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Eigenfunctions of linearized integrable equations expanded around an arbitrary

solution are obtained for the Ablowitz–Kaup–Newell–Segur (AKNS)

hierarchy and the Korteweg–de Vries (KdV) hierarchy. It is shown that the

linearization operators and the integrodifferential operator that generates the

hierarchy are commutable. Consequently, eigenfunctions of the linearization

operators are precisely squared eigenfunctions of the associated eigenvalue

problem. Similar results are obtained for the adjoint linearization operators as

well. These results make a simple connection between the direct soliton/

multisoliton perturbation theory and the inverse-scattering based perturbation

theory for these hierarchy equations.

1. Introduction

Integrable equations are nonlinear evolution equations that can be solved

exactly by the inverse scattering method. Over the past few decades, it has

been discovered that many physically important equations such as the

Korteweg–de Vries (KdV), nonlinear Schrödinger (NLS), and sine-Gordon

equations are integrable (see [1] and the references therein). Linearization of

an integrable equation around its solution arises in many important

applications, most notably in a direct soliton/multisoliton perturbation theory.
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In such situations, eigenfunctions of linearization operators and their

completeness are fundamental questions. For linearization around single-

soliton solutions, these complete eigenfunctions have been obtained for a

large class of integrable equations, such as the KdV hierarchy, NLS hierarchy,

modified-KdV hierarchy, sine-Gordon, and Benjamin–Ono equations [2–9].

It has been found that these eigenfunctions are related to squared

eigenfunctions of the associated eigenvalue problem (except for the

Benjamin–Ono equation). However, for linearization around a general

solution such as a multisoliton solution, complete eigenfunctions are known

for much less integrable equations [2, 8]. However, some general ideas have

been proposed to determine these eigenfunctions. One idea by Keener and

McLaughlin [2] is that eigenfunctions of a linearization operator expanded

around an arbitrary solution are the variations of the solution with respect to

each parameter in the scattering data. Another idea by Herman [6] is to utilize

the Lax pair of the integrable equation and find special combinations of

squared eigenfunctions of the associated eigenvalue problem, so that these

combinations satisfy the linearized equation of the evolution equation.

However, in both approaches, each equation has to be treated separately. In

addition, for each equation, much work is needed to find eigenfunctions of the

linearization operator, or relate them to squared eigenfunctions of the

associated eigenvalue problem. The idea by Yang [9], however, is free of

these problems. This idea is to show that linearization operators of a hierarchy

and the integrodifferential operator that generates the hierarchy are

commutable; thus, they share the same set of eigenfunctions. Furthermore,

these eigenfunctions are simply squared eigenfunctions of the associate

eigenvalue problem. Compared to the other two approaches, this method

explicitly gives the eigenfunctions of linearization operators in the simplest

way. It treats an entire hierarchy all at once as well. In [9], this idea was

applied only to linearizations of the KdV, NLS and modified-KdV hierarchies

around single-soliton solutions. In that special case, Yang’s results went

beyond commutability of the operators. He also showed that linearization

operators of the hierarchy equations could be factored into the integrodiffer-

ential operator that generates the hierarchy and the linearization operator of

the lowest-order equation in the hierarchy. Commutability of linearization

operators and the integrodifferential operator is a simple consequence of this

factorization representation for the linearization operators.

In this article, we extend the results of Yang [9] to the Ablowitz–Kaup–

Newell–Segur (AKNS) hierarchy and KdV hierarchy linearized around an

arbitrary solution. The AKNS hierarchy is the family of integrable equations

associated with the Zakharov–Shabat eigenvalue problem [10, 11]. In this

general case, we can still show that linearization operators are commutable with

the integrodifferential operator that generates the hierarchy (the factorization

result of linearization operators for single-soliton solutions no longer hold).
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This commutability allows us to establish that complete eigenfunctions of

linearization operators in the AKNS or KdV hierarchy are simply squared

eigenfunctions of the Zakharov–Shabat or Schrödinger operator. Similar results

can be obtained for adjoint linearization operators as well. In a direct soliton/

multisoliton perturbation theory, these squared eigenfunctions will then serve as

the expansion basis for perturbation solutions. Interestingly, these same squared

eigenfunctions were also, used to expand perturbation solutions in the inverse-

scattering-based perturbation theory [12–14]. Thus, our results in this article

indicate that, at a deeper level, the direct soliton/multisoliton perturbation

theory and the inverse-scattering-based perturbation theory are actually

equivalent.

