
The Sloshing Motion of Cross-Waves 

By Jianke Yang 

1. Introduction 

Cross-waves are standing waves whose crests are perpendicular to a wavemaker. 
They have a frequency equal to half that of the wavemaker and can be generated 
in a wave tank when the wavemaker's frequency is near a subharmonic reso
nance (twice the natural frequency of a cross-wave mode), provided the forcing 
.is strong enough to overcome dissipative effects. These waves were first reported 
by Michael Faraday in 1831. In his diary for July 1, 1831, Faraday observed that 
when a vibrating vertical plate was dipped into a basin of water, "Elevations, 
waves or crispations immediately formed but of a peculiar character ... begin
ning at the plate and projecting directly out from it . .. like the teeth of a very 
short comb." He also remarked that these waves had a frequency half that of the 
excitation. The generating mechanism of these waves remained a mystery until 
1970, when Garrett [1] found that a rectangular channel of finite length can be 
described by Mathieu's equation. Mahony [2] extended the analysis to a rectan
gular channel of infinite length. He found that the resonant bandwidth is an order 
of magnitude smaller than that in a channel of finite length. He also indicated that 
nonlinear effects may control the decay of the cross-waves down the channel. 
Using multiple-scale perturbation methods, Jones [3] first derived the governing 

Address for correspondence: Prof. lianke Yang, Department of Mathematics and Statistics, #40 I, University 
of Vermont, Burlington, VT 0540 I. 

STUDIES IN APPLIED MATHEMATICS 95:171-191 171 
© 1995 by the Massachusetts Institute of Technology 
Published by Blackwell Publishers, 238 Main Street, Cambridge, MA 02142, USA, and \08 Cowley Road, 
Oxford, OX4 lJF, UK. 



172 J. Yang 

nonlinear equations for the longitudinal modulation of a cross-wave mode in a 
rectangular channel of infinite length. These equations were later identified by 
Miles [4] as the nonlinear SchrOdinger equation with a homogeneous wave maker 
boundary condition and a null condition at infinity (referred to hereafter as the 
2-D cross-wave equations). Using an averaged variational principle, Miles and 
Becker [5] obtained the same results as those of Jones. When the channel is wide 
enough to allow several adjacent cross-wave modes to be generated simultane
ously, the cross-wave will also be modulated in the spanwise direction. Under the 
assumption that the spanwise modulation is much milder than the longitudinal 
one, so that the spanwise dispersion is negligible, the governing equations for 
both modulations were derived by Ayanle et al. [6] and hereafter are referred to 
as the (spanwisely nondispersive) 3-D cross-wave equations. 

Experiments on cross-waves have been conducted by Barnard and Pritchard 
[7], Lichter and Shemer [8], Ayanle et al. [6], and Underhill et al. [9]. Barnard 
and Pritchard's [7] experiments demonstrated the generation of cross-waves in 
a long water channel. They also observed that "the cross-waves never reach a 
true state of equilibrium, and after the cross-wave amplitude has passed through 
a maximum, a wave detaches itself from the wavemaker, propagates along the 
channel," and eventually decays. These results were in agreement with Lichter 
and Chen's [10] numerical calculations of the 2-D cross-wave equations (when 
damping was incorporated). Miles and Becker [5], through analytical approxi
mations and numerical integration, determined those stationary envelopes that 
are evanescent at large distances from the wave maker. They compared their en
velopes with Barnard and Pritchard's [7] experiments and Lichter and Chen's 
[10] numerical calculations, and suggested that stationary envelopes with either 
no or one maximum are stable for sufficiently small amplitudes and evolve into 
limit cycles for somewhat larger amplitudes. Ayanle et al. [6] observed a mixed
mode state. They then used a center manifold analysis on the 3-D cross-wave 
equations to reduce the PDEs to a system of coupled Landau equations in the 
neighborhood of a codimension-two point where two adjacent cross-wave modes 
are marginally stable. They found four possible steady states of the system, one of 
which is a mixed-mode superposition oftwo cross-wave modes. They predicted a 
Hopf bifurcation from the mixed mode for some parameters. Their experiments 
showed good agreement with the theoretical predictions. Underhill et al.'s [9] 
experiments revealed richer structures partially due to the presence of sloshing 
motion. They observed modulated, frequency-locked, and chaotic cross-waves 
in different regions of the parameter space. In particular, they observed that 
"at large cross-wave amplitUdes, the spanwise wave structure apparently breaks 
up, because of modulational instability, into coherent soliton-like structures that 
propagate in the spanwise direction and are reflected by the sidewalls." 

