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In this article, localized defect modes in one-dimensional optically induced
photonic lattices are studied comprehensively. First, the origin of these defect
modes is investigated analytically in the weak-defect limit by perturbation
methods. It is shown that in an attractive defect where the lattice light intensity
at the defect site is higher than that of nearby sites, a defect mode bifurcates
from the left edge of every Bloch band; while in a repulsive defect, a defect
mode bifurcates from the right edge of every Bloch band. When the defect is
not weak, defect modes are examined by numerical methods. It is shown that
in a repulsive defect, the strongest confinement of defect modes arises when
the lattice light intensity at the defect site is nonzero rather than zero. In
addition, as the potential strength increases, defect modes disappear from lower
bandgaps and appear in higher bandgaps. In an attractive defect, however,
defect modes persist in every bandgap as the potential strength increases. Using
a piecewise-constant potential model, defect modes are calculated analytically
for a general defect. The analytical results qualitatively explain the main
features in numerical results.

1. Introduction

In recent years, light propagation in periodic optical media such as waveguide
arrays, optically-induced photonic lattices, and photonic crystals has attracted a
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lot of attention due to their novel physics as well as light-guiding applications
[1–15]. Compared to homogeneous media, a new feature in periodic media is
the existence of bandgaps inside Bloch bands, where linear light propagation is
forbidden. The physical reason for bandgaps is the repeated Bragg reflections
of light in the periodic media.

One of the convenient ways to probe the bandgap structure of a periodic
medium is to introduce a local defect into the medium. In a repulsive defect
where probe light tends to move away from it, if a localized defect mode can be
found, then this mode must reside inside the bandgap of the periodic medium.
Such a defect mode is trapped by the local defect and can propagate without
change of shape. The fact that a repulsive defect can trap a localized defect
mode results from a remarkable physical property of wave propagation in
periodic structures, which is somewhat against normal intuition. For instance,
one would expect light to be guided in a higher index region due to total
internal reflections as occurred in a traditional optical fiber. Yet light could be
better guided in a lower index region such as an air-hole in a photonic crystal
fiber [2]. This unique property can be better understood by the repeated Bragg
reflections of optical waves in the periodic medium, just as what happens to
electronic waves in semiconductors [1].

Local defects and the corresponding defect modes not only stimulate new
physics, but also inspire new applications. For instance, defect modes have
been suggested for the guiding and routing of optical signals at very low
powers. In addition, linear defect modes in a periodic medium with a local
defect are intimately related to nonlinear localized states (solitons) in a
uniformly-periodic medium [16]. Indeed, one can view the soliton as a local
defect, which supports itself as a defect mode [17].

Defect modes have been studied intensively before, mainly in the
photonic-crystal community (see [1, 2, 18] for example). In photonic crystals,
the refractive-index variation is quite large, which greatly facilitates the creation
of defect modes. In “fabricated” one-dimensional waveguides with structured
defects, nonlinear defect modes have also been reported and analyzed [19,
20]. Recently, optically induced photonic lattices were successfully generated
[9, 21, 22]. In such lattices, the refractive-index variation is several orders
of magnitude smaller than that in photonic crystals. In addition, the linear
eigenvalue problem for defect modes in photonic lattices is different from that
in photonic crystals (see [1, 2, 23] and Eq. (4)). Thus one wonders how these
differences affect defect modes and their properties in photonic lattices. From
a broader perspective, the origin of defect modes is an important issue which
has not been well understood so far. How to design local defects to create
strongly localized defect modes is another significant issue that has not been
investigated in photonic lattices.