2. Eigenfunctions of linearization operators for the AKNS hierarchy

The AKNS hierarchy associated with the Zakharov–Shabat eigenvalue problem

is [11]:

rt
�qt

� �
þ i!ð2Lþz Þ

r

q

� �
¼ 0; ð1Þ

where the integrodifferential operator Lz
+ is

Lþz ¼ 1

2i

@
@x � 2r

R x

�1 dyq 2r
R x

�1 dyr

�2q
R x

�1 dyq � @
@x þ 2q

R x

�1 dyr

� �
; ð2Þ

and w(k) is the dispersion relation of the linear equation in the r-component. In

this section, we require thatw(k) is an entire function.Whenw(k) = k2 and q =�r*,

Equation (1) reduces to the NLS equation; when w(k) = k3 and q = �r, the

modified-KdV equation results. The adjoint operator of Lz
+ is

Lz ¼
1

2i

� @
@x � 2q

R1
x

dyr �2q
R1
x

dyq

2r
R1
x

dyr @
@x þ 2r

R1
x

dyq

� �
: ð3Þ

Now suppose [r0(x, t), q0(x, t)]
T is an arbitrary solution of the evolution Equation

(1). To avoid dealing with divergent integrals in the following analysis, we

require that this solution vanish as jxj goes to infinity. But generalization to

nonvanishing solutions is also possible by appropriately defining divergent

integrals, as we did in [9]. Next we linearize Equation (1) around this arbitrary

solution. For this purpose, we write

r ¼ r0 x; tð Þ þ ~r x; tð Þ; q ¼ q0 x; tð Þ � ~q x; tð Þ; ð4Þ

where ~r, ~q� 1. Note that we deliberately introduced opposite signs in front of r

and q’s perturbations. This is important for obtaining the commutability

Eigenvalues of Linearized Integrable Equations 147



relations that we present later in this section. When Equation (4) is substituted

into Equation (1), linearization of Equation (1) is:

L
~r
~q

� �
¼ 0; ð5Þ

where L is the linearization operator. We denote the adjoint operator of L as

LA. We also denote L0
+ and L0 as the integrodifferential operators Lz

+ and Lz
with r and q replaced by the solutions r0(x, t) and q0(x, t). The primary

objective of this section is to show that operators L and L0
+ commute, and LA

and L0 commute; i.e.,

LLþ0 ¼ Lþ0 L; ð6Þ

and

LAL0 ¼ L0L
A: ð7Þ

We prove relation (6) first. Relation (7) then follows naturally.
Without loss of generality, we assume that the dispersion relation w(k) is a

power function, w(k) = kn, where n is a nonnegative integer. The reason is that

any entire function of w(k) can be expanded into a power series. Linearization

of operator Lz
+ around the solution (r0, q0) is

Lþz ¼ Lþ0 þ 1

2i
F ~r

~q

� �
þ O ~r2;~r~q; ~q2Þ;

�
ð8Þ

where the operator F is defined as

F ~r
~q

� �
¼ �2~r

R x

�1 dyq0 þ 2r0
R x

�1 dy~q 2~r
R x

�1 dyr0 þ 2r0
R x

�1 dy~r
2~q

R x

�1 dyq0 þ 2q0
R x

�1 dy~q �2~q
R x

�1 dyr0 þ 2q0
R x

�1 dy~r

� �
:

ð9Þ

Then, for power functions of w(k), the linearization operator L is simply:

L
~r
~q

� �
¼ ~r

~q

� �
t

þ i 2Lþ0
� �n ~r

�~q

� �
þ
Xn
k¼1

2Lþ0
� �k�1F ~r

~q

� �
2Lþ0
� �n�k r0

q0

� �
:

ð10Þ
Denoting

Pn

Qn

� �
¼ �i 2Lþ0

� �n r0
q0

� �
; ð11Þ

then the evolution of (r0, q0) becomes

r0
�q0

� �
t

¼ Pn

Qn

� �
; ð12Þ
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and the functions (Pn, Qn) satisfy the recursion relation

Pnþ1

Qnþ1

� �
¼ 2Lþ0

Pn

Qn

� �
: ð13Þ

To establish the commutability of operators L and L0
+, we examine the function

Hn � 2i Lþ0 L� LLþ0
� � ~r

~q

� �
: ð14Þ

Simple calculations show that Hn has the following expression:

Hn ¼
2Pn

R x

�1 ðq0~r � r0~qÞdy� 2r0
R x

�1 ðQn~r þ Pn~qÞdy
�2Qn

R x
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� �
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� �
þ ð2Lþ0 Þ

n 1 0

0 �1

� �
ð2Lþ0 Þ
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þ
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k¼1

ð2Lþ0 Þ
k�1

2iLþ0 F
~r
~q

� �
� F 2iLþ0

~r
~q

� �� �	 

ð2Lþ0 Þ

n�k r0
q0

� �
:

ð15Þ
Here, we have replaced the time derivatives r0t and �q0t in Hn by Pn and Qn in

view of Equation (12). It is important to realize that the above Hn expression

(15) is now purely algebraic and is independent of the evolution Equation (12).

We use algebraic manipulations and the induction method to prove that Hn is

zero for all n � 0.

Whenn=0or 1,we can verify directly thatHn is, indeed, zero.Now,we assume

thatHn=0 for somen�0.Then,we try to show thatHn+1 =0. For this purpose,we

calculate the quantity Hn+1 � 2 L0
+ Hn. It turns out that most of the summation

terms inHn+1 and 2L0
+ Hn cancel each other out. The terms remaining are

Hnþ1 � 2Lþ0 Hn ¼

2Pnþ1

R x

�1 ðq0~r � r0~qÞdy� 2r0
R x

�1 ðQnþ1~r þ Pnþ1~qÞdy
�2Qnþ1

R x

�1 ðq0~r � r0~qÞdy� 2q0
R x

�1 ðQnþ1~r þ Pnþ1~qÞdy

� �

�2Lþ0
2Pn

R x

�1 ðq0~r � r0~qÞdy� 2r0
R x

�1 ðQn~r þ Pn~qÞdy
�2Qn

R x

�1 ðq0~r � r0~qÞdy� 2q0
R x

�1 ðQn~r þ Pn~qÞdy

� �

� 2Lþ0 F
~r
~q

� �
þ iF 2iLþ0

~r
~q

� �� �	 

Pn

Qn

� �
: ð16Þ

When the recursion relation (13) for Pn+1 and Qn+1 is substituted into the above

expression, algebraic simplifications immediately reveal that

Hnþ1 � 2Lþ0 Hn ¼ 0: ð17Þ
Because Hn is zero by assumption, it then follows that Hn+1 = 0. Thus, Hn = 0

for all n � 0, which means that L and L0
+ are commutable. For a general entire
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function of the dispersion relation w(k), this result still holds, as an entire

function can be expanded into a power series.

The proof for the commutability of LA and L0 is trivial once the

commutability of L and L0
+ has been established. The adjoint operator of LL0

+

is L0L
A, and the adjoint of L0

+L is LAL0. Because LL0
+ = L0

+L, their adjoints are

certainly the same; i.e., L0L
A = LAL0. Thus, L

A and L0 are also commutable.

An important consequence of the commutability relations (6) and (7) is that

L (LA) and L0
+ (L0) share the same set of eigenfunctions. To see how this comes

about, let us assume that �(x, t, �) is a continuous eigenfunction of L0
+ with real

eigenvalue �, i.e.,

Lþ0 Y ¼ �Y: ð18Þ

Under the condition that [r0(x, t), q0(x, t)] vanishes as |x| goes to infinity, we can

impose the boundary condition for Y as

Yðx; t; �Þ ! 0

�e�2i� x

� �
; x ! �1: ð19Þ

Because L and L0
+ are commutable, we have

Lþ0 LY ¼ � LY: ð20Þ
Thus, LY is also an eigenfunction of L0

+ with eigenvalue �. As x goes to infinity,
the linearization operator L becomes

L ! @t þ i! �i@xð Þ 0

0 @t þ i! �i@xð Þ

� �
; xj j ! 1: ð21Þ

Consequently, the boundary condition for LY can be obtained from Equations

(19) and (21) as

LYðx; t; �Þ ! �i!ð2�Þ 0

�e�2i� x

� �
; x ! �1; ð22Þ

which is proportional to the boundary condition (19) of eigenfunction Y. Then,
it becomes clear that LY and Y are the same eigenfunction of operator L0

+ with

eigenvalue � (i.e., they are linearly dependent). In view of their boundary

conditions, we see that

LY ¼ �i!(2�)Y; ð23Þ
i.e., Y(x, t, �) is also a continuous eigenfunction of operator L with eigenvalue