This paper studies two topics: (1) the general solution of the linearized cross
wave equations for an arbitrary initial condition, and (2) the dynamics of sloshing 
motion. 
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It is clear that the mechanism of cross-wave generation lies in the linearized 
2-D cross-wave equations. The neutral curve, which sets the criterion as to when 
a cross-wave will be excited, should come from these linear equations. The cross
wave field characteristics along the channel at the initial stage of generation are 
also dictated by them. Therefore, knowledge of these equations' solution behav
iors for an arbitrary initial condition is important. Previous research by Mahony 
[2] and Jones [3] found a special eigensolution of these linear equations. That 
solution was later used to establish the neutral curve. Such a neutral curve is 
apparently doubtful, and a resolution must be obtained from the solution for an 
arbitrary initial condition. In this paper, the analytical solution of the linearized 
2-D cross-wave equations for an arbitrary initial condition is derived. The asymp
totic behavior of this solution as time becomes large is given by simple formulas. 
These results fully describe the cross-wave field at its generating stage. The neu
tral curve based on this solution is also obtained. It is found that this neutral curve 
turns out to be the same as that based on the special eigensolution mentioned 
earlier. 

Sloshing motion is an intriguing nonlinear phenomenon. It has been exper
imentally observed by Underhill et al. [9], but its dynamics is not yet known. 
Underhill et al. [9] speculated that it "may be related to the Benjamin-Feir in
stability of a uniform wave train." Since the Benjamin-Feir instability relies 
crucially on dispersion as well as on nonlinearity, this speculation emphasizes 
the importance of the spanwise dispersion, which is neglected in the 3-D cross
wave equations mentioned earlier. Doubts naturally arise at first sight, since in 
the present situation, two oppositely propagating wavetrains are involved, and 
the Benjamin-Feir instability of one uniform wavetrain may be irrelevant. This 
question is resolved because it can be proven that in deep water, each wavetrain 
still experiences the Benjamin-Feir instability in spite of the existence of the 
other. Serious doubts remain for the following reasons. First, the longitudinal 
modulation is coupled with the span wise one and affects it in a nontrivial way. 
Second, and more important, the cross-wave field is nonconservative. The wave
maker transfers energy into this field and strongly affects its dynamics. Due to the 
nature of this problem, I propose in this paper that the span wise dispersion does 
not playa major role; sloshing has a different nature from the Benjamin-Feir 
instability, and the dynamics of sloshing can be described by these (spanwisely 
nondispersive) 3-D cross-wave equations. To support this proposition, the solu
tions to these 3-D equations were studied. In view of the complexity of these 
nonlinear equations, numerical approaches were taken. The numerical results 
show various features of the cross-wave field. In particular, they show that, for 
a certain range of parameters, sloshing motion really appears. These sloshing 
waves propagate in the spanwise direction, are reflected by the sidewalls, and 
interact with each other in a persistent way. Due to the interaction of the sloshing 
and longitudinal waves, the motion of fluid particles is very complicated. All 
these results qualitatively agree well with Underhill et al,'s [9] observations on 
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sloshing motion, and give strong evidence of the connection between the sloshing 
motion and the 3-D cross-wave equations as well as the fact that the dynamics 
of sloshing is well described by these (spanwisely nondispersive) 3-D equations. 
Span wise dispersion may be important to suppress very short waves, but it plays 
only a minor role in the dynamics of sloshing. 