In this article, we comprehensively study localized defect modes in one-
dimensional optically induced photonic lattices. Using perturbation methods,
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we show that defect modes are generically created whenever a weak defect is
introduced. If the defect is attractive, i.e., the lattice light intensity at the defect
is higher than that of nearby sites, a defect mode bifurcates from the left edge
of every Bloch band. On the other hand, if the defect is repulsive, a defect mode
bifurcates from the right edge of every Bloch band. When the defect is not
weak, we numerically determine defect modes. In repulsive defects, we show
that strongly confined defect modes arise when the lattice intensity at the defect
site is nonzero rather than zero. In addition, as the potential strength increases,
defect modes disappear from lower bandgaps and appear in higher bandgaps.
In attractive defects, however, defect modes persist in every bandgap as the
potential strength increases. Using a piecewise-constant potential model, we
determine defect modes analytically for a general defect. The analytical results
qualitatively explain the main features of the numerical results.

2. Formulation of the problem

The physical situation we consider is that an ordinarily-polarized or
extra-ordinarily-polarized lattice beam with a single-site defect is launched into
a photorefractive crystal. This defected lattice beam is assumed to be uniform
along the direction of propagation. Meanwhile, an extra-ordinarily polarized
probe beam with a very low intensity is launched into the defect site, propagating
collinearly with the lattice beam. The probe beam is assumed to be mutually
incoherent with the lattice beam. In this situation, the nondimensionalized
model equation for the probe beam is [8, 24, 25]

iUz + Uxx − E0

1 + IL (x)
U = 0. (1)

Here U is the slowly-varying amplitude of the probe beam, z is the propagation
distance (in units of 2k1T 2/π2), x is the transverse distance (in units of T /π ),
E0 is the applied dc field (in units of π2/(k2

0n4
e T 2r33)),

IL = I0 cos2 x {1 + ε fD(x)} , (2)

is the intensity function of the photorefractive lattice (normalized by Id +
Ib, where Id is the dark irradiance of the crystal and Ib the background
illumination), I 0 is the peak intensity of the otherwise uniform photonic lattice
(i.e., far away from the defect site), f D(x) is a localized function describing
the shape of the defect, ε controls the strength of the defect, T is the lattice
spacing, k0 = 2π/λ0 is the wavenumber (λ0 is the wavelength), k1 = k0ne, ne

is the unperturbed refractive index, and r33 is the electro-optic coefficient of
the crystal. The dark irradiance Id corresponds to the thermal generation of
electrons in a photorefractive crystal kept in dark (no light illumination). In
typical experiments on photorefractive crystals, the background illumination
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Ib � Id , thus Id + Ib ≈ Ib. In this paper, we assume that the defect is
restricted to a single lattice site at x = 0. Thus, we choose function f D(x) as

fD(x) = exp(−x8/128).

Other choices of single-site defect functions f D give similar results. When
ε < 0, the lattice light intensity I L at the defect site is lower than that at the
surrounding sites. We call it a repulsive (negative) defect where light tends to
escape from the defect to nearby lattice sites. For ε = −0.08, −0.5, −0.81,
and −1, the corresponding lattice intensity profiles are displayed later in the
text (see Figures 5 and 8). When ε = −1, the lattice has no light at the defect
site, while in the other three cases, it still has light at the defect site but with a
reduced intensity. When ε > 0, the defect is called an attractive (positive)
defect where the lattice intensity I L at the defect site is higher than that at
the surrounding sites. The defect profile at ε = 1 is displayed in Figure 11.
Experimental creation of these lattices with attractive or repulsive defects by
use of the optical induction method is currently underway. Consistent with
our previous experiments [12], we choose parameters as follows: the lattice
intensity I 0 = 3Ib, lattice spacing T = 20 µm, λ0 = 0.5 µm, ne = 2.3, and
r33 = 280 pm/V. Then one x unit corresponds to 6.4 µm, one z unit
corresponds to 2.3 mm, and one E0 unit corresponds to 20 V/mm in physical
units.

Defect modes in Equation 1 are sought in the form

U (x, z) = e−iµzu(x), (3)

where function u(x) is localized in x and satisfies the linear equation

u′′(x) +
(

µ − E0

1 + IL (x)

)
u = 0 (4)

and µ is a propagation constant. Numerically, these modes can be determined
by expanding the solution u(x) into discrete Fourier series and then converting
Equation (4) into a matrix eigenvalue problem with µ as the eigenvalue.

