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Recently, a number of nonlocal integrable equations, such as the PT -
symmetric nonlinear Schrödinger (NLS) equation and PT -symmetric
Davey–Stewartson equations, were proposed and studied. Here, we show that
many of such nonlocal integrable equations can be converted to local inte-
grable equations through simple variable transformations. Examples include
these nonlocal NLS and Davey–Stewartson equations, a nonlocal derivative
NLS equation, the reverse space-time complex-modified Korteweg–de Vries
(CMKdV) equation, and many others. These transformations not only es-
tablish immediately the integrability of these nonlocal equations, but also
allow us to construct their Lax pairs and analytical solutions from those of
the local equations. These transformations can also be used to derive new
nonlocal integrable equations. As applications of these transformations, we
use them to derive rogue wave solutions for the partially PT -symmetric
Davey–Stewartson equations and the nonlocal derivative NLS equation. In
addition, we use them to derive multisoliton and quasi-periodic solutions
in the reverse space-time CMKdV equation. Furthermore, we use them
to construct many new nonlocal integrable equations such as nonlocal
short pulse equations, nonlocal nonlinear diffusion equations, and nonlocal
Sasa–Satsuma equations.

1. Introduction

The study of integrable nonlinear wave equations has a long history [1–5].
Most of those integrable equations are local equations, i.e., the solution’s
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evolution depends only on the local solution value and its local space
and time derivatives. The Korteweg–de Vries equation and the nonlinear
Schrödinger (NLS) equation are such examples.

Recently, a number of new nonlocal integrable equations were proposed
and studied [6–24]. The first such nonlocal equation was the PT -symmetric
NLS equation [6]

iut (x, t) + uxx (x, t) + 2σu2(x, t)u∗(−x, t) = 0, (1)

where σ = ±1 is the sign of nonlinearity (with the plus sign being the
focusing case and minus sign the defocusing case), and the asterisk *
represents complex conjugation. Notice that here, the solution’s evolution
at location x depends on not only the local solution at x , but also the
nonlocal solution at the distant position −x . That is, solution states at
distant locations x and −x are directly coupled, reminiscent of quantum
entanglement between pairs of particles. Equation (1) is PT -symmetric
because it is invariant under the action of the PT operator, i.e., the
joint transformations x → −x , t → −t and complex conjugation (hence,
if u(x, t) is a solution, so is u∗(−x, −t)). It is noted that PT symmetric
systems attracted a lot of attention in optics and other physical fields in
recent years [25, 26]. The application of this PT -symmetric NLS equation
for an unconventional system of magnetics was reported in [27].

Following this nonlocal PT -symmetric NLS equation, other new nonlocal
integrable equations were quickly reported. Examples include the fully PT -
symmetric and partially PT -symmetric Davey–Stewartson (DS) equations
[12, 15], the nonlocal derivative NLS equation [17], the reverse space-
time complex-modified Korteweg–de Vries (CMKdV) equation [10, 22],
the reverse-time NLS equation [15], the reverse space-time NLS equation
[13, 15], and many others. These nonlocal equations are distinctly different
from local equations for their novel space and/or time coupling, which could
induce new physical effects and thus inspire novel physical applications.
Indeed, solution properties in some of these nonlocal equations have been
analyzed by the inverse scattering transform method, Darboux transformation
or the Hirota bilinear method, and interesting behaviors such as finite-time
solution blowup [6] and the simultaneous existence of soliton and kink
solutions [21] have been revealed.

In this article, we report that many of these nonlocal integrable equations
can be converted to their local integrable counterparts through simple
variable transformations. Such nonlocal equations include the PT -symmetric
NLS and DS equations, the nonlocal derivative NLS equation, the reverse
space-time CMKdV equation, and many others. This conversion puts these
nonlocal equations in a totally different light and opens up a totally new way
to study their solution behaviors. First of all, this conversion immediately
establishes the integrability of these nonlocal equations, and allows us to
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derive their Lax pairs and infinite numbers of conservation laws from those
of the local equations. Second, it allows us to construct analytical solutions
of these nonlocal equations from solutions of their local counterparts. Third,
it can be used to derive new nonlocal integrable equations. As applications
of these transformations, we use them to derive rogue wave solutions for
the partially PT -symmetric DS equations and the nonlocal derivative NLS
equation. In addition, we use them to derive multisoliton and quasi-periodic
solutions in the reverse space-time CMKdV equation. Furthermore, we use
them to construct many new nonlocal integrable equations such as nonlocal
short pulse equations, nonlocal nonlinear diffusion equations, nonlocal
Sasa–Satsuma equations, and nonlocal Chen–Lee–Liu equations.

2. Transformations between nonlocal and local integrable equations

In this section, we present transformations that convert many nonlocal
integrable equations to their local counterparts.

Our first example is the PT -symmetric NLS equation (1). Under the
variable transformations

x = i x̂, t = −t̂, u(x, t) = û(x̂, t̂), (2)

this nonlocal equation becomes

i ût̂ (x̂, t̂) + û x̂ x̂ (x̂, t̂) − 2σ û2(x̂, t̂)û∗(x̂, t̂) = 0, (3)

which is the local NLS equation but with the opposite sign of nonlinearity.
In other words, the PT -symmetric focusing NLS equation is converted to
the local defocusing NLS equation, and the PT -symmetric defocusing NLS
equation is converted to the local focusing NLS equation. The key reason
for this nonlocal to local conversion is that, in the nonlocal equation (1), x
is treated real when taking the complex conjugate u∗(−x, t). However, under
the x = i x̂ transformation with real x̂ , x becomes imaginary. In this case,
when taking the complex conjugate of u(−x, t), the sign of x flips, turning
the nonlocal term u∗(−x, t) in (1) to the local term û∗(x̂, t̂) in (3).