2. The analytical solution of the linearized 2-D cross-wave equations 
for an arbitrary initial condition 

2.1. Formulation 

Consider a rectangular semi-infinite water channel. The coordinates are such that 
x (x > 0) measures distances along the channel, y (0 < y < b) is the spanwise 
coordinate, and z (z < 0) is depth below the free surface. Its driving mechanism 
is a wavemaker at x = 0, with the prescribed motion 

x = a j (z) sin 2a-t (z < 0), (2.1) 

where a is the maximum displacement of the wave maker. The flow is assumed 
incompressible, inviscid, and irrotational. Dimensionless variables are defined 
using a as amplitude scale, g/a2 as length scale, and a-I as timescale, where 
g is the gravitational acceleration. Then the velocity potential <P and the surface 
displacement { are governed by the equations 

b.<p = 0, (2.2) 

<Pz - {t = E(<Px{x + <Py{y) on z = E{, (2.3) 

<Pt + { -
1 

-ZE(<P; + <p;) on z = E{, (2.4) 

<P -+ 0 as z -+ -00, (2.5) 

<Px - Efz<Pz sin 2t - 2f(z) cos2t onx = Ef(z)sin2t, (2.6) 

<Py = 0 on y = 0, t, (2.7) 

and also a radiation condition for large x. In these equations, I = ba 2 / g and 
E = aa 2/g. 

We make the assumption that E « 1 (small-amplitude waves). At the first 
order, E is put to be zero in equations (2.2)-(2.7). The solution to the resulting 
linear equations has two parts. The first part is expected-a progressive wave
train along the channel and a local standing disturbance around the wavemaker, 
both with the frequency 2. The second part is a free cross-wave mode with the 
frequency 1. This cross-wave may be excited through a kind of subharmonic 
resonance mechanism by the first part. 
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A free cross-wave mode with the frequency 1 and n transverse nodes has the 
velocity potential of the form 

-it nrr z ¢c = [A(X, T)e + c.c.] cos -l-ye , (2.8) 

where A (X, T) is the slowly varying complex amplitude, X = EX, and T = €2 t. 
In order for this potential (2.8) to satisfy the Laplace equation (2.2) at the first 
order, it is required that nrr / I ~ 1. 

A multiple-scale perturbation method is used to determine the evolution equa
tion of the cross-wave amplitude A(X, T). Itis found that A satisfies the following 
nonlinear 2-D cross-wave equations (see [3,4]): 

1 1 2 * 
iAr + 4"Axx +)"A + 2"A A = 0, 

Ax=iRA* onX=O, 

A ----+ 0 as X ----+ 00, 

where 

(2.9) 

(2.10) 

(2.11) 

).. = A - 0.202G2
, G = 4 [: f(z)e 4Z dz, A = 2:2 (1 _ n;) (2.12) 

and 

R = [°00 [4f(z) + f'(z)e2Z )dz - 2f(0). 

The linearized 2-D cross-wave equations are 

I 
iAT + 4"Axx + J...A = 0, 

Ax = iRA * on X = 0, 

A ----+ 0 as X ----+ 00. 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

These linear equations govern the cross-wave field at its initial stage of generation. 
As has been noted by Mahony [2] and Jones [3], the function 

-2 Hi) ~_J...2 x+J ~_J...2 T 
A(X, T) = e (2.17) 

is a special eigensolution of the linear equations (2.14), (2.15), and (2.16) with 
the eigenvalue j R4 /16 - J... 2. Since this solution grows if R4/ 16 - J... 2 > 0 and 
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is bounded if R4 j 16 - )...2 < 0, it has been conjectured that the neutral curve is 
R4 j16 _)...2 = O. 

To clarify the neutral curve and to fully understand the cross-wave field behav
ior at its initial stage of generation, the solution of the equations (2.14), (2.15), 
and (2.16) for a general initial condition is required. In the next section, we set 
out to derive the analytical solution of those equations for an arbitrary initial 
condition 

AIT=O = Ao(X) (X ~ 0). (2.18) 

2.2. Derivation of the analytical solution 

For convenience, the variables x and t are used instead of X and T in the rest of 
Section 2. 

