
Higher-Order Solitons in the N-Wave System

By Valery S. Shchesnovich and Jianke Yang

The soliton dressing matrices for the higher-order zeros of the Riemann–Hilbert
problem for the N-wave system are considered. For the elementary higher-order
zero, that is, whose algebraic multiplicity is arbitrary but the geometric
multiplicity is 1, the general soliton dressing matrix is derived. The theory is
applied to the study of higher-order soliton solutions in the three-wave interaction
model. The simplest higher-order soliton solution is presented. In the generic
case, this solution describes the breakup of a higher-order pumping wave into
two higher-order elementary waves, and the reverse process. In non-generic
cases, this solution could describe (i) the merger of a pumping sech wave and
an elementary sech wave into two elementary waves (one sech and the other
one higher order); (ii) the breakup of a higher-order pumping wave into two
elementary sech waves and one pumping sech wave; and the reverse processes.
This solution could also reproduce fundamental soliton solutions as a special
case.

1. Introduction

Soliton solutions to nonlinear partial differential equations (PDEs) in 1+1
dimensions have been of great interest ever since the very discovery of completely
integrable PDEs. There is a wide range of literature concerning integrable
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nonlinear PDEs and their soliton solutions (see, for instance, [1–4] and
references therein). Much is known about the behavior of solitons and their
interactions in various integrable systems (soliton scattering, breather solutions,
soliton bound states, etc.). Such knowledge is very valuable not only for the
underlying integrable systems, but also for nearly integrable systems which
can be studied analytically by soliton perturbation theories.

It is an astonishing fact, however, that notwithstanding the almost three
decades of advances in the study of soliton dynamics, there are still substantial
gaps in our knowledge of soliton solutions in integrable nonlinear PDEs.
Indeed, the reader familiar with the basics of the inverse scattering transform
method knows that it is poles of the reflection coefficient (or, in modern
terms, zeros of the Riemann–Hilbert problem) that give rise to the soliton
solutions. The soliton solutions are usually derived by using one of the
several well-known techniques, such as the dressing method [1, 5, 6] or the
Riemann–Hilbert problem approach [2, 3]. However, in most publications
(except, to our knowledge, [7–13], which are discussed below) only soliton
solutions from simple poles are considered. It is usually assumed that a
multiple-pole solution can be obtained in a straightforward way by coalescing
several distinct poles (see, for instance, [2, 14]), which describe multisoliton
solutions. This would be indeed the case if such coalescing were a regular
limit. However, this limit is obviously a singular one. Indeed, the soliton
dressing matrix corresponding to a multisoliton solution is a rational matrix
function which has distinct simple poles, while the coalescing procedure must
produce multiple poles. Obviously, a more careful examination of this issue is
necessary. This is the main subject of the present paper.

Soliton solutions corresponding to multiple poles, that is, the higher-order
solitons, have been investigated in the literature before. A soliton solution to
the nonlinear Schrödinger (NLS) equation corresponding to a double pole was
first given in [7] but without much analysis. The double- and triple-pole soliton
solutions to the KdV equation were examined in [8] and the general N-pole
soliton solution to the sine-Gordon equation was extensively studied in [9] using
the associated Gelfand–Levitan–Marchenko equation. In [10, 11], higher-order
soliton solutions to the NLS equation were studied by employing the dressing
method. Finally, in [12, 13], higher-order solitons in the Kadomtsev–Petviashvili
I equation were derived by the inverse scattering method.

In this paper, we consider the higher-order zeros of the Riemann–Hilbert
problem for the N-wave system and study the corresponding soliton matrices.
We derive the soliton dressing matrices for the simplest class of higher-order
zeros—the elementary higher-order zeros. We call the nth order zero k1 of the
Riemann–Hilbert problem elementary if the soliton matrix evaluated at k1 has
only one vector in the kernel, that is, the geometric multiplicity of the zero is 1
(see Definition 1 in Section 3 for more details). The corresponding higher-order
soliton solutions to the N-wave system are determined. Then we apply our
theory to the physically important three-wave interaction model and derive
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the simplest higher-order soliton solution. In the generic case, this solution
describes the breakup of a higher-order pumping wave into two higher-order
elementary waves, and the reverse process. In non-generic cases, this solution
could describe (i) the merger of a pumping sech wave and an elementary sech
wave into two elementary waves (one sech and the other one higher-order);
(ii) the breakup of a higher-order pumping wave into three sech waves—one
pumping wave and two elementary waves. The higher-order soliton solution
could also reproduce fundamental soliton solutions as a special case.

In general, one needs to consider zeros with the geometric multiplicities
taking values from 1 to N − 1, where N is the matrix dimension of the
Riemann–Hilbert problem. The present work is the first step toward the solution
of this general case. The point is that the soliton matrices derived here for the
elementary zeros provide the building blocks for the most general case. We
plan to address the general problem in the next paper. Thus, for the three-wave
interaction model, the higher-order soliton solutions we derived in this paper
(which correspond to elementary higher-order zeros) may not be the most
general higher-order soliton solutions in this wave system.

It is noted that the soliton dressing matrices for the higher-order soliton
solutions were already a subject of interest in [10, 11], where an ansatz for
the soliton matrices was proposed for the 2 × 2 Zakharov–Shabat spectral
problem and expressions for the higher-order soliton solutions of the nonlinear
Schrödinger equation were obtained. In the present paper, we study higher-order
solitons in the N-wave system. Even though the evolution equations considered
in [10, 11] and this paper are different, their Riemann–Hilbert formulations
have a lot in common. In this paper, we place the emphasis on the derivation
of the soliton matrices for the higher-order zeros and fill some gaps in the
approach of [11]. We show that the ansatz of [11] is precisely the soliton matrix
for an elementary higher-order zero in an N × N spectral problem. For the
2 × 2 Zakharov–Shabat spectral problem, any higher-order zero is elementary.
Thus the ansatz of [11] is the general soliton matrix of the Zakharov–Shabat
problem. Consequently, higher-order soliton solutions obtained in [10, 11]
are the general higher-order soliton solutions in the nonlinear Schrödinger
equation. But in an N × N spectral problem with N > 2, a higher-order zero
is non-elementary in general. In that case, the ansatz of [11] will not be the
general form of soliton matrices. In this paper, we also uncover the invariance
property of the soliton matrix for a higher-order zero, which is necessary for
the vector-parameterization of the soliton matrix to be self-consistent. The
invariance property obtained in [11] is shown to be just a special case. Lastly,
we point out that our derivation of higher-order solitons in the N-wave system is
made for general dispersion laws and arbitrary matrix dimensions. In addition,
our results can be generalized to the most general case of non-elementary
zeros of the N × N spectral problem.

The paper is organized as follows. A summary on the Riemann–Hilbert
problem is given in Section 2. Section 3 is the central section of the paper. There
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we present the theory of soliton matrices corresponding to the higher-order
zeros of the Riemann–Hilbert problem. For an elementary higher-order zero of
the N × N Riemann–Hilbert problem (see definition in the text), the general
soliton matrix is derived. This soliton matrix is similar to the ansatz as
proposed in [11]. In Section 4, the theory is applied to derive the simplest
higher-order soliton solution in the three-wave interaction model.

2. The Riemann–Hilbert problem approach: Summary

The integrable nonlinear PDEs in 1+1 dimensions are associated with the mat-
rix Riemann–Hilbert problem (consult, for instance, [1–6, 15–24]). The matrix
Riemann–Hilbert problem (below we work in the space of N × N matrices) is
the problem of finding the holomorphic factorization, denoted below by �+(k)
and �−1

− (k), in the complex plane of a nondegenerate matrix function G(k)
given on an oriented curve γ :

�−1
− (k, x, t)�+(k, x, t)

= G(k, x, t) ≡ exp [−�(k)x − �(k)t]G(k, 0, 0)

× exp[�(k)x + �(k)t], k ∈ γ. (1)

Here the matrix functions �+(k) and �−1
− (k) are holomorphic in the two

complementary domains of the complex k-plane: C+ to the left and C− to the
right from the curve γ , respectively. The matrices �(k) and �(k) are called the
dispersion laws. In this paper, we require the dispersion laws to be diagonal (we
have accounted for this on the right-hand side of Equation (1) by writing the
explicit (x, t)-dependence in the form of an exponent). The Riemann–Hilbert
problem requires an appropriate normalization condition. Usually the curve γ

contains the infinite point k = ∞ of the complex plane and the normalization
condition is formulated as

�±(k, x, t) → I, as k → ∞. (2)

This normalization condition is called the canonical normalization. Setting the
normalization condition to an arbitrary nondegenerate matrix function S(x, t)
leads to the gauge equivalent integrable nonlinear PDE, for example, the
Landau–Lifshitz equation in the case of the NLS equation [3]. Obviously,
the new solution �̂±(k, x, t) to the Riemann–Hilbert problem, normalized to
S(x, t), is related to the canonical solution by the following transformation:

�̂±(k, x, t) = S(x, t)�(k, x, t). (3)

Thus, without any loss of generality, we confine ourselves to the Riemann–Hilbert
problem under the canonical normalization.

For physically applicable nonlinear PDEs the Riemann–Hilbert problem
possesses the involution properties, which reduce the number of the dependent
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variables (complex fields). The N-wave interaction model admits the following
involution property of the associated Riemann–Hilbert problem:

�
†
+(k) = �−1

− (k), k ≡ k∗. (4)

Here the superscript “†” represents the Hermitian conjugate, and “*” the
complex conjugate. However, our approach can be trivially extended to the
general case without such involution. To keep our treatment general, we will
use the overlined quantities where applicable. The reduction to the involution
is then done by associating the overline with the Hermitian conjugation in the
case of vectors and matrices and with the complex conjugation in the case of
scalar quantities.

