
Multiple Permanent-Wave Trains
in Nonlinear Systems

By Jianke Yang

Multiple permanent-wave trains in nonlinear systems are constructed by the
asymptotic tail-matching method. Under some general assumptions, simple
criteria for the construction are presented. Applications to fourth-order
systems and coupled nonlinear Schrodinger equations are discussed.¨

1. Introduction

Nonlinear wave systems have been studied for a few decades. Much progress
has been made on integrable equations where the inverse scattering trans-

w xform method can be applied 1 . For nonintegrable equations, the general
analytical treatment has been elusive so far and will likely remain so in the
near future. A less ambitious goal, then, would be to generally study the
permanent waves in nonintegrable systems. Such waves often contain valu-
able information on the system’s general solution behaviors. An interesting
fact is that, in many nonintegrable systems, simple permanent waves can be

Žw x .matched together and form multiple permanent-wave trains 2]7 , etc. . If
solitary waves exist, multiple solitary-wave trains can be constructed by a

w xperturbation method proposed by Karpman and Solov’ev 8 and Gorshkov
w x Ž w x.and Ostrovsky 9 also see 3 . If permanent waves with exponentially
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decaying and oscillating tails are present, the existence of countably infinite
multiple permanent-wave trains has been proved for certain types of nonlin-

w xear systems by variational methods 4, 5 . In this article, if a nonlinear wave
system allows permanent waves that exponentially approach a constant at
infinity, we construct widely separated multiple permanent-wave trains by a
new and general method, namely, the asymptotic tail-matching method. This
method is stimulated in part by another matching method for nonlocal

Ž w x.solitary waves see 6, 7 . Under some general assumptions, we show that an
arbitrary number of permanent waves can be matched together and form
multiple permanent-wave trains if and only if the exponential tails of these
permanent waves satisfy certain simple algebraic conditions. These condi-
tions also determine the spacings between adjacent permanent waves if such
matching takes place. This asymptotic tail-matching method differs from the

w xperturbation method in 8, 9 in two major aspects. First, it can be applied
directly to the matching of kink- and anti-kink type permanent waves.
Second, its results are explicit, simple, and insightful. As applications of
these general results, we discuss fourth-order systems and the coupled
nonlinear Schrodinger equations. For fourth-order systems that allow per-¨
manent waves exponentially and oscillatorily approaching a constant at
infinity, we show that countably infinite multiple permanent-wave trains exist

w x w xand can be readily constructed. Thus the results in 4 and 5 are repro-
duced. For the coupled nonlinear Schrodinger equations, we show that¨
countably infinite multiple solitary-wave trains can be constructed in a large
portion of the parameter space. Numerical results are also presented and
compared with the theoretical predictions when appropriate.

2. Construction of multiple permanent-wave trains

We consider a general nonlinear wave system

F U, D , D s 0, 2.1Ž . Ž .x t

where U is the unknown vector variable, and F is a nonlinear vector
function. Suppose it allows permanent waves of certain form that when

Ž .substituted into Equation 2.1 , reduce it into an autonomous complex
system of first-order nonlinear ordinary differential equations

dFrdx s G F , 2.2Ž . Ž .

Ž . Ž .where F x is an n-component vector variable. If Equation 2.2 has
permanent-wave solutions that exponentially approach a constant at infinity,
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then we next develop a new method to determine if those permanent waves
can be matched together and form widely separated multiple permanent-
wave trains or not. The idea is to perturb each permanent wave such that
the exponential tails of each perturbed wave match those of the adjacent
permanent waves. We first discuss the matching of solitary waves, followed
by that of general permanent waves.

2.1. Solitary-wa¨e trains

Ž . Ž .Suppose Equation 2.2 allows solitary waves F x that exponentially decay
< <to zero as x ª`. We make the following general assumptions:

Ž . Ž .A1. The eigenvalues of the constant Jacobian matrix =G 0 all have
nonzero real parts;

Ž .A2. For any solitary wave F x , the linear behavior dominates at
Ž .infinity, i.e., as xª` or y`, F x approaches a solution of the linear

equation

˜ ˜dFrdx s =G 0 F ; 2.3Ž . Ž .

Ž . Ž .A3. For any solitary wave F x , the linearized equation of 2.2 around
Ž .F x

˜ ˜dFrdx s =G F F 2.4Ž . Ž .

and its adjoint equation

y dCrdx s =G*T F C 2.5Ž . Ž .

each have a single linearly independent localized solution. Here T repre-
sents the transpose and * the complex conjugate.

Ž .Remark: Since Equation 2.2 is autonomous, any spatial translation of
Ž . Ž . Ž .F x is still 2.2 ’s solution. Therefore Equation 2.4 always has a nontrivial

Ž . Ž .localized solution dF x rdx. The requirement for Equation 2.4 is just that
Ž .dF x rdx is its single linearly independent localized solution. This can be

Ž . 1Ž n. Žguaranteed if F x is isolated in H R,C up to spatial translations the
w x.so-called nondegenerency condition in some of the literature}see 4 .
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We also introduce the following notations. In view of assumption A1, let
Ž .us denote =G 0 ’s eigenvalues as l , l , . . . , l , where1 2 n

Re l F Re l F ??? F Re l - 0 - Re lŽ . Ž . Ž . Ž .1 2 s sq1

F Re l F ??? F Re l . 2.6Ž . Ž . Ž .sq2 n

Ž .Suppose for an eigenvalue l, =G 0 has a chain of eigenvector and general-
Ž .ized eigenvectors ¨ is1, . . . , l such thati

=G 0 y lI ¨ s 0, 2.7Ž . Ž .Ž . 1

=G 0 y lI ¨ s ¨ , i s 1, . . . , l y1. 2.8Ž . Ž .Ž . iq1 i

Ž . Ž .Define the polynomial functions j x is1, . . . , l asi

x iy1

j x s ¨ q x¨ q ??? q ¨ , i s 1, . . . , l , 2.9Ž . Ž .i i iy1 1iy1 !Ž .

then

j X x s j x , 2.10Ž . Ž . Ž .iq1 i

� Ž . l x 4and j x e , is1, . . . , l form a chain of linearly independent solutions ofi
Ž .Equation 2.3 . According to the theory of linear differential equations with

constant coefficients, we can find such chains of solutions that together form
Ž .a fundamental set of solutions of Equation 2.3 . Thus according to Assump-

tion A2, we have

Ýs c j x eli x , xª`,Ž .is1 i i
F x ª 2.11Ž . Ž .n l x½ iÝ c j x e , xªy`,Ž .issq1 i i

Ž .where c is1, . . . , n are complex constants. We point out that in the speciali
Ž . � 4case where =G 0 has n linearly independent eigenvectors, j , is1, . . . , ni

are just those constant eigenvectors. The fundamental matrix of the adjoint
Ž .equation 2.5 at infinity is

U U Uyl x yl x yl x1 2 nh e h e ??? h e , 2.12Ž .1 2 n

where

y1 Th h ??? h s j j ??? j * . 2.13Ž .½ 51 2 n 1 2 n
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Note that for 1F i, jF n,

1, is j,Uj x ?h x s 2.14Ž . Ž . Ž .i j ½ 0, i/ j.

