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Dipole and quadrupole solitons in a two-dimensional photorefractive optical
lattice are investigated both theoretically and experimentally. It is shown
theoretically that out-of-phase dipole solitons and quadrupole solitons exist and
are linearly stable in the intermediate-intensity regime. In-phase dipole and
quadrupole solitons, however, are always linearly unstable, but their instabilities
are rather weak in the low-intensity regime. Experimentally, both types of
dipole solitons are observed, and the experimental results agree qualitatively
with the theoretical predictions. In addition, we have observed the anisotropic
effect of the photorefractive crystal in the dipole-soliton formation.

1. Introduction

Light propagation in a nonlinear medium is a fascinating subject in physics. In
free space, light has a natural tendency to broaden due to diffraction. However,
the nonlinear effect in the medium can cause the light to self-focus. When this
self-focusing effect counteracts diffraction, light can form an optical spatial
soliton [1]. In one dimension (1D), solitons in a homogeneous Kerr slab
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waveguide (where nonlinearity is cubic) exist and are stable [2, 3], and they
have been observed in experiments [4]. However, in an ideal homogeneous
Kerr medium, 2D solitons suffer critical collapse [5], and thus have never been
observed. Even 1D solitons experience transverse modulational instability in a
2D bulk Kerr medium [6]. Photorefractive materials [7], on the other hand,
were found to exhibit the self-focusing effect, but the nonlinearity is saturable,
in contrast to traditional Kerr nonlinearity. Subsequent studies revealed that
the saturable nonlinearity suppresses the critical collapse in two dimensions,
thus photorefractive solitons are stable in both one and two dimensions [8, 9],
and have subsequently been observed in experiments [10, 11].

Recently, light propagation in periodic photonic lattices is stirring a lot
of interest due to their novel physics, light-routing applications as well as
connections to photonic crystals [12, 13]. The linear propagation of light in
a periodic lattice is already a nontrivial phenomena. Indeed, the periodic
lattice creates a bandgap structure in the propagation-constant space. If the
incoming light lies within a band, it could transmit through. However if the
light lies inside a bandgap, its propagation would be evanescent instead [14]. In
addition, linear light propagation inside a periodic lattice exhibits interesting
discrete-diffraction patterns that have no counterpart in the homogeneous
medium. On the other hand, if the nonlinear effects of the waveguide are
significant, light could self-focus into various lattice-soliton structures inside
the bandgap. These lattice solitons have distinctive geometric structures (such
as the existence of side lobes surrounding the main hump). Their stability
properties also exhibit novel features that are absent in the homogeneous
medium. So far, fundamental and vortex lattice solitons as well as vector lattice
solitons have been reported both theoretically and experimentally in both one
and two dimensions [15–26]. Dipole solitons in 1D systems [17, 27, 28] as
well as in 2D discrete nonlinear Schrödinger equations [29] have also been
studied.

In this paper, we report theoretical and experimental results on dipole and
quadrupole solitons in a 2D photorefractive lattice. These solitons can be either
in-phase (IP) or out-of-phase (OOP) between their humps. Moreover, the dipole
solitons can be located in two closest diagonal lattice sites (i.e., 45◦ relative
to the principal axes) or two closest nondiagonal lattice sites (i.e., along the
principal axes) in a 2D square photonic lattice. In the absence of the lattice,
these solitons cannot exist due to the repulsive or attractive forces between the
humps. However, in the presence of the lattice, the lattice creates an optical
waveguide that could trap the individual humps against attraction or repulsion,
leading to the formation of dipole and quadrupole solitons. Our stability
analysis shows that OOP dipole and quadrupole solitons are linearly unstable
at high- and low-intensity regimes, but are stable at the intermediate-intensity
regime. On the other hand, IP dipole and quadrupole solitons are always
linearly unstable. However, for both IP and OOP solitons at low intensities,
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their instabilities are rather weak. Experimentally, we have observed both IP
and OOP dipole solitons at high voltages. The experimental results are in good
agreement with the theoretical results.

Let us consider laser beam propagation in a photorefractive crystal with
a 2D optically induced photonic lattice (see Figure 5). The laser beam is
launched along the extraordinary axis of the crystal to take advantage of the
large electrooptic coefficient (i.e., strong nonlinearity) along this polarization.
On the other hand, the lattice beam goes through an amplitude mask to
create a periodic amplitude modulation, and is launched along the ordinary
axis of the crystal. Due to the small electrooptic coefficient along this axis
as well as the fact that the lattice beam is made partially incoherent (to
suppress modulational instability), a stable and uniform lattice field can then
be established inside the crystal [30]. The theoretical model for a laser beam
propagating in this lattice field can be derived from the Maxwell equations.
Taking the paraxial approximation and neglecting the anisotropic properties of
the crystal, the theoretical model becomes (after nondimensionalization) [16]

iUz + Uxx + Uyy − E0

1 + Il + |U |2 U = 0, (1)

where U is the slowly varying amplitude of the probe beam normalized by the
dark irradiance of the crystal I d, and

Il = I0 sin2 x + y√
2

sin2 x − y√
2

is a square-lattice intensity function (in units of I d) that closely resembles
the lattice in our experiments. Here I 0 is the lattice peak intensity, z is the
propagation distance (in units of 2k1 D2/π2), (x , y) are transverse distances (in
units of D/π ), E0 is the applied DC field voltage [in units of π2/(k2

0n4
e D2r33)],

D is the lattice spacing, k0 = 2π/λ0 is the wavenumber of the laser in
the vacuum, (λ0 is the wavelength), ne is the refractive index along the
extraordinary axis, k1 = k0ne, and r33 is the electrooptic coefficient for the extra-
ordinary polarization. Consistent with our experiment, we choose the lattice
intensity I 0 = 3I d. In addition, we choose other physical parameters as

D = 20 µm, λ0 = 0.5 µm, ne = 2.3, r33 = 280 pm/V.

Thus, in this paper, one x or y unit corresponds to 6.4 µm, one z unit corresponds
to 2.3 mm, and one E0 unit corresponds to 20 V/mm in physical units.