To solve the Cauchy problem for the integrable nonlinear PDE posed on the
whole axis x, one usually constructs the associated Riemann–Hilbert problem
starting with the linear spectral equation

∂x�(k, x, t) = �(k, x, t)�(k) + U (k, x, t)�(k, x, t), (5)

whereas the t-dependence is given by a similar equation

∂t�(k, x, t) = �(k, x, t)�(k) + V (k, x, t)�(k, x, t). (6)

The nonlinear integrable PDE corresponds to the compatibility condition of
the system (5) and (6):

∂tU − ∂x V + [U, V ] = 0. (7)

The essence of the approach based on the Riemann–Hilbert problem lies in
the fact that the evolution governed by the complicated nonlinear PDE (7) is
mapped to the evolution of the spectral data given by simpler equations such
as (1) and (21). For details, consult [3, 4, 15–18].

Let the evolution equations for the spectral data be given. In our case, these
are Equation (1) for G and Equation (21) (see below) for the discrete data.
Then the matrices U (k, x, t) and V (k, x, t) describing the evolution of �± can
be retrieved from the Riemann–Hilbert problem. In our case, the potentials
U (k, x, t) and V (k, x, t) are completely determined by the (diagonal) dispersion
laws �(k) and �(k) and the Riemann–Hilbert solution � ≡ �±(k, x, t). Indeed,
let us assume that the dispersion laws are polynomial functions, that is,

�(k) =
J1∑

j=0

A j k
j , �(k) =

J2∑
j=0

B j k
j . (8)

Then using similar arguments as in [18] we get

U = −P{���−1}, V = −P{���−1}. (9)

Here the matrix function �(k) is expanded into the asymptotic series,

�(k) = I + k−1�(1) + k−2�(2) + · · · , k → ∞,
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and the operator P cuts out the polynomial asymptotics of its argument as
k → ∞. An important property of matrices U and V is that

Tr U (k, x, t) = −Tr �(k), Tr V (k, x, t) = −Tr �(k), (10)

which evidently follows from Equation (9). Below, let us consider the three-wave
interaction system as an example [2, 25–27]. Set N = 3,

�(k) = ik A, A =

a1 0 0

0 a2 0

0 0 a3

, �(k) = ik B, B =

b1 0 0

0 b2 0

0 0 b3

,

(11)
where a j and b j are real with the elements of A being ordered as a1 > a2 > a3.
From Equation (9) we get

U = −�(k) + i
[
A, �(1)

]
, V = −�(k) + i

[
B, �(1)

]
. (12)

Setting

u1 = √
a1 − a2�

(1)
12 , u2 = √

a2 − a3�
(1)
23 , u3 = √

a1 − a3�
(1)
13 , (13)

assuming the involution (4), and using Equation (12) in (7) we get the
three-wave system.

∂t u1 + v1∂x u1 + iεu2u3 = 0, (14a)

∂t u2 + v2∂x u2 + iεu1u3 = 0, (14b)

∂t u3 + v3∂x u3 + iεu1u2 = 0. (14c)

Here

v1 = b2 − b1

a1 − a2
, v2 = b3 − b2

a2 − a3
, v3 = b3 − b1

a1 − a3
, (15)

ε = a1b2 − a2b1 + a2b3 − a3b2 + a3b1 − a1b3

[(a1 − a2)(a2 − a3)(a1 − a3)]1/2
. (16)

The group velocities satisfy the following condition:

v2 − v3

v1 − v3
= −a1 − a2

a2 − a3
< 0. (17)

The three-wave system (14) can be interpreted physically. It describes the
interaction of three wave packets with complex envelopes u1, u2 and u3 in a
medium with quadratic nonlinearity.

It is often desirable to relate the inverse-scattering parameters a j and
b j ( j = 1, 2, 3) to the physical parameters ε and v j ( j = 1, 2, 3). This relation
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can be easily found from (15) and (16) as

a1 − a2 = ε2

(v1 − v2)(v1 − v3)
, a2 − a3 = ε2

(v1 − v2)(v3 − v2)
. (18)

The other parameters a1 − a3 and b j ( j = 1, 2, 3) can be readily obtained
from Equations (18) and (15). Note that the inverse-scattering parameters are
not uniquely determined. In fact, one of a j and one of b j ( j = 1, 2, 3) are
free parameters. It is an invariance in the inverse-scattering formulation of the
three-wave system and it does not affect the physical solution in any way.

In general, the Riemann–Hilbert problem (1)–(2) has multiple solutions.
Different solutions are related to each other by the rational matrix functions
�(k) (which also depend on the variables x and t) [2, 3, 5, 6, 14]:

�̃±(k, x, t) = �±(k, x, t)�(k, x, t). (19)

The rational matrix �(k) must satisfy the canonical normalization condition:
�(k) → I for k → ∞ and must have poles only in C− (the inverse function
�−1(k) then has poles in C+ only). Such a rational matrix �(k) will be called
the soliton matrix below, since it gives the soliton part of the solution to the
integrable nonlinear PDE.

To specify a unique solution to the Riemann–Hilbert problem the set of the
Riemann–Hilbert data must be given. These data are also called the spectral
data. The full set of the spectral data comprises the matrix G(k, x, t) on the
right-hand side of Equation (1) and the appropriate discrete data related to the
zeros of det �+(k) and det �−1

− (k). We will confine ourselves to the case of
the Riemann–Hilbert problem with zero index, that is, when det �+(k) and
det �−1

− (k) have equal number of zeros (counting the multiplicity). For instance,
in the case of involution (4) the Riemann–Hilbert problem has zero index
because the zeros appear in complex conjugate pairs: k j = k∗

j . It is known
[19–24] (see also [14]) that in the generic case the spectral data include simple
(distinct) zeros k1, . . . , kn of det �+(k) and k1, . . . , kn of det �−1

− (k), in their
holomorphicity domains, and the null vectors |v1〉, . . . , |vn〉 and 〈v1|, . . . , 〈vn|
from the respective kernels:

�+(k j )|v j 〉 = 0, 〈v j |�−1
− (k j ) = 0. (20)

Using the property (10) one can verify that the zeros do not depend on
the variables x and t. The (x, t)-dependence of the null vectors can be easily
derived by differentiation of (20) and use of the linear spectral equations
(5)–(6). This dependence reads

|v j 〉 = exp{−�(k j )x − �(k j )t}
∣∣v(0)

j

〉
, (21a)

〈v j | = 〈
v

(0)
j

∣∣ exp{�(k j )x + �(k j )t}, (21b)

where |v(0)
j 〉 and 〈v(0)

j | are some constant vectors.
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The vectors in Equation (21) together with the zeros constitute the
full set of the discrete data necessary to specify the soliton matrix
�(k, x, t) and, hence, unique solution to the Riemann–Hilbert problem
(1)–(2). Indeed, by constructing the soliton matrix �(k) such that the matrix
functions

φ+(k) = �+(k)�−1(k), φ−1
− (k) = �(k)�−1

− (k) (22)

are nondegenerate and holomorphic in the domains C+ and C−, respectively,
we reduce the Riemann–Hilbert problem with zeros to another one without
zeros and hence uniquely solvable (for details see, for instance, [2–4, 14]).
Below by matrix �(k) we will imply the matrix from Equation (22) which
reduces the Riemann–Hilbert problem (1)–(2) to the one without zeros. The
corresponding solution to the integrable PDE (7) is obtained by using the
asymptotic expansion of the matrix �(k) as k → ∞ in the linear Equation (5).
In the N-wave interaction model it is given by formula (12). The pure soliton
solutions are obtained by using the rational matrix � = �(k).

3. Soliton matrices for multiple zeros

In this section we consider the soliton solution corresponding to a single
multiple zero of arbitrary order in the case of an arbitrary matrix dimension N .
Such soliton solutions will be referred to as the higher-order solitons. We
will derive the general formulae for the soliton matrices corresponding to an
elementary higher-order zero (see the definition below) starting from the usual
elementary soliton matrices of the Riemann–Hilbert problem. Our formulae
for the soliton matrices corresponding to an elementary higher-order zero are
similar to the previously proposed ansatz for the 2 × 2 Zakharov–Shabat
spectral problem [11]. However, in our approach some essential invariance
properties and simple evolution formulae for the vector parameters in the
soliton matrices are given, which were not known before. Thus we simplify
the ansatz of [10, 11] and put it on the rigorous footing. Although we work in
the case of involution (4), usual for applications in nonlinear physics, our
approach is valid for the general Riemann–Hilbert problem with zero index.
Moreover, we present our formulae in a form transferable without any changes
to that general case.

Let �+(k) and �−1
− (k) from (1) each have but one zero of order n, k1, and

k1, respectively:

det �+(k) = (k − k1)nϕ(k), det �−1
− (k) = (k − k1)nϕ(k), (23)
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where ϕ(k1) �= 0 and ϕ(k1) �= 0. The geometric multiplicity of k1 (k1) is
defined as the number of the null vectors in the kernel of �+(k1) (�−1

− (k1));
see (20). It can be easily shown that the order of a zero is always greater
or equal to its geometric multiplicity. It is also obvious that the geometric
multiplicity of a zero is less than the matrix dimension. Before we proceed
with the construction of the soliton matrix �(k) corresponding to the multiple
zero of order n, two important properties must be pointed out. It is convenient
to formulate them in the form of two lemmas.