�iw(2�).
For the same real eigenvalue �,L0

+ has another linearly independent

eigenfunction � with boundary condition

�Y x; t; �ð Þ ! e2i� x

0

� �
; x ! �1: ð24Þ
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Similar analysis shows that �Y is also a continuous eigenfunction of L, but with

eigenvalue iw(2�), i.e.,
L�Y ¼ i!(2�)�Y: ð25Þ

For the discrete eigenfunctions and generalized eigenfunctions of L0
+, same

analysis indicates that they are also discrete eigenfunctions and generalized

eigenfunctions of L. Thus L0
+ and L, indeed, share the same set of

eigenfunctions. Naturally, the same statement applies to L0 and LA as well.

What exactly are the sets of eigenfunctions for L and LA? Are these sets

complete? In view of our results above, we only need to find the answers

for operators L0
+ and L0. The eigenfunctions for L0

+ and L0 and their

closure have been known for over 20 years from the celebrated work by

Ablowitz et al. [11] and by Kaup [15]. The results can be summarized as

follows.

Consider the Zakharov–Shabat eigenvalue problem with potential [q0(x, t),

r0(x, t)]:

v1x þ i�v1 ¼ q0 x; tð Þv2; ð26Þ

v2x � i�v2 ¼ r0 x; tð Þv1; ð27Þ
and define Jost functions for real � as

 x; t; �ð Þ ¼  1

 2

� �
! 0

1

� �
ei� x; x ! 1; ð28Þ

� x; t; �ð Þ ¼
� 1
� 2

� �
! 1

0

� �
e�i� x; x ! 1; ð29Þ

� x; t; �ð Þ ¼ �1
�2

� �
! 1

0

� �
e�i� x; x ! �1; ð30Þ

�� x; t; �ð Þ ¼
��1
��2

� �
! 1

�0

� �
ei� x; x ! �1: ð31Þ

The right and left solutions are related by

� x; t; �ð Þ ¼ a t; �ð Þ � x; t; �ð Þ þ b t; �ð Þ x; t; �ð Þ; ð32Þ

�� x; t; �ð Þ ¼ ��a t; �ð Þ x; t; �ð Þ þ �b t; �ð Þ � x; t; �ð Þ; ð33Þ
where

�a t; �Þaðt; �Þ þ �bðt; �
� �

b t; �ð Þ ¼ 1 ð34Þ
from Wronskian relations. With Equation (34), the inverse of Equations (32)

and (33) is

 ¼ �a ��þ �b�; ð35Þ
� ¼ �a�þ b ��; ð36Þ
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where we have suppressed the dependent variables x, t, and �. In addition to the

continuous spectrum (� real), Equations (26) and (27) may also possess discrete

eigenvalues (bound states) in the upper and the lower half �-plane. In the upper

half plane, these occur whenever a(t, �) = 0, and we designate them by �k,
k = 1,2,. . ., n, where n is the total number of bound states in the upper half

�-plane. At � = �k, f and y become linearly dependent and

� x; t; �kð Þ ¼ b t; �kð Þ x; t; �kð Þ; k ¼ 1; 2; . . . ; n: ð37Þ

In the lower half �-plane, bound states correspond to zeros of ā(t, �), which we

designate by �k, k = 1,2,. . ., n. At � = �k,

�� x; t; ��k
� �

¼ �b t; ��k
� �

� x; t; ��k
� �

; k ¼ 1; 2; . . . ; �n: ð38Þ

It is important to note that when [q0(x, t), r0(x, t)] is a solution of the AKNS

hierarchy (1), the discrete eigenvalues �k and �k are independent of time t.

With the above notations, the eigenfunctions and generalized eigenfunctions

of operators L0
+ and L0 are simply squared eigenstates of the Zakharov–Shabat

system (26) and (27) [11]. Specifically, the set of eigenfunctions and

generalized eigenfunctions for L0
+ is(

�22
��21

� �
�

;
��22

� ��21

� �
�

; � real;
�22
��21

� �
�k

;
@

@�

�22
��21

� �
�k

; 1 � k � n;

��22
� ��21

� �
��k

;
@

@�

��22
� ��21

� �
��k

; 1 � k � �n

)
; ð39Þ

and the set of such eigenfunctions for L0 is(
 2
1

 2
2

� �
�

;
� 2
1
� 2
2

� �
�

; � real;
 2
1

 2
2

� �
�k

;
@

@�

 2
1

 2
2

� �
�k

; 1 � k � n;