Stationary dipole or quadrupole solitons in the model equation (1) are
sought in the form U = u(x , y)e−iµz , where u is a real-valued function, and µ

is the propagation constant. Then u(x , y) satisfies the nonlinear equation

uxx + uyy +
(

µ − E0

1 + Il + u2

)
u = 0. (2)
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The solution u can be determined by a modification of the Fourier iteration
method proposed in [31] as follows. First we separate the linear and nonlinear
terms in Equation (2) and put them on two different sides

uxx + uyy + (µ − E0 + P)u = Q, (3)

where

P ≡ E0 Il

1 + |u|2 + Il
, Q ≡ − E0|u|2u

1 + |u|2 + Il
.

Then we take the Fourier transform to Equation (3), and get

û = 1

|k|2 − µ + E0
{F(Pu) − F(Q)} . (4)

Here F(·) is the 2D Fourier transform, and û = F(u). Straightforward iteration
of Equation (4) does not converge in general. The key idea in [30] is to
introduce a stabilizing factor to Equation (4). Define

α =
∫ {|k|2 − µ + E0)û − F(Pu)

}
û∗ dk, β = −

∫
F(Q)û∗ dk,

where the superscript “*” represents complex conjugation, then we construct
the following iteration equation:

ûm+1 = 1

|k|2 − µ + E0

{(
αm

βm

)1/2

F(Pmum) −
(

αm

βm

)3/2

F(Qm)

}
. (5)

With this scheme, we have found various dipole and quadrupole solitons to be
reported.

Linear stability of these dipole and quadrupole solitons is clearly an important
issue. This question can be analyzed as follows. We first perturb these solitons
as U = e−µz{u(x, y) + Ũ (x, y, z)}, where u(x , y) is the dipole or quadrupole
soliton, and Ũ � 1 is the infinitesimal perturbation. When this perturbed
solution is substituted into Equation (1), the linearized equation for Ũ is

iŨ z + µŨ + Ũ xx + Ũ yy − E0
[
(1 + Il)Ũ − u2Ũ ∗](

1 + Il + u2
)2 = 0, (6)

Starting with a random-noise initial condition, we simulated this linearized
equation for long distances (hundreds of z units). If the solution grows
exponentially, then the underlying dipole soliton would be linearly unstable,
the exponential constant would be the unstable eigenvalue, and the real part of
this eigenvalue would be the growth rate of infinitesimal perturbations.
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2. Dipole solitons in two closest diagonal lattice sites

In this section, we report dipole solitons whose two lobes are located in two
diagonal lattice sites in a 2D square lattice. These lobes can have the same
phase, or have π -phase difference. The resulting solitons are called diagonal IP
and OOP dipole solitons, respectively. For these studies, the lattice’s principal
axes are oriented diagonally, so the dipole solitons can be oriented in either the
vertical or horizontal direction (see Figures 1, 6, and 7 for the lattice and
dipole orientations).

2.1. Diagonal OOP dipole solitons

We have found diagonal OOP dipole solitons in a large region of the voltage
(E0) and propagation constant (µ) space. These solitons have two main humps.
The phases of the upper-half field are zero, and those of the lower-half field
are π . At E0 = 6, these solitons exist when 1.455 < µ < 3.51, or equivalently
when their peak intensities I p are in the range 0.94 < I p < 15.7. These solitons
are displayed in Figure 1. Here the upper row shows three diagonal OOP dipole
solitons with peak intensities 12, 3, and 1, respectively (the corresponding
propagation constants µ are 1.80, 3.11, and 3.50). Notice that at high intensities,
the two humps of the dipoles do not reside at the centers of two diagonal
lattice sites (see Figure 1(a)). Instead, they reside at the outskirts of diagonal
lattice sites, so that the distance between them is considerably larger than the
diagonal lattice spacing. This can be understood intuitively as follows. Since
when two beams are OOP and are with high intensities, the two humps repel
each other strongly, but the trapping force of the lattice-induced waveguide
remains about the same (since the lattice intensity is not changed). As the
propagation distance increases, the distance between the two humps increases,
so the repelling force between then decreases. When the distance is large
enough that the repelling force balances the trapping force, a new equilibrium
of dipole solitons is then reached. When the intensity of the dipole soliton is
moderate, the two humps of the dipole do reside at the centers of diagonal
lattice sites (see Figure 1(b)). In addition, the soliton is quite localized. If the
intensity is low, however, the soliton becomes less localized, and the intensity
field spreads to more lattice sites in a manner as shown in Figure 1(c). In all
these solitons, the field intensity between the two main humps is very low due
to the destructive interference of the two main humps. We have also obtained
the power and peak-intensity diagrams for these solitons, which are shown in
Figure 1. We see that the intensity is a decreasing functions of the propagation
constant µ. The power also decreases for most values of µ (µ < 3.49), but
starts to increase in the tiny interval 3.49 < µ < 3.51. Since these solitons
disappear when µ > 3.51, this short interval of increasing power is hardly
visible in Figure 1(e). From the point of view of linear stability, dipole solitons
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Figure 1. (a)–(c) Diagonal OOP dipole solitons at E0 = 6 and peak intensities 12, 3, and 1,
respectively; (d) the lattice field; (e) power and intensity diagrams of these solitons at E0 = 6
(the dashed lines indicate unstable solitons); and (f) growth rates of infinitesimal perturbations
on these solitons at E0 = 5 and 6.
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Figure 2. Stable evolution of a diagonal OOP dipole soliton with E0 = 6 and peak intensity
I p = 3 (see Figure 1b) under 5% random-noise perturbations. Upper row: intensity and phase
fields at z = 0 and 36, respectively; lower row: evolutions of peak intensities (left) and phase
difference (right) of the two humps.
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Figure 3. (a, b) Diagonal IP dipole solitons at E0 = 7 and peak intensities 3 and 1,
respectively; (c) a quadrupole soliton at peak intensity 0.4; (d) the lattice field; (e) intensity
diagram of these solitons at E0 = 7; and (f) growth-rates of infinitesimal perturbations on
these solitons at E0 = 7 and 10.
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in this short interval of increasing power are linearly unstable according to
the Vakhitov and Kolokolov (VK) criterion [32]. The VK instability is purely
exponential, i.e., the eigenvalue is purely real. But since this interval of
VK instability is so short for diagonal OOP dipole solitons, and another
(oscillatory) instability also exists not only inside this short interval but also
beyond (see Figure 1(f)), we will not pay much attention to this interval of VK
instability in the remainder of the paper. A similar situation occurs for the
nondiagonal dipole solitons as well as OOP quadrupole solitons (see Sections 3
and 4).