LEMMA 1. Suppose vectors |v j 〉 (1 ≤ j ≤ m) are in the kernel of matrix
�+(k1), that is,

�+(k1)|v j 〉 = 0, j = 1, . . . , m, (24)

where m is less than or equal to the geometric multiplicity of k1. Define the
new matrix �̃+(k) ≡ �(k)+χ−1(k) where

χ (k) = I − k1 − k1

k − k1

P, (25)

P =
m∑

i, j=1

|vi 〉(K −1)i j 〈v j |, Ki j = 〈vi | v j 〉, (26)

and vectors 〈v j | (1 ≤ j ≤ m) are arbitrary but they make matrix K invertible.
Then matrix �̃+(k) is also holomorphic in the upper half plane. In addition, if a
new vector |w〉 is in the kernel of �̃+(k1) and is orthogonal to 〈v j | (1 ≤ j ≤ m),
that is,

�̃+(k1)|w〉 = 0, 〈v j | w〉 = 0, j = 1, . . . , m, (27)

then

�+(k1)|w〉 = 0, (28)

that is, |w〉 is also in the kernel of �+(k1). Furthermore, |w〉 is linearly
independent of |v j 〉 (1 ≤ j ≤ m). Similar results exist for matrix �−1

− (k) where
the multiplication is on the left.

Remark. It is easy to see that in order for K to be invertible, it is necessary
that vectors 〈v j | (1 ≤ j ≤ m) be linearly independent. But this condition is not
sufficient. However, if 〈v j | = |v j 〉† ( j = 1, . . . , m), then it can be shown that
K is invertible.

Proof : The matrix P is clearly a projector matrix, thus

χ−1(k) = I + k1 − k1

k − k1
P. (29)
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Then, expanding the holomorphic function �+(k) into the Taylor series and
recalling Equation (24), we see that

�+(k)χ−1(k) =
{
�+(k1) + (k − k1)

d�+(k1)

dk
+ (k − k1)2 d2�+(k1)

2!dk2
+ · · ·

}

×
(

1 + k1 − k1

k − k1
P

)
= �+(k1) + (k1 − k1)

d�+(k1)

dk
P

+ (k1 − k1)(k − k1)
d2�+(k1)

2!dk2
P + · · · , (30)

which is clearly holomorphic.
Next, if

�̃+(k1)|w〉 = 0,

recalling the definition of �̃+(k) and expanding �+(k) into the Taylor series,
we get

�+(k1)|w〉 + (k1 − k1)
d�+(k1)

dk
P|w〉 = 0. (31)

Since by assumption,

〈v j | w〉 = 0, j = 1, . . . , m,

thus,

P|w〉 = 0,

consequently,

�+(k1)|w〉 = 0. (32)

Lastly, |w〉 is linearly independent of |v j 〉 ( j = 1, . . . , m) because the matrix K
is invertible. �

Corollary 1. Suppose the kernel of �+(k1) is spanned by vectors
|v j 〉 (1 ≤ j ≤ m) where m is the geometric multiplicity of zero k1. Define
matrices χ (k), �̃+(k) and projector P as in Lemma 1. Then, there exists
no vector in the kernel of �̃+(k1) which is simultaneously orthogonal to
〈v j | (1 ≤ j ≤ m).

LEMMA 2. Suppose that �+(k1) has r independent vectors in the kernel

�+(k1)|v j 〉 = 0, j = 1, . . . , r, (33)
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that is, rank �+(k1) = N − r . Then, the following matrix function �̃+(k) ≡
�+(k)χ−1(k), where matrix χ (k) is as defined in Equation (25) but with

P =
r∑

i, j=1

|vi 〉(K −1)i j 〈v j |, Ki j = 〈vi | v j 〉, (34)

has at most r vectors in the kernel at k = k1, that is, rank �̃+(k1) ≥ N − r .
Here vectors 〈v j | (1 ≤ j ≤ r ) are arbitrary but they make matrix K invertible.

Proof : This lemma is easy to prove by contradiction. Suppose that there are at
least r + 1 independent vectors |u1〉, . . . , |ur+1〉 in the kernel of �̃+(k1) defined
above. Then one can find a non-zero vector |X〉 in the kernel of �̃+(k1) such that

〈v j | X〉 = 0, j = 1, . . . , r. (35)

Indeed, substitution of the expansion

|X〉 =
r+1∑
j=1

C j |u j 〉

into Equation (35) leads to an underdetermined, hence, solvable system of
equations

r+1∑
j=1

〈vi | u j 〉C j = 0, i = 1, . . . , r

which have non-zero solutions. But then, according to the second part of
Lemma 1, |X〉 is also in the kernel of �+(k1), thus

|X〉 =
r∑

j=1

C j |v j 〉. (36)

Substituting Equation (36) into (35) and recalling that the matrix K is invertible,
we find that C j = 0, j = 1, . . . , r , hence X = 0. Thus we have arrived at a
contradiction. (Note that a similar lemma is valid for �−1

− (k) at k = k1 with
the multiplication on the left.) �

To clarify the implications of Lemma 2 for the soliton matrix �(k) of the
higher-order zeros, k = k1 of det �+(k) and k = k1 of det �−1

− (k), let us
examine the way such matrix is constructed. Starting from the solution �±(k)
to the Riemann–Hilbert problem (1)–(2), one looks for the independent null
vectors for the matrices �+(k1) and �−1

− (k1):

�+(k1)|vi1〉 = 0, 〈vi1|�−1
− (k1) = 0, i = 1, . . . , s1, (37)

where s1 is k1 and k1’s geometric multiplicity. Here we require k1 and
k1’s geometric multiplicities to be always the same, which is the case for
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involution (4). Next, one constructs the elementary matrix

χ1(k) = I − k1 − k1

k − k1

P1, (38)

where

P1 =
s1∑
i, j

|vi1〉(K −1)i j 〈v j1|, Ki j = 〈vi1 | v j1〉. (39)

It can be shown that detχ1 = ( k−k1

k−k1
)s1 . If s1 < n, where n is the order of the

two zeros, then one considers the matrix functions �̃+(k) = �+(k)χ−1
1 (k) and

�̃−1
− (k) = χ1(k)�−1

− (k). From Lemma 1, we know that matrices �̃+(k) and
�̃−1

− (k) are also holomorphic in the respective half planes of the complex
plane. In addition, k1 (k1) is still a zero of det�̃+(k) (det�̃−1

− (k)). Repeating
the above steps one gets the elementary matrices χ1(k), . . . , χr (k) such that
s1 + s2 + · · · + sr = n. Therefore,

�(k) = χr (k) · · · χ2(k)χ1(k), (40)

where matrices χl(k) and projectors Pl are as defined in Equations (38) and
(39) but the independent vectors |vil〉 and 〈vil | (i = 1, . . . , sl) are from the
kernels of (�+χ−1

1 · · · χ−1
l−1)(k1) and (χl−1 · · · χ1�

−1
− )(k1), respectively.

Lemma 2 indicates that in fact the sequence of ranks of the projectors Pl in
the matrix �(k) given by Equation (40), that is, built in the described way, is
non-increasing:

rank Pr ≤ rank Pr−1 ≤ · · · ≤ rank P1. (41)

This result allows one to classify possible occurrences of a higher-order zero
of the Riemann–Hilbert problem for arbitrary matrix dimension N . In general,
for zeros of the same order n, different sequences of ranks in formula (41) give
different classes of the higher-order soliton solutions. In the present paper we
consider in detail only the higher-order zeros when the sequence of ranks (41)
is the simplest possible: rank Pl = 1, l = 1, . . . , n. We introduce the following
definition.

DEFINITION 1. In the soliton matrix (40) corresponding to a higher-order zero
k1 of a Riemann–Hilbert problem, if the ranks of all projectors Pl(1 ≤ l ≤ n)
are 1, then we call this zero an elementary higher-order zero.

Remark 1. We observe from Equation (41) that a higher-order zero (of
arbitrary algebraic multiplicity) is elementary if and only if rank P1 = 1, that
is, the geometric multiplicity of the zero is 1.

Remark 2. If the matrix dimension N = 2 (as for the nonlinear Schrödinger
equation), then all higher-order zeros are elementary since rank P1 is always
equal to 1.
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Below we derive the soliton matrix �(k) and its inverse for an elementary
higher-order zero. The results are presented in the following lemma.

LEMMA 3. Consider a pair of elementary higher-order zeros of order n:
k = k1 in C+ and k = k1 in C−. Then the corresponding soliton matrix �(k)
and its inverse can be cast in the following form:

�(k) = I +
n∑

l=1

l∑
j=1

|q j 〉〈pl+1− j |
(k − k1)n+1−l

= I + (|qn〉, . . . , |q1〉)D(k)

 〈p1|
...

〈pn|

 ,

(42a)

�−1(k) = I +
n∑

l=1

l∑
j=1

|pl+1− j 〉〈q j |
(k − k1)n+1−l

= I + (|p1〉, . . . , |pn〉)D(k)

 〈qn|
...

〈q1|

 ,

(42b)
where the matrices D(k) and D(k) are defined as

D(k) =



1
(k−k1)

0 · · · 0

1
(k−k1)2

1
(k−k1)

. . .
...

...
. . . . . . 0

1
(k−k1)n · · · 1

(k−k1)2
1

(k−k1)

, D(k) =



1
(k−k1)

1
(k−k1)2 · · · 1

(k−k1)n

0
. . . . . .

...
...

. . . 1
(k−k1)

1
(k−k1)2

0 · · · 0 1
(k−k1)

,

(43)

and vectors |p j 〉, 〈p j |, 〈q j |, |q j 〉 ( j = 1, . . . , n) are independent of k.