Following similar ideas, we can transform many more nonlocal integrable
equations to their local counterparts. Some examples are listed below.

(1) Consider the PT -symmetric DS equations [12, 15]

iAt (x, y, t) = Axx (x, y, t) + σ 2 Ayy(x, y, t)

+ [ε A(x, y, t)A∗(−x, −y, t) − 2Q(x, y, t)]A(x, y, t), (4)

Qxx (x, y, t) − σ 2 Qyy(x, y, t) = ε[A(x, y, t)A∗(−x, −y, t)]xx ,
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where σ 2 = ±1 is the equation-type parameter (with σ 2 = 1 being
DSI and σ 2 = −1 DSII), and ε = ±1 is the sign of nonlinearity.
Under the variable transformations,

x = i x̂, y = i ŷ, t = −t̂, (5)

A(x, y, t) = Â(x̂, ŷ, t̂), Q(x, y, t) = −Q̂(x̂, ŷ, t̂), (6)

and dropping the bars, i.e., with

x → i x, y → iy, t → −t, Q → −Q, (7)

these PT -symmetric DS equations are converted to the following
local (classical) DS equations:

iAt (x, y, t) = Axx (x, y, t) + σ 2 Ayy(x, y, t)

+ [−ε A(x, y, t)A∗(x, y, t) − 2Q(x, y, t)]A(x, y, t), (8)

Qxx (x, y, t) − σ 2 Qyy(x, y, t) = −ε[A(x, y, t)A∗(x, y, t)]xx .

Similar to the PT -symmetric NLS equation above, the sign of
nonlinearity ε has switched after the nonlocal-to-local conversion, but
the sign of σ 2 remains the same. Thus, the PT -symmetric focusing
DSI equations are converted to local defocusing DSI equations, and
so on.

(2) Consider the partially PT -symmetric DS equations [12, 15]

iAt (x, y, t) = Axx (x, y, t) + σ 2 Ayy(x, y, t)

+ [ε A(x, y, t)A∗(−x, y, t) − 2Q(x, y, t)]A(x, y, t), (9)

Qxx (x, y, t) − σ 2 Qyy(x, y, t) = ε [A(x, y, t)A∗(−x, y, t)]xx ,

where σ 2 = ±1 and ε = ±1. Under the variable transformations,

x → i x, t → −t, Q → −Q, (10)

these nonlocal DS equations reduce to the local DS equations

iAt (x, y, t) = Axx (x, y, t) − σ 2 Ayy(x, y, t)

+ [−ε A(x, y, t)A∗(x, y, t) − 2Q(x, y, t)]A(x, y, t), (11)

Qxx (x, y, t) + σ 2 Qyy(x, y, t) = −ε[A(x, y, t)A∗(x, y, t)]xx .

Here, after the nonlocal-to-local conversion, not only the sign of non-
linearity ε, but also the equation-type parameter σ 2, switches. Thus,
the partially PT -symmetric focusing DSI equations are converted to
local defocusing DSII equations, and so on.

Equations (9) are partially PT -symmetric in x . Similar equations
partially PT -symmetric in y can also be converted to their local
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counterparts through the sole transformation y → iy. Under this
conversion, the sign of σ 2 switches, but not the sign of ε.

(3) Consider the nonlocal derivative NLS equation [17]

iut (x, t) + uxx (x, t) + σ [u2(x, t)u∗(−x, t)]x = 0, (12)

where σ = ±1. Under the variable transformations,

x → i x, t → −t, (13)

this nonlocal equation becomes the local derivative NLS equation
[28]

iut (x, t) + uxx (x, t) + iσ [u2(x, t)u∗(x, t)]x = 0. (14)

(4) Consider the reverse space-time CMKdV equation [10, 22]

qt (x, t) + qxxx (x, t) + 6σq(x, t)q∗(−x, −t)qx (x, t) = 0, (15)

where σ = ±1. Under the variable transformations,

x → i x, t → −i t, (16)

this equation becomes the following local (classical) CMKdV equa-
tion:

qt (x, t) + qxxx (x, t) − 6σq(x, t)q∗(x, t)qx (x, t) = 0. (17)

Note that the sign of nonlinearity has flipped under this conversion.
(5) Consider the multidimensional reverse space-time nonlocal three wave

interaction equations [15]

Q1,t (x, t) + C1 · ∇Q1(x, t) = σ1 Q∗
2(−x, −t)Q∗

3(−x, −t),

Q2,t (x, t) + C2 · ∇Q2(x, t) = σ2 Q∗
1(−x, −t)Q∗

3(−x, −t),

Q3,t (x, t) + C3 · ∇Q3(x, t) = σ3 Q∗
1(−x, −t)Q∗

2(−x, −t),

where σ j = ±1, j = 1, 2, 3, σ1σ2σ3 = −1, x is a multidimensional
spatial variable, and C1, C2, C3 are constant vectors. Under the
variable transformations,

x → i x, t → i t,

the above nonlocal three wave interaction equations reduce to the
local counterparts [1]

Q1,t (x, t) + C1 · ∇Q1(x, t) = iσ1 Q∗
2(x, t)Q∗

3(x, t),

Q2,t (x, t) + C2 · ∇Q2(x, t) = iσ2 Q∗
1(x, t)Q∗

3(x, t),

Q3,t (x, t) + C3 · ∇Q3(x, t) = iσ3 Q∗
1(x, t)Q∗

2(x, t).
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In addition to the above nonlocal integrable equations, many others, such
as the vector or matrix extensions of the PT -symmetric NLS equations
[8, 11, 15], can also be converted to local integrable equations through
similar transformations.