Ž .Thus for the single linearly independent localized solution C x of Equation
Ž .2.5 , we have

Ýs d h x eylU
i x , xªy`,Ž .is1 i i

C x ª 2.15Ž . Ž .Un yl x½ iÝ d h x e , xª`,Ž .issq1 i i

Ž .where d is1, . . . , n are complex constants.i
� Ž1. Ž2. ŽN .4 Ž .Now suppose F , F , . . . , F are N solitary waves of Equation 2.2

with

Ýs cŽk .j x eli x , xª`,Ž .is1 i iŽk .F x ª 2.16Ž . Ž .n Žk . l x½ iÝ c j x e , xªy`.Ž .issq1 i i

For each FŽk ., the single linearly independent localized solution C Žk . of the
adjoint equation

y dCŽk .rdx s =G*T FŽk . CŽk . 2.17Ž . Ž .

has the following asymptotic behavior at infinity:

Ýs dŽk .h x eylU
i x , xªy`,Ž .is1 i iŽk .C x ª 2.18Ž . Ž .Un Žk . yl x½ iÝ d h x e , xª`.Ž .issq1 i i

Consider a new solitary wave that looks like a superposition of the above N
� Žk .4 Žk .solitary waves F widely separated, with the k th wave F located at

Ž .xs x ks1,2, . . . , N . Letk

x - x - ??? - x , 2.19Ž .1 2 N

and denote

D s x y x 41 , k s 1,2, . . . , N y1. 2.20Ž . Ž .k kq1 k

We call this new solitary wave an N-pulse wavetrain. It can be constructed
explicitly by the following theorem.
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THEOREM 1. Under the assumptions A1, A2, A3, and the abo¨e notations,
� Ž1. ŽN .4the N solitary wa¨es F , . . . , F can match each other and form a widely

Ž . Žseparated N-pulse wa¨etrain if and only if the spacings D 41 ks1, . . . ,k
.Ny1 asymptotically satisfy the following N conditions

n
Ž2. Ž1. yl Dj 1c d *e s 0, 2.21aŽ .Ý j j

js sq1

s n
Žky1. Žk . l D Žkq1. Žk . yl Dj ky1 j kc d *e s c d *e 2F kF Ny1 ,Ž .Ý Ýj j j j

js1 js sq1

2.21bŽ .

s
ŽNy1. ŽN . l Dj Ny1c d *e s 0. 2.21cŽ .Ý j j

js1

Ž .The relatï e errors in Equations 2.21 are exponentially small with the spacings.

We prove this theorem by the asymptotic tail-matching method devel-
oped next.

Ž .Proof: Suppose such an N-pulse wavetrain F x exists. Then around the
Ž .k th wave 2F kF Ny1 , the solution is

Žk . ˜ Žk .F x s F xy x q F xy x , 2.22Ž . Ž . Ž . Ž .k k

˜ Žk . ˜ Žk .where F <1. The linearized equation for F is

˜ Žk . Žk . ˜ Žk .dF x rdx s =G F x F x . 2.23Ž . Ž . Ž . Ž .Ž .

Ž .According to assumption A3, Equation 2.23 has a single linearly indepen-
Žk .Ž . Ž .dent localized solution that is dF x rdx. From Equation 2.16 we get

s
XŽk . Žk . l xidF x rdx ª c j x q l j x e , x ª `. 2.24Ž . Ž . Ž . Ž .Ž .Ý i i i i

is1

Žk . Ž .Clearly not all the c ’s is1, . . . , s are equal to zero. Without loss ofi

generality, we assume that cŽk ./0. Then we denote the other ny1 solu-1
˜ Žk .Ž . Ž .tions of Equation 2.23 as F js2, . . . , n . We require thatj

˜ Žk . l j xF x ª j x e , x ª `. 2.25Ž . Ž . Ž .j j
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As xªy`, we generally have

n
Žk . Žk . l xiF̃ x ª a j x e , j s 2, . . . , n , 2.26Ž . Ž . Ž .Ýj ji i

is1

Žk . Žk . � Žk .where a are constants. Since c /0, these n solutions dF rdx,ji 1
˜ Žk . ˜ Žk .4F , . . . , F are linearly independent at x equal to infinity, and they form a2 n

Ž .fundamental set of solutions of Equation 2.23 . Thus the general solution
˜ Žk .Ž .for F xy x isk

nŽk .dFŽk . Žk .˜ ˜F xy x s h xy x q h F xy x , 2.27Ž . Ž . Ž . Ž .Ýk 1 k j j kdx
js 2

Ž . Ž .where h js1, . . . , n are constants. The first term in 2.27 can be absorbedj
Žk .Ž .into F xy x and cause a position shift to it. By normalization we makek

h s0. When x < x< x , dropping the exponentially small terms, we1 k kq1

get

n
Žk . l Ž xyx .j kF̃ xy x ª h j xy x e . 2.28Ž . Ž . Ž .Ýk j j k

js sq1

Similarly, when x < x< x , we haveky1 k

s n
Žk . Žk . l Ž xyx .j kF̃ xy x ª a h j xy x e . 2.29Ž . Ž . Ž .Ý Ýk i j i j kž /

js1 is 2

The key idea in the asymptotic tail-matching method is that, for the
matching to occur, we need to require that in the region x < x<k

˜ Žk .Ž .x , F xy x ’s exponentially growing terms match the left tail of thekq1 k
Žkq1. ˜ Žk .Ž . Žright-hand wave F xy x ; in the region x < x< x , F xykq1 ky1 k

.x ’s exponentially decaying terms match the right tail of the left-hand wavek
Žky1.Ž .F xy x . In the region x < x< x , this requirement isky1 k kq1

n n
l Ž xyx . Žkq1. l Ž xyx .j k j kq1h j xy x e s c j xy x e ; 2.30Ž . Ž . Ž .Ý Ýj j k j j kq1

js sq1 js sq1
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and in the region x < x< x , it isky1 k

s n s
Žk . l Ž xyx . Žky1. l Ž xyx .j k j ky1a h j xy x e s c j xy x e .Ž . Ž .Ý Ý Ýi j i j k j j ky1ž /

js1 is 2 js1

2.31Ž .