To analyze defect modes in Equation (4), it is necessary to first understand
the dispersion relation and bandgap structure of a uniform lattice (i.e., ε = 0
in Equation (2)). In a uniform lattice, the Floquet theory says that the solution
of Equation (4) is of the form

u(x) = eikx p(x ; µ), (5)

where p(x ; µ) is a periodic function in x with the same period π as the
potential term I L, and µ = µ(k) is the dispersion relation. It is well known
that the dispersion relation contains an infinite number of branches in the first
Brillouin zone −1 ≤ k ≤ 1. Each branch corresponds to a Bloch band. The
gaps between adjacent branches are the bandgaps. At E0 = 6 and I 0 = 3,
this dispersion relation is displayed in Figure 1, while the bandgap structure



Defect Modes in Optically Induced Photonic Lattices 283

–1 –0.5 0 0.5 1

2

4

6

8

10

12

a b

c
d

k

µ

Figure 1. Dispersion relation of a uniform lattice at E0 = 6 and I 0 = 3. Bloch states at
circled locations are displayed in Figure 3.

at various values of E0 is presented in Figure 2. The semi-infinite bandgap,
which is to the far left, is the bandgap that persists when the photonic
lattice is removed. We will call the bandgap next to the semi-infinite
bandgap as the first bandgap, and the next one as the second bandgap, and
so on.

Bloch states on the edges of Bloch bands are also important because, as
we will see below, defect modes will bifurcate from such Bloch states under
weak-defect perturbations. On these edges, k = 0 or k = ±1. If k = 0, the
Bloch solution (5) is periodic with period π ; if k = ±1, it is also periodic
but with period 2π . In Figure 3, the first four Bloch states at E0 = 6 are
displayed. Of these four states, the first two are symmetric, and the last two
antisymmetric, in x.

Figure 2. Bandgap structure of a uniform lattice at I 0 = 3. The shaded region is the Bloch
bands. Bloch solutions at circled locations are displayed in Figure 3.
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Figure 3. The first four Bloch states u(x) at the edges of Bloch bands in a uniform lattice
with E0 = 6 and I 0 = 3. These Bloch states correspond to points marked as circles in
Figures 1 and 2. The µ values are µ = 2.5781 in (a), 2.9493 in (b), 4.7553 in (c), and 6.6011
in (d), respectively. The shaded stripes in these plots represent the locations of waveguides
corresponding to high intensities in the lattice.

3. Bifurcation of defect modes under weak defects

One of the main theoretical questions on defect modes is their origin, i.e., where
do defect modes bifurcate from? In this section, we analytically investigate
this question in the limit of weak defects where ε � 1 in Equation (2).
We will show that when 0 �= ε � 1, an infinite number of defect modes,
one in each bandgap, bifurcate out from the edges of Bloch bands. If ε >

0 (attractive defect), defect modes bifurcates simultaneously from the left
edge of each Bloch band, while if ε < 0 (repulsive defect), defect modes
bifurcate simultaneously from the right edge of each Bloch band. We will also
derive the eigenvalues of these defect modes asymptotically, and show that
these analytical formulas are in good agreement with the numerical data. The
analytical technique we will use is a perturbation method, which is stimulated
by the treatment of internal modes in nonlinear wave systems [27].
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Consider the general one-dimensional perturbed Hill’s equation

d2ψ

dx2
+ [µ + V (x)]ψ = ε f (x)ψ, (6)

where V (x) is a T-periodic function, f (x) is a localized defect function, and
ε � 1. When ε = 0, Equation (6) admits Floquet solutions of the form eikxg(x ;
µn(k)), where µ = µn(k) is the dispersion relation of the n-th Bloch band, k is
in the first Brillouin zone [−π/T , π/T ], and g(x ; µn(k)) is a T-periodic
function in x. All these Floquet modes {eikxg(x ; µn(k)), k ∈ [−π/T , π/T ],
n = 1, 2, . . .} form a complete set [26]. In addition, the orthogonality condition
between these Bloch modes is∫ ∞