� 2
1
� 2
2

� �
��k

;
@

@�

� 2
1
� 2
2

� �
��k

; 1 � k � �N

)
: ð40Þ

It has been shown by Kaup [15] that each of these two sets is complete. The

orthogonality and inner products of functions in these sets have also been

obtained there. In view of these facts, we then conclude that the sets (39) and

(40) are also the complete sets of eigenfunctions and generalized eigenfunctions

for linearization operators L and LA, respectively. What about the corresponding

eigenvalues? The eigenvalues are actually quite easy to obtain from the

asymptotic behaviors of these eigenfunctions. For operator L, the results are:

L
�22
��21

� �
�

¼ �i! 2�ð Þ �22
��21

� �
�

; � real; ð41Þ
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L
��22

� ��21

� �
�

¼ i!(2�)
��22

� ��21

� �
�

; � real; ð42Þ

L
�22
��21

� �
�k

¼ �i! 2�kð Þ �22
��21

� �
�k

; 1 � k � n; ð43Þ

L
��22

� ��21

� �
��k

¼ i! 2��k
� � ��22

� ��21

� �
��k

; 1 � k � �n; ð44Þ

L
@

@�

�22
��21

� �
�k

¼ �i! 2�kð Þ @
@�

�22
��21

� �
�k

�2i!0 2�kð Þ �22
��21

� �
�k

; 1 � k � n;

ð45Þ
and

L
@

@�

��22
� ��21

� �
��k

¼ i! 2��k
� � @

@�

��22
� ��21

� �
��k

þ2i!0 2��k
� � ��22

� ��21

� �
��k

; 1 � k � �n:

ð46Þ
The results for LA are:

LA
 2
1

 2
2

� �
�

¼ �i! 2�ð Þ  2
1

 2
2

� �
�

; � real; ð47Þ

LA
� 2
1
� 2
2

� �
�

¼ i!(2�)
� 2
1
� 2
2

� �
�

; � real; ð48Þ

LA
 2
1

 2
2

� �
�k

¼ �i! 2�kð Þ  2
1

 2
2

� �
�k

; 1 � k � n; ð49Þ

LA
� 2
1
� 2
2

� �
��k

¼ i! 2��k
� � � 2

1
� 2
2

� �
��k

; 1 � k � �n; ð50Þ

LA
@

@�

 2
1

 2
2

� �
�k

¼ �i! 2�kð Þ @
@�

 2
1

 2
2

� �
�k

�2i!0 2�kð Þ  2
1

 2
2

� �
�k

; 1 � k � n; ð51Þ

and

LA
@

@�

� 2
1
� 2
2

� �
��k

¼ i! 2��k
� � @

@�

� 2
1
� 2
2

� �
��k

þ2i!0 2��k
� � � 2

1
� 2
2

� �
��k

; 1 � k � �n: ð52Þ

Last, we note that in the development of a direct soliton/multisoliton

perturbation theory, it is often convenient to use the derivatives of soliton/

multisoliton solutions with respect to soliton parameters as discrete

Eigenvalues of Linearized Integrable Equations 153



eigenfunctions and generalized eigenfunctions of the linearization operator

[2, 5, 9]. These derivative states span the same space as the discrete

eigenfunctions in the set (39) do. Thus, use of either discrete set is sufficient.

3. Eigenfunctions of linearization operators for the KdV hierarchy

For the KdV hierarchy, similar results hold. However, analysis is simpler,

because we have only a scaler equation to consider. This hierarchy can be

written as in [11]:

qt þ C 4Lþs
� �

qx ¼ 0; ð53Þ
where q(x, t) is a real function, C(k2) is the phase velocity of the linear equation,

and the integrodifferential operator Ls
+ is:

Lþs ¼ � 1

4

@2

@x2
� qþ 1

2
qx

Z 1

x

dy: ð54Þ

Here, the subscript s in Ls
+ refers to Schrödinger, because the associated

eigenvalue problem for the KdV hierarchy (53) is the Schrödinger equation [11,

16]. In this section, we require the phase velocity function C(z) to be entire. The

adjoint operator of Ls
+ is:

Ls ¼ � 1

4

@2

@x2
� qþ 1

2

Z x

�1
dyqy: ð55Þ

Suppose q0(x, t) is an arbitrary solution of the evolution Equation (53). To

linearize Equation (53) around this solution, we write

q ¼ q0 x; tð Þ þ ~q x; tð Þ; ð56Þ
where ~q � 1. When Equation (56) is substituted into the evolution Equation