Rather than working with the real and imaginary parts of the complex ampli
tude A, here we work directly with A and A*. Denoting A* == B, it is easy to 
find from (2.14), (2.15), and (2.16) that A and B satisfy the following equations: 

1 
i At + 4 Axx +)"'A = 0, 

1 
-iBt + 4Bxx +)"'B = 0, 

Ax = iRB onx = 0, 

Bx=-iRA onx=O, 

A ---* 0 as x ---* 00, 

B ---* 0 as x ---* 00, (2.19) 

together with the initial conditions 

At=o Ao(x) (x ~ 0), 

Bt=o Bo(x) (x ~ 0). (2.20) 

Note that Bo(x) = Ao(x). 
When Laplace transforms are taken for the equations (2.19) and (2.20) with 

respect to time t, A and B's Laplace transforms A, B are found to satisfy the 
following equations: 

1 - -
-Axx + ()... + is)A = iAo(x), 
4 

1 - -
4Bxx + ()... - is)B = -iBo(x), 

(2.21) 

(2.22) 
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Ax = iRE onx = 0, 

Bx = -iRA onx = 0, 

A ----+ ° as x ----+ 00, 

B ----+ ° as x ----+ 00. 

The general solution of equation (2.21) is 

_ I Ao(x')e-2v'-A-islx-x'l dx', . 1000 

,J-).. - is 0 
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(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

where the complex function ,J -).. - is has positive real part for s on the line 
Re(s) = ao > 0, ao is sufficiently large, and Cl, d l are complex constants. 

Similarly, the general solution of (2.22) is 

B(x, s) = C2 e-2v'-A+isx + d2 e2v'-A+is x 

+ i roo Bo(x')e-2v'-A+is1x-x'l dx', 
,J-).. + is 10 (2.28) 

where the complex function ,J -).. + is has positive real part for s on the line 
Re(s) = ao > 0, and C2, d2 are complex constants. 

When the boundary conditions (2.25) and (2.26) are applied to the solutions 
(2.27) and (2.28), it is concluded that 

(2.29) 

The wavemaker boundary conditions (2.23) and (2.24) are then applied to the 
solutions (2.27) and (2.28), and two equations to determine c, and C2 are obtained, 

2,J -).. - is c, + i R C2 = R roo Bo(x')e-2v'-HiSX' dx' 
,J-).. + is 10 

- 2i 1000 

Ao(x')e-2v'-A-isx' dx', (2.30) 

iR c\-2,J-)..+isC2 = _ R roo Ao(x')e-2v'-A-isx' dx' 
,J-).. - is 10 

- 2i 1000 

Bo(x')e-2v'-Hisx' dx'. (2.31) 
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CI and Cz are found to be 

1 1-4R roo B (x')e-2v'-HisX'dx' 
RZ - 4J-A - isJ-A + is 10 0 

+ V v. Ao(x')e-ZV-A-ISX dx' (2.32) i(4 I-A+is I-A-is+RZ) 1000 ~'I 
J-A -IS 0 

Cz = 1 1-4R roo A (x')e-Zv'-A-isx'dx' 
RZ - 4J-A - isJ-A + is 10 0 

- . Bo(x )e dx . (2.33) i(4J-A - iSJ-A + is + RZ) 1000 
, -Zv'-A+isx' 'I 

J-A+IS 0 

It is clear that A is now fully detennined and is in the fonn 

A-() -Zv'-A-isx I A ( ') -Zv'-A-islx-x'i d ' . 1000 

x, s = cle - 0 x ex, 
J-A - is 0 

(2.34) 

where Cl is given by (2.32). The original solution A(x, t) is the inverse Laplace 
transfonn of A(x, s) 

1 1 -A(x, t) = -. A(x, s)est ds, 
27ft L 

(2.35) 

where the integration path L is to the right-hand side of all the singularities of 
A(x, s). 

2.3. The asymptotic behavior of the analytical solution A(x, t) for large time t 

To determine A(x, t)'s large-time asymptotic behavior, A(x, s)'s singularities 
need to be examined. 

First consider the A < 0 case. 
The solution (2.34) has two branch points at s = ±iA. To guarantee that 

the complex functions J - A - is and J - A + is have positive real parts on the 
integration path L, write 

/ I . ~ v-A-is = e-"47r:l ys -iA, 

J-A + is = e!7r:iJs + iA . 