Ž .We now need to select the constants h js2, . . . , n and spacings Dj k
Ž .ks1, . . . , Ny1 so that the above two conditions are satisfied.

Ž . � Ž .4First consider condition 2.30 . Recall that functions j x are of thej
Ž . Ž .form 2.9 . If for ls l sq1F mF n , the chain of such functions ism

� 4j , . . . , j , where j is a constant vector andm mqly1 m

j X x s j x , j s m , . . . , m q l y2. 2.32Ž . Ž . Ž .jq1 j

� 4Then we select h , . . . , h from the equationm mqjy1

mq ly1 mq ly1
lŽ xyx . Žkq1. lŽ xyx .k kq1h j xy x e s c j xy x e . 2.33Ž . Ž . Ž .Ý Ýj j k j j kq1

js m js m

The right-hand side of this equation is

mq ly1
Žkq1. lŽ xyx . ylDk kc j xy x yD e eŽ .Ý j j k k

js m

i ijy mmq ly1 djyDŽ . jkŽkq1. lŽ xyx . ylDk ks c xy x e eŽ .Ý Ýj kii!ž /dxjs m is 0

jy ijmq ly1 yDŽ .kŽkq1. lŽ xyx . ylDk ks c j xy x e eŽ .Ý Ý j i kjy i !Ž .js m is m

jy imq ly1 mq ly1 yDŽ .k Žkq1. ylD lŽ xyx .k ks c e j xy x e . 2.34Ž . Ž .Ý Ý j i kjy i !Ž .ž /is m js i

Ž .Now we choose h is m, . . . , mq ly1 to bei

jy imq ly1 yDŽ .k Žkq1. ylD kh s c e , i s m , . . . , m q l y1; 2.35Ž .Ýi jjy i !Ž .ž /js i
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Ž .then Equation 2.33 is valid. Repeating this procedure for the other chains
� Ž .4 Ž . Žof j x functions in the form 2.9 , we can successfully select h is sqj i

. Ž .1, . . . , n so that condition 2.30 is satisfied.
Ž .Next consider condition 2.31 . Similar analysis shows that we can reduce

its right-hand side to

s s
Žky1. l Ž xyx . l D l Ž xyx .j ky1 j ky1 j kc j xy x e s a e j xy x e , 2.36Ž . Ž . Ž .Ý Ýj j ky1 j j k

js1 js1

Ž . Žky1.Ž .where a js1, . . . , s are constants and determined by c js1, . . . , sj j
Ž .and D . Then condition 2.31 becomesky1

s n
Žk . l D Žk .j ky1a h s a e y a h , j s 1, . . . , s. 2.37Ž .Ý Ýi j i j i j i

is 2 is sq1

Ž .This is a linear system of s equations for sy1 unknowns h is2, . . . , s . Wei
Ž Žk .. Ž .now show that the matrix a on the left side of Equation 2.37 hasi j s=Ž sy1.

Ž .rank sy1. Consider the solution of Equation 2.23

s
Žk .˜T x s p F x , 2.38Ž . Ž . Ž .Ý j j

js 2

Ž .where p js2, . . . , s are constants. Dropping exponentially small terms wej

get

0, xª`,
T x ª 2.39Ž . Ž .s s Žk . l xj½ Ý Ý a p j x e , xªy`.Ž .ž /js1 is2 i j i j

Ž .According to assumption A3, the only localized solution of Equation 2.23 is
Žk .Ž . Žk . Ž . Ž .dF x rdx. Moreover, c in 2.24 is nonzero. Thus T x cannot be a1

localized solution. In other words, the linear system of equations

s
Žk .a p s 0, j s 1, . . . , s, 2.40Ž .Ý i j i

is 2

Ž .has no nontrivial solutions for p is1, . . . , s . Therefore the matrixi
Ž Žk ..a has rank sy1. Without loss of generality, we assume that thei j s=Ž sy1.

Ž .last sy1 rows of the matrix are linearly independent. Then the linear
system

s n
Žk . l D Žk .j ky1a h s a e y a h , j s 2, . . . , s, 2.41Ž .Ý Ýi j i j i j i

is 2 is sq1
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Ž . Ž .has a unique solution for h is2, . . . , s . With h is2, . . . , n given byi i
Ž . Ž .2.35 and 2.41 , the only matching condition left to be satisfied now is

s n
Žk . l D Žk .1 ky1a h s a e y a h , 2.42Ž .Ý Ýi1 i 1 i1 i

is 2 is sq1

which will determine the spacings of this N-pulse wavetrain. Since the
Ž Žk ..matrix a is not readily available, to determine the spacings fromi j s=Žny1.

Ž .Equation 2.42 is difficult. But this can be easily done with the aid of the
Žk . Ž . Ž .solution C of the adjoint equation 2.17 . With h is2, . . . , n given byi

Ž . Ž . Ž . Ž .2.35 and 2.41 , it is easy to show that Equations 2.28 and 2.29 become

n
Žk . Žkq1. l Ž xyx .j kq1F̃ xy x ª c j xy x e , x < x < x ,Ž . Ž .Ýk j j kq1 k kq1

js sq1

2.43Ž .

and

˜ Žk . l1Ž xyxky 1.F xy x ª wj xy x eŽ . Ž .k 1 ky1

s
Žky1. l Ž xyx .j ky1q c j xy x e , x < x < x ,Ž .Ý j j ky1 ky1 k

js 2

2.44Ž .