These transformations between nonlocal and local integrable equations
offer a totally different way of studying these nonlocal equations, and they
can be used for many purposes.

First of all, these transformations immediately establish the integrability
of the underlying nonlocal equations in view of the integrability of their
local counterparts.

Second, these transformations allow us to derive the Lax pairs of the
nonlocal equations from those of the local ones. For instance, from the Lax
pair of the local NLS equation (3),

Ŷx̂ =
(−i ζ̂ û

σ û∗ i ζ̂

)
Ŷ , (18)

Ŷt̂ =
( −2i ζ̂ 2 − iσ |û|2 i û x̂ + 2ζ̂ û

−iσ û∗
x̂ + 2σ ζ̂ û∗ 2i ζ̂ 2 + iσ |û|2

)
Ŷ , (19)

and under the variable transformations

x = i x̂, t = −t̂, u(x, t) = −iû(x̂, t̂), ζ = −i ζ̂ , (20)

we obtain the Lax pair of the nonlocal NLS equation (1) as

Yx =
( −iζ u(x, t)

−σu∗(−x, t) iζ

)
Y, (21)

Yt =
(

−2iζ 2 + iσu(x, t)u∗(−x, t) iux (x, t) + 2ζu(x, t)

iσu∗
x (−x, t) − 2σζu∗(−x, t) 2iζ 2 − iσu(x, t)u∗(−x, t)

)
Y. (22)

Additional examples of this derivation of Lax pairs of nonlocal equations
will be provided in Section 6.1.

Third, these transformations allow us to obtain the infinite number
of conservation laws for the nonlocal equations from those of local
equations. For example, from the first two conserved quantities of the NLS
equation (3),

I1 =
∫ ∞

−∞
û(x̂, t̂)û∗(x̂, t̂)dx̂, I2 =

∫ ∞

−∞
û∗(x̂, t̂)û x̂ (x̂, t̂)dx̂, (23)

we immediately obtain through variable transformations (2) the first two
conserved quantities of the PT -symmetric NLS equation (1) [6, 10]

I1 =
∫ ∞

−∞
u(x, t)u∗(−x, t)dx, I2 =

∫ ∞

−∞
u∗(−x, t)ux (x, t)dx . (24)
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Technically speaking, under the variable transformation x = i x̂ , the paths of
integration −∞ < x̂ < ∞ in the conserved quantities (23) of the local NLS
equation change to the imaginary axis x : −i∞ → i∞ in the conserved
quantities (24) of the PT -symmetric NLS equation. However, when the
paths of integration in these conserved quantities of the PT -symmetric NLS
equation still run along the real axis as in Eqs. (24), the resulting integrals
are still conserved quantities of the PT -symmetric NLS equation, which is
remarkable. The reason for this is still unclear.

Fourth, these transformations allow us to construct analytical solutions
of nonlocal equations from those of local ones. Examples of this will be
presented in the next three sections.

Fifth, these transformations can be used to derive new nonlocal integrable
equations from their local counterparts. This will be demonstrated in
Section 6.

Sixth, these transformations allow us to derive solution properties of
nonlocal equations from those of local ones. For example, from the Galilean
invariance of the local NLS equation, we can reproduce by transformations
(2) the corresponding Galilean invariance of the PT -symmetric NLS
equation [10].

It is noted that the solution construction of nonlocal equations through
these transformations may not be as trivial as it seems. The reason is that
well-behaved solutions of the local equations may become ill-behaved in
the nonlocal equations under these transformations. For instance, the soliton
solution of the local focusing NLS equation (3) (with σ = −1),

û(x̂, t̂) = eîtsech x̂, (25)

under transformations (2), becomes a singular solution

u(x, t) = e−itsec x (26)

of the nonlocal defocusing NLS equation (1). On the other hand, singular
solutions of the local equations may become well behaved in the nonlocal
equations. For example, the singular solution of the local defocusing NLS
equation (3) as reported in [29],

û(x̂, t̂) = k sec[k(x̂ − 2αt̂)] ei[α x̂−(α2+k2)t̂], (27)

with real constants k and α, under transformations (2) becomes

u(x, t) = 2k
e(α−k)x+i(α−k)2t

1 + e−2kx−4iαkt
, (28)

which is the breathing one-soliton solution of the nonlocal focusing NLS
equation (1) [10]. Thus, the search of good solutions in the nonlocal
equations through transformations may propel us to dig into “bad” solutions
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of the local equations. In this sense, our transformation technique makes
“bad” solutions of local equations useful.

3. Rogue waves in partially PT -symmetric DS equations

In this section, we derive rogue wave solutions in partially PT -symmetric
DS equations (9) using the transformation method. These rogue wave
solutions have not been reported before to our best knowledge.

3.1. Partially PT -symmetric DSI equations

Rogue waves are rational solutions. According to the transformations
(10), rational solutions in partially PT -symmetric DSI equations (9) (with
σ 2 = 1) can be obtained from rational solutions in local DSII equations
(11). These latter solutions have been reported in [30] and [31]. Utilizing
those solutions and the reverse variable transformations of (10), i.e.,
x → −i x , t → −t and Q → −Q, and accounting for the sign switching
of the nonlinearity parameter ε, rational solutions in the partially PT -
symmetric DSI equations (9) can be obtained. By imposing parameter
conditions on these rational solutions, rogue wave solutions in these nonlocal
DSI equations can then be derived.