−∞
e−i(k1−k2)x g∗(x ; µn(k1))g(x ; µm(k2)) dx = 2π δ(k1 − k2)δ(n − m). (7)

Here the Bloch functions have been normalized by∫ T
0 |g(x ; µn(k))|2 dx

T
= 1,

δ(·) is the δ-function, and the superscript “∗” represents complex conjugation.
When ε �= 0, localized eigenfunctions at discrete eigenvalues µ inside the gaps
of Bloch bands arise in Equation (6). These localized eigenmodes are called
defect modes, and their asymptotic expressions will be derived below.

When ε �= 0, the defect modes can be expanded into Bloch waves as

ψ(x) =
∞∑

n=1

∫ π/T

−π/T
αn(k)eikxg(x ; µn(k)) dk, (8)

where αn(k) is an unknown function to be determined. The integral equation
for αn(k) can be obtained by substituting Equation (8) into (6), which yields

αn(k)(µ − µn(k)) = 1

2π
ε

∞∑
m=1

∫ π/T

−π/T
αm(κ)Wm,n(k, κ) dκ, (9)

where the kernel W m,n(k, κ) is given by

Wm,n(k, κ) =
∫ ∞

−∞
e−i(k−κ)x g∗(x ; µn(k)) f (x)g(x ; µm(κ)) dx .

Denote

φn(k) = αn(k)(µ − µn(k)),

then this integral equation transforms to

φn(k) = 1

2π
ε

∞∑
m=1

∫ π/T

−π/T
φn(κ)

Wm,n(k, κ)

µ − µm(κ)
dκ. (10)
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Suppose the defect mode bifurcates from an edge point µ = µc of the n-th
Bloch band, and the defect eigenvalue has the asymptotic expansion

µ = µc + βε2 + O(ε3), (11)

where β is a constant to be determined. It is noted that at the edge point µ =
µc, k = 0 or ±π , and µ′

n(k) = 0. First, we consider the k = 0 case (the other
case will be treated in the end). The dispersion relation near this edge point
can be expanded as

µn(k) = µc + 1

2
µ′′

n(0)k2 + O(k4). (12)

When Equations (11) and (12) are substituted into Equation (10), we see that
only one integral in the summation with index m = n makes O(1) contribution,
and the rest of the integrals give O(ε) contribution. Thus,

φn(k) = 1

2π
ε

∫ π/T

−π/T
φn(κ)

Wn,n(k, κ)

µ − µn(κ)
dκ + O(ε). (13)

Note that the first term in the above equation is O(1) rather than O(ε), as we will
see below. For the denominator in the integral of Equation (13) not to vanish
on the k interval [−π/T , π/T ], we must require that sgn(β) = −sgn[µ′′

n(0)].
In that case, the denominator will have zeros at

k = ±ik0|ε| + O(ε2), k0 ≡
√

2|β|
|µ′′

n(0)| . (14)

Hence, the integral in Equation (13) can be evaluated by residues after its
contour is closed by an upper semicircle of radius 1. The integral on this
semicircle gives O(ε) contribution, while the residue gives O(1) contribution.
After simple calculations, Equation (13) becomes

φn(k) = − sgn(ε)

k0µ′′
n(0)

φn(ik0|ε|)Wn,n(k, ik0|ε|) + O(ε). (15)

Now we take k = ik0|ε| in the above equation. This equation is consistent only if

sgn(ε) = −sgn[Wn,n(0, 0)µ′′
n(0)]. (16)

In that case, we get the coefficient β in the defect-eigenvalue formula (11) as

β = −|Wn,n(0, 0)|2
2µ′′

n(0)
, (17)

where

Wn,n(0, 0) =
∫ ∞

−∞
f (x)|g(x ; µn(0))|2 dx . (18)
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Equations (11), (16), and (17) give the bifurcation conditions for defect modes
as well as their leading-order expressions.