Ž .where w is a constant. Condition 2.42 is equivalent to

w s cŽky1. . 2.45Ž .1

For x < y < x and x < y < x , we haveky1 1 k k 2 kq1

y2 Žk . Žk . Žk .˜ ˜0 s dF xy x rdxy=G F xy x F xy xŽ . Ž . Ž .Ž .½ 5H k k k
y1

?C Žk .* xy x dxŽ .k

yy 22Žk . Žk . Žk .˜ ˜sF xy x ?C * xy x q F xy xŽ . Ž . Ž .Hyk k k1
y1

? y dC Žk . xy x rdxy=G*T FŽk . xy x C Žk . xy x * dxŽ . Ž . Ž .� 4Ž .k k k

y2Žk . Žk .˜sF xy x ?C * xy x . 2.46Ž . Ž . Ž .yk k 1
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For D 41 and D 41, asymptotically we getky1 k

s n
Žk . l D Žky1. Žk . l D Žkq1. Žk . yl D1 ky1 j ky1 j kwd *e q c d *e s c d *e . 2.47Ž .Ý Ý1 j j j j

js 2 js sq1

Ž . Ž .Condition 2.45 is satisfied if and only if Equation 2.21b is valid. For the
first and last waves in this N-pulse wavetrain, the analysis is simpler, and we

Ž . Ž .get Equations 2.21a and 2.21c for matching. In summary, the N pulses
� Ž1. ŽN .4F , . . . , F can be matched and form an N-pulse wavetrain if and only if

Ž .Ž .the spacings D 41 ks1, . . . , Ny1 asymptotically satisfy the N condi-k
Ž .tions 2.21 .

Now we discuss the accuracy of the above results. Error is created mainly
w Ž . Ž .xby the matching requirements see Equations 2.30 and 2.31 and the

Ž .negligence of nonlinear terms in Equation 2.23 . First we discuss the error
Ž .in the matching requirements. Let us reconsider the solution 2.22 around

the k th wave. When x < x< x , beside the exponentially decayingk kq1
Žk . ˜ Žk .Ž . Ž . wterms in F xy x , there are also such terms in F xy x see Equa-k k

Ž .xtion 2.27 . The combined exponentially decaying tails are

s
Žk . l Ž xyx . Žk . l Ž xyx .1 k j kc j xy x e q c q h j xy x e . 2.48Ž . Ž . Ž .Ý ž /1 1 k j j j k

js 2

Ž . Žk .Thus Equations 2.21 would be more accurate if the c values arej
Žk . Ž .replaced by c q h . Recall that h js2, . . . , s are determined fromj j j

Ž .Equation 2.41 , so they are exponentially small for large D and D . As aky1 k
˜ Žk .Ž .result, the negligence of tail contribution from F xy x causes onlyk

Ž .exponentially small relative errors in Equations 2.21 . Simple reasoning also
Ž .shows that the exclusion of nonlinear terms in Equation 2.4 also causes

Ž .only exponentially small relative errors in 2.21 . The proof of Theorem 1 is
�now completed. It should be pointed out that, if the eigenvalues l ,i

4 � 4is1, . . . , s or l , is sq1, . . . , n are real valued and close to each other,i
Ž .those exponentially small relative errors in Equations 2.21 may become

significant. In such cases, caution is needed in interpreting the results from
Ž .2.21 .

2.2. General permanent-wä e trains

The results in the previous section can be readily extended to the matching
of permanent waves that exponentially approach a complex constant at

Ž .infinity. Suppose such permanent waves exist in Equation 2.2 . Then we
Ž .make the following general assumptions: for any permanent wave F x
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where

b , xª`,2
F x ª 2.49Ž . Ž .½ b , xªy`,1

Ž . Ž .B1. the eigenvalues of the constant Jacobian matrices =G b and1
Ž . Ž .=G b all have nonzero real parts, and the number of =G b ’s eigenvalues2 1

Ž .with negative real parts is equal to that of =G b ’s eigenvalues with2

negative real parts;
B2. the linear behavior dominates at infinity, i.e., as xªy` and
Ž .`, F x approaches a solution of the linear equation

˜ ˜dFrdx s =G b F , 2.50Ž . Ž .1

and

˜ ˜dFrdx s =G b F , 2.51Ž . Ž .2

respectively;
Ž . Ž .B3. the linearized equation of 2.2 around F x

˜ ˜dFrdx s =G F F 2.52Ž . Ž .

and its adjoint equation

y dCrdx s =G*T F C 2.53Ž . Ž .

each have a single linearly independent localized solution.

� Ž1. Ž2. ŽN .4Now suppose F , F , . . . , F are N permanent waves with

bŽk . , xª`,2Žk .F x ª 2.54Ž . Ž .Žk .½ b , xªy`,1

where 1F kF N. If they are to be matched and form a widely separated
N-permanent-wave train, we need to require that

bŽk . s bŽky1. , 2 F k F N. 2.55Ž .1 2

Ž Žk .. Ž Žk ..Ž .One consequence is that all the matrices =G b and =G b 1F kF N1 2

have the same number of eigenvalues with negative real parts, which we
Ž Žk ..denote as s. We introduce the following notations. Denote =G b ’s n1
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eigenvalues as lŽk ., lŽk ., . . . , lŽk . with1 2 n

Re lŽk . F Re lŽk . F ??? F Re lŽk . - 0 - Re lŽk .Ž . Ž . Ž . Ž .1 2 s sq1

F Re lŽk . F ??? F Re lŽk . , 2.56Ž .Ž . Ž .sq2 n

Ž Žk .. Žk . Žk . Žk .and =G b ’s as L , L , . . . , L with2 1 2 n

Re LŽk . F Re LŽk . F ??? F Re LŽk . - 0 - Re LŽk .Ž . Ž . Ž . Ž .1 2 s sq1

F Re LŽk . F ??? F Re LŽk . . 2.57Ž .Ž . Ž .sq2 n

The fundamental sets of solutions of the linear equations

˜ Žk . ˜dFrdx s =G b F 2.58Ž .Ž .1

and

˜ Žk . ˜dFrdx s =G b F 2.59Ž .Ž .2

� Žk .Ž . li
Žk . x 4 � Žk .Ž . L i

Žk . x 4are respectively j x e , is1, . . . , n and u x e , is1, . . . , n , whichi i
Ž .consist of chains of linearly independent solutions of Equations 2.58 and

Ž . Ž Ž ..2.59 as defined before see Equation 2.9 . The fundamental matrices of
Ž . Ž .the adjoint equations of 2.58 and 2.59 are then