Remark. In [11], the ansatz of the form (42) was proposed for higher-order
solitons in the nonlinear Schrödinger equation. The lemma above, together
with Remark 2 below Definition 1, shows that their ansatz is, in fact,
the most general soliton matrix for the nonlinear Schrödinger equation. If
N > 2, their ansatz then is just the soliton matrix for elementary higher-order
zeros.

Proof : The representation (42) can be proved by induction. Consider, for
instance, formula (42a). Obviously, this formula is valid for n = 1. In this
case, �(k) reduces to an elementary matrix χ (k). Now, suppose that formula
(42a) is valid for n = m. Then we need to show that it is valid for n = m + 1
as well. Indeed, denote the soliton matrices for n = m and n = m + 1 by �(k)
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and �̃(k), respectively. Then taking into account expression (40) and recalling
our assumption of the elementary higher-order zero, we have

�̃(k) = χm+1(k)�(k) =
(

I + |vm+1〉〈vm+1|
k − k1

) (
I +

m∑
l=1

l∑
j=1

|q j 〉〈pl+1− j |
(k − k1)m+1−l

)
.

(44)

Here, for simplicity of the formulae below, we have normalized the vectors
|vm+1〉 and 〈vm+1| such that 〈vm+1 | vm+1〉 = k1 − k1. Let us now multiply the
two terms in the right-hand side of Equation (44) and compute the coefficients
at the poles:

�̃(k) = I + Ã1

k − k1

+ Ã2

(k − k1)2
+ · · · + Ãm+1

(k − k1)m+1
, (45)

where

Ãm+1 = |vm+1〉〈vm+1|Am = |vm+1〉〈vm+1 | q1〉〈p1|,
Ãm = |vm+1〉〈vm+1|Am−1 + Am

= |vm+1〉〈vm+1|(|q2〉〈p1| + |q1〉〈p2|) + |q1〉〈p1|
= (|vm+1〉〈vm+1 | q2〉 + |q1〉) 〈p1| + |vm+1〉〈vm+1 | q1〉〈p2|,

Ãm−1 = |vm+1〉〈vm+1|Am−2 + Am−1

= |vm+1〉〈vm+1|(|q3〉〈p1| + |q2〉〈p2| + |q1〉〈p3|) + |q2〉〈p1| + |q1〉〈p2|
= (|vm+1〉〈vm+1 | q3〉 + |q2〉) 〈p1| + (|vm+1〉〈vm+1 | q2〉 + |q1〉) 〈p2|

+ |vm+1〉〈vm+1 | q1〉〈p3|,
. . . ,

Ã1 = |vm+1〉〈vm+1| +
m∑

j=1
|qm+1− j 〉〈p j |.

Define new vectors:

|̃q1〉 = |vm+1〉〈vm+1 | q1〉, |̃q j 〉 = |vm+1〉〈vm+1 | q j 〉+ |q j−1〉, j = 2, . . . , m,

|̃qm+1〉 = |qm〉, 〈pm+1| = 〈vm+1| − ∑m−1
j=1 〈vm+1| q j+1〉〈pm− j+1|
〈vm+1 | q1〉

. (46)

Then matrices Ã1, . . . , Ãm+1 take the following representation:

Ãm+2−l =
l∑

j=1

|̃ql+1− j 〉〈p j |, l = 1, . . . , m + 1. (47)

Thus formula (42a) is valid for �̃(k) as well. It is noted that we must also show
that the denominator in formula (46) is non-zero. This is easy to show, as
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〈vm+1 | q1〉 is actually (up to a factor (k1 − k1)m) a product of inner products
〈v j+1 | v j 〉 (1 ≤ j ≤ m), where |v j 〉 and 〈v j | are the projector vectors in
matrix χ j :

χ j (k) = I − k1 − k1

k − k1

|v j 〉〈v j | (48)

(see Equations (40) and (44)). If 〈v j+1 | v j 〉 = 0 for some j, then Lemma 1
indicates that the projector Pj in matrix χ j (see (38)–(40)) would have rank
higher than 1, which contradicts our assumption of elementary higher-order
zeros. Thus 〈v j+1 | v j 〉 �= 0 for all j, consequently, 〈vm+1 | q1〉 �= 0. Expression
for �−1(k) (42b) can be proved in the same way. �

In the expressions for �(k) (42a) and �−1(k) (42b) there are twice as many
vectors as in the elementary matrices (38) and (40). As a result, only half of the
vector parameters, namely, |p1〉, . . . , |pn〉 and 〈p1|, . . . , 〈pn|, are independent.
To derive the formulae for the rest of the vector parameters in (42) we can use
the identity �(k)�−1(k) = I . The poles of �(k)�−1(k) at k = k1, starting from
the highest-order pole, give

�(k1)|p1〉〈q1| = 0,

�(k1) (|p2〉〈q1| + |p1〉〈q2|) + 1

1!

d�(k1)

dk
|p1〉〈q1| = 0,

�(k1) (|p3〉〈q1| + |p2〉〈q2| + |p1〉〈q3|)

+ 1

1!

d�(k1)

dk
(|p2〉〈q1| + |p1〉〈q2|) + 1

2!

d2�(k1)

dk2
|p1〉〈q1| = 0,

. . . .

Hence, we obtain:

�(k1)|p1〉 = 0, (49a)

�(k1)|p2〉 + 1

1!

d�(k1)

dk
|p1〉 = 0, (49b)

�(k1)|p3〉 + 1

1!

d�(k1)

dk
|p2〉 + 1

2!

d2�(k1)

dk2
|p1〉 = 0, (49c)

. . . ,

�(k1)|pn〉 + 1

1!

d�(k1)

dk
|pn−1〉 + · · · + 1

(n − 1)!

dn−1�(k1)

dkn−1
|p1〉 = 0. (49d)
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Equations (49) can be written in a compact form for the following matrix Γ(k):

Γ(k1)

 |p1〉
...

|pn〉

 = 0, Γ(k) ≡


� 0 · · · 0

1
1!

d
dk � �

. . .
...

...
. . . . . . 0

1
(n−1)!

dn−1

dkn−1 � · · · 1
1!

d
dk � �

 . (50)

Note that, as a block matrix, Γ(k) has (lower-triangular) Toeplitz form, that is,
along each diagonal it has the same (matrix) element.

In much the same way, by considering the poles at k = k1 in �(k)�−1(k),
one derives the following formula:

(〈p1|, . . . , 〈pn|) Γ(k1) = 0, Γ(k) =


�−1 1

1!
d

dk �−1 · · · 1
(n−1)!

dn−1

dkn−1 �
−1

0 �−1 . . .
...

...
. . . . . . 1

1!
d

dk �−1

0 · · · 0 �−1

.

(51)

Equations (50) and (51) allow us to find the expressions for the dependent
vector parameters. For convenience of the presentation, let us introduce the
following k-dependent vectors:

〈Z j (k)| =
n∑

l= j

〈pl+1− j |
(k − k1)n+1−l

, |Z j (k)〉 =
n∑

l= j

|pl+1− j 〉
(k − k1)n+1−l

. (52)

Then, by reordering the summation in (42) we get

�(k) = I + (|qn〉, . . . , |q1〉)

 〈Zn(k)|
...

〈Z1(k)|

 , (53a)

�−1(k) = I + (|Zn(k)〉, . . . , |Z1(k)〉)

 〈qn|
...

〈q1|

 . (53b)

Let us now substitute the expression (53a) into Equation (50) and solve for
|q1〉, . . . , |qn〉. We have

|p1〉 + (|qn〉, . . . , |q1〉)

 〈Zn(k1) | p1〉
...

〈Z1(k1) | p1〉

 = 0,
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|p2〉 + (|qn〉, . . . , |q1〉)

 〈Zn(k1) | p2〉 + 1
1!

d
dk 〈Zn(k1) | p1〉

...
〈Z1(k1) | p2〉 + 1

1!
d

dk 〈Z1(k1) | p1〉

 = 0,

|p3〉 + (|qn〉, . . . , |q1〉)

〈Zn(k1) | p3〉 + 1
1!

d
dk 〈Zn(k1) | p2〉 + 1

2!
d2

dk2 〈Zn(k1) | p1〉
...

〈Z1(k1) | p3〉 + 1
1!

d
dk 〈Z1(k1) | p2〉 + 1

2!
d2

dk2 〈Z1(k1) | p1〉


= 0,

. . . .

Hence,

(|qn〉, . . . , |q1〉) = −(|p1〉, . . . , |pn〉)K−1
, (54)

where

K =


〈Zn(k1) | p1〉 〈Zn(k1) | p2〉 + 1

1!
d

dk 〈Zn(k1) | p1〉 · · ·
n∑

l=1

1
(n−l)!

dn−l

dkn−l 〈Zn(k1) | pl〉
...

...
...

〈Z1(k1) | p1〉 〈Z1(k1) | p2〉 + 1
1!

d
dk 〈Z1(k1) | p1〉 · · ·

n∑
l=1

1
(n−l)!

dn−l

dkn−l 〈Z1(k1) | pl〉

.

(55)
Similarly, we get  〈qn|

...

〈q1|

 = −K−1

 〈p1|
...

〈pn|

 , (56)

where

K =


〈p1 | Zn(k1)〉 · · · 〈p1 | Z1(k1)〉

〈p2 | Zn(k1)〉 + 1
1!

d
dk 〈p1 | Zn(k1)〉 · · · 〈p2 | Z1(k1)〉 + 1

1!
d

dk 〈p1 | Z1(k1)〉
...

...
n∑

l=1

1
(n−l)!

dn−l

dkn−l 〈pl | Zn(k1)〉 · · ·
n∑

l=1

1
(n−l)!

dn−l

dkn−l 〈pl | Z1(k1)〉

.