An interesting fact in Figure 1(e) is that the intensities of these dipole
solitons cannot get arbitrarily low. Indeed, these dipole solitons (at E0 = 6)
disappear when their peak intensity I p < 0.94 (i.e., µ > 3.51). Note that the
edge of the semiinfinite bandgap (where these solitons reside) at E0 = 6 is
µ0 ≈ 3.58. Thus the present dipole solitons do not exist in the interval 3.51 <

µ < µ0. This means that these solitons cannot bifurcate from infinitesimal
Bloch waves at the edge of the bandgap. A similar finding has been reported
for vortex solitons in a 2D photonic lattice with Kerr nonlinearity [33].

We have also analyzed the linear stability of these dipole solitons by a
method as outlined in Section 1. The results for dipole solitons at voltage
E0 = 6 are plotted in Figure 1. We see immediately that the diagonal OOP
dipole solitons are linearly unstable at high- and low-peak-intensity values.
More specifically, when the peak intensity I p > 10 or I p < 2.1, the dipole
soliton is linearly unstable. In addition, when I p > 10, the unstable eigenvalue
is purely real, thus these solitons suffer a purely exponential instability. While
when I p < 2.1, the unstable eigenvalue is complex, thus these solitons suffer
an oscillatory instability.

A more important finding in Figure 1 is that in the intermediate intensity
regime where 2.1 < I p < 10 (for E0 = 6), the diagonal OOP dipole solitons
are linearly stable. Because critical collapse does not occur in photorefractive
crystals (where the nonlinearity is saturable), this linear stability assures
nonlinear stability as well. Indeed, we have simulated the nonlinear evolution of
the (linearly stable) dipole soliton with E0 = 6 and I p = 3 under random-noise
perturbations. The noise has a Gaussian distribution in the spectral k-space
with full width at half maximum (FWHM) two times larger than the soliton
FWHM spectrum. The noise power is 5% of the soliton’s. The simulation
result is shown in Figure 2. We see that there is a periodic exchange of energy
between the two humps of the dipole, but the soliton does not break up even
after 40 z units (corresponding to over 90 mm in physical distances). In
addition, the phase structure of the solution remains the same as that of the
original dipole. This is evidenced by the phase-field distributions at z = 0 and
36 in Figure 2, as well as the lower right figure of Figure 2, which shows that
the phase difference between the two humps of the dipole remains close to
the initial value π . This simulation, as well as the others we have done for
different dipole solitons, shows that when 2.1 < I p < 10 (for E0 = 6), OOP
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dipole solitons are both linearly and nonlinearly stable. This stability should
facilitate the experimental observation of these solitons (as confirmed below).

How does the stability behavior change when the voltage is varied? To
answer this question, we have calculated the growth rates of dipole solitons at
a different voltage E0 = 5, and the results are plotted also in Figure 1. We see
that at this lower voltage, the stability interval is shortened by almost one half
to be just 2.5 < I p < 6.6. Thus, increasing the voltage significantly stabilizes
the OOP dipole solitons.

The OOP dipole solitons are related to lattice-free vector dipole solitons
reported before, where one component is a fundamental mode that serves as
the waveguide, while the other component is a dipole mode [34–36].

2.2. Diagonal IP dipole solitons

We have also found diagonal IP dipole solitons. Similar to diagonal OOP
solitons, these solitons also have two main humps near adjacent diagonal lattice
sites, but their phases are constant throughout the entire solution field. At E0 =
7, these solitons exist when 2.9 < µ < 3.97, or 0.45 < I p < 5.86, and they are
shown in Figure 3. In Figures 3(a) and (b), diagonal IP dipole solitons with
peak intensities I p = 3 and 1 are displayed (the corresponding propagation
constants µ are 3.45 and 3.88). We see that the soliton in Figure 3(a), which has
higher intensity, is more localized. The lower-intensity soliton in Figure 3(b),
on the other hand, is less localized. In the latter soliton, two satellite lobes
appear between the two main humps due to the constructive interference of the
main humps. As the intensity of the soliton decreases further, the satellite lobes
become more pronounced. When 0 < I p < 0.45 (where 3.97 < µ < 4.08),
these lobes’ intensities become equal to the two main humps’, thus the dipole
solitons become IP quadrupole solitons (which bifurcate from infinitesimal
Bloch waves). An IP quadrupole soliton with peak intensity I p = 0.4 (at µ =
3.99) is shown in Figure 3(c). Such solitons will be discussed in more detail in
Section 4. We have also calculated the power and intensity diagrams for these
solitons, both of which are decreasing functions of µ. The intensity diagram
for E0 = 7 is plotted in Figure 3. This diagram clearly shows that diagonal IP
dipole solitons smoothly merge into IP quadrupole solitons when their peak
intensities I p < 0.45.

Because the power of IP dipole solitons is a decreasing function of µ in its
domain of existence, these solitons are free of VK instabilities. However, all
these solitons are still linearly unstable. The instability is purely exponential,
but not of VK type. For these solitons at E0 = 7, the unstable eigenvalues
are displayed in Figure 3. We see that these unstable eigenvalues are all
nonzero, meaning that these solitons are all linearly unstable. However, this
linear instability can be strongly suppressed if the voltage E0 is increased. For
instance, if E0 = 10, the growth rates of dipole solitons are also shown in
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Figure 3. We see that these growth rates at E0 = 10 are much lower than those
at E0 = 7. Physically, this suppression of instability at higher voltage occurs
because a higher voltage induces a stronger lattice waveguide. In other words,
the lattice-induced trapping potential is stronger at higher E0 values (recall that
the lattice-induced change of refractive index δn is proportional to E0/(1 + I l

+ |U |2)). Thus, if the main humps of the soliton are located inside the lattice
sites, then higher trapping potential at the lattice sites would suppress their
instabilities. In experimental conditions, the crystal length is typically short or
moderate (in the range of 6–20 mm). Thus, if this linear instability of IP
dipole solitons is sufficiently reduced, then they could still be observed.