Žk . Žk . Žk .Žk . yl *x Žk . yl *x Žk . yl *x1 2 nh e h e ??? h e 2.60Ž .1 2 n

and
Žk . Žk . Žk .Žk . yL *x Žk . yL *x Žk . yL *x1 2 nz e z e ??? z e , 2.61Ž .1 2 n

with

y1Žk . Žk . Žk . Žk . Žk . Žk . Th h ??? h s j j ??? j * 2.62Ž .½ 51 2 n 1 2 n

and

y1Žk . Žk . Žk . Žk . Žk . Žk . Tz z ??? z s u u ??? u * . 2.63Ž .½ 51 2 n 1 2 n

Note that

lŽk . s LŽky1. , j Žk . s u Žky1. ,h Žk . s z Žky1. , i s 1, . . . , n 2.64Ž .i i i i i i
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Ž .in view of 2.55 . In those notations, we have

¡ Žk . s Žk . Žk . LŽk . xib qÝ c u x e , xª`,Ž .2 is1 i iŽk . ~F x ª 2.65Ž . Ž .Žk .Žk . n Žk . Žk . l x¢ ib qÝ c j x e , xªy`,Ž .1 issq1 i i

according to assumption B2. For the single linearly independent localized
solution C Žk . of the adjoint equation

y dCŽk .rdx s =G*T FŽk . C Žk . , 2.66Ž . Ž .

we have

¡ s Žk . Žk . ylŽk .*xiÝ d h x e , xªy`,Ž .is1 i iŽk . ~C x ª 2.67Ž . Ž .Žk .n Žk . Žk . yL *x¢ iÝ d z x e , xª`.Ž .issq1 i i

Žk . Žk . Ž .Here c and d 1F iF n are complex constants.i i

Now consider a widely separated permanent-wave train matched by the
� Ž1. Ž2. ŽN .4above N permanent waves F , F , . . . , F . Assume that the k th wave

Žk . Ž .F is located at xs x ks1,2, . . . , N , and D is as defined in Equationk k
Ž .2.20 ; then we have the following result.

Ž .THEOREM 2. Under the assumptions B1, B2, B3, 2.55 , and the abo¨e
� Ž1. ŽN .4notations, the N permanent wa¨es F , . . . , F can match each other and

form a widely separated N-permanent-wä e train if and only if the spacings D k
Ž ..Ž .41 ks1, . . . , Ny1 asymptotically satisfy the following N conditions

n
Ž1.Ž2. Ž1. yL Dj 1c d *e s 0, 2.68aŽ .Ý j j

js sq1

s n
Žk . Žk . Žk .Žky1. Žk . l * l D Žkq1. Žk . yL Dj j ky1 j kc d *e e s c d *e 2F kF Ny1 ,Ž .Ý Ýj j j j

js1 js sq1

2.68bŽ .

s
ŽN .ŽNy1. ŽN . l Dj Ny1c d *e s 0. 2.68cŽ .Ý j j

js1

Ž .The relatï e errors in Equations 2.68 are exponentially small with the spacings.

The proof for this theorem is similar to that for Theorem 1 and is thus
omitted here.
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Remark: In applying Theorem 2 to a given nonlinear wave system, the
� Žk .4major difficulty is the determination of the coefficients d in the localizedj

Žk .Ž . Ž .solution C x of the adjoint equation 2.66 . In general, this has to be
Ž .done numerically. But in many cases, Equation 2.52 can be cast into a

w x Žk .Ž . � Žk .4self-adjoint system 2, 4, 5 . Then C x and its coefficients d can bej
Žk . Ž .readily obtained from dF rdx, and the verification of conditions 2.68 can

proceed.

3. Applications

3.1. Fourth-order systems

The permanent waves in many nonlinear wave problems are governed by
Ž . w xfourth-order systems 2.2 2, 4, 5 . In this section, we apply Theorems 1 and

2 to certain classes of such systems. In particular, we establish the existence
of countably infinite multiple permanent-wave trains under some general
assumptions.

We first consider the matching of identical permanent waves in a fourth-
Ž . Ž . Ž .order system 2.2 . Suppose F x is a permanent wave in 2.2 , where

Ž . < <F x ª b as x ª`, and the assumptions B1, B2, and B3 are satisfied.
Ž .Moreover, we suppose the eigenvalues of =G b are " l and " l , where1 2

Ž . Ž .l / l and Re l )0 is1,2 . Then corresponding to the four distinct1 2 i
Ž .eigenvalues y l , y l , l and l , =G b has four linearly independent1 2 1 2

Ž .eigenvectors j is1, . . . , 4 . If we denotei

y1 Th h h h s j j j j * , 3.1Ž .½ 51 2 3 4 1 2 3 4

then

bqc j eyl1 x qc j eyl 2 x , xª`,1 1 2 2
F x ª 3.2Ž . Ž .

l x l x½ 1 2bqc j e qc j e , xªy`,3 3 4 4

and

d h elU
1 x q d h elU

2 x , xªy`,1 1 2 2
C x ª 3.3Ž . Ž .U Uyl x yl x½ 1 2d h e q d h e , xª`.3 3 4 4

Ž .For some fourth-order problems, Equation 2.52 can be cast into a self-
Ž . Žadjoint system, and one has either l and l real valued with d d A c1 2 1 3 3

. Ž . Ž . U Žc and d d A c c , or l and l complex valued with l s l , d1 2 4 4 2 1 2 2 1 1
. Ž . Ž . Ž . Ž .d A c c and d d A c c . In such cases, conditions 2.68 for the3 4 2 2 4 3 1

� Ž . Ž .4matching of N identical permanent waves F x , . . . , F x simply become

c dUeyl1D k q c dUeyl 2 D k s 0, k s 1, . . . , N y1. 3.4Ž .1 1 2 2
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Ž . UIn the second case, if furthermore 2.2 is a real system, then l s l ,2 1
U U Ž .c sc , d s d , and Equation 3.4 becomes2 1 2 1

c dUeyi ImŽl1.D k q cUd ei ImŽl1.D k s 0, k s 1, . . . , N y1. 3.5Ž .1 1 1 1

Ž .The spacings D can then be easily obtained from 3.5 ask

pUD s arg c d q q m p rIm l , k s 1, . . . , N y1, 3.6Ž . Ž . Ž .k 1 1 k 1ž /2

where m is any nonnegative integer. Note that in this case, the exponen-k
Ž .tially small relative errors in 2.68 make little difference, especially when

m is large. Thus we conclude that an arbitrary number of identicalk
Ž .permanent waves F x can be matched together and form multiple perma-