First, we consider fundamental rational solutions in the partially PT -
symmetric DSI equations (9). These solutions are deduced from the
fundamental rational solutions (11)–(12) of the local DSII equations in Ref.
[31] under the reverse variable transformations as

A(x, y, t) =
√

2

[
1 − 2i(−ia2x + b2 y − ω2t + θ2) + 1

f

]
, (29)

Q(x, y, t) = ε − (2 ln f )xx , (30)

where

f = (−ia1x + b1 y − ω1t + θ1)2 + (−ia2x + b2 y − ω2t + θ2)2 + �, (31)

a = a1 + ia2, b = b1 + ib2, ω = ω1 + iω2, θ = θ1 + iθ2, (32)

a ≡ p + ε/p

2
, b ≡ p − ε/p

2
i, (33)

ω ≡ p2 + 1/p2

i
, � ≡ ε|p|2

(|p|2 + ε)2
, (34)
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p and θ are free complex parameters, and a1,2, b1,2, ω1,2, θ1,2 are the real
and imaginary parts of complex numbers a, b, ω, θ . Performing solution
analysis analogous to that in [31], we find that this rational solution is a
rogue wave when p is purely imaginary. In this case, the solutions go to a
constant background, A → √

2, Q → ε, as t → −∞. Since p is imaginary,
a and ω are imaginary, and b is real. Thus, a1 = b2 = ω1 = 0, and the
function f in (31) becomes

f = (b1 y + θ1)2 + (−ia2x − ω2t + θ2)2 + �. (35)

When ω2t − θ2 = 0, i.e., at a critical time tc = θ2/ω2, this function
becomes zero at spatial positions where

(b1 y + θ1)2 − a2
2 x2 + � = 0. (36)

In the generic case where b1 	= 0 and a2 	= 0, i.e., p2 	= −1, this equation
defines a hyperbola on the (x, y) plane. Thus, this rogue wave, which arises
from a constant background, develops finite time singularity on the entire
hyperbola (36) at the critical time tc = θ2/ω2. If ε = −1 (and hence � < 0),
additional singularities occur at x = 0 and

(b1 y + θ1)2 + (ω2t − θ2)2 + � = 0,

which generically defines an ellipse in the (y, t) plane. In this case, the
rogue wave also develops finite time singularities on this ellipse over a finite
time interval [(θ2 − √|�|)/ω2, (θ2 + √|�|)/ω2].

To illustrate this fundamental rogue wave, we choose ε = 1, p = 0.5i ,
and θ = 1 + i . The corresponding rogue wave is plotted in Fig. 1. In this
case, the finite-time singularity occurs at tc = 4/17 ≈ 0.2353; thus, we only
plotted solutions up to time t = 0.22, shortly before the blowup.

It is interesting to compare this fundamental rogue wave of the nonlocal
DSI equation with that of the local DSII equation [31]. First of all, the
parameter conditions are very different. In the local DSII equation, rogue
waves require |p| = 1; if |p| 	= 1, the rational solution would be a two-
dimensional lump moving on a constant background. In the nonlocal DSI
equation (9), rogue waves require q to be purely imaginary. In this case,
|p| 	= 1 generically and thus the transformations (10) convert moving-lump
solutions of the local DSII equation into rogue waves of the nonlocal DSI
equation. Second, in the local DSII equation, rogue waves exist only when
ε = −1; but in the nonlocal DSI equation (9), rogue waves exist for both
signs of nonlinearity ε = ±1. Third, in the local DSII equation, fundamental
rogue waves are line rogue waves; but in the nonlocal DSI equation,
fundamental rogue waves have richer structures. Fourth, in the local DSII
equation, fundamental rogue waves never blow up in finite time; but in
the nonlocal DSI equation, fundamental rogue waves generically blow up in
finite time. Although some nongeneric multirogue waves and higher order
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Figure 1. (color online) An exploding fundamental rogue wave (29) in the partially
PT -symmetric DSI equations (9) with σ 2 = 1, ε = 1, p = 0.5i , and θ = 1 + i .

rogue waves of the local DSII equation can also blow up in finite time, they
only do so at a single spatial point, unlike the fundamental rogue waves of
the nonlocal DSI equation where the blowup occurs on an entire hyperbola
of the spatial plane.

Multirogue waves of the nonlocal DSI equations (9) can be similarly
derived from those of the local DSII equations in [30] and [31] under
the reverse variable transformations x → −i x , t → −t , Q → −Q and
the parameter conditions of p j (1 ≤ j ≤ n) being purely imaginary. These
multirogue waves describe the nonlinear interaction of several individual
fundamental rogue waves. Details are omitted.

It is noted that rogue waves in the fully PT -symmetric DS equations
(4) have been reported in [19] and [20]. Those rogue waves can also be
derived using our transformation method in view of the conversion of these
nonlocal equations to the local DS equations as discussed in the previous
section.
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3.2. Partially PT -symmetric DSII equations

Rogue waves in partially PT -symmetric DSII equations (9), with σ 2 = −1,
can be obtained from the rational solutions in the local DSI equations (11)
under the reverse of transformations (10). These rational solutions in the
local DSI equations have been reported in [30] and [33]. Imposing suitable
parameter restrictions, rogue waves in the nonlocal DSII equations (9) will
be obtained.