(53) and higher-order terms in ~q neglected, the linearized equation is

Lkh~q ¼ 0; ð57Þ
where Lkh is the linearization operator. Here, the subscript kh is the abbreviation

of the KdV hierarchy. The adjoint operator of Lkh is denoted as Lkh
A . We

also denote Ls0
+ and Ls0 as the operators Ls

+ and Ls with q(x, t) replaced by the

solution q0(x, t). The objective of this section is to show that Lkh and Ls0
+ are

commutable, and Lkh and Ls0 are commutable; i.e.,

LkhL
þ
s0 ¼ Lþs0Lkh; ð58Þ

and

LAkhLs0 ¼ Ls0L
A
kh: ð59Þ

These results are analogous to Equations (6) and (7) for the AKNS hierarchy.
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Without loss of generality, we will only prove relations (58) and (59) for

power functions of the phase velocity function, C(z) = zn, where n is a non-

negative integer. For this power function, it is easy to check that the

linearization operator Lkh is:

Lkh~q ¼ ~qt þ 4Lþs0
� �n

~qxþ
Xn
k¼1

4Lþs0
� �k�1F kh ~q½ � 4Lþs0

� �n�k
q0x; ð60Þ

where

F kh ~q½ � ¼ �4~qþ 2~qx

Z 1

x

dy; ð61Þ

and q0(x, t) is a solution of the evolution equation (53). Denoting

Wn ¼ � 4Lþs0
� �n

q0x; ð62Þ
then q0t is simply

q0t ¼ Wn; ð63Þ
where functions Wn satisfy the recursion relation

Wnþ1 ¼ 4Lþs0Wn: ð64Þ
To show that Lkh and Ls0

+ are commutable, we calculate the quantity

Ln � �4 Lþs0Lkh � LkhL
þ
s0

� �
~q; ð65Þ

which has the expression

Ln ¼ 2Wnx

R1
x

~qdy� 4Wn~q� 4Lþs0
� �n

4Lþs0~qx� 4 Lþs0~q
� �

x

h i
�

Pn
k¼1

4Lþs0
� �k�1

4Lþs0F kh ~q½ � � F kh 4Lþs0~q
� �� �

4Lþs0
� �n�k

q0x:
ð66Þ

Now we show that Ln ¼ 0 for all n � 0 by the induction method.

When n = 0 or 1, trivial calculations show that Ln is, indeed, zero. Now

assume that Ln ¼ 0 for some n � 0. Note that

Lnþ1 � 4Lþs0Ln ¼ 2Wnþ1;x

Z 1

x

~qdy� 4Wnþ1~q� 4Lþs0 2Wnx

Z 1

x

~qdy� 4Wn~q

� �

þ 4Lþs0F kh ~q½ � � F kh 4Lþs0~q
� �� �

Wn: ð67Þ
Substituting the recursion relation (64) for Wn+1 into the above Equation (67)

and carrying out some algebraic simplifications including integration by parts,

we find that

Lnþ1 � 4Lþs0Ln ¼ 0: ð68Þ
Because Ln ¼ 0 by assumption, we see that Lnþ1 ¼ 0. This induction

procedure proves that Ln ¼ 0 for all n � 0. Thus, Lkh and Ls0
+ are commutable
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for any power function of the phase velocity C(z). The commutability for

general entire functions of C(z) follows from the fact that an entire function can

be expanded into a power series.

Now Lkh and Ls0
+ are commutable. Taking the adjoint of the commutability

relation (57), we find that Lkh
A and Ls0 are also commutable.

Commutability of Lkh (Lkh
A ) and Ls0

+ (Ls0) implies that these operators share

the same set of eigenfunctions and generalized eigenfunctions. The eigenfunc-

tions of Ls0
+ and Ls0 are well known [11, 14]. They are simply squared

eigenfunctions of the Schrödinger operator with potential q0(x, t). Specifically,

consider the Schrödinger equation

vxx þ �2 þ q0 x; tð Þ
� �

v ¼ 0: ð69Þ

Using conventional notation, we define the eigenstates y(x, t, �) and f(x, t, �)
of Equation (69) as

 x; t; �ð Þ ! ei� x; x ! 1;
a t; �ð Þei� x � b t;��ð Þe�i� x; x ! �1;