(2.36) 

(2.37) 

The branch cuts of Js - iA and Js + iA are located as shown in Figure 1. 
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Then define 

arg(s+ - iJ...) = 7r for s+ on the upper side of Js - iJ... cut; 

arg(s- - iJ...) = -7r for s- on the lower side of Js - iJ... cut; 

arg(s+ + iJ...) = 7r for s+ on the upper side of Js + iJ... cut; 

arg(s- + iJ...) = -7r for s- on the lower side of Js + iJ... cut. 
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(2.38) 

When (2.36) and (2.37) are introduced into equations (2.32) and (2.34), A and 
ct can be rewritten in the following forms: 

CI 

Since 

rrj 

A(x, s) = cle-2e- T JS-iAx 

+ e-T. (X) Ao(x')e-2e-¥ Js-iJ,.lx-x'l dx', 
~Jo 

1 {-4R roo A*(x/)e-2eT JS+ih' dx' 
R2 - 4~J s + iJ... Jo 0 

e-¥ (4J -J... + isJ -J... - is + R2) 

Js - iJ... 

x 1000 

Ao(x')e-2e-¥ Js-ih' dX/} . 

it is clear that CI (s) has poles at points 

Making use of (2.41), CI can be expressed as 

(2.39) 

(2.40) 

(2.41 ) 

(2.42) 

(2.43) 
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where 

F(s) (R
2 + 4.Js - i)...Js + i)..) { 1000 * , -2e¥- JS+iJ...x' , 4R Ao(x)e dx 

16 0 

e-¥-(4.J-).. + is.J-).. - is + R2) 
+----------~===---------

.Js - i).. 

rOO "j } x 10 Ao(x')e-2e- 4 Js-iJ...x' dx' . (2.44) 

Note that integrals such as 

do not contribute new singularities other than the branch points of .J s - i).. and 
.J s + i ).., and they are less singular than l/.J s - i).. or l/.J s + i).. because Ao(x) 
tends to zero as x -----+ 00, so F (s) has no singularities other than the branch 
points of .J s - i).. and .J s + i ).., and these singularities are weaker than 1/ s - i)" 
or 1 / s + i)... Similarly, the second term in (2.39) has no singularities other than 
the branch point of .J s - i ).., and the singularity is weaker than 1/ s - i)... 

The above results on A (x , s) are now used to determine the large-time asymp
totic behaviors of A (x , t). They are distinctively different depending on the sign 
of R4 /16 _ )..2. 

1. R4j16 _)..2 > O. In this case, the two simple poles s = ±JR4/16 _)..2 are 
on the real axis. We choose an alternative integration path L', as in Figure 2, and 
then use the residue theorem. After some simple asymptotic analysis, it is found 
that 

(2.45) 

This solution is exactly the same as the eigensolution noted by Mahony [2] and 
Jones [3]. It grows exponentially in time with the growth rate J R4 /16 - )..2 and 
decays exponentially in the x direction. 

2. R4/ 16 - ).. 2 = O. In this case, s = 0 is a double pole. Choosing an alternative 
integration path L' as in Figure 3 and performing a similar analysis, we find that 

I I 

A(x, t) -----+ [F(O)t + F'(O) + i F(O)I)..I-2x]e-21J...I~x as t -----+ 00. (2.46) 



The Sloshing Motion of Cross-Waves 181 

---...... .\~ L 
----------~~~~ _-___ .... Ai ,I(. 

Figure I. Branch cuts of Js - iA and Js + iA. 

l' 

L' 

Figure 2. The alternative integration path L' for the case .!fi - A2 > o. 

This solution grows linearly in time and decays exponentially in the x direction. 

3. f~ _}...2 < O. In this case, the two simple poles s = ±iJ}...2 - R4/16 are on 
the imaginary axis. When an alternative integration path L' shown in Figure 4 is 
taken, a similar analysis reveals that 

A(x, t) -+ 
ijA2- ~: -iA X+ijAL ~: I 

as t -+ 00. (2.47) 

This solution is bounded for all time and decays exponentially in the x direction. 
Now the case}... 2: 0 is discussed briefly. 
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~ ... a> , 

l' ~ 

->.t 
/, l .. 
~ tI -. , 

,. ,\i 

L' 
, 

Figure 3. The alternative integration path L' for the case ~ - A. 2 = o. 