Fundamental rational solutions in the nonlocal DSII equations (9) can be
obtained from analogous solutions in Ref. [33] for the local DSI equations
under the reverse variable transformations x → −i x , t → −t , Q → −Q,
and accounting for the sign switching of the nonlinearity parameter ε. These
fundamental rational solutions of the nonlocal DSII equations are given by
the same formulae (29)–(34), except that the expressions for parameters b
and � are different:

b ≡ p − ε/p

2
, � ≡ |p|2

(p + p∗)2
. (37)

As before, p and θ are free complex constants. Analysis of these rational
solutions shows that they become rogue waves when ε = −1 and |p| = 1, in
which case a, ω are imaginary and b is real. These rogue waves approach a
constant background as t → −∞, but develop finite-time singularity at time
tc = θ2/ω2 and on the hyperbola

(b1 y + θ1)2 − a2
2 x2 + � = 0. (38)

Graphs of these rogue waves are qualitatively similar to those in Fig. 1.
Multirogue waves in the nonlocal DSII equations (9) can be derived

from those of the local DSI equations in [30] and [33] under variable
transformations and parameter conditions of ε = −1, |p j | = 1, j = 1, . . . , n.
Details are omitted.

4. Rogue waves in the nonlocal derivative NLS equation

Now, we consider rogue waves in the nonlocal derivative NLS equation (12),
i.e.,

iut (x, t) + uxx (x, t) + σ [u2(x, t)u∗(−x, t)]x = 0, (39)

where σ = ±1. These rogue waves can be obtained from rational solutions
of the local derivative NLS equation (14) through the variable transforma-
tion (13). This local equation is invariant when σ → −σ, x → −x ; thus,
we fix σ = 1 without loss of generality. For this σ value, the fundamental
rational solution in the local derivative NLS equation is given by Eq. (47) in
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Figure 2. (color online) Rogue waves (|u|) in the nonlocal derivative NLS equation (39)
with σ = 1. (a) The fundamental rogue wave (40) and (b–d) second-order rogue waves (41)
with α = −10, 0, and 10, respectively.

Ref. [34], and it is a moving soliton on a constant background. Then, under
the reverse of the transformation (13), i.e., x → −i x , t → −t , this moving
soliton of the local equation is converted to the following fundamental
rational solution of the nonlocal equation,

u(x, t) = (2i x − 6t − i)(2i x − 6t + 3i)

(2i x − 6t + i)2
. (40)

The graph of this solution is displayed in Fig. 2(a). It is seen that this is
a rogue wave, rising from a constant background and then retreating back
to the same background, analogous to the Peregrine solution of the NLS
equation. However, the present rogue wave blows up to infinity at x = −1/2
and finite time tc = 0, unlike the Peregrine solution.

Higher order rogue waves in the nonlocal equation (39) can be obtained
from higher order rational solutions of the local derivative NLS equation.
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For instance, the second-order rational solution of the local equation is
given by Eq. (48) in Ref. [34]. Then, under the transformations x → −i x ,
t → −t , we get the second-order rational solution of the nonlocal equation
(39) as

u(x, t) = (F1 − i F2)F3

(F1 + i F2)2
, (41)

where

F1 = 8η3 + 18η − 48t + 12α, F2 = 12η2 + 3,

F3 = 8η3 − 30η − 48t + 12α + i(36η2 − 15), η = i x − 3t,

and α is a free real constant. Graphs of these rational solutions are plotted
in Figs. 2(b)–(d) for α = −10, 0, and 10, respectively. It is seen that these
rational solutions are second-order rogue waves that arise from and retreat
back to the same constant background. However, they blow up to infinity at
three points of the (x, t) plane.

5. Multisolitons and quasi-periodic solutions in the reverse space-time
CMKdV equation

In this section, we derive analytical solutions for the reverse space-time
CMKdV equation (15), i.e.,

qt (x, t) + qxxx (x, t) + 6σq(x, t)q∗(−x, −t)qx (x, t) = 0, (42)

where σ = ±1. The case of σ = 1 will be called the focusing case, and that
of σ = −1 the defocusing case. As we have shown, this nonlocal equation,
under transformations (16), becomes the local CMKdV equation (17) with
the opposite sign of nonlinearity. Thus, we will derive analytical solutions
for the defocusing/focusing nonlocal CMKdV equation from those of the
local focusing/defocusing CMKdV equation.

5.1. Multisolitons in the nonlocal focusing equation

Equation (42) in the focusing case has σ = 1. Solitons and multisolitons in
this nonlocal focusing equation can be constructed from singular solutions in
the local defocusing equation (17). The local defocusing equation admits the
following singular solutions:

q(x, t) = √
ν exp(iφ) sec [

√
ν (x + νt + δ)], ν > 0, (43)

where ν, φ, and δ are real constants. Then, under the reverse of transforma-
tions (16), i.e., x → −i x , t → i t , this singular solution becomes

q(x, t) = √
ν exp(iφ) sech [

√
ν (x − νt + iδ)], ν > 0, (44)
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Figure 3. (color online) (a) A two-soliton solution (45) in the nonlocal focusing CMKdV
equation (42) under parameter choices (46). (b) A quasi-periodic solution (49) in the
nonlocal defocusing CMKdV equation (42) under parameter choices (50).

which is the fundamental soliton in the nonlocal focusing CMKdV equation
(42). Its peak amplitude, which occurs at x − νt = 0, is

√
ν sec(

√
ν δ). Thus,

for a given ν, this peak amplitude can vary from
√

ν to infinity depending
on the choice of the δ values.