In the above calculations, defect modes are assumed to bifurcate from the
edge point of a Bloch band where k = 0. If the defect mode bifurcates rather
from the edge of a Bloch band where k = ± π/T , then the only modification
to the above results is that the µn and µ′′

n terms in Equations (17) and (18) are
evaluated at k = π/T rather than k = 0. More specifically, the bifurcation
condition in this case is

sgn(ε) = −sgn[Wn,n(π/T, π/T )µ′′
n(π/T )], (19)

and the constant β in the defect-mode formula (11) is given by

β = −|Wn,n(π/T, π/T )|2
2µ′′

n(π/T )
, (20)

where

Wn,n(π/T, π/T ) =
∫ ∞

−∞
f (x)|g(x ; µn(π/T ))|2 dx . (21)

Finally, we apply the above analysis to Equation (4). When ε � 1, Equation (4)
can be expanded as

u′′(x) +
(

µ − E0

1 + I0 cos2 x

)
u = ε f (x)u + O(ε2), (22)

where

f (x) = − E0 I0 cos2 x fD

(1 + I0 cos2 x)2
. (23)

If E0 > 0, this function is always negative, thus W n,n(k, k) < 0. Then
Equations (16) and (19) indicate that bifurcation of defect modes from an edge
point of a Bloch band is possible only if ε has the same sign as µ′′ (or the
curvature) of the dispersion curve at the edge point. For the present model (4),
all the curvatures at the left (lower) edge points of Bloch bands have the
positive sign, while those at the right (upper) edge points have the negative
sign (see Figure 1). Thus defect-mode bifurcation is possible at all lower edge
points of Bloch bands when ε > 0 (i.e., attractive defect), while it is possible
at all upper edge points of Bloch bands when ε < 0 (i.e., repulsive defect).
The leading-order asymptotic formulae (11), (17), and (20) for the first four
branches of defect modes are plotted in Figure 4 (as dashed lines).

To verify these analytical results for weak defects, and more importantly, to
investigate defect modes when the defect is not weak, we now study defect
modes numerically. To be specific, we fix E0 = 6, and let ε vary from −1
to 1. We have obtained the defect modes at each ε value, and the entire
diagram of defect eigenvalues versus ε is plotted in Figure 4 (as solid lines).



288 F. Fedele et al.

2 4 6 8
–1

–0.5

0

0.5

1

µ

ε

Figure 4. Bifurcation of defect modes with defects (2) at E0 = 6 and I 0 = 3. Solid lines:
numerical results; dashed lines: analytical results. The shaded region is the Bloch bands.

We see that when ε increases from zero, a defect mode bifurcates from the
left edge of each Bloch band into the bandgap. On the other hand, when ε

decreases from zero, a defect mode bifurcates from the right edge of each
Bloch band into the bandgap. In the latter case, there are no defect modes in the
semi-infinite bandgap. These results agree perfectly with the above perturbation
analysis. Good quantitative agreement between the asymptotic formula (11)
and numerical values can be observed in Figure 4 as well, especially at small ε

values. When |ε| is not small, an interesting phenomenon in Figure 4 is that a
defect branch can merge into the edge of a Bloch band and disappears. This
happens with repulsive defects (ε < 0). For instance, the branch in the first
bandgap terminates on the right edge of the bandgap at ε ≈ −0.83. This
implies that strong repulsive defects not necessarily favor the creation of defect
modes.

We would like to make a remark here. The above results on defect-mode
bifurcations are closely related to the bifurcation of gap solitons in a uniform
periodic lattice [16]. In that situation, it was shown that for focusing nonlinearity,
small-amplitude gap solitons bifurcate from the left edge of each Bloch band,
while for defocusing nonlinearity, small-amplitude gap solitons bifurcate from
the right edge of each Bloch band. If one considers a gap soliton as a defect in
a uniform lattice, then our results and those in [16] agree in spirit. Minor
differences exist between the two cases though. For instance, in the gap-soliton
case, two gap solitons bifurcate out together from the edge of a Bloch band,
while in the present case, only one defect mode bifurcates out. The reason is
that in the gap-soliton case, due to the uniformity of the lattice (no defects),
the center of gap solitons can be either on-site or off-site. But in the present
case, the defect destroys the uniformity of the lattice, and the center of defect
modes is always at the center of the defect.
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Figure 5. Upper row: intensities of three defected photonic lattices with ε = −0.08, −0.5, and
−0.81; lower row: the corresponding defect modes u(x) in the first bandgap. The shaded stripes
in the lower row represent the locations of large lattice intensities. Here E0 = 6 and I 0 = 3.