.. a> , 

l' ~ 
->.t 

/0 l .. 
~ -. , 

,\i 

L' 
, 

Figure 4. The alternative integration path L' for the case * -A 2 < o. 

Using previous arguments, it is found that the asymptotic solution always 
decays exponentially in the x direction. 

1. When R4/ 16 - ).2 > 0, it grows exponentially in time and is the same as 
(2.45). 

2. When R4/ 16 - ).2 < 0, it is bounded for all time and is the same as (2.47). 
3. When R4/ 16 -). 2 = 0, the analysis is more complicated, but no new features 

appear. 

2.4. The neutral curve 

It is now clear that the neutral curve is R4/ 16 - ).2 = 0. It is reassured that the 
result is the same as that obtained based only on the special eigensolution (2.17) 
of the linearized 2-D cross-wave equations (2.14), (2.15), and (2.16). If R4/ 16-
). 2 > 0, the growth rate of the cross-wave is u = J R4 /16 - ).2 . 
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When dissipation is modeled into the linearized 2-0 cross-wave equation 
(2.14), it becomes 

1 
iAt + 4Axx + ()" + iL)A = 0, (2.48) 

where L > 0 is linear damping constant. The boundary conditions (2.15) and 
(2.16) remain the same. 

In this case, since the transformation A = Ae-Lt reduces this problem to 
the previous one, the analytical solution and its asymptotic form are just the 
undamped ones (as previously given) multiplied by e-Lt . The neutral curve now 
becomes 

~ y 16 _),,2 - L = O. (2.49) 

3. Sloshing motion and the nonlinear 3-D cross-wave equations 

3.1. Formulation 

Consider a rectangular water channel of semi-infinite length (x ::: 0), infinite 
depth (z ::::: 0), and finite width (0 ::::: Y ::::: b). It is driven by a wavemaker at 
x = 0 at frequency 2a. The generated cross-wave has the primary wavenumber 
ko. = N 1r / b, where N is the number of transverse nodes. We assume that the 
channel is wide and N is large, but ko = N 1r / b remains of order a 2 / g, where g is 
the gravitational acceleration. This cross-wave is modulated in both longitudinal 
and transverse directions. 

I 
Introduce the small perturbation parameter E = N-z, and suppose that the 

motion of the wavemaker is prescribed by 

- Eg f-(-) . 2 -x = 2 z sm at 
a 

(Z < 0). (3.1) 

Dimensionless variables are defined using Eg/a 2 as amplitude scale, g/a2 as 
length scale, and a -1 as timescale. The velocity potential (jJ and the surface 
displacement;; are governed by the equations (2.2) to (2.7), together with a 
radiation condition for large x. 

The velocity potential for the cross-wave is of the form 

(jJc = [A (X, Y, T)ei(~Y+t) + B(X, Y, T)ei(~y-t) + c.c.] eZ , (3.2) 

where 

a 2 
k=-, 

g 
x = EX, 

2 ko Y =E -y 
k 

(3.3) 
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A multiple-scale perturbation analysis results in the following equations for A 
and B (see [6]): 

1 1 
-iAT + 4Axx + 2iAy + (J - iL)A - 21AI2A +41B1 2A = 0, 

1 1 
iBT+4Bxx+2iBY+(J+iL)B-2IBI2B+4IAI2B = 0, 

Ax = iRB on X = 0, 

Bx = -iRA on X = 0, 

A = B* on Y = 0, Jr, 

A ~ ° as X ---+ 00, 

B ~ ° as X ---+ 00, (3.4) 

where 

A = _1_ (1 _ kO) (3.5) 
2£2 k' 

(3.6) 

and L > ° is a linear damping constant. With the introducion of new seatings 

x = v'2X, y = Y, 

A = 2A, jj = 2B, 

- I 
T = '2T, 
- I 
R = JiR, 

(3.7) 

and the bars dropped, the following system of equations for the complex ampli
tudes A and B of the cross-waves is obtained: 

-iAT + Axx + iAy + (J - iL)A - IAI2 A + 21BI2 A = 0, (3.8) 

iBT + Bxx + iBy + (J + iL)B -IBI2B + 21AI2B = 0, (3.9) 

Ax = iRB 

Bx = -iRA 

A = B* 

on X = 0, 

on X = 0, 

on Y = 0, Jr, 

(3.10) 

(3.11 ) 

(3.12) 
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as X ----+ 00, 

as X ----+ 00. 
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(3.13) 

(3.14) 

Note that in the above derivation, spanwise modulations are assumed to be an 
order of magnitude weaker than longitudinal ones so that span wise dispersion is 
negligible. 