Ž .nent-wave trains, whose spacings are given asymptotically by Equation 3.6 .
Clearly a countably infinite number of such wavetrains can be formed. In the

w xarticle by Buffoni and Sere 4 , they proved the existence of countably´ ´
infinite multipulse permanent-wave solutions for a class of coupled nonlin-
ear Schrodinger-type equations. When those equations are cast into a¨
fourth-order system of the two variables and their first derivatives, it is easy
to check that they fall into the above category. Thus their result is a special
case of ours. But differences also exist between their result and ours. In

Ž .their result, m in Equation 3.6 is an even integer, while in ours, it is anyk

integer. This means that we identified twice as many solitary-wave trains as
Ž . Ž .they did. For fourth-order systems where F x y b and C x element-wise

Ž .are both even or odd in x, or one of them is even odd and the other one
Ž . Ž . Ž . Ž .odd even , then c c s" c c , and j j is row-wise equal to or3 4 1 2 3 4

Ž . Ž . Ž .opposite of j j . It is easy to show from 3.1 that h h is also row-wise1 2 3 4
Ž . Ž . Ž .equal to or opposite of h h and d d s" d d . Thus the N matching1 2 3 4 1 2

Ž . Ž . Uconditions 2.68 also reduce to 3.4 . If furthermore, l s l , then we find2 1

countably infinite multiple permanent-wave trains whose spacings are given
Ž .by 3.6 .
Next we consider the matching of different permanent waves in a fourth-

Ž .order system 2.2 . Suppose G is an odd function of F, i.e.,

G yF s yG F , 3.7Ž . Ž . Ž .

Ž . Ž .and F x is a permanent wave in Equation 2.2 with

b , xª`,
F x ª 3.8Ž . Ž .½y b , xªy`,
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Ž . Ž . Ž .then yF x is also a permanent wave in 2.2 . It is easy to show from 3.7
Ž . Ž . Ž . Ž .that =G yF s=G F ; thus =G y b s=G b . In addition to the assump-

Ž .tions B1, B2, and B3, we also assume that =G b ’s four eigenvalues are " l1
Ž . Ž .and " l with l / l and Re l )0 is1,2 . Suppose the eigenvectors2 1 2 i

Ž .corresponding to y l , y l , l , and l are denoted by j is1, . . . , 4 ; then1 2 1 2 i

we have

bqc j eyl1 x qc j eyl 2 x , xª`,1 1 2 2
F x ª 3.9Ž . Ž .

l x l x½ 1 2y bqc j e qc j e , xªy`.3 3 4 4

Ž . Ž .For the localized solution C x of the adjoint equation 2.53 , we have

d h elU
1 x q d h elU

2 x , xªy`,1 1 2 2
C x ª 3.10Ž . Ž .U Uyl x yl x½ 1 2d h e q d h e , xª`,3 3 4 4

Ž . Ž . Ž .where h is1, . . . , 4 are given by 3.1 . For those equations 2.2 wherei
Ž . ŽEquation 2.52 can be cast into a self-adjoint system and one has either d1

. Ž . Ž . Ž . Ž . Ž .d A c c or d d A c c with l and l real, or d d A c c and3 3 1 2 4 4 2 1 2 1 3 4 2
Ž . Ž . U Ž .d d A c c with l s l , conditions 2.68 for the matching of perma-2 4 3 1 2 1

� 4 � 4nent waves F,yF, F,yF, . . . or yF, F,yF, F, . . . will also reduce to
Ž . U Ž .3.4 . When l s l , if furthermore 2.2 is a real system, then we can show2 1

as before that such matchings are always possible and the spacings are given
Ž .by Equation 3.6 . An infinite number of such wavetrains will be obtained.

We point out that the fourth-order system studied by Kalies and Vander-
w xVorst 5 falls into this category and is thus a special case of the above

results. Here again we identified twice as many permanent-wave trains as
Ž .they did since m in Equation 3.6 needs to be an even integer in theirk

result.

3.2. Coupled nonlinear Schrodinger equations¨
The coupled nonlinear Schrodinger equations govern the evolution of two¨

w xinteracting wave packets in nonlinear and dispersive physical systems 10 .
These equations are particularly important in nonlinear optics as they

w xgovern the pulse propagation in birefringent nonlinear optical fibers 11 . In
recent years, the experimental design of high-speed optical-soliton-based
telecommunication systems stimulated great interest in these equations, and

Ž w x .much work has been done on them see 12 and the references therein . In
particular, simple and multipulse solitary waves in these equations have

w xbeen found and classified in 2 . In this section, we study the multiple
permanent-wave trains in these equations. We discuss primarily the focusing
case where solitary waves exist.



Jianke Yang144

ŽThe solitary waves in coupled nonlinear Schrodinger equations focusing¨
.case are governed by the following set of equations

r yr q r 2 q b r 2 r s 0, 3.11aŽ .Ž .1 x x 1 1 2 1

r yv 2 r q r 2 q b r 2 r s 0, 3.11bŽ .Ž .2 x x 2 2 1 2

where r and r approach zero as x goes to infinity, and b and v are1 2

positive parameters. To apply Theorem 1 to these equations, we first rewrite
them as the following first-order system

dUrdx s G U , 3.12Ž . Ž .

where

T TU s u , u , u , u s r , r , r , r , 3.13Ž . Ž . Ž .1 2 3 4 1 1 x 2 2 x

and

u2

2 2u y u q b u uŽ .1 1 3 1
G U s . 3.14Ž . Ž .

u4� 02 2 2v u y u q b u uŽ .3 3 1 3

It is easy to check that the above system satisfies the assumptions A1, A2,
and A3 when b /1. Thus in the following we assume that b /1. The

Ž .eigenvalues of the matrix =G 0 are y1, y v, 1, and v, and the correspond-
ing eigenvectors are

1 10 0
y1 10 0j s , j s , j s , j s . 3.15Ž .1 2 3 20 01 1� 0 � 0� 0 � 0y v v0 0

Ž . Ž .For a solitary wave r , r of Equations 3.11 with1 2

c eyx , xª`,1r x ª 3.16Ž . Ž .x1 ½ c e , xªy`,3

and

c eyv x , xª`,2r x ª 3.17Ž . Ž .v x2 ½ c e , xªy`,4
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we have

c j eyx qc j eyv x , xª`,1 1 2 2U x ª 3.18Ž . Ž .x v x½ c j e qc j e , xªy`.3 3 4 4

Ž . Ž .The linearized equation of 3.12 around a solitary wave U x is

˜ ˜dUrdx s =G U U, 3.19Ž . Ž .