4. Strongly confined defect modes in repulsive defects

For some applications, it is often desirable to create defect modes that are
strongly confined at the defect. If the defect is attractive, defect modes are
generally more confined if the defect is stronger (i.e., ε is larger in Equation (2)).
This is because an attractive defect acts like a waveguide—the stronger it is, the
deeper the waveguide is, and hence the more confined the defect mode is. But
with repulsive defects, do stronger defects give more confined defect modes?
Apparently not. To demonstrate, let us consider the defect-mode branch in the
first bandgap of Figure 4. This branch exists when −0.83 < ε < 0. At three
representative ε values −0.08, −0.5 and −0.81, the lattice-intensity profiles
and the corresponding defect modes are displayed in Figure 5. We see that
when |ε| is small, the defect mode is rather weakly confined because the
defect eigenvalue is rather close to the right edge of the first Bloch band
(see Fig. 5, left column). As |ε| increases, the mode becomes more confined
(see Fig. 5, middle column). As ε approaches −0.83, however, the defect
eigenvalue approaches the left edge of the second Bloch band, and the defect
mode becomes less confined again (see Fig. 5, right column). The strongest
confinement of defect modes is found when ε ≈ −0.5 (see Fig. 5, middle
column). These findings are rather interesting, as they show that the most
localized defect mode arises when the lattice intensity at the defect site is
nonzero rather than zero. Such results may have important implications for
applications of defect modes in photonic lattices.
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Figure 6. Evolution of a Gaussian beam launched at zero (b) and non-zero (c) angles into a
defected photonic lattice (a). Here I 0 = 3, E0 = 6, and ε = −0.5 in Equation (1). The initial
phase gradient in (c) is k = 1.

The existence of localized defect modes in photonic lattices with repulsive
defects is an interesting phenomenon which merits experimental verification.
In experiments, if the input probe beam takes the profile of a defect mode and
is launched at zero angle into the defect site, then it will propagate stationarily
and not diffract at all. However, Gaussian input beams are more customary in
experiments. In addition, the launch angle may not be precisely zero. Thus it is
desirable to investigate the evolution of a Gaussian input beam launched at
small angles into a defect and determine if the beam can be trapped by a
repulsive defect or not. For this purpose, we simulate Equation (1) numerically
with I 0 = 3, E0 = 6, and ε = −0.5, and take the initial condition as a tilted
Gaussian beam

U (x, 0) = e− 1
2 x2+ikx , (24)

whose intensity profile resembles the central hump of the defect mode at E0 =
6 and ε = −0.5 (see Fig. 5, lower middle panel). The phase gradient k here is
proportional to the launch angle of the Gaussian beam. Our simulation uses
the pseudo-spectral method. At zero launch angle (k = 0), we found that a vast
majority of the input-beam’s energy is trapped inside the defect and propagates
stationarily (see Fig. 6(b)). Next we take k = 1, which corresponds to a launch
angle of 0.58◦ with physical parameters listed earlier. In this case, most of
the probe light is still trapped inside the defect site. However, the trapped
probe light undergoes robust snake-like oscillations as it propagates through
the defect (see Fig. 6c). Regarding the origin of these oscillations, we found
that they are due to the beating between two defect modes existing in the first
and second bandgaps at ε = −0.5 (see Fig. 4). Indeed, these defect modes
have µa = 3.664 and µb = 6.782, whose beating period 2π/(µb − µa) = 2.01
is very close to the observed period of oscillations in (c).