In our experiments (to be described later in the text), the input beams are a
pair of IP or OOP Gaussian beams. Thus, it is desirable to directly simulate
the theoretical model (1) under experimental conditions. For this purpose, we
take the crystal length L = 10 mm, the lattice spacing D = 20 mm, and the
lattice peak intensity I 0 = 3I d. The voltage E0 can be adjusted to various
values as is done in our experiments. At the crystal input, we take the initial
condition to be a pair of IP or OOP Gaussian beams centered at two adjacent
diagonal lattice sites. The peak intensities of both Gaussian beams are 1/6 of
the lattice intensity (i.e., 0.5I d), and the FWHM of these Gaussian beams are
10 µm. The simulation results for both OOP and IP launching of Gaussian
beams are plotted in Figure 4. The first column shows the input intensity field;
the second column shows discrete diffraction at low voltage 40 V/mm; the
third column shows self-trapping and dipole-soliton formation at high voltage
200 V/mm; and the last column shows the repulsion/attraction of Gaussian
beams at high voltage 200 V/mm without the optical lattice. Note that the
discrete diffraction patterns of IP and OOP cases (at low voltages) are very
different. While light in the OOP case simply tunnels to outer lattice sites
along the original orientation, light in the IP case switches its orientation and
tunnels out along orthogonal orientations. The reason is that in the IP case, the
interference is constructive. Thus, light in orthogonal lattice sites is reinforced
and becomes stronger. In the OOP case, it is just the opposite. But in both
cases, the beams are trapped to form dipole solitons when the voltage is high.
Without the lattice, it is well known that such dipole-mode solitons cannot
exist in a self-focusing media, since the two humps would repel each other, as
has been demonstrated before [37].

2.3. Experiments

The dipole solitons predicted above have also been observed in our experiment.
The experimental setup is illustrated in Figure 5. Similar to the earlier
experiments with fundamental and vortex solitons in 2D optically induced
lattices [20, 23], our experiments were performed in a photorefractive crystal
illuminated by a spatially modulated light beam (λ0 = 488 nm) passing through
a rotating diffuser and an amplitude mask. The biased photorefractive crystal
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(a) (b) (c) (d)

Figure 4. Theoretical results on propagation of two diagonally oriented Gaussian beams in a
10 mm-long crystal with a 2D lattice. Upper row: OOP case; lower row: IP case. From left to
right: input; output at low voltage 40 V/mm; output at high voltage 200 V/mm; output at high
voltage 200 V/mm without lattice.

Figure 5. Experimental setup. PBS: polarizing beam splitter; PZT: piezo-transducer; and
SBN: strantium barium niobate.

Figure 6. Experimental results on diagonal dipole solitons in a 2D lattice. Top panel: OOP
case; bottom panel: IP case. (a) Input; (b) output at a low field of 100 V/mm; (c) and (d) output at
a high field of 320 V/mm with and without the lattice. The bottom left shows the lattice pattern.

Figure 7. Experimental results on diagonal OOP dipole solitons oriented vertically (top)
and horizontally (bottom). (a) Input; (b) linear diffraction at output without the lattice, and
(c) discrete diffraction of dipole beam at a bias field of 100 V/mm, and (d) discrete trapping
of dipole solitons in the lattice at a higher bias field of 320 V/mm.
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(SBN:60, 5 × 5 × 8 mm3) provides a self-focusing noninstantaneous nonli-
nearity, and the rotating diffuser makes the beam to be partially spatially
incoherent, as was used for the demonstration of incoherent solitons [38]. The
amplitude mask provides spatial modulation after the diffuser on the otherwise
uniform beam, which exhibits a pixel-like intensity pattern at the input face of
the crystal [30]. This pixel-like beam is ordinarily polarized, and is partially
coherent as controlled by the rotating diffuser, forming a stable and nearly
invariant waveguide lattice in the crystal. In addition, the principal axes of the
lattice are oriented in the diagonal directions, as such a lattice will suffer less
distortion due to the anisotropic nonlinearity of the crystal. A Gaussian beam
split from the same laser output (without passing through the diffuser) is sent
into a Mach–Zehnder interferometer. The two extraordinarily polarized beams
exiting from the interferometer are used to generate the dipole, and they are
combined with the lattice beam before the crystal, propagating collinearly with
the lattice beam. Because the dipole beams are coherent and e-polarized while
the lattice beam is partially incoherent and o-polarized, the lattice remains
nearly invariant under a high bias field, but the dipole itself experiences a strong
self-focusing nonlinearity [16]. The relative phase between the two beams for
the dipole is tuned with a piezo-transducer (PZT) mirror to be either π (i.e.,
OOP) or 0 (i.e., IP). The separation between the two beams is adjusted to
match the diagonal lattice spacing (about 28 µm). The two beams are launched
into two nearby lattice sites in either the vertical or horizontal direction. In
addition, a broad incoherent beam is used as background illumination for fine
tuning the nonlinearity. The input/output intensity patterns of the dipole and
the lattice are monitored with an imaging lens and a CCD camera.

