from
simulatingtheCQGLequationfromaGaussianinitialcondition A(x, 0) = e−x2/10

(see text for details). The MATLAB data for this initial condition can be found
at the author’s homepage http://www.cems.uvm.edu/~jxyang/codes.htm.
From this initial approximation (whose error is about 0.3), the following
MATLAB code then drives the error below 10−10, and the output of this code
is shown in Figure 3. Note that during MATLAB implementation of the
algorithm, real functions u and v are recombined into U = u + iv, so that they
can be computed simultaneously for numerical efficiency and compact coding.
Because of it, real operators P,PA,L1, and LA

1 in the algorithm are adjusted
into complex operators, and some inner products are expressed through these
complex functions.

% Newton-CG method for computing time-periodic and
% space-localized solutions in the CQGL equation:
% At-gamma*Axx+beta*|A|^2A+delta*|A|^4A-chi*A=0.
% Here, z represents scaled time tau, and A=U*exp(i*mu*t).
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load U0_fig3.mat; % this data contains i.c. U(x, z)
Lx=100;Nx=512;Lz=2*pi;Nz=32;errormax=1e-10;errorCG=1e-4;
dx=Lx/Nx;x=-Lx/2:dx:Lx/2-dx;kx=[0:Nx/2-1 -Nx/2:-1]*2*pi/Lx;
dz=Lz/Nz; z=0:dz:Lz-dz; kz=[0:Nz/2-1 -Nz/2:-1]*2*pi/Lz;
[X,Z]=meshgrid(x,z); [KX,KZ]=meshgrid(kx,kz); KX2=KX.*KX;

gamma=0.9-1.1i; beta=-3-i; delta=2.75-i; chi=-0.1;
gamma1=real(gamma); gamma2=imag(gamma);
beta1=real(beta); beta2=imag(beta);
delta1=real(delta); delta2=imag(delta);

tic;
nnt=0; % nnt: # of Newton steps
ncg=0; % ncg: # of CG iterations
while 1 % Newton-CG iterations start
nnt=nnt+1;
u=real(U); v=imag(U); U2=u.*u+v.*v; U4=U2.*U2;
G=gamma*ifft2(-KX2.*fft2(U))-(beta*U2+delta*U4-chi).*U;
Ut=ifft2(i*KZ.*fft2(U)); ut=real(Ut); vt=imag(Ut);
produv=2*sum(sum(u.*v)); produtvt=2*sum(sum(ut.*vt));
mu = sum(sum(v.*imag(G)-u.*real(G)))/produv;
omega= sum(sum(ut.*imag(G)+vt.*real(G)))/produtvt;
L0U=omega*Ut+i*mu*U-G;
Uerror(nnt)=max(max(abs(L0U))); Uerror(nnt)
numcg(nnt)=ncg; time(nnt)= toc;
if Uerror(nnt) < errormax

break
end

betaU1=beta1*u-beta2*v; betaU2=beta1*v+beta2*u;
deltaU1=delta1*u-delta2*v; deltaU2=delta1*v+delta2*u;
G11=chi-beta1*U2-betaU1*2.*u-delta1*U4-deltaU1*4.*u.*U2;
G12= +beta2*U2-betaU1*2.*v+delta2*U4-deltaU1*4.*v.*U2;
G21= -beta2*U2-betaU2*2.*u-delta2*U4-deltaU2*4.*u.*U2;
G22=chi-beta1*U2-betaU2*2.*v-delta1*U4-deltaU2*4.*v.*U2;
Dxx=@(F) ifft2(-KX2.*fft2(F));
Dtxx=@(F) ifft2(( omega*i*KZ+gamma1*KX2).*fft2(F));
DtxxA=@(F) ifft2((-omega*i*KZ+gamma1*KX2).*fft2(F));

P=@(F) Dtxx(real(F))-G11.*real(F)-(mu+G12).*imag(F) ...
+gamma2*Dxx(imag(F)) ...

+i*( (mu-G21).*real(F)-gamma2*Dxx(real(F)) ...
+Dtxx(imag(F))-G22.*imag(F) );
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PA=@(F) DtxxA(real(F))-G11.*real(F)+(mu-G21).*imag(F) ...
-gamma2*Dxx(imag(F)) ...

+i*( -(mu+G12).*real(F)+gamma2*Dxx(real(F)) ...
+DtxxA(imag(F))-G22.*imag(F) );

L1= @(F) P(F)-sum(sum(imag(Ut.*P(F))))/produtvt*Ut ...
+sum(sum(real(U.*P(F))))/produv*i*U;

L1A=@(F) PA(F) ...
-sum(sum(real(conj(F).*Ut)))/produtvt*PA(vt+i*ut) ...
-sum(sum(imag(conj(F).*U)))/produv*PA(u-i*v);

c=8; % Here fftM is the preconditioner
fftM=omega^2*KZ.*KZ+abs(gamma)^2*KX2.*KX2+c;
dU=0*Z; % CG iterations start
R=-L1A(L0U);
MinvR=ifft2(fft2(R)./fftM);
R2=sum(sum(real(conj(R).*MinvR))); R20=R2;
D=MinvR;
while (R2 > R20*errorCG^2)