(57)

In terms of the independent vector parameters, the soliton matrices (42a)
and (42b) can be rewritten as
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�(k) = I − (|p1〉, . . . , |pn〉)K−1 D(k)

 〈p1|
...

〈pn|

 , (58)

�−1(k) = I − (|p1〉, . . . , |pn〉)D(k)K−1

 〈p1|
...

〈pn|

 , (59)

where matrices K and K are given in Equations (57) and (55).
The soliton matrices given by (58) and (59) possess invariance properties.

The invariance is the transformation of the independent vector parameters which
preserves the form of the soliton matrices and equations defining the vector
parameters, that is, Equations (50)–(51). Let us first consider transformations
of vectors |p j 〉 ( j = 1, . . . , n). Suppose these vectors are transformed as

(|p1〉, . . . , |pn〉) = (|̃p1〉, . . . , |̃pn〉)B, (60)

where B is a k-independent matrix which, in general, depends on (x, t). Here
the vectors 〈p j | ( j = 1, . . . , n) remain intact. Simple calculations show that
the new vectors |̃p1〉, . . . , |̃pn〉 satisfy Equation (50) if and only if the matrix B
has upper-triangular Toeplitz form,

B =



b1 b2 · · · · · · bn

0 b1 b2 · · · ...
... 0

. . . . . .
...

...
...

. . . . . . b2

0 · · · · · · 0 b1


. (61)

Further, we note that under the transformation (60)–(61) the matrix K
transforms as

K = K̃B, (62)

where matrix K̃ is as given by Equation (55) but with vectors |p j 〉 replaced by
the new vectors |̃p j 〉. From formulae (60) and (62) it is seen that the form
(58) of matrix �(k) is preserved. We still need to show that for matrix B of
the form (61), the transformation (60) also preserves the form (59) of matrix
�−1(k). Notice that matrix D(k) also has upper-triangular Toeplitz form, thus
D(k) and B are commutable. Utilizing this property, we can easily show that
under the transformation (60), matrix K transforms as

K = K̃B, (63)
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where K̃ is given by Equation (57) but with |p j 〉 replaced by |̃p j 〉. Thus the
form of matrix �−1(k) is also preserved. In short, soliton matrices (58) and
(59) are invariant under the transformation (60) with matrix B given by (61).

Similarly, we can show that soliton matrices (58) and (59) are also invariant
under the transformation 〈p1|

...

〈pn|

 = B

〈 p̃1|
...

〈 p̃n|

 , (64)

where the k-independent matrix B (which, in general, depends on (x, t)) has
lower-triangular Toeplitz form,

B =



b1 0 · · · · · · 0

b2 b1 0
. . .

...
... b2

. . . . . .
...

...
...

. . . . . . 0

bn · · · · · · b2 b1


, (65)

and vectors |p j 〉 ( j = 1, . . . , n) remain intact.
Summarizing, we conclude that soliton matrices (58) and (59) are invariant

under the triangular Toeplitz transformations

(|p1〉, . . . , |pn〉) = (|̃p1〉, . . . , |̃pn〉)B,

〈p1|
...

〈pn|

 = B

〈 p̃1|
...

〈 p̃n|

 , (66)

of the independent vectors |p j 〉 and 〈p j | (1 ≤ j ≤ n). Here B and B are
arbitrary lower and upper triangular Toeplitz matrices, respectively, which are in
general (x, t)-dependent. Here we point out that the invariance transformation
found in [11] is given by b j = b j = 0 (2 ≤ j ≤ n − 1), that is, only b1, bn, b1,
and bn being non-zero. Thus it is just a special case of the invariance property
of the soliton matrices.

The invariance transformations indicate that arbitrary sets of vectors
|p1〉, . . . , |pn〉 and 〈p1|, . . . , 〈pn| satisfying Equations (50) and (51) can
be chosen as the independent vector parameters. This is, in fact, also a
necessary condition for such vector parameterization of the soliton matrix to
be self-consistent.

Now let us derive the (x, t)-dependence of the vector parameters which
enter the soliton matrix. We can start with the fact that the soliton matrix
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�(k, x, t) must satisfy Equations (5)–(6) with some potentials U (k, x, t) and
V (k, x, t):

∂x�(k, x, t) = �(k, x, t)�(k) + U (k, x, t)�(k, x, t), (67a)

∂t�(k, x, t) = �(k, x, t)�(k) + V (k, x, t)�(k, x, t). (67b)

The derivation is based on the use of Equations (50) and (51) (quite similar to
the derivation of Equations (21) in Section 2). First of all we need to find the
equations for the triangular block Toeplitz matrices Γ and Γ. To this goal one
needs to differentiate Equations (67) with respect to k up to the (n − 1)-th
order. It is easy to see that, for instance, the equations for the Γ have the same
form as Equations (67):

∂xΓ(k, x, t) = Γ(k, x, t)Λ(k) + U(k, x, t)Γ(k, x, t), (68a)

∂tΓ(k, x, t) = Γ(k, x, t)Ω(k) + V(k, x, t)Γ(k, x, t), (68b)

if we introduce the lower-triangular block Toeplitz matrices Λ, Ω, U, and V:

Λ ≡


� 0 · · · 0

1
1!

d
dk �

. . . . . .
...

...
. . . � 0

1
(n−1)!

dn−1

dkn−1 � · · · 1
1!

d
dk � �

 ,

Ω ≡


� 0 · · · 0

1
1!

d
dk �

. . . . . .
...

...
. . . � 0

1
(n−1)!

dn−1

dkn−1 � · · · 1
1!

d
dk � �

 , (69)

U ≡


U 0 · · · 0

1
1!

d
dk U

. . . . . .
...

...
. . . U 0

1
(n−1)!

dn−1

dkn−1 U · · · 1
1!

d
dk U U

 ,

V ≡


V 0 · · · 0

1
1!

d
dk V

. . . . . .
...

...
. . . V 0

1
(n−1)!

dn−1

dkn−1 V · · · 1
1!

d
dk V V

 . (70)
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Indeed, this is due to the fact that the matrix multiplication in (68) exactly
reproduces the Leibniz rule for higher-order derivatives of a product. Similarly,
using the equations for �−1, one finds that

∂xΓ(k, x, t) = −Λ(k)Γ(k, x, t) − Γ(k, x, t)U(k, x, t), (71a)

∂tΓ(k, x, t) = −Ω(k)Γ(k, x, t) − Γ(k, x, t)V(k, x, t), (71b)

for the upper-triangular block Toeplitz matrices Λ, Ω, U, and V:

Λ =


� 1

1!
d

dk � · · · 1
(n−1)!

dn−1

dkn−1 �

0 �
. . .

...
...

. . . . . . 1
1!

d
dk �

0 · · · 0 �

 ,

Ω =


� 1

1!
d

dk � · · · 1
(n−1)!

dn−1

dkn−1 �

0 �
. . .

...
...

. . . . . . 1
1!

d
dk �

0 · · · 0 �

 , (72)

U =


U 1

1!
d

dk U · · · 1
(n−1)!

dn−1

dkn−1 U

0 U
. . .

...
...

. . . . . . 1
1!

d
dk U

0 · · · 0 U

 ,

V =


V 1

1!
d

dk V · · · 1
(n−1)!

dn−1

dkn−1 V

0 V
. . .

...
...

. . . . . . 1
1!

d
dk V

0 · · · 0 V

 . (73)

The (x, t)-dependence of the vector parameters |p1〉, . . . , |pn〉 and 〈p1|, . . . , 〈pn|
can be found by differentiation of Equations (50) and (51) with the help of
Equations (68) and (71). First, we note that for commuting matrices the
corresponding block Toeplitz matrices as introduced above also commute with
each other. Second, it is shown in the Appendix that for a diagonal matrix (e.g.,
�(k)x + �(k)t) the operation of raising to the exponent commutes with the
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construction of the block Toeplitz matrix. Therefore, taking into account the
invariance property, we find the (x, t)-dependence of the vector parameters as|p1〉

...

|pn〉

 = exp{−Λ(k1)x − Ω(k1)t}


∣∣p(0)

1

〉
...∣∣p(0)
n

〉
 , (74a)

(〈p1|, . . . , 〈pn|) = (〈
p(0)

1

∣∣, . . . , 〈p(0)
n

∣∣) exp{Λ(k1)x + Ω(k1)t}. (74b)

Here the superscript “0” is used to denote constant vectors and the exponents
stand for the triangular block Toeplitz matrices:

exp{−Λ(k1)x − Ω(k1)t} =


E(k1) 0 · · · 0

1
1!

d
dk E(k1)

. . . . . .
...

...
. . . E(k1) 0

1
(n−1)!

dn−1

dkn−1 E(k1) · · · 1
1!

d
dk E(k1) E(k1)

 ,

(75a)

exp{Λ(k1)x + Ω(k1)t} =


E−1(k1) 1

1!
d

dk E−1(k1) · · · 1
(n−1)!

dn−1

dkn−1 E−1(k1)

0 E−1(k1)
. . .

...
...

. . . . . . 1
1!

d
dk E−1(k1)

0 · · · 0 E−1(k1)

 ,

(75b)

where E(k) ≡ exp{−�(k)x − �(k)t}. After the temporal and spatial evolutions
for vectors |p j 〉 and 〈p j | have been obtained as above, the corresponding
higher-order soliton solution can be obtained from Equations (7), (12), (42a),
and (54).