Typical experimental results of dipole lattice solitons are shown in Figure 6,
where the top panel is for the OOP dipole and the bottom for the IP dipole. In
these experiments, the dipole beams are oriented in the vertical direction. The
intensity ratio between the lattice beam and background illumination is about
3, and the intensity of the dipole beam is about six times weaker than that of
the lattice. At a low bias field, both types of dipoles undergo linear discrete
diffraction in the lattice (Figure 6(b)), exhibiting interesting diffraction patterns
similar to those found in our simulations. A clear distinction between the
two types of dipoles lies in again the intensity redistribution after discrete
diffraction: the intensity for the OOP dipole extends along the original direction
of the dipole, while that for the IP dipole extends along the orthogonal
direction. Furthermore, due to destructive (constructive) interference, the
minimum (maximum) intensity is located in the two sites between the two OOP
(IP) dipole lobes. At a high bias field, both types of dipoles are trapped by the
lattice potential, leading to the formation of dipole lattice solitons (Figure 6(c)).
Note that in the highly nonlinear regime, although some energy is radiated to
the lattice sites far away from the dipole, most of the energy is concentrated in
the two sites matched by the input dipole. The initial phase structures are
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preserved after the lattice dipole solitons are created, as seen from their output
intensity patterns (Figure 6(c)). Should one of the dipole beams be turned off,
the other forms a fundamental lattice soliton and redistributes the energy to
its center as well as four neighboring sites along the principal axes of the
lattice. Without the lattice, the dipole diverges in the OOP case and merges
into a single soliton in the IP case (Figure 6(d)), as observed previously [37].
In addition to attraction and repulsion, self-bending of the soliton filaments
toward crystalline c-axis (upward in Figure 6(d)) is evident. This soliton
self-bending due to the diffusion effect enhanced by the high bias field is well
known [39], and it was not included in our theoretical model for simplicity.

Although both types (OOP and IP) of lattice dipole solitons are observed,
we point out that the OOP dipole solitons are stable and robust, and can be
generated in either the horizontal or vertical direction with similar dipole
structures. Figure 7 shows such a comparison, where (a) is the input of dipole
in vertical (top) and horizontal (bottom) directions, (b) is the corresponding
diffraction in the linear regime without the lattice potential, (c) is discrete
diffraction at a low bias field of 100 V/mm, and (d) is discrete trapping at a
higher bias field of 320 V/mm. As seen in Figure 7(d), the OOP dipole soliton
keeps the same orientation as in the input. However, the IP dipole-like solitons
are less stable, and they can be observed only when oriented vertically at a
high bias field. Figure 8 shows the output intensity patterns of the IP dipole
as the strength of the nonlinearity is increased when the dipole is launched
vertically (top) and horizontally (bottom). Due to constructive interference,
the energy of the IP dipole tends to concentrate more at the two sites in the
middle of (but orthogonal to) the dipole rather than the two initial input sites
(Figures 8(b) and (c)). Furthermore, even at a high bias field, such intensity
distribution persists in the horizontally launched dipole (Figures 8(c) and (d)),
where the dipole at crystal output shows a 90◦ “rotation” as compared to the
input. In the OOP case, there is no such “rotation” as the light will not tunnel
to the sites between the dipole. This anisotropic behavior of self-trapping of IP
dipole-like beams is attributed to the anisotropic photorefractive nonlinearity,
which has not been fully incorporated in our present theoretical model. Should
we launch a train of such IP beams instead of just two beams for the dipole,
the anisotropic behavior of discrete diffraction and discrete trapping would
become even more evident [20].

3. Dipole solitons in two closest nondiagonal lattice sites

We have also found dipole solitons that are not oriented in the two diagonal
lattice sites, but rather, the two humps of the dipole are located at two adjacent
lattice sites along the principal axes. The humps can have the same phase
or π -phase difference as well. The corresponding solitons will be called IP
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and OOP nondiagonal dipole solitons, respectively. Even though these dipole
solitons share some of the properties of diagonal dipole solitons discussed
above, some other properties they exhibit are distinctly different. Below we
discuss nondiagonal OOP and IP dipole solitons separately. For these studies,
the principal axes of the square lattice are oriented in vertical/horizontal
directions, so the dipole solitons will also be in either vertical or horizontal
directions (see Figures 9 and 10 for the lattice and dipole orientations).

3.1. Nondiagonal OOP dipole solitons

We have obtained these nondiagonal OOP dipole solitons in a wide parameter
region. At E0 = 6, such solitons with peak intensities 7, 4.5, and 1.5 are
shown in Figures 9(a)–(c), respectively. The corresponding photonic lattice
is displayed in Figure 9(d). As we can see, these solitons are located at
two adjacent lattice sites, thus their hump separation is shorter than that in
diagonal dipole solitons. At high peak intensity, the two humps are located at
the outer skirts of the lattice sites (Figure 9(a)). At moderate intensity, the
humps are located almost exactly at the centers of lattice sites (Figure 9(b)).
At low intensity, the dipole soliton gets less localized and spreads out to more
lattice sites (Figure 9(c)). Due to the destructive interference of the two OOP
humps, the light intensity at places between the two humps is zero. This is
clearly visible in Figures 9(a)–(c). The power and intensity diagrams of these
solitons at E0 = 6 are shown in Figure 9(e). It is seen that the power is a
decreasing function of µ (except in the very tiny interval 3.44 < µ < 3.4406
at the right end of curves in Figure 9(e) where the power slightly increases).
Furthermore, these solitons disappear when µ > 3.4406, or I p < 1.4330.
Thus, these solitons cannot bifurcate from infinitesimal Bloch waves at the
edge of the bandgap. The linear stability of these solitons at E0 = 6 and a
lower value E0 = 5.8 is displayed in Figure 9(f ). We see that these solitons
are unstable in the higher and lower intensity regimes, but are stable in the
intermediate-intensity regime. The instabilities at both the higher and lower
intensity regimes are both oscillatory, in contrast with diagonal OOP dipole
solitons whose instabilities are purely exponential at high intensities. When
the applied field E0 decreases, the region of stability shrinks. Thus higher
applied field stabilizes these solitons.