˜ TŽ .where Us u , u , u , u , and˜ ˜ ˜ ˜1 2 3 4

0 1 0 0
2 21y3u y b u 0 y2b u u 01 3 1 3

=G U s . 3.20Ž . Ž .
0 0 0 1� 02 2y2b u u 0 1y3u y b u 01 3 3 1

The single localized solution of the above equations is dUrdx. If u and u˜ ˜2 4
Ž .in 3.19 are eliminated in favor of u and u , then the linear system for u˜ ˜ ˜1 3 1

Ž .and u are self-adjoint. The adjoint equation of 3.19 is˜3

y dVrdx s =GT U V 3.21Ž . Ž .

Ž .with V s ¨ ,¨ ,¨ ,¨ . It is easy to see that when ¨ and ¨ are eliminated1 2 3 4 1 3
Ž .from 3.21 , the equations for ¨ and ¨ are the same as those for u and u .˜ ˜2 4 1 3

Ž .Thus the single localized solution of Equations 3.21 is

TV s yu , u ,yu , u . 3.22Ž . Ž .1 x x 1 x 3 x x 3 x

At infinity,

d h e x q d h ev x , xªy`,1 1 2 2V x ª 3.23Ž . Ž .yx yv x½ d h e q d h e , xª`,3 3 4 4

� 4 Ž .where h , is1, . . . , 4 are obtained from Equation 3.1 asi

1 10 0
2 20 0

1 11 1
h s , h s , h s , h s , 3.24Ž .y1 2 3 42 22 2

1 10 0� 0 � 0� 0 � 0y 2v 2v0 0
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and

d s 2c , d s y2c , d s y2v 2c , d s y2v 2c . 3.25Ž .1 3 3 1 2 4 4 2

�Ž Žk . Žk .. 4Now we consider the matching of N solitary waves r , r , ks1, . . . , N ,1 2

where

cŽk .eyx , xª`,1Žk .r x ª 3.26Ž . Ž .1 Žk . x½ c e , xªy`,3

and

cŽk .eyv x , xª`,2Žk .r x ª 3.27Ž . Ž .2 Žk . v x½ c e , xªy`.4

Ž . Ž .In view of 3.25 , the matching conditions 2.21 become

cŽk .cŽkq1.eyD k q v 2cŽk .cŽkq1.eyv D k s 0, k s 1, . . . , N y1. 3.28Ž .1 3 2 4

Ž .Interestingly, Equation 3.28 indicates that the N solitary waves
�Ž Žk . Žk .. 4r , r , ks1, . . . , N can be matched if and only if all the adjacent1 2

Ž .solitary waves can. Thus the matching of solitary waves in Equations 3.11 is
a ‘‘local’’ phenomenon. This fact would make the construction of those
multiple solitary-wave trains much easier. In what follows, we discuss the
matching of some special types of solitary waves.

First we consider the matching of wave and daughter wave solutions. In
such solutions, either r < r or r < r . Without loss of generality, we2 1 1 2

assume that r < r . These solutions exist near the curves2 1

'v s 1q8b y1 r2y m 3.29Ž .ž /
Ž . w xin the v, b parameter plane 2 . Here m is a nonnegative integer and

Ž .'m- 1q8b y1 r2. In these solutions, r is symmetric; r is symmetric for1 2
Ž .even values of m and anti-symmetric for odd values of m. Suppose r , r isˆ ˆ1 2

such a solution; then

y< x < < <r ª c e , x ª `, 3.30aŽ .1̂ 1

and

c eyv x , xª`,2
r ª 3.30bŽ .ˆ m2 v x½ y1 c e , xªy`.Ž . 2
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Ž . Ž . Ž .Here c <1. Note that if r x is1 or 2 is a solution of Equation 3.11 ,2 i
Ž . Ž .so is y r x . Without loss of generality, we require that c )0 is1,2 . Nowi i

�Ž Žk . Žk .. 4we consider N wave and daughter wave solutions r , r , ks1, . . . , N ,1 2

where

r Žk . x s qŽk .r x , r Žk . x s qŽk .r x , k s 1, . . . , N , 3.31Ž . Ž . Ž . Ž . Ž .ˆ ˆ1 1 1 2 2 2

Žk . Ž . Ž .and q s"1 is1,2 . The matching condition 3.28 for these solitaryi

waves are simply

mŽk . Žkq1. 2 yD Žk . Žkq1. 2 2 yvDk kq q c e q y1 q q v c e s 0, k s 1, . . . , N y1,Ž .1 1 1 2 2 2

3.32Ž .

i.e.,

qŽk .qŽkq1. v 2c2
mq1 2 2 2yŽ1yv .D ke s y1 , k s 1, . . . , N y1. 3.33Ž . Ž .Žk . Žkq1. 2q q c1 1 1

For these conditions to be satisfied, we need to require that v -1 and

mq1 Žk . Žkq1. Žk . Žkq1.y1 q q q q s 1, k s 1, . . . , N y1. 3.34Ž . Ž .1 1 2 2

Ž Žk . Žk .. Ž . Ž Žkq1. Žkq1..Suppose q , q is fixed; then condition 3.34 shows that q , q1 2 1 2

can take two sets of values. In other words, there are two possible types of
matching. Thus these N wave and daughter wave solutions can form 2 N

topologically distinct solitary-wave trains. Since N is arbitrary, countably
infinite multiple-pulse solitary waves will be formed. The spacings between
adjacent waves in those wavetrains are

ln v 2c2 rc2Ž .2 1
D s , k s 1, . . . , N y1, 3.35Ž .k v y1

which are the same throughout an entire wavetrain. As v approaches the
'Ž .'wave and daughter wave boundary 1q8b y1 r2y m, c approaches 2 2 ,1

c approaches 0, and thus D approaches infinity. The above theoretical2 k
2Ž . Ž .results can be checked numerically. We first select b , v to be ,0.85 ,3

Ž .which is close to the curve 3.29 with m equal to zero. With these
parameter values, it is easy to find numerically that c and c as in Equation1 2
Ž . Ž .3.30 are equal to 2.6592 and 1.1744 respectively. Equations 3.34 and
Ž . Ž .3.35 then predict that the two wave and daughter waves r , r andˆ ˆ1 2
Ž .y r , r can be matched with the spacing approximately equal to 13.0635.ˆ ˆ1 2
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This is indeed the case. Numerically we found this exact two-pulse solitary
Žwave and plotted it in Figure 1a. The exact spacing measured as the