Second-order singular solutions in the local defocusing equation (17) can
be obtained from Ref. [35] under certain parameter constraints (specifically,
by requiring c1, c2 negative in Eq. (3.18) of that paper). Then, under the
above variable transformations, we get two-soliton solutions in the nonlocal
focusing CMKdV equation (42) as

q(x, t) = κ[
√

ν1 exp(iφ1) cosh(θ2) + √
ν2 exp(iφ2) cosh(θ1)]

(κ2 − 1) cos(φ1 − φ2) + κ2 cosh(θ1 − θ2) + cosh(θ1 + θ2)
, (45)

with

κ =
√

ν1 + √
ν2√

ν1 − √
ν2

, θk = √
νk ξk,

ξk = x − νkt + i δk, k = 1, 2.

For parameter choices,

ν1 = 1, ν2 = 3, φ1 = φ2 = 0, δ1 = 1

2
, δ2 = −1

2
, (46)

this two-soliton solution is displayed in Fig. 3(a).
Higher order solitons in the nonlocal focusing CMKdV equation (42) can

be obtained similarly.
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5.2. Quasi-periodic solutions in the nonlocal defocusing equation

Equation (42) in the defocusing case has σ = −1. In this case, the local
focusing CMKdV equation (15) has a soliton solution

q(x, t) = √
c exp(iφ) sech [

√
c (x − c t + δ)], c > 0, (47)

where c, φ, and δ are real constants. Then, under the transformations, we
obtain the following solution for the nonlocal defocusing equation (42):

q(x, t) = √
c exp(iφ) sec [

√
c (x + c t + i δ)], c > 0. (48)

This solution is a traveling wave and is periodic in both space x and time t .
Second-order extensions of this periodic solution can be obtained from

two-soliton solutions of the local focusing CMKdV equation. The latter can
be found in Eq. (3.18) of Ref. [35]. Then, under variable transformations
x → −i x , t → i t , we get the following solution for the defocusing nonlocal
CMKdV equation (42) as

q(x, t) = κ
[√

c1 exp(i φ1) cos(θ2) + √
c2 exp(i φ2) cos(θ1)

]
(κ2 − 1) cos(φ1 − φ2) + κ2 cos(θ1 − θ2) + cos(θ1 + θ2)

, (49)

where

κ =
√

c1 + √
c2√

c1 − √
c2

, θ j = √
c j ξ j , ξ j = x + c j t + i δ j .

This solution contains two frequencies and is generically quasi-periodic in
both space and time. Under the parameter choices,

c1 = 1, c2 = 3, φ1 = φ2 = 0, δ1 = 1

2
, δ2 = −1

2
, (50)

this double-frequency quasi-periodic solution is displayed in Fig. 3(b).
Higher-order quasi-periodic solutions in the nonlocal defocusing CMKdV

equation (42) can be obtained from higher order solitons of the local
focusing CMKdV equation in a similar way.

6. New nonlocal integrable equations

In this last section, we show how these variable transformations can be used
to derive new integrable nonlocal equations from their local counterparts.

It is easy to see that, for any local integrable equation involving
the complex conjugate u∗(x, t) of a variable u(x, t), the transformation
x → ±i x , t → ±i t or their combination will convert this local equation to
a nonlocal integrable equation, where u∗(x, t) becomes u∗(−x, t), u∗(x, −t)
or u∗(−x, −t). Following this recipe, numerous new nonlocal integrable
equations can be constructed. Some of the examples are presented below.
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6.1. Nonlocal complex short pulse equations

As the first example, we consider the integrable local complex short pulse
(CSP) equation [36, 37],

qxt + q + 1

2
σ
(|q|2qx

)
x

= 0, σ = ±1, (51)

where q(x, t) is a complex function. Under variable transformations x →
−i x , we get an integrable reverse space nonlocal CSP equation,

qxt (x, t) − iq(x, t) + 1

2
iσ [q(x, t)qx (x, t)q∗(−x, t)]x = 0. (52)

Under a different variable transformation t → i t , we get an integrable
reverse time nonlocal CSP equation,

qxt (x, t) + iq(x, t) + 1

2
iσ [q(x, t)qx (x, t)q∗(x, −t)]x = 0. (53)

Under the combined transformations x → −i x, t → i t , we get an integrable
reverse space-time nonlocal CSP equation,

qxt (x, t) + q(x, t) − 1

2
σ [q(x, t)qx (x, t)q∗(−x, −t)]x = 0. (54)

Notice that this last nonlocal equation admits a reduction of q(x, t) being
real-valued. Under this reduction, we get an integrable reverse space-time
real short-pulse equation

qxt (x, t) + q(x, t) − 1

2
σ [q(x, t)qx (x, t)q(−x, −t)]x = 0, (55)

where q(x, t) is a real function.
Lax pairs of these nonlocal short-pulse equations can be derived from

the Lax pair of their local counterpart (51) through variable transformations.
The Lax pair of the local CSP equation (51) is [36, 37]

Yx =
(

− i
λ

−σq∗
x (x,t)
λ

qx (x,t)
λ

i
λ

)
Y, (56)

Yt =
⎛⎝− i

4λ + iσ |q|2
2λ

− iσq∗
2 + |q|2q∗

x

2λ

− iq
2 − σ |q|2qx

2λ
i
4λ − iσ |q|2

2λ

⎞⎠ Y. (57)

Under the variable transformations

x = −i x̂, q(x, t) = −i q̂(x̂, t), λ = −i λ̂, Y (x, t, λ) = Ŷ (x̂, t, λ̂),
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and dropping the hats, we obtain the Lax pair

Yx =
(

− i
λ

σq∗
x (−x,t)

λ

qx (x,t)
λ

i
λ

)
Y,

Yt =
(

−λ
4 − σq(x,t)q∗(−x,t)

2λ

σq∗(−x,t)
2 − iq(x,t)q∗(−x,t)q∗

x (−x,t)
2λ

− q(x,t)
2 − iσq(x,t)q∗(−x,t)qx (x,t)

2λ
λ
4 + σq(x,t)q∗(−x,t)

2λ

)
Y,

whose compatibility condition yields the reverse space nonlocal CSP
equation (52). Lax pairs for the other nonlocal equations (53) and (54)
can be derived similarly through transformations.