L2D=L1A(L1(D));
a=R2/sum(sum(real(conj(D).*L2D)));
dU=dU+a*D;
R=R-a*L2D;
MinvR=ifft2(fft2(R)./fftM);
R2old=R2;
R2=sum(sum(real(conj(R).*MinvR)));
b=R2/R2old;
D=MinvR+b*D;
ncg=ncg+1;

end % CG iterations end
U=U+dU;

end % Newton-CG iterations end

% plotting of numerical results
subplot(221); imagesc(x, [z z+Lz]/omega, abs([U;U]));
axis xy; colorbar; xlabel(’x’); ylabel(’t’); title(’(a)’);
subplot(222); imagesc(x, [z z+Lz]/omega, angle([U;U]));
axis xy; colorbar; xlabel(’x’); ylabel(’t’); title(’(b)’);
subplot(223); semilogy(numcg, Uerror, numcg, Uerror, ’o’);
xlabel(’number of CG iterations’); ylabel(’solution error’);
title(’(c)’);
subplot(224);semilogy(time/60,Uerror,time/60,Uerror,’o’);
xlabel(’time (minutes)’); ylabel(’solution error’);
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title(’(d)’);
format long; period=2*pi/omega
mu

Appendix C: MATLAB code for the Lorenz equation

In this appendix, we provide the MATLAB code for computing an unstable
limit cycle in the Lorenz equations with σ = 10, b = 8/3, and r = 24. This
limit cycle is located below the subcritical Hopf bifurcation point rH ≈ 24.74.
The output of this code is shown in Figures 5(b)–(d).

% Newton-CG method for limit cycles in the Lorenz equations.

L=2*pi; N=256; errormax=1e-10; errorCG=1e-4;
dtau=L/N; tau=(0:dtau:L-dtau)’;
ktau=[0:N/2-1 -N/2:-1]’*2*pi/L; Ktau=[ktau ktau ktau];

sigma=10; b=8/3; r=24; xc=sqrt(b*(r-1)); yc=xc; zc=r-1;
x=xc-2.5*cos(tau+0.5);
y=yc+3*sin(tau-0.4);
z=zc-4*cos(tau-0.3);
u=[x y z];

tic;
nnt=0; % nnt: # of Newton steps
ncg=0; % ncg: # of CG iterations
while 1 % Newton-CG iterations start

nnt=nnt+1;
F=[sigma*(y-x) r*x-y-x.*z x.*y-b*z];
utau=real(ifft(i*Ktau.*fft(u)));
omega=sum(sum(utau.*F))/sum(sum(utau.*utau));
L0u=omega*utau-F;
uerror(nnt)=max(max(abs(L0u))); uerror(nnt)
numcg(nnt)=ncg; time(nnt)= toc;
if uerror(nnt) < errormax

break
end
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P=@(W) omega*real(ifft(i*Ktau.*fft(W))) ...
-[-sigma*W(:,1)+sigma*W(:,2), ...
(r-z).*W(:,1)-W(:,2)-x.*W(:,3), ...
y.*W(:,1)+x.*W(:,2)-b*W(:,3)];

PA=@(W) -omega*real(ifft(i*Ktau.*fft(W))) ...
-[-sigma*W(:,1)+(r-z).*W(:,2)+y.*W(:,3), ...
sigma*W(:,1)-W(:,2)+x.*W(:,3), ...
-x.*W(:,2)-b*W(:,3)];

c=30; fftM=omega^2*Ktau.*Ktau+c; % Preconditioner
du=0*u; % CG iterations start
R=-PA(L0u);
MinvR=real(ifft(fft(R)./fftM));
R2=sum(sum(R.*MinvR)); R20=R2;
D=MinvR;
while (R2 > R20*errorCG^2)

PD=P(D);
L1D=PD-sum(sum(utau.*PD))/sum(sum(utau.*utau))*utau;
PAL1D=PA(L1D);
a=R2/sum(sum(D.*PAL1D));
du=du+a*D;
R=R-a*PAL1D;
MinvR=real(ifft(fft(R)./fftM));
R2old=R2;
R2=sum(sum(R.*MinvR));
beta=R2/R2old;
D=MinvR+beta*D;
ncg=ncg+1;

end % CG iterations end
u=u+du;
x=u(:,1); y=u(:,2); z=u(:,3);

end % Newton-CG iterations end

% plotting of numerical results
subplot(222); plot3(x, y, z);
xlabel(’x’); ylabel(’y’); zlabel(’z’);
title(’(b)’); axis([4 12 4 12 15 30]); view([-40 30])
subplot(223); semilogy(numcg, uerror, numcg, uerror, ’o’);
xlabel(’number of CG iterations’); ylabel(’solution error’);
title(’(c)’);
subplot(224); semilogy(time, uerror, time, uerror, ’o’);
xlabel(’time (seconds)’); ylabel(’solution error’);



454 J. Yang

title(’(d)’);
format long; period=2*pi/omega
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