4. Application to the three-wave interaction model

Here we apply the theory developed in the previous section to the three-wave
interaction model (14). The three-wave model has wide applications in nonlinear
physics. For instance, under the additional constraint u j = iq j where q j are
real variables, it describes the “exact resonance” in parametric interaction of
three wave packets, while under the reduction of the dispersion laws (11):
a3 = −a1, a2 = 0, b3 = −b1, b2 = 0 and the condition u2 = −u1, it models
the generation of second harmonics. The usual (fundamental) soliton solutions
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to the three-wave interaction model have been well studied (consult [2]). Such
solitons approach sech profiles as t → ±∞ on the characteristics x − v j t =
const.

Let us consider the simplest higher-order solitons in the three-wave system:
solitons which correspond to an elementary higher-order zero of order 2. Here
we should take into account the involution property given by Equation (4). For
instance, we have

k = k∗, 〈p j | = |p j 〉†

(here and below the overline is associated with the Hermitian, or, in the case
of scalar quantities, complex conjugation). Then the soliton matrix reads

�(k) = I − (|p1〉, |p2〉)K−1

(〈Z2(k)|
〈Z1(k)|

)
, (76)

where

K =
(〈Z2(k1) | p1〉 〈Z2(k1) | p2〉 + d

dk 〈Z2(k1) | p1〉
〈Z1(k1) | p1〉 〈Z1(k1) | p2〉 + d

dk 〈Z1(k1) | p1〉

)
, (77)

and

〈Z2(k)| = 〈p1|
k − k1

, 〈Z1(k)| = 〈p2|
k − k1

+ 〈p1|
(k − k1)2

.

The (x, t)-dependence of the vector parameters |p1〉, |p2〉 has the following form(|p1〉
|p2〉

)
=

(
E(k1) 0

d
dk E(k1) E(k1)

) (∣∣p(0)
1

〉∣∣p(0)
2

〉
)

, E(k1) = e−ik1(Ax+Bt). (78)

We denote k1 = ξ + iη, where ξ and η are real numbers (η > 0 since k1

lies the upper half plane of the complex plane), and choose the following
parameterization of the constant vectors |p(0)

1 〉 and |p(0)
2 〉:

∣∣p(0)
1

〉 = 2iη


θ

(1)
1

θ
(1)
2

θ
(1)
3

 ,
∣∣p(0)

2

〉 =


θ

(2)
1

θ
(2)
2

θ
(2)
3

 , (79)

where θ
(i)
j ’s are complex constants. It is noted that due to the invariance

property (66), where the matrix B contains two arbitrary complex constants, we
have two free components in each vector in formula (79). Hence there are 10
free real parameters (including ξ and η) in the higher-order soliton solution.

The (x, t)-dependence of the components of the vector parameters reads

p1 j = 2iηθ
(1)
j e f j /2−iχ j , p2 j = [

θ
(2)
j + f jθ

(1)
j

]
e f j /2−iχ j , (80)
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where

f j = 2η(a j x + b j t), χ j = ξ (a j x + b j t), j = 1, 2, 3. (81)

By simple calculations we obtain the elements of matrix K as

K11 = −2iη
3∑

j=1

∣∣θ (1)
j

∣∣2
e f j , K12 = −

3∑
j=1

(
θ

(1)
j θ

(2)
j + ( f j − 1)

∣∣θ (1)
j

∣∣2)
e f j ,

(82)

K21 =
3∑

j=1

(
θ

(1)
j θ

(2)
j + ( f j − 1)

∣∣θ (1)
j

∣∣2)
e f j ,

K22 = 1

2iη

3∑
j=1

(∣∣θ (2)
j + ( f j − 1)θ (1)

j

∣∣2 + ∣∣θ (1)
j

∣∣2)
e f j . (83)

It is easy to verify that the determinant of K is

detK = −
3∑

i, j=1

(∣∣θ (1)
i θ

(1)
j

∣∣2 + 1

2

∣∣θ (2)
i θ

(1)
j − θ

(1)
i θ

(2)
j + ( fi − f j )θ

(1)
i θ

(1)
j

∣∣2
)

e fi + f j ,

(84)
which is always non-zero.

For the soliton solution corresponding to the matrix (76) we need the
first-order term of its asymptotics as k → ∞:

�(1) = − 1

detK
(K22|p1〉〈p1| + K11|p2〉〈p2| − K12|p1〉〈p2| − K21|p2〉〈p1|).

(85)

Using formulae (80) for |p1〉 and |p2〉 and (82), (83) for the elements of K we get

�
(1)
lm = − 2iη

detK
e( fl+ fm )/2−i(χl−χm )

3∑
j=1

Clmj e
f j , (86)

where

Clmj = [
θ

(1)
j θ

(1)
l ( f j − fl − 1) + θ

(2)
j θ

(1)
l − θ

(2)
l θ

(1)
j

]
× [

θ
(1)
m θ

(1)
j ( fm − f j + 1) + θ

(2)
m θ

(1)
j − θ

(2)
j θ

(1)
m

] − θ
(1)
l θ

(1)
m

∣∣θ (1)
j

∣∣2
. (87)

The three nonlinear waves u1, u2, u3 are given by formula (13). Thus,

u1 = √
a1 − a2�

(1)
12 , u2 = √

a2 − a3�
(1)
23 , u3 = √

a1 − a3�
(1)
13 , (88)

where �
(1)
i j are given by Equations (86) and (87). To be explicit, our soliton

solution corresponding to an elementary higher-order zero of order 2 in the
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three-wave interaction system is

u1 = −2iη
√

a1 − a2

detK
e( f1+ f2)/2−i(χ1−χ2)

3∑
j=1

C12 j e
f j , (89)

u2 = −2iη
√

a2 − a3

detK
e( f2+ f3)/2−i(χ2−χ3)

3∑
j=1

C23 j e
f j , (90)

u3 = −2iη
√

a1 − a3

detK
e( f1+ f3)/2−i(χ1−χ3)

3∑
j=1

C13 j e
f j , (91)

where detK, Ci jk, fk , and χk are given by Equations (81), (84), and (87).
The above solutions are fairly complicated. But some information about

them can be gained from considering the asymptotics as t → ±∞. Evidently,
the t-asymptotics is non-zero only on the characteristics:

z1 ≡ ( f1 − f2)/2 = η(a1 − a2)(x − v1t),

z2 ≡ ( f2 − f3)/2 = η(a2 − a3)(x − v2t),

z3 ≡ ( f1 − f3)/2 = η(a1 − a3)(x − v3t).

The asymptotic formulae depend on the relation between the velocities of
the waves. For definiteness, let us choose v2 < v1. This is equivalent to the
condition ε > 0 in view that

ε =
(

(a1 − a2)(a2 − a3)

a1 − a3

)1/2

(v1 − v2),

as follows from formulae (15)–(16). Then the condition (17) requires that v3

lies between v2 and v1:

v2 < v3 < v1. (92)

Further, we notice that any solution ũ1, ũ2, ũ3 of the three-wave interaction
model (14) in the case of the opposite inequality, that is, v1 < v3 < v2, is mapped
onto the solution satisfying the inequality (92) by the following transformation:
ũ j (x, t ; v1, v2, v3) = −u j (x, −t ; −v1, −v2, −v3). Thus, the case of v1 < v2 is
easy to recover (it describes the reverse process to that of v2 < v1).

The asymptotic formulae also depend on whether some of the components in
vectors θ (1) and θ (2) are zero or not. We first consider the generic case when none of
the parameters θ

(1)
j for j = 1, 2, 3 is zero. Define the following real quantities:

αlm = ln

(∣∣θ (1)
m

∣∣∣∣θ (1)
l

∣∣
)

, �lm + iσlm = 1

2

(
θ

(2)
l

θ
(1)
l

− θ
(2)
m

θ
(1)
m

)
+ αlm,

ϕ
(s)
j = arg

(
θ

(s)
j

)
, ϕlm = ϕ

(1)
l − ϕ(1)

m − ξαlm

η
, (93)
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and denote

z12 = z1 − α12, z23 = z2 − α23, z13 = z3 − α13. (94)

Then, simple calculations show that the asymptotics of the waves (89)–(91)
are as follows:

u1 → 0, u2 → 0, t → −∞; u3 → 0, t → ∞, (95)

u1 → 2iη
√

a1 − a2
(z12 + �12) sinh z12 − (1 + iσ12) cosh z12

cosh2 z12 + (z12 + �12)2 + σ 2
12

ei(ϕ12−ξ z12/η),

t → ∞, (96)

u2 → 2iη
√

a2 − a3
(z23 + �23) sinh z23 − (1 + iσ23) cosh z23

cosh2 z23 + (z23 + �23)2 + σ 2
23

ei(ϕ23−ξ z23/η),

t → ∞, (97)

u3 → 2iη
√

a1 − a3
(z13 + �13) sinh z13 − (1 + iσ13) cosh z13

cosh2 z13 + (z13 + �13)2 + σ 2
13

ei(ϕ13−ξ z13/η),

t → −∞. (98)

We see that as t → −∞, only the pumping wave u3 is non-zero, while as t → ∞
only the elementary waves u1 and u2 are non-zero. Thus in the generic case of
higher-order solitons under condition (92), the solution describes the break-
down of the pumping higher-order soliton u3 into the higher-order solitons
of the elementary waves u1 and u2. (For the opposite inequalities in for-
mula (92), the solution describes the reverse process: merger of the two elemen-
tary waves u1 and u2 into the pumping wave u3.) These properties are identical
to fundamental solitons (see, for instance, pp. 174–184 in [2]). However,
differences between higher-order solitons and fundamental solitons are also
obvious: none of the asymptotics (96)–(98) of the higher-order solitons is
sech-shaped, while the asymptotics of fundamental solitons are all sech-shaped.