5. Dependence of defect modes on the applied dc field E0

In this section, we examine how the applied dc field value E0 affects defect
modes. We will consider the repulsive and attractive defects separately. For
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Figure 7. The applied dc field parameter E0 versus the defect-mode eigenvalue µ for a
repulsive defect with ε = −1 and I 0 = 3. The shaded region is the Bloch bands. Letters “S” and
“A” indicate branches of symmetric and antisymmetric defect modes. Defect modes at points
marked by circles and labeled by letters “b, c, d” are displayed in Figures 8(b)–(d), respectively.

simplicity, we fix ε = ± 1, and examine defect modes at various values of E0.
At other ε values, the defect-mode behavior is expected to be qualitatively the
same.

5.1. Repulsive-defect case

First, we consider the repulsive defect with ε = −1, where the lattice intensity
at the defect is zero (see Fig. 8(a)). For this defect, we have obtained the defect
modes at various values of E0, and the results are displayed in Figures 7 and 8.
In Figure 7, eigenvalues µ of the defect modes are shown. It is seen that
these defect eigenvalues lie inside bandgaps of the uniform photonic lattice.
In addition, each branch of the defect modes is born on one boundary of a
bandgap, and dies on the other boundary as E0 varies. Specifically, the branch
in the first bandgap exists when 0 < E0 < 2.8; the lower branch in the second
bandgap exists when 0 < E0 < 7.5; while the upper branch in the second
bandgap exists when 5.3 < E0 < 10.3. Note that these defect states do not exist
in the semi-infinite bandgap. More interestingly, when the applied voltage E0

increases, defect modes disappear from lower bandgaps and appear in higher
bandgaps. In other words, defect modes move from lower bandgaps to higher
ones as E0 increases. In Figure 8, three defect modes on three different
branches are displayed. Their corresponding (E0, µ) values are marked as
circles in Figure 7. Of these three defect modes, the one in Figure 8(d) is
relatively confined, while the other two are quite broad. Figure 8 also reveals
that the lower branch in the second bandgap of Figure 7 gives antisymmetric
defect modes, while the other two branches give symmetric defect modes.

The existence of these defect modes as well as their shape and symmetry
properties have a profound effect on linear probe-light propagation in the
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Figure 8. (a) Intensity profile I L(x) of a photonic lattice with a repulsive defect of ε = −1.
(b–d) three defect modes at (µ, E0) values marked by circles in Figure 7. Specifically, (E0, µ) =
(1.2, 1.6042) in (b), (3.5, 5.8122) in (c), and (7.5, 7.9974) in (d). The shaded stripes in (b–d)
represent the locations of large lattice intensities. Here I 0 = 3.

underlying defected photonic lattices. For a Gaussian input beam, its evolution
critically depends on whether a defect mode resembling the input Gaussian
beam exists under the same physical conditions. To demonstrate, we take an
initial Gaussian beam as

U (x, 0) = e− 1
3 x2

,

which resembles the central hump of the defect mode in Figure 8(d), and
simulate its evolution under various E0 values. The simulation results at five
representative E0 values 0, 1.5, 5, 7.5, and 10 are displayed in Figure 9(b)–(f),
while the lattice intensity field is shown in Figure 9(a) (which is the same as
that in Fig. 8a but plotted differently). At small values of E0, we found that the
Gaussian beam strongly diffracts and quickly becomes invisible (see Fig. 9(b,
c)). Similar behavior persists as E0 increases (see Fig. 9d) until it reaches
a value of about 7.5, when a large portion of the initial beam’s energy is
trapped inside the defect site and propagates stationarily (see Fig. 9(e)). As
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Figure 9. Evolution of a Gaussian beam in a photonic lattice with a repulsive defect of ε =
−1 at I 0 = 3 and various values of E0. (a) intensity pattern of the lattice; (b–f) evolutions of
a Gaussian beam at E0 = 0, 1.5, 5, 7.5, and 10, respectively.