Infinite numbers of conservation laws for these new nonlocal short-pulse
equations can also be inferred directly from those of local short-pulse
equations through the corresponding variable transformations. For instance,
the first two conserved quantities of the local CSP equation (51) are

I1 =
∫ ∞

−∞

√
1 + σ qx (x, t)q∗

x (x, t) dx, (58)

I2 =
∫ ∞

−∞

qxx (x, t)

qx (x, t)
√

1 + σ qx (x, t)q∗
x (x, t)

dx . (59)

The former quantity has been reported in [36] and [37], and we found the
latter quantity by inspiration of conserved quantities for the Wadati–Konno–
Ichikawa hierarchy (which contains the real short-pulse equation) [38]. Then,
using these conserved quantities and the transformation x → −i x , we obtain
the first two conserved quantities of the reverse space nonlocal CSP equation
(52) as

I1 =
∫ ∞

−∞

√
1 − σ qx (x, t) q∗

x (−x, t) dx, (60)

I2 =
∫ ∞

−∞

qxx (x, t)

qx (x, t)
√

1 − σ qx (x, t) q∗
x (−x, t)

dx . (61)

Under the transformation t → i t , we obtain the first two conserved quanti-
ties of the reverse-time nonlocal CSP equation (53) as

I1 =
∫ ∞

−∞

√
1 + σ qx (x, t) q∗

x (x, −t) dx, (62)

I2 =
∫ ∞

−∞

qxx (x, t)

qx (x, t)
√

1 + σ qx (x, t) q∗
x (x, −t)

dx . (63)
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Under the combined transformations x → −i x, t → i t , we obtain the
first two conserved quantities of the reverse space-time nonlocal CSP
equation (54) as

I1 =
∫ ∞

−∞

√
1 − σ qx (x, t) q∗

x (−x, −t) dx, (64)

I2 =
∫ ∞

−∞

qxx (x, t)

qx (x, t)
√

1 − σ qx (x, t) q∗
x (−x, −t)

dx . (65)

The first two conserved quantities of the reverse space-time real short-
pulse equation (55) are simply these I1, I2 in (64)–(65) with the complex
conjugate removed.

Higher conserved quantities of these new nonlocal CSP equations can be
similarly obtained.

6.2. Nonlocal nonlinear diffusion equations

As a second example, we consider the local integrable NLS equation

iut + uxx + 2σ |u|2u = 0, σ = ±1. (66)

Under the variable transformation t → −i t , we get an integrable reverse-
time nonlinear diffusion equation

ut (x, t) − uxx (x, t) − 2σu2(x, t)u∗(x, −t) = 0. (67)

Under the variable transformations x → i x, t → i t , we get an integrable
reverse space-time nonlinear diffusion equation

ut (x, t) − uxx (x, t) + 2σu2(x, t)u∗(−x, −t) = 0. (68)

Notice that both of these nonlocal equations admit the reduction of u(x, t)
being real. Under this reduction, we also obtain integrable reverse-time and
reverse space-time real nonlinear diffusion equations

ut (x, t) − uxx (x, t) − 2σu2(x, t)u(x, −t) = 0, (69)

and

ut (x, t) − uxx (x, t) + 2σu2(x, t)u(−x, −t) = 0. (70)

Infinite numbers of conservation laws for these new nonlocal diffusion
equations can be readily derived from those of the local NLS equation
(66) through variable transformations. For instance, using the first four
conserved quantities of the local NLS equation [5], we immediately obtain
the first four conserved quantities of the reverse-time nonlinear diffusion



196 B. Yang and J. Yang

equation (67) as

I1 =
∫ ∞

−∞
u(x, t)u∗(x, −t)dx,

I2 =
∫ ∞

−∞
u∗(x, −t)ux (x, t)dx,

I3 =
∫ ∞

−∞
[u∗(x, −t)uxx (x, t) + u2(x, t)u∗2(x, −t)]dx,

I4 =
∫ ∞

−∞
u∗(x, −t)

{
uxxx (x, t) + [u2(x, t)u∗(x, −t)]x

+ 2u∗(x, −t)u(x, t)ux (x, t)
}

dx .

Likewise, the first four conserved quantities of the reverse space-time
nonlinear diffusion equation (68) are found to be

I1 =
∫ ∞

−∞
u(x, t)u∗(−x, −t)dx,

I2 =
∫ ∞

−∞
u∗(−x, −t)ux (x, t)dx,

I3 =
∫ ∞

−∞
[−u∗(−x, −t)uxx (x, t) + u2(x, t)u∗2(−x, −t)]dx,

I4 =
∫ ∞

−∞
u∗(−x, −t)

{−uxxx (x, t) + [u2(x, t)u∗(−x, −t)]x

+ 2u∗(−x, −t)u(x, t)ux (x, t)
}

dx .

Conserved quantities for the reverse-time and reverse-space-time real nonlin-
ear diffusion equations (69)–(70) are simply those of the complex equations
above with the conjugation removed.