Asymptotics (95)–(98) are invalid in the non-generic cases when at least one
of the parameters θ

(1)
j , j = 1, 2, 3, is zero. Consider first the case of θ

(1)
1 = 0

and θ
(1)
2 and θ

(1)
3 being non-zero. There are two possibilities depending on

whether θ
(2)
1 is zero or not:

(a) If θ
(2)
1 �= 0, then the asymptotics of the waves (89)–(91) become

u1 → 0, t → −∞; u3 → 0, t → ∞; (99)

u1 → −iη
√

a1 − a2ei(ϕ(2)
1 −ϕ

(1)
2 −ξ z1/η)sech(z1 − β1), t → ∞, (100)

u2 → −iη
√

a2 − a3ei(ϕ(1)
2 −ϕ

(1)
3 −ξ z2/η)sech(z2 − β2), t → −∞, (101)
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u2 → 2iη
√

a2 − a3
(z23 + �23) sinh z23 − (1 + iσ23) cosh z23

cosh2 z23 + (z23 + �23)2 + σ 2
23

ei(ϕ23−ξ z23/η),

t → ∞, (102)

u3 → −iη
√

a1 − a3ei(ϕ(2)
1 −ϕ

(1)
3 −ξ z3/η)sech(z3 − β3), t → −∞, (103)

where parameters β j ( j = 1, 2, 3) are defined as

β1 = ln

(∣∣θ (1)
2

∣∣∣∣θ (2)
1

∣∣
)

, β2 = ln

(∣∣θ (1)
3

∣∣∣∣θ (1)
2

∣∣
)

, β3 = ln

(∣∣θ (1)
3

∣∣∣∣θ (2)
1

∣∣
)

. (104)

The above asymptotics have two important features. One is that as
t → −∞, both u3 and u2 waves are non-zero. Thus, the higher-order
soliton solution (89)–(91) in this non-generic case does not describe the
breakdown of the pumping wave u3. Instead, it describes a new process:

u2 + u3 → u1 + u2. (105)

This is very different from fundamental solitons. The other feature is that
the waves u2 and u3 as t → −∞ and the wave u1 as t → ∞ all have sech
profiles, but the wave u2 as t → ∞ is the higher-order soliton.

(b) If θ
(2)
1 = 0, then the higher-order solitons (89)–(91) are degenerate:

u1(x, t) = u3(x, t) = 0 u2(x, t) = u(0)
2 (x − v2t), (106)

where u(0)
2 (x) is the initial solution of u2. This is a trivial solution.

If two components of the vector θ (1) are zero, then higher-order soliton
solutions (89)–(91) reduce to fundamental-soliton solutions or trivial solutions.
For instance, if θ

(1)
1 = θ

(1)
2 = 0, θ

(1)
3 �= 0, θ

(2)
1 �= 0, and θ

(2)
2 �= 0, then the

asymptotics of the waves become

u1 → 0, u2 → 0, t → −∞; u3 → 0, t → ∞; (107)

u1 → −iη
√

a1 − a2ei(ϕ(2)
1 −ϕ

(2)
2 −ξ z1/η)sech(z1 − β̃1), t → ∞, (108)

u2 → −iη
√

a2 − a3ei(ϕ(2)
2 −ϕ

(1)
3 −ξ z2/η)sech(z2 − β̃2), t → ∞, (109)

u3 → −iη
√

a1 − a3ei(ϕ(2)
1 −ϕ

(1)
3 −ξ z3/η)sech(z3 − β3), t → −∞, (110)

where β3 is defined in Equation (104) and

β̃1 = ln

(∣∣θ (2)
2

∣∣∣∣θ (2)
1

∣∣
)

, β̃2 = ln

(∣∣θ (1)
3

∣∣∣∣θ (2)
2

∣∣
)

. (111)
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This is the fundamental soliton solution. If one or both of θ
(2)
1 and θ

(2)
2 is zero,

the solution is trivial (similar to (106)). We note that when θ
(1)
1 = θ

(1)
2 = 0,

then θ
(1)
3 cannot be zero, because otherwise, the denominator det K in the

solution is zero.
It turns out that consideration of the case when θ

(1)
3 = 0 is similar to the

above case of θ
(1)
1 = 0 with the only difference that now the elementary waves

u1 and u2 are interchanged. For instance, when θ
(1)
3 = 0, θ

(1)
1 �= 0, θ

(1)
2 �= 0,

and θ
(2)
3 �= 0 we have the following (also new) process:

u1 + u3 → u1 + u2, (112)

where the waves u1 and u3 as t → −∞ and the wave u2 as t → ∞ all have
sech profiles, while the wave u1 as t → ∞ is the higher-order soliton (see
Equation (97)).

The only (different) case which is left to consider is the case of θ
(1)
2 = 0

with θ
(1)
1 �= 0 and θ

(1)
3 �= 0. The asymptotics depends on whether θ

(2)
2 is zero or

not. In the former case, that is, θ
(2)
2 = 0, we have a degenerate solution,

u1(x, t) = u2(x, t) = 0, u3(x, t) = u(0)
3 (x − v3t),

which is similar to solution (106). If, however, θ
(2)
2 �= 0, then the asymptotics

of the waves (89)–(91) are as follows:

u1 → 0, u2 → 0, t → −∞, (113)

u3 → 2iη
√

a1 − a3
(z13 + �13) sinh z13 − (1 + iσ13) cosh z13

cosh2 z13 + (z13 + �13)2 + σ 2
13

ei(ϕ13−ξ z13/η),

t → −∞; (114)

u1 → −iη
√

a1 − a2ei(ϕ(1)
1 −ϕ

(2)
2 −ξ z1/η)sech(z1 − β̂1), t → ∞, (115)

u2 → −iη
√

a2 − a3ei(ϕ(2)
2 −ϕ

(1)
3 −ξ z2/η)sech(z2 − β̃2), t → ∞, (116)

u3 → −iη
√

a1 − a3ei(ϕ(1)
1 −ϕ

(1)
3 −ξ z3/η)sech(z3 − β̂3), t → ∞, (117)

where β̃2 is defined in Equation (111) and

β̂1 = ln

(∣∣θ (2)
2

∣∣∣∣θ (1)
1

∣∣
)

, β̂3 = ln

(∣∣θ (1)
3

∣∣∣∣θ (1)
1

∣∣
)

. (118)

These asymptotic formulae describe yet another new process:

u3 → u1 + u2 + u3, (119)
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where waves u1, u2, and u3 as t → ∞ all have sech profiles, while the pumping
wave u3 as t → −∞ is more complicated. Thus, this process describes a
breakup of the higher-order pumping wave into three sech waves, the two
elementary waves and the pumping wave.

Lastly, we present the graphical pictures of the above higher-order solitons for
both the generic and non-generic cases. In all figures, the common solution
parameters are (a1, a2, a3) = (2, 1, −1), (b1, b2, b3) = (−0.5, 2, 1), ξ = 1,

η = 1, and θ (2) = (−1, 1 + i, 2). Only the vector θ (1) is different. It is easy to
check that for these parameters, the inequality (92) holds; thus the asymptotics
of these higher-order solitons have been described in the previous text. In all
figures, the solid lines are |u1|, the dashed lines are |u2|, and the dashed-dotted
lines are |u3|.

First, we illustrate the generic solution with θ (1) = (1, i, −1) in Figure 1. As
we can see from this figure as well as the asymptotics (95)–(98), as t → −∞,
only the pumping u3 solution is non-zero. As t → ∞, this u3 wave breaks into
elementary u1 and u2 waves. This process is similar to fundamental solitons.
But there is a difference: the asymptotics of each wave in Figure 1 has a
complex structure which signals that it is a higher-order soliton instead of
a fundamental soliton. Next, we let θ

(1)
1 approach zero. Specifically, we let

θ
(1)
1 = 10−4, while the θ

(1)
2 and θ

(1)
3 values remain the same. The corresponding

soliton solution is illustrated in Figure 2. We see that in this case, the pumping
u3 wave at t → −∞ splits into two sech pulses. As time moves on, the front
u3 sech pulse breaks into u1 and u2 sech pulses. Then this u2 sech pulse
and the back u3 sech pulse interact. The final outcome is two u1 sech pulses
moving in the positive x direction, and a higher-order u2 wave moving in the
negative x direction. Thirdly, we consider the non-generic case where θ

(1)
1 = 0,

while θ
(1)
2 and θ

(1)
3 still do not change. This soliton solution is illustrated in

Figure 3. We see that as t → −∞, both the u3 and u2 waves are non-zero and
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Figure 1. A generic higher-order soliton solution which describes the breaking of the
higher-order pumping u3 wave into higher-order elementary u1 and u2 waves, that is,
the u3 → u1 + u2 process. Here, the solution parameters are (a1, a2, a3) = (2, 1, −1),
(b1, b2, b3) = (−0.5, 2, 1), ξ = 1, η = 1, θ (1) = (1, i, −1) and θ (2) = (−1, 1 + i, 2). In all figures
here and below, solid lines are |u1|, dashed lines are |u2|, and dash-dotted lines are |u3|.
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Figure 2. Another generic higher-order soliton solution with a very small θ
(1)
1 value. Here

θ
(1)
1 = 10−4, while the other solution parameters are the same as in Figure 1.

sech-shaped. After their interaction, the pumping u3 wave is depleted, and a
new u1 sech wave and a higher-order u2 wave are created. We note that this
u2 + u3 → u1 + u2 process is novel, and it has not been carefully investigated
before. Fourthly, we consider the non-generic case where θ

(1)
1 = θ

(1)
2 = 0, and

θ
(1)
3 is still −1. This solution is illustrated in Figure 4. We see that it is the same

as a fundamental soliton solution, and it describes the process of a pumping u3

sech wave breaking into two elementary u1 and u2 sech waves. Thus, our
higher-order soliton solution reduces to a fundamental soliton solution as a
special case. Lastly, we consider the non-generic case where θ