The properties of nondiagonal OOP dipole solitons listed above are
qualitatively similar to those of diagonal OOP dipole solitons in Section 2. But
some other properties are distinctly different. First, the discrete-diffraction
patterns of nondiagonal OOP solitons are different (cf. Figures 1(c) and 9(c)).
While the intensity field in Figure 1(c) spreads out in a “Y” pattern, that
in Figure 9(c) spreads out simply along the vertical direction (which is the
orientation of the dipole). Another difference is that at the same applied field,
the intensity threshold for the existence of OOP dipole solitons is higher for
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Figure 8. Experimental results on diagonal IP dipoles oriented vertically (top) and horizontally
(bottom). (a) Input; (b)–(d) output at a bias field of 100, 260, and 320 V/mm, respectively.
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Figure 9. (a)–(c) Nondiagonal OOP dipole solitons at E0 = 6 and peak intensities 7, 4.5,
and 1.5, respectively; (d) the lattice field; (e) power and intensity diagrams of these solitons at
E0 = 6 (the dashed lines indicate unstable solitons); and (f) growth-rates of infinitesimal
perturbations on these solitons at E0 = 5.8 and 6.

z=0 z=6 z=12 z=18

z=24 z=30 z=36

Figure 10. Stable evolution of a nondiagonal OOP dipole soliton with E0 = 6 and peak
intensity I p = 4.5 (see Figure 9(b)) under 1% random-noise perturbations. The last figure is
the lattice field.

z=0 z=4 z=8 z=12

z=14 z=16 z=20 z=22

Figure 11. Breakup of the same dipole soliton as in Figure 10 but under stronger (5%)
random-noise perturbations.
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the nondiagonal case, and lower for the diagonal case. The third difference is
that, at the same applied field, the stability region of OOP dipole solitons is
larger for the diagonal case, and smaller for the nondiagonal case. In other
words, diagonal OOP dipole solitons are more stable than nondiagonal ones.
The reasons for the above differences are intimately related to the geometric
configurations of these dipole solitons as well as the fact that hump separations
of dipoles in the diagonal case are larger than those in the nondiagonal case.

We have also tested the robustness of linearly stable nondiagonal OOP
dipole solitons against weak and strong perturbations, and investigated their
nonlinear evolutions. We found that under weak perturbations, these solitons
undergo internal oscillations and periodically exchange energy between their
two humps in a stable fashion. Under stronger perturbations, these solitons can
break up. When they break up, interesting tunneling behaviors can be observed
as light attempts to escape to different lattice sites. These two evolution
scenarios are illustrated in Figures 10 and 11, respectively.

3.2. Nondiagonal IP dipole solitons

As in the case of diagonal dipole solitons, we have also found nondiagonal IP
dipole solitons. These solitons at E0 = 7 are shown in Figures 12(a)–(c),
where Figure 12(d) shows the lattice field. At moderate peak intensities, these
solitons have two main humps that have the same phase and are located at the
centers of two adjacent lattice sites (Figure 12(b)). Furthermore, they are quite
localized. At lower intensities, the solitons spread to more lattice sites in a way
that is distinctly different from nondiagonal OOP dipole solitons (Figure 9(c)).
At higher intensities, however, the two humps of the soliton merge together
and become a single skewed hump that sits halfway between two adjacent
lattices.

Different from other types of dipole solitons discussed above, the present
nondiagonal IP dipole solitons continuously merge into infinitesimal Bloch waves
as the propagation constant approaches the edge of the semiinfinite bandgap.
This can be seen from Figure 12(e), where the intensity diagram at E0 = 7
is displayed. It is seen that the intensity approaches zero when µ → µ0 =
4.08. At lower intensity values, these IP dipole solitons have two main humps
(see Figures 12(b) and (c)). At higher intensities, these two humps merge into
one (see Figure 12(a)). These facts are labeled in Figure 12(e). We note that
near the edge of the bandgap, the envelope of these dipole solitons centers
halfway between two adjacent lattice sites. By comparison, the envelope of
fundamental lattice solitons centers exactly at a lattice site.

We have studied the power diagram of these solitons as well. We found that
the power is a decreasing function of µ, except when µ is quite close to the
edge of the bandgap µ0, where the power increases with µ. This indicates that
nondiagonal IP dipole solitons are VK-unstable near the edge of the bandgap,
i.e., when the peak intensity is very small.
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The nondiagonal IP dipole solitons suffer another purely exponential
instability that is not VK type. This instability is stronger, and in addition, it
affects all these dipole solitons including those in regions where the power is
decreasing with µ (so that the VK instability is absent). To demonstrate this,
we have plotted the growth rates of these solitons versus the dipole intensities
at E0 = 7 and 10 in Figure 12(f). We see that the growth rates are never zero,
so these solitons are all unstable. Note that when E0 = 10, there is an intensity
interval 3.38 < I p < 3.60 where there exist more than one dipole soliton. This
is why there is a cusp in the growth-rate curve in Figure 12(f ).

The instability of these dipole solitons at high intensities is easy to
understand. Recall that these dipole solitons at high intensities are actually
not “dipoles” anymore, as the two humps of the dipoles have merged into a
single-hump beam (see Figure 12(a)). More importantly, this single-humped
beam sits midway between two adjacent lattice sites, thus they are in an
unstable state, just like a particle is sitting at a maximum of the potential. Thus,
they are expected to be linearly unstable and tend to break up into several light
filaments that move to nearby lattice sites. The above physical reasoning also
explains a curious phenomenon in Figure 12(f), where high-intensity dipole
solitons are actually more unstable when the applied field E0 is higher. The
reason is that since these solitons are actually single hump and are in an
unstable state, when the applied field is higher, it just makes the effective
potential steeper, thus making the unstable state to be even more unstable. This
contrasts the previous three cases of dipole solitons in Sections 2 and 3, where
higher applied field stabilizes them all. When the intensities are moderate
where the dipole structure is more pronounced, the higher applied field does
suppress linear instabilities as one can see in Figure 12(f ).

A mysterious phenomenon in Figure 12(f ) is that, when the intensities of
these dipole solitons are low, such solitons are again more unstable (with higher
growth rates) when the applied field is higher. So far, we do not have a good
explanation for it. This issue will be investigated further in the future.

The nondiagonal dipole solitons are interesting due to their different
geometric orientations relative to the photonic lattice (compared to diagonal
dipole solitons). They also have a smaller hump separation. In addition, under
linear propagation, they would exhibit interesting discrete diffraction patterns
that are different from diagonal dipoles (see Figure 13). Thus they also make a
good object for experimental observations.