.distance between the two extrema in r is 13.064, which is very close to the1
Ž . Ž .theoretical prediction. Next we select b , v to be 2,0.6 which is close to

Ž .the curve 3.29 with ms1. In this case, we numerically found that c and c1 2

Figure 1. Solitary waves matched by two wave and daughter wave solutions. The solid curves
2Ž . Ž . Ž . Ž . Ž .are r x , and the dashed curves are r x . a b , v s , 0.85 which is close to the curve1 2 3

Ž . Ž . Ž . Ž . Ž .3.29 with ms0; b b , v s 2,0.6 , which is close to the curve 3.29 with ms1.
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Ž . Ž .in 3.30 are equal to 3.0386 and 0.6041. Then we predict from 3.34 and
Ž . Ž .3.35 that r , r and itself can be matched with the spacing approximatelyˆ ˆ1 2

equal to 10.6308. Indeed, that exact two-pulse solution was numerically
found and plotted in Figure 1b. The exact spacing is 10.40, close to the
predicted value. The predictions on other types of matchings were also
verified with good accuracy. We point out that each multiple-pulse solitary

Ž .wave will generate a family of solitary waves as the parameter pair v, b
Ž .moves away from the curves 3.29 . Therefore countably infinite families of

solitary waves will be born near those curves.
Next we discuss mixed matchings between wave and daughter wave

Ž .solutions and other types of solitary waves. When v, b is near the curve
Ž .3.29 with ms0, beside the wave and daughter wave solutions, another

Ž w x.type of solitary waves belonging to the solution family we called D in 22
Ž .also exist. Suppose r , r is a wave and daughter wave solution whose largeˆ ˆ1 2

Ž . Ž . Ž .x behavior is given by 3.30 with ms0 , and r , r is a solitary wave in1 2

family D with2

y< x < < <r ª a e , x ª `, 3.36aŽ .1 1

yv < x < < <r ª a sgn x e , x ª `, 3.36bŽ . Ž .2 2

Ž .and a )0 is1,2 . Consider the mixed matching of the solitary wavesi
Ž . Ž . Ž .q r , q r and q r , q r , where q is1, . . . , 4 are either 1 or y1. Theˆ ˆ1 1 2 2 3 1 4 2 i

matching condition is

q q c a eyD y q q v 2c a eyv D s 0, 3.37Ž .1 3 1 1 2 4 2 2

or

q q v 2c a2 4 2 2yŽ1yv .De s , 3.38Ž .q q c a1 3 1 1

where D is the spacing. This condition can be satisfied if and only if v -1
2Ž . Ž .and q q q q is equal to 1. As an example, we choose b , v as ,0.78 .1 2 3 4 3

Then it is easy to find that c , c , a , and a are 2.7967, 0.5210, 7.8105, and1 2 1 2
Ž . Ž .8.4171 respectively. The above results predict that r , r and y r ,y rˆ ˆ1 2 1 2

can match each other and form a new two-pulse solitary wave. This was
verified numerically. The exact matched solution is plotted in Figure 2 with
the spacing 10.26, while the predicted value for the spacing is 9.5571. Mixed

Ž . Ž .matching between many copies of r , r and r , r can be similarlyˆ ˆ1 2 1 2

analyzed. Once again, countably infinite multiple-pulse solitary waves will be
formed by these mixed matchings.
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Figure 2. A solitary wave formed by mixed matching between a wave and daughter wave
2Ž . Ž .solution and another solitary wave of different type. Here b , v s , 0.78 , close to curve3

Ž . Ž . Ž .3.29 with ms0. The solid curve is r x , and the dashed curve is r x .1 2

Last we discuss the matching of solitary waves near v s1. In this case,
Ž .single-hump solitary waves with r f r are present. Suppose r , r is such aˆ ˆ1 2 1 2

solution with

y< x < < <r ª c e , x ª `, 3.39aŽ .1̂ 1

yv < x < < <r ª c e , x ª `; 3.39bŽ .2̂ 2

then c f c . If we consider the matching of these solitary waves1 2
�Ž Žk . Žk . .4 Žk . Ž .q r , q r , where q s"1 is1,2 , the matching condition wouldˆ ˆ1 1 2 2 i

Ž . Ž . Ž .again be Equation 3.32 with ms0 . But here since =G 0 ’s eigenvalues 1
Ž . Ž .and v are close, the exponentially small relative errors in 2.21 and 3.32

Ž .may become important. Thus condition 3.32 should be treated with cau-
Ž . Ž .tion. For instance, when b , v is 2,0.99 , we found c and c to be 1.61421 2

2 2 2 Ž . Ž .and 1.6355. In this case, v c rc )1. Thus according to 3.32 , r , r andˆ ˆ2 1 1 2
Ž . w xr ,y r cannot be matched. But our numerical results show otherwise 2 .ˆ ˆ1 2

Theorems 1 and 2 can also be used to study the matching of dark solitons
Ž . w xthat exist in coupled nonlinear Schrodinger equations defocusing case 12 .¨

In this case, our results on the matching of some classes of dark solitons
Ž .indicate that such matchings are impossible since conditions 2.68 cannot be

satisfied. We suspect that any dark solitons cannot match each other to form
widely separated dark-soliton trains.
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4. Discussion

The results in this article can be readily applied to general nonlinear wave
systems for the construction of widely separated multiple permanent-wave
trains. Such wavetrains geometrically look like a superposition of individual
permanent waves. This is somewhat analogous to the superposition principle
of solutions in a linear system. But the difference here is that, due to the

Ž .nonlinear nature of Equation 2.2 , those individual permanent waves have
Ž Ž . Ž ..to be properly spaced according to Equation 2.21 or 2.68 to form a

wavetrain. When such wavetrains exist, one important question is their
stability. For the coupled nonlinear Schrodinger equations, we indicated in¨
w x2 that they are all unstable. For certain Ginzburg]Landau and coupled
nonlinear Schrodinger-type systems, Malomed argued that multipulse trains¨
exist and are stable by an approximate method based on the variational

w xprinciple and effective potential 13, 14 . Such results need to be viewed with
caution due to the approximations involved. The clear evidence that some
multipulse waves are stable can be found in the experimental results on

w xbinary fluid convection 15 and the numerical results on subcritical
w xGinzburg]Landau equations 16 . We investigate those systems in the near

future.
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