3.2. The analytical solution of the linearized 3-D cross-wave equations 
for an arbitrary initial condition 

At the initial stage of cross-wave generation, A and B are both very small. So 
they are governed by the linearized 3-D cross-wave equations, namely, 

-iAT + Axx + iAy + (J - iL)A = 0, (3.15) 

iBT+Bxx+iBy+(J+iL)B = 0, (3.16) 

Ax = iRB on X = 0, (3.17) 

Bx = -iRA on X = 0, (3.18) 

A B* on Y = 0, Jr, (3.19) 

A ----+ ° as X ----+ 00, (3.20) 

B ----+ ° as X ----+ 00. (3.21) 

It has been shown that in this case, A and B can be written as a linear eigenmode 
expansion of the form [6] 

00 

A L Ak(X, T)eikY , (3.22) 
k=-oo 

00 

B = L AZ(X, T)eikY , (3.23) 
k=-oo 

and AZ is governed by the equations 

iAZT + AZxx + (J - k + iL)AZ = 0, 

on X = 0, 

AZ ----+ ° as X ----+ 00. (3.24) 
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These equations are the same as equations (2.48), (2.15), and (2.16), so the analyt
ical solution for At and its asymptotic behavior are obtained as before. Therefore 
the analytical solutions for A and B can be constructed from the relations (3.22) 
and (3.23). The k-th cross-wave mode is excited if J R4 - (J - k)2 - L > O. If 
the forcing is strong, i.e., if R is sufficiently large, several adjacent cross-wave 
modes are generated, and large-scale spanwise modulations are to be expected. 

3.3. Numerical methods for the nonlinear 3-D cross-wave equations 

Sloshing motion is, without doubt, a nonlinear phenomenon, but the role of 
spanwise dispersion is unclear. If this dispersion is crucial, sloshing appears 
related to the Benjamin-Feir instability of a uniform wavetrain. But this may not 
be the case. In view of the special nature of the cross-waves, it is proposed here 
that the span wise dispersion plays a minor role and that the dynamics of sloshing 
can be described by the (spanwisely nondispersive) 3-D cross-wave equations 
(3.8)-(3.14). To verify this conjecture, numerical methods are developed for these 
equations, and numerical calculations are subsequently carried out. 

The nonlinear 3-D cross-wave equations (3.8)-(3.14) are first divided into 
real and imaginary parts and equations with respect to Re(A), Im(A), Re(B), 
and Im(B) are derived. These equations are solved numerically by an explicit 
finite difference scheme which uses second-order central difference operators to 
approximate spatial derivatives 

oxx ---+ 8xx, (3.25) 

and the fourth-order Runge-Kutta scheme to advance in time. The boundary 
conditions at the wavemaker X = 0 and at the sidewalls Y = O,1f are also 
approximated by second order difference operators, which use the boundary 
point and two adjacent points in the domain. A sufficiently large interval for X 
is used so that the outer boundary condition for X can be taken as A = B = O. 

The adopted scheme is consistent, and its truncation error is second order in 
space and fourth order in time. The stability condition restricts the size of the time 
step. The determination of the computational step-sizes is based on experience 
with testing the code as well as on stability and accuracy concerns. 