Analytical solutions to these nonlocal diffusion equations can also be
derived from solutions of the local NLS equation through transforma-
tions. For example, from the soliton solution of the local focusing NLS
equation (66),

u(x, t) = η sech [η(x − c t)] exp

{
1

2
i c x + i

(
η2 − 1

4
c2

)
t

}
, (71)

with η, c being real constants, we obtain the solution to the reverse-time
nonlocal diffusion equation (67) with σ = 1 as

u(x, t) = η sech [η(x + i c t)] exp

{
1

2
i c x +

(
η2 − 1

4
c2

)
t

}
. (72)
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Figure 4. (color online) Left: solution (72) to the reverse-time nonlocal diffusion equation
(67) with σ = η = c = 1. Right: solution (74) to the reverse space-time nonlocal diffusion
equation (68) with σ = 1.

This solution exponentially grows or decays depending on the sign of
η2 − c2/4. In addition, it periodically collapses at location x = 0. For
η = c = 1, this solution is illustrated in Fig. 4 (left panel).

As another example, from the Peregrine rogue wave solution of the local
focusing NLS equation (66),

u(x, t) = e2i t

(
1 − 4(1 − 4i t)

1 + 4x2 + 16t2

)
, (73)

and utilizing the transformations x → i x, t → i t , we obtain the following
solution to the reverse space-time nonlocal diffusion equation (68) with
σ = 1 as

u(x, t) = e−2t

(
1 − 4(1 + 4t)

1 − 4x2 − 16t2

)
. (74)

This solution is illustrated in Fig. 4 (right panel). It decays exponentially
with time, but blows up to infinity on the ellipse 4x2 + 16t2 = 1 of the
(x, t) plane.

6.3. Other new nonlocal integrable equations

In addition to the above new nonlocal integrable equations, we can also
obtain many other such equations using transformations, as long as the
local integrable equations involve the complex conjugate of the underlying
variable(s). For instance, from the local Sasa–Satsuma equation [39]

ut + uxxx + 6|u|2ux + 3u(|u|2)x = 0, (75)



198 B. Yang and J. Yang

and employing the variable transformations x → i x, t → −i t , we get an
integrable reverse space-time Sasa–Satsuma equation,

ut (x, t) + uxxx (x, t) − 6u(x, t)u∗(−x, −t)ux (x, t)

−3u(x, t) [u(x, t)u∗(−x, −t)]x = 0. (76)

This equation was studied in [40] very recently. From the local Chen–Lee–
Liu equation [41]

iut + uxx + i |u|2ux = 0, (77)

and employing the variable transformation x → i x, t → −t , we obtain an
integrable reverse-space Chen–Lee–Liu equation

iut (x, t) + uxx (x, t) − u(x, t)u∗(−x, t)ux (x, t) = 0. (78)

A different transformation x → i x, t → i t yields a different integrable
reverse space-time nonlinear diffusion equation

ut (x, t) − uxx (x, t) + u(x, t)u∗(−x, −t)ux (x, t) = 0. (79)

From the local modified NLS equation [42],

iut + uxx + iα(|u|2u)x + β|u|2u = 0 (80)

with real constants α, β, and under transformations x → i x, t → −t , we get
an integrable reverse space modified NLS equation

iut (x, t) + uxx (x, t) − α[u2(x, t)u∗(−x, t)]x − βu2(x, t)u∗(−x, t) = 0. (81)

From an integrable (2+1)-dimensional NLS equation [43],

iqt + qxy + 2iq(qq∗
x − q∗qx ) = 0, (82)

and taking the transformations x → i x, y → −iy, we obtain an integrable
reverse space (2+1)-dimensional NLS equation

iqt (x, y, t) + qxy(x, y, t) + 2q(x, y, t)[q(x, y, t)q∗
x (−x, −y, t)

− q∗(−x, −y, t)qx (x, y, t)] = 0. (83)

Thus, this transformation technique is a powerful tool to generate a large
class of new nonlocal integrable equations. Solution dynamics in these new
nonlocal equations can also be studied through these transformations, as we
have demonstrated earlier in this article.

7. Summary

In summary, we have reported that many recently proposed nonlocal in-
tegrable equations can be converted to local integrable equations through
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simple variable transformations. Examples include PT -symmetric NLS and
Davey–Stewartson equations, a nonlocal derivative NLS equation, the re-
verse space-time complex modified Korteweg–de Vries equation, reverse
space-time three wave interaction equations, and many others. These trans-
formations not only allow us to derive the Lax pairs and infinite numbers of
conservations laws of these nonlocal equations from their local counterparts,
but also allow us to construct their analytical solutions from solutions
of the local equations. These transformations can also be used to derive
new nonlocal integrable equations. As applications of these transforma-
tions, we have used them to derive rogue wave solutions for the partially
PT -symmetric Davey–Stewartson equations and the nonlocal derivative
NLS equation. In addition, we have used them to derive multisoliton and
quasi-periodic solutions in the reverse space-time complex modified KdV
equation. Furthermore, we have used them to construct many new nonlocal
integrable equations such as nonlocal short pulse equations, nonlocal non-
linear diffusion equations, nonlocal Sasa–Satsuma equations, and nonlocal
Chen–Lee–Liu equations.

These transformations reveal an intimate and deep connection between
many nonlocal and local integrable equations. They are expected to provide
a new and powerful tool in the study of these nonlocal equations.

As with any method, this transformation technique also has its limitations.
For example, while all analytical solutions of nonlocal equations can
be derived from their local counterparts in principle, this derivation is
meaningful only when the corresponding solutions of the local equations
are already available. If not, then it may be more productive to derive
desired solutions of nonlocal equations directly by other methods such as
inverse scattering, Darboux transformation or the bilinear method. Thus,
this transformation technique is certainly not a replacement of those other
methods. However, it can be very helpful for many purposes, as the results
in this article have demonstrated.
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