To observe nondiagonal dipole solitons in experiments, one can launch two
Gaussian beams into adjacent sites along the principal axes of the 2D square
lattice. By controlling the relative phase between the initial Gaussian beams,
one can observe either IP or nondiagonal OOP dipole solitons. To facilitate
potential experiments, we have simulated the propagation of two IP and OOP
Gaussian beams launched into two adjacent lattice sites using the model
equation (l). For this purpose, we take the crystal length L = 10 mm, the
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Figure 12. (a)–(c) Nondiagonal IP dipole solitons at E0 = 7 and peak intensities 3, 1, and
0.25, respectively; (d) the lattice field; (e) the intensity diagram of these solitons at E0 = 7;
and (f) growth rates of infinitesimal perturbations on these solitons at E0 = 7 and 10.

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 13. Theoretical results on propagation of two nondiagonally oriented Gaussian beams
in a 10 mm-long crystal with a 2D lattice. The lattice field is oriented as in Figures 9(d) and
12(d). Upper row: OOP case; lower row: IP case. From left to right: input; output at low voltage
40 V/mm; output at high voltage 200 V/mm; output at high voltage 200 V/mm without lattice.

Figure 14. Experimental results on nondiagonal IP dipole solitons located in two closest sites
along the principal axes of the lattice. (a) Input and (b)–(d) are the patterns taken at crystal
output at bias fields of 90, 200, and 300 V/mm, respectively. The experiments were done in a
diagonally oriented lattice as shown in Figure 6(a) (bottom panel). To avoid confusion, the
images in this figure have been rotated by 45◦ so as to be in the same orientation as those
from simulations.

nearest-neighbor lattice spacing D = 20 mm, the lattice peak intensity I 0 = 3I d,
the peak intensities of both Gaussian beams as 1/6 of the lattice intensity (i.e.,
0.5I d), and the FWHM of these Gaussian beams are 10 µm. The simulation
results for both the OOP and IP launching of Gaussian beams are plotted in
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Figure 13, and the lattice field is oriented as in Figures 9(d) and 12(d). The
first column of Figure 13 shows the input intensity field; the second column
shows discrete diffraction at low voltage 40 V/mm; the third column shows
self trapping and dipole-soliton formation at high voltage 200 V/mm; and the
last column shows the repulsion/attraction of Gaussian beams at high voltage
200 V/mm without the optical lattice. We see that the discrete diffraction
patterns of IP and OOP cases (at low voltages) are quite different. While light
in the OOP case tunnels primarily along the vertical direction (the direction
of the dipole’s orientation), light in the IP case tunnels primarily along the
horizontal direction. When these diffraction patterns are compared to Figure
4(b) for diagonal dipole solitons, we see that the diagonal or nondiagonal
configuration of the dipole makes a big difference on diffraction patterns.
However, at a high value of applied voltage, nondiagonal Gaussian beams
can also localize and form OOP or IP dipole solitons (see Figure 13(c)), and
without the lattice, the Gaussian beams would repel or attract each other. These
behaviors are qualitatively the same as diagonal dipole solitons (see Figure 4).

3.3. Experiments

We have also observed the nondiagonal dipole solitons in a 2D square lattice
experimentally. The experimental setup is the same as that illustrated in
Figure 5, except now that the two beams are launched next to each other along
the principal (rather than diagonal) axes of the lattice. The lattice with about
20 µm adjacent-site spacing is created first, and it is diagonally oriented as
shown in Figure 6(a) (bottom panel). Then two Gaussian beams from the
Mach–Zehnder interferometer are launched into two adjacent lattice sites along
the principal axes of the lattice. To be consistent with the theoretical results
in Figures 9–13, our experimental images are rotated by 45◦ when they are
presented. With this rotation, the lattice in our experiments looks similar to
Figure 9(d). Figure 14 shows a typical example of an IP nondiagonal lattice
dipole soliton, where (a) is the input intensity pattern of the dipole beam, and
(b)–(d) are the patterns taken at the crystal output at bias fields of 90, 200, and
300 V/mm, respectively. At the high bias field, the dipole beams are trapped
very well in the lattice. These results are in good agreement with numerical
simulations. Because the two dipole lobes are located next to each other in
closest lattice sites, there is no additional lattice site between the dipole to
facilitate the “rotation” as in the case of diagonal dipole solitons. Thus, there
is no significant difference between OOP and IP nondiagonal dipoles once
they form localized states.

4. Quadrupole solitons

In Figure 3(c), we have discovered quadrupole solitons that have four humps
at adjacent lattice sites and a constant phase throughout the soliton field. Such
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solitons turn out to exist in a large parameter region as well. In addition, we
have found quadrupole solitons with π -phase differences between adjacent
humps. We will call these two types of quadrupole solitons as IP and OOP, and
study them separately.

4.1. OOP quadrupole solitons

These solitons have four main humps located at four adjacent lattice sites in
a square configuration. The diagonal humps have the same phase, but the
adjacent humps have π -phase difference. The field profiles of these solitons
are displayed in Figures 15(a) and (b) at E0 = 7 and peak intensities 4 and
1.3. The soliton in Figure 15(a) is quite localized, and most of the light is
concentrated at the four main humps. The soliton in Figure 15(b), on the other
hand, is less localized, and a significant portion of the light is at lattice sites
outside the four main sites. Without the lattice, these solitons would not have
been possible, as the four humps would push each other out.

The power and intensity diagrams of these quadrupole solitons at E0 = 7
have been obtained and shown in Figure 15(c). These diagrams are qualitatively
similar to those in Figures 1(e) and 9(e) for diagonal OOP solitons. For
instance, there is an intensity threshold below which these solitons do not
exist. For E0 = 7, these solitons cannot exist when I p < 1.27, or in terms of
the propagation constant µ, when µ > 4.05. Thus OOP quadrupole solitons do
not bifurcate from the edge of the bandgap. Another similarity to Figure 1(e)
is that, while the power is largely a decreasing function of µ, at the right end
of the curves in the diagram, there is a tiny region 4.03 < µ < 4.05 where the
power slightly increases, signaling the VK instability there.