	
ð70Þ

and

� x; t; �ð Þ ! e�i� x; x ! �1;
a t; �ð Þe�i� x þ b t; �ð Þei� x; x ! 1:

	
ð71Þ

In addition to the above continuous spectrum (real �), Equation (69) may

also possess discrete eigenvalues in the upper half �-plane (on the imaginary

axis for real potential q0) where a(t,�k) = 0, k = 1,2,. . ., n. Note that if q0(x, t) is
a solution of the KdV hierarchy (53), then these discrete eigenvalues �k are

independent of time t [11, 16]. With the above notations, the set of

eigenfunctions and generalized eigenfunctions for the operator Ls0
+ is

@ 2

@x

����
�

; � real;
@ 2

@x

����
�k

;
@2 2

@x@�

����
�k

; 1 � k � N

( )
; ð72Þ

and the set of such eigenfunctions for Ls0 is

�2
��
�
; � real; �2

��
�k
;
@�2

@�

����
�k

; 1 � k � N

( )
: ð73Þ

Commutability of Ls0
+ (Ls0) and Lkh (Lkh

A ) shows that the sets (72) and (73) are

also eigenfunctions and generalized eigenfunctions for the linearization

operators Lkh and Lkh
A , respectively. In addition, we can readily show that the

eigenvalue relations are

Lkh
@ 2

@x

����
�

¼ 2i�C 4�2
� �@ 2

@x

����
�

; � real; ð74Þ
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Lkh

@ 2

@x

����
�k

¼ 2i�kC 4�2k
� �@ 2

@x

����
�k

; 1 � k � n; ð75Þ

Lkh

@2 2

@x@�

����
�k

¼ 2i�kC 4�2k
� �@2 2

@x@�

����
�k

þ 2iC 4�2k
� �

þ 16i�2kC
0 4�2k
� �� �

� @ 2

@x

����
�k

; 1 � k � n; ð76Þ

and

LAkh�
2
��
�
¼ 2i�C(4�2)�2

��
�
; � real; ð77Þ

LAkh�
2
��
�k
¼ 2i�kC 4�2k

� �
�2
��
�k
; 1 � k � n: ð78Þ

LAkh

@�2

@�
�k ¼ 2i�kC 4�2k

� � @�2
@�

����
����
�k

þ 2iC 4�2k
� �

þ 16i�2kC
0 4�2k
� �� �

�2 �k ; 1 � k � n:
�� ð79Þ

The completeness of the two sets (72) and (73) and their inner products have

been derived in [14, 17]. Thus, these sets can be used to expand the perturbation

solutions in a direct soliton/multisoliton perturbation theory [6, 7, 9].

4. Concluding remarks

In this article, we have studied the linearization operators of the AKNS

hierarchy and KdV hierarchy equations expanded around an arbitrary

solution. We have found that these linearization operators and the

integrodifferential operator that generates the hierarchy are commutable. This

commutability relation immediately reveals that linearization operators and the

integrodifferential operator share the same set of eigenfunctions, and these

eigenfunctions are simply squared eigenfunctions of the Zakharov–Shabat or

Schrödinger equations. Compared with the other methods for determining

eigenfunctions of the linearization operators [2, 6], our method is the simplest.

Our method also gives the eigenfunctions for the entire AKNS and KdV

hierarchies, not one equation at a time. In addition, our result makes a clear

connection between the direct soliton/multisoliton perturbation theory and the

inverse-scattering-based perturbation theory, as perturbation solutions in both

theories are expanded onto the same complete set of squared eigenfunctions.

With the eigenfunctions of linearization operators now available, we can

proceed to develop a direct soliton/multisoliton perturbation theory for the
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AKNS and KdV hierarchies, which should reproduce the results of [13, 14]

obtained by the inverse-scattering-based perturbation method. This problem falls

outside the scope of the present article. Another interesting question is whether

the idea of this paper can be extended to derive eigenfunctions of linearization

operators for integrable equations that do not fall into the AKNS and KdV

hierarchies. Examples of such equations include the Benjamin–Ono equation,

the derivative NLS equation, the massive Thirring equation, the Kadomtsev–

Petviashvili (K–P) equation, etc. This equation will be left for future studies.

We learned recently about the work [18, 19] where a symmetry approach was

developed for scaler integrable equations. For the KdV hierarchy, the

commutability between the linearization operator and the recursion operator

has been established there. Our commutability result for vector integrable

equations such as AKNS hierarchy is new.
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