The initial conditions were chosen to be 

(3.26) 

and 

(3.27) 

which satisfy the boundary conditions (3.10)-(3.14). The real constants al and 
a2 were chosen as al = a2 = 0.05 in the actual runs and al = a2 = 0.005 in the 
code testing. 
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The code was tested against the linear analytical solution for the case with 
parameters R = 1.6, J = 0, and L = 2. The domain was bounded by 0 ~ X ~ 7, 
o ~ y ~ n, and 0 ~ T ~ 6. The step sizes were chosen as 6.X = 0.05, 
6.Y = n/80 ~ 0.04, and 6.T = 0.0003. a) = a2 = 0.005 was taken in the 
initial conditions (3.26) and (3.27). The comparison showed excellent agreement 
between the numerical and analytical solutions. 

3.4. Numerical results and sloshing motion 

Many runs with different parameters have been carried out in detaiL The re
sults are basically similar to the ones shown in this paper with parameters 
R = 1.6, J = -0.5, and L = 1.6. The domain was defined by 0 ~ X ~ 7, 
o ~ Y ~ n, and 0 ~ T ~ 12. The step sizes were chosen to be 6.X = 0.07, 
6.Y = n 180 ~ 0.04, and 6.T = 0.0003. a) = a2 = 0.05 was taken in the initial 
conditions (3.26) and (3.27). 

The results are shown in Figures 5-8. 
The following interesting features are emphasized: 

1. Sloshing motion really appears, as can be seen in Figure 5. The cross-waves 
are excited first. They then become more localized spanwise, and sloshing 
motion begins to appear. These sloshing waves travel in the transverse direc
tion, are reflected by the side walls, and interact with each other in a persistent 
way. 

2. Due to the interaction of the sloshing and longitudinal waves, the motion 
of fluid particles is much more complicated than in cases without spanwise 
modulations (see Lichter and Chen's [10] computations of the 2-D cross
wave equations, etc.). This feature is clear in Figure 6. 

Comparison with the relevant experimental results is interesting. Underhill et al. 
[9] observed that "at large cross-wave amplitudes, the noisy periodic states, 
consisting of two or more waves traversing the span of the tank, appeared. These 
waves became progressively more localized and appeared soliton-like as the 
forcing amplitude was increased." They were also "reflected by the sidewalls." 
These observations qualitatively agree well with the numerical calculations. 

This agreement sheds some light on the dynamics of the sloshing motion. As 
the numerical results have shown, the sloshing waves can arise without includ
ing span wise dispersion and are well described by the 3-D cross-wave equations 
(3.8)-(3.14). Therefore, it appears that sloshing motion bears little relationship to 
the Benjamin-Feir instability of a uniform wavetrain. Uniform spanwise, stand
ing cross-waves break up, because of modulational instability, into transversely 
localized sloshing waves. This instability is due to the forcing of the wavemaker 
and the nature of the problem, not to the Benjamin-Feir instability. 
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Figure 5. The time-evolution of the cross-waves at the wavemaker (X = 0). 0 ~ y ~ Jr. 0 ~ 
T ~ 12. The upper panel is the IAI plot. and the lower panel is the IBI plot. Note that the sloshing 
waves are generated. and they then propagate across the span of the channel. 

4. Summary 

In this paper. the analytical solution was obtained for the linearized cross-wave 
equations with an arbitrary initial condition. This solution conclusively estab
lished the neutral curve and fully described the cross-wave field at the initial 
stages of its generation. The dynamics of the sloshing motion was explored, and 
the connection between the sloshing motion and the (spanwise nondispersive) 



The Sloshing Motion of Cross-Waves 189 

:~ 1 
2 4 6 8 10 12 T 

Figure 6. The time-evolution of the cross-waves at the following posItions: (X, Y) 
(0,0), (0, %), (0, ~), (0. 2f), and (0, rr). Only IAI is plotted. IBI is quite similar. ° ~ T ~ 12. 

x 7 

Figure 7. The time-evolution of the cross-waves at one sidewall (Y = 0). ° ~ X ~ 7, ° ~ T ~ 
12. Only IAI is plotted. IBI is quite similar. 
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Figure 8. The cross-wave field at the time T = 12. 0 ~ X ~ 7, 0 ~ y ~ 7[. The upper panel is 
the I A I plot, and the lower panel is the I B I plot. 
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3-D cross-wave equations (3.8)-(3.14) has been established. The sloshing waves 
are due to a kind of modulational instability not related to the Benjamin-Feir in
stability of uniform wavetrains. 
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