We have studied the linear stability of these OOP quadrupole solitons
as well, and the results at two applied fields E0 = 6.5 and 7 are plotted
in Figure 15(d). One can see that OOP quadrupole solitons at high and low
intensities are linearly unstable. Furthermore, the leading instabilities in both
intensity regimes are oscillatory. However, in the intermediate-intensity region,
these solitons are linearly stable. When the applied field increases from E0 =
6.5 to 7, the stability region expands. Thus higher applied field stabilizes OOP
quadrupole solitons. These stability properties resemble those of diagonal and
nondiagonal OOP dipole solitons (see Figures 1(f) and 9(f)). Intuitively, OOP
quadrupole solitons can be thought of as four nondiagonal OOP dipole solitons
linked together. Thus, it is not very surprising that their stability properties are
similar to those of nondiagonal OOP dipole solitons.

4.2. IP quadrupole solitons

IP quadrupole solitons have four main humps at adjacent lattice sites, and
these humps have the same phase. A typical example is shown in Figure 16(b)
where E0 = 7 and the peak intensity is I p = 1. As the intensity of the soliton
increases, the four humps merge together into one, and this single-humped
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Figure 15. (a, b) Field profiles of OOP quadrupole solitons at E0 = 7 and peak intensities 4
and 1.3, respectively; (c) power and intensity diagrams of these solitons at E0 = 7 (the dashed
lines indicate unstable solitons); and (d) growth rates of infinitesimal perturbations on these
solitons at E0 = 6.5 and 7.
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Figure 16. (a, b) Field profiles of IP quadrupole solitons at E0 = 7 and peak intensities 2
and 1, respectively; (c) power and intensity diagrams of these solitons at E0 = 7 (the dashed
lines indicate unstable solitons); and (d) growth rates of infinitesimal perturbations on these
solitons at E0 = 7 and 10.

(a) (b) (c) (d)

Figure 17. Theoretical results on propagation of four Gaussian beams in a 10 mm-long
crystal with a 2D lattice. Upper row: OOP case; lower row: IP case. From left to right: input;
output at low voltage 40 V/mm; output at high voltage 200 V/mm; output at high voltage
200 V/mm without lattice.
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soliton centers off-site (between four adjacent lattice sites). This can be seen in
Figure 16(a), where the IP quadrupole soliton at E0 = 7 and peak intensity I p =
2 is shown. We have obtained the intensity diagram of these solitons at E0 = 7
and plotted it in Figure 16(c). This diagram clearly shows how IP quadrupole
solitons with four humps smoothly merge into a single-hump soliton.

IP quadrupole solitons bifurcate from infinitesimal Bloch waves at the edge
of the bandgap. This is similar to nondiagonal IP dipole solitons. However, we
have found that near the edge of the bandgap, the power of IP quadrupole
solitons is a decreasing function of µ, whereas the power of nondiagonal
IP dipole solitons is an increasing function of µ. These results will have
interesting implications on the linear stability of these solitons near the edge
of the bandgap, where a theoretical analysis is possible.

We have also studied the linear stability of these IP quadrupole solitons, and
the results are shown in Figure 16(d). This figure indicates that IP quadrupole
solitons are always linearly unstable. In addition, we have found that the
instability is purely exponential. When the applied field is increased, we find that
the instability on IP quadrupole solitons with moderate intensities is reduced,
but the instability on solitons with low intensities is actually enhanced. These
properties are similar to those in Figure 12(f) for nondiagonal IP dipole solitons.

Both types of quadrupole solitons should be observable in experiments, In
fact, our experimental results on IP diagonal dipole solitons already show a
structure akin to an IP quadrupole soliton discussed here (see Figure 8(c), top
panel). In order to observe both types of quadrupole solitons directly, we can
launch four separate Gaussian beams instead of two into the four neighboring
lattice sites. The challenge with four beams is to carefully align them with the
lattice and control their relative phases to be either the same or with a π

difference between neighboring beams. Experiments are currently underway
for the creation of OOP quadrupole solitons by phase engineering of a single
Gaussian beam. To facilitate experimental observations, we here simulate the
propagation of four Gaussian beams in the lattice under low and high voltages
and predict what could happen in experiments. For this purpose, we again take
the crystal length L = 10 mm, the lattice spacing D = 20 mm, the lattice
peak intensity I 0 = 3I d, the peak intensities of all four Gaussian beams as
1/6 of the lattice intensity (i.e., 0.5I d), and the FWHM of these Gaussian
beams as 10 µm. The simulation results for both the OOP and IP launching
of the four Gaussian beams are plotted in Figure 17. The first column of
Figure 17 shows the input intensity field; the second column shows discrete
diffraction at low voltage 40 V/mm; the third column shows the self-trapping
and quadrupole-soliton formation at high voltage 200 V/mm; and the last
column shows the repulsion/attraction of the Gaussian beams at high voltage
200 V/mm without the optical lattice. We see that in the OOP case, the field
exhibits interesting discrete-diffraction patterns at the low applied voltage. The
light tunnels out rather quickly in square patterns. In the IP case, however, light
tunneling to outer lattice sites is much slower. At the high applied voltage, the
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Gaussian beams form quadrupole solitons in both the OOP and IP cases (see
Figure 17(c)). In addition, the field patterns of the OOP and IP solitons are
similar. Without the lattice, the Gaussian beams repel each other in the OOP
case and attract each other and coalesce in the IP case, just as expected (see
Figure 17(d)).

5. Summary

In summary, we have studied the formation of dipole and quadrupole
solitons in 2D photorefractive lattices both theoretically and experimentally.
Theoretically, the OOP dipole and quadrupole solitons are shown to be stable
in the intermediate-intensity regimes. The IP dipole and quadrupole solitons
are linearly unstable, but the instability growth rates can be rather small in
the low-intensity region. In addition, high applied voltage can suppress linear
instabilities of IP diagonal dipole solitons. Experimentally, we have observed
both IP and OOP diagonal and nondiagonal dipole solitons, as well as IP
quadrupole solitons. The experimental results agree well with the theoretical
results. In addition, we have shown experimentally that the anisotropy of the
photorefractive crystal has a significant effect on the formation of IP dipole
solitons.
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