(1)
2 = 0 while

θ
(1)
1 = 1 and θ

(1)
3 = −1 as in Figure 1. This solution is shown in Figure 5. As

we can see, as t → −∞, the only non-zero wave is the pumping wave u3,
which is a higher-order soliton. As t → ∞, this pumping wave breaks up into
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Figure 3. A non-generic higher-order soliton solution which describes the u2 + u3 → u1 + u2

process. The solution parameters are the same as in Figure 1 except that θ
(1)
1 = 0 now.
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Figure 4. Another non-generic higher-order soliton solution which describes the breaking of
the u3 sech wave into u1 and u2 sech waves. The solution parameters are the same as in
Figure 1 except that θ

(1)
1 = θ

(1)
2 = 0 here.

a sech wave in each component. Thus, this is the new u3 → u1 + u2 + u3

process which we have presented in the text above.
We conclude this section with some comments on the soliton solutions to

the three-wave model corresponding to the higher-order zeros of order n ≥ 2.
If the higher-order zero is elementary, that is, when the sequence of ranks in
formula (41) is rank Pj = 1, j = 1, . . . , n, the corresponding soliton solutions
can be derived using the soliton matrix (58). However, there are two other
possible sequences of ranks in formula (41), namely,

(a) rank Pj = 2, j = 1, . . . , r, n = 2r ;

(b) rank Pj = 2, j = 1, . . . , r ;

rank Pj = 1, j = r + 1, . . . , r + s, n = 2r + s.

We note that the soliton matrix for the sequence of ranks (a), which
corresponds to the higher-order zero of order 2r , has an equivalent soliton
matrix corresponding to the elementary higher-order zero of order r. Indeed,
let us consider the soliton matrix in the representation (40), where each χ j (k)
is defined similar to formula (38) (Pj substituted for P1) with rank Pj = 2.
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Figure 5. A non-generic higher-order soliton solution which describes the u3 → u1 + u2 + u3

process. The solution parameters are the same as in Figure 1 except that θ
(1)
2 = 0 here.
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Consider the following procedure. First, define new projectors Q j = I − Pj .
Evidently rank Q j = 1. Second, multiply the soliton matrix �(k) (40) by a
scalar quotient,

�̃(k) =
(

k − k1

k − k1

)r

�(k), (120)

such that each χ j (k), j = 1, . . . , r , gets a multiplier (k − k1)/(k − k1). We have

χ̃ j (k) ≡ k − k1

k − k1
χ j (k) = k − k1

k − k1

(
k − k1

k − k1

I + k1 − k1

k − k1

Q j

)
= I + k1 − k1

k − k1
Q j ,

and

�̃(k) = χ̃r (k) · · · χ̃2(k)χ̃1(k). (121)

Evidently, the new matrix �̃(k) in (121) satisfies the linear system of Equations
(67a)–(67b) for the original matrix �(k). Furthermore, it corresponds to an
elementary higher-order zero of order r, though now in the complementary
half plane: k = k1. It is noted that in this section we considered a soliton
matrix �(k) corresponding to a zero k1 = ξ + iη lying in the upper half plane,
that is, with η > 0. However, the case of η < 0 is admissible as well. The only
significant change would be in the asymptotic formulae, and the effect of this
change is similar to reversing the time variable: t → −t . Thus, the sequence
of ranks in case (a) brings no new higher-order soliton solutions as compared
to the simple sequence of ranks, but the solution process is reversed. For the
fundamental soliton solutions, a similar fact has been noted in [2], where it
is mentioned that the fundamental soliton corresponding to the projector of
rank 2 describes the three-wave interaction process which is reverse to that of
the soliton solution corresponding to the projector of rank 1.

There is no transformation similar to (120) for case (b) (similar multiplication
will produce a rational matrix function having poles in both half planes; thus
such a matrix does not belong to the class of soliton matrices). Higher-order
soliton solutions in this case require construction of the soliton matrices for
non-elementary higher-order zeros and will be addressed in a forthcoming paper.

5. Conclusion

We have proposed a unified and systematic approach to study the higher-order
soliton solutions of nonlinear PDEs integrable by the Riemann–Hilbert problem
of arbitrary matrix dimension. We have derived the soliton dressing matrix
for the elementary higher-order zeros in the N × N–dimensional spectral
problem, that is, zeros having the geometric multiplicity 1. The associated
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higher-order solitons in the N-wave system have also been obtained. We have
also clarified that the soliton dressing ansatz proposed in [11] is the general
soliton matrix for the nonlinear Schrödinger equation (where N = 2); thus the
soliton solutions obtained in [11] are the most general higher-order solitons in
the nonlinear Schrödinger equation. For N × N–dimensional spectral problems
the soliton dressing ansatz of [11] corresponds to elementary higher-order
zeros of the Riemann–Hilbert problem.

We have applied our theory to the three-wave interaction model, and the
simplest higher-order soliton solution has been obtained. The generic case
of this solution describes the process u3 ↔ u1 + u2, similar to fundamental
solitons. But each wave involved here is higher-order. The non-generic case of
this solution could describe three new processes. The first two are similar to
each other:

u1 + u3 ↔ u1 + u2,

u2 + u3 ↔ u1 + u2.

Here the waves on the left are all sech waves; the waves on the right are a sech
wave and a higher-order wave. The third process reads

u3 ↔ u1 + u2 + u3,

where the pumping wave on the left is a higher-order wave, and the waves on
the right all have sech shape. The non-generic solutions could also reduce to
fundamental solitons or trivial solutions as special cases.

We anticipate that the higher-order soliton solutions will have wide
applications. First of all, the new processes they describe may find physical
applications where three-wave interaction takes place. Second, as it has been
mentioned in [10], the higher-order soliton solution describes a weak bound
state of solitons; thus it may appear in the study of the train propagation of
solitons with nearly equal amplitudes and velocities in nonlinear integrable
PDEs. The usual approach in the analytical study of the soliton trains is
reduction of the governing equations for the soliton parameters to the complex
Toda chain (consult, for instance, [28–31]). The higher-order soliton approach
may provide an alternative to this study. Thirdly, multi-hump solitary waves in
the non-integrable nonlinear PDEs can be another field of application of the
higher-order solitons. For instance, the so-called multisoliton complexes, or
more precisely, oscillatory and stationary solitons observed in an oscillating
water trough [32–36] and subsequently reproduced in numerical simulations
[34–36] of the governing parametrically driven, damped NLS equation may
have the same relation to the higher-order solitons as the usual solitary-wave
solutions of the non-integrable PDEs to the fundamental solitons. Analytical
study of the soliton complexes needs the perturbation theory for the higher-order
solitons, just as the study of usual solitary-wave solutions needs the perturbation
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theory for the fundamental solitons. The perturbation theory for the higher-order
solitons can be developed in a similar way as it is done for the fundamental
solitons (see, for instance, [37–39]). Such a theory is left for future studies.

Lastly, we point out that the soliton matrices for the elementary zeros serve
as the building blocks for the general case of zeros with arbitrary geometric
multiplicity. This work is in progress and will be reported in a forthcoming
paper. There the most general higher-order soliton solution for the N-wave
system will be given.

Appendix. Exponent of the Toeplitz matrices

Here we show that for a diagonal matrix M(k) the exponent of the block
Toeplitz matrix, defined as in formula (69), and the block Toeplitz matrix of
the exponent of M(k) coincide. As the derivatives dm

dkm M(k) commute with
each other, it is enough to prove this statement for a scalar function. Consider,
for example, the lower-triangular Toeplitz matrix of a scalar function f (k):

F =


f 0 · · · 0

d
dk f f · · · 0

...
...

. . .
...

dn−1

dkn−1 f dn−2

dkn−2 f · · · f

 . (A.1)

It can be rewritten in the following form:

F = H0 f + H1
d f

dk
+ · · · + Hn−1

dn−1 f

dkn−1
, (Hj )l,m ≡ δl+ j,m . (A.2)

Note the product rule for the “diagonals”—Hj Hi = Hj+i —and that for
j + i > n − 1 the product is zero. Therefore, the exponent of F is a finite sum
of the diagonals Hj :

exp(F) = c0 H0 + c1 H1 + · · · + cn−1 Hn−1, (A.3)

wherec0, . . . , cn−1 areconstants.Duetotheformula Hj = H j
1 , j = 0, . . . , n − 1,

computing the coefficients c j is equivalent to taking the finite sum of the first
n terms of the Taylor expansion of an equivalent scalar function:

exp

{
n−1∑
j=0

d j f (k)

dk j
ε j

}
= c0 + c1ε + · · · + cn−1ε

n−1 + O{εn}, (A.4)

where ε is the parameter of the Taylor expansion which represents H1. On the
other hand, computing the Taylor expansion reduces to taking derivatives with
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respect to k of exp{ f (k + ε)} at ε = 0:

exp

{
n−1∑
j=0

d j f (k)

dk j
ε j

}
= exp{ f (k + ε)} + O{εn}

= exp{ f (k)} + 1

1!

d

dk
exp{ f (k)}ε + · · ·

+ 1

(n − 1)!

dn−1

dkn−1
exp{ f (k)}εn−1 + O{εn}. (A.5)

Therefore,

c j = 1

j!

d j

dk j
exp{ f (k)}, j = 1, . . . , n − 1. (A.6)

Thus,

exp{F} = H0 exp{ f (k)} + H1
1

1!

d

dk
exp{ f (k)} + · · ·

+ Hn−1
1

(n − 1)!

dn−1

dkn−1
exp{ f (k)}. (A.7)
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