E0 increases beyond 7.5, however, strong diffraction of the probe beam is
seen again (see Fig. 9(f)). Hence, an optimal lattice potential as controlled
here by E0 could better trap defect modes. These results indicate that the
trapping of the probe light in Figure 9(e) could not be attributed to either the
simple guidance due to increased lattice potential or the nonlinear self-action
of the probe beam itself. Rather it must be attributed to the repeated Bragg
reflections inside the photonic lattice under certain phase-matching conditions,
as the Gaussian beam matches the localized mode of the defect. This bears
strong resemblance to localized modes in photonic crystals [1, 2, 23].

5.2. Attractive-defect case

Next, we consider the case of attractive defects. We fix ε = 1 and I 0 = 3,
and consider the effect of the dc field E0 on defect modes. The lattice-field
profile for this ε value can be seen in Figure 11(a). In this case, the usual
light-guiding theory predicts one defect mode that is largely confined in the
defect. This is confirmed in Figure 10, where the branch of defect modes
in the semi-infinite bandgap is the one we normally anticipate. What is
interesting is that in addition to this expected defect mode, a number of other
defect modes appear in higher bandgaps as well. All these branches of defect
modes persist when E0 increases, in contrast with the repulsive (ε < 0) case
where defect-mode branches terminate as E0 increases. In Figure 11, three defect
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Figure 10. The applied dc field parameter E0 versus the defect-mode eigenvalue µ for for an
attractive defect with ε = 1 and I 0 = 3. The shaded region is the Bloch bands. Letters “S” and
“A” indicate branches of symmetric and antisymmetric defect modes. Defect modes at points
marked by circles and labeled by letters “b, c, d” are displayed in Figures 11(b)–(d) respectively.
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Figure 11. (a) Intensity profile of a photonic lattice with an attractive defect of ε = 1. (b–d)
three defect modes at (µ, E0) values marked by circles in Figure 10. Specifically, (E0, µ) =
(6, 1.9912) in (b), (6, 4.4278) in (c), and (6, 7.5518) in (d). The shaded stripes in (b–d)
represent the locations of large lattice intensities. Here I 0 = 3.
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Figure 12. Schematic profile of a piecewise-constant periodic potential I L(x) with a defect.

modes at E0 = 6 are displayed. The first one in the semi-infinite bandgap is
quite localized. Those in higher bandgaps are broader, mainly because their
eigenvalues are closer to the edges of bandgaps (see Equation (25)).

6. Defect modes in piecewise-constant potentials

In the above section, we observed some interesting features in defect modes.
For instance, with a repulsive defect, each branch of defect modes appears
or disappears as E0 increases. To better understand these behaviors, in this
section, we use a piecewise-constant potential to approximate the one in (2).
By doing so, we could calculate defect modes analytically, which will provide
much insight on properties of defect modes. In photonic crystals, defect modes
in piecewise-constant potentials have been analytically obtained [1, 2, 23]. But
the eigenvalue problem there is different from the one in Equation (4) here,
thus their results could not be copied over.

The piecewise-constant potential we use is illustrated in Figure 12, where

IL (x) =




0, nT + 1
2 D < |x | <

(
n + 1

2

)
T + 1

2 D, n = 0, 1, 2, . . . ,

I0,
(
n + 1

2

)
T + 1

2 D < |x | < (n + 1)T + 1
2 D, n = 0, 1, 2, . . . ,

ID, |x | < 1
2 D,

(25)

T and I 0 are the period and light intensity of the lattice away from the defect,
and D and I D are the length and intensity of the defect site. For convenience,
we cast Equation (4) in the form

uxx + {µ + V (x)}u = 0. (26)

Then, the potential function V (x) = −E0/{1 + I L(x)} is the following
piecewise-constant function

V (x) =




V1, nT + 1
2 D < |x | <

(
n + 1

2

)
T + 1

2 D, n = 0, 1, 2, . . . ,

V2,
(
n + 1

2

)
T + 1

2 D < |x | < (n + 1)T + 1
2 D, n = 0, 1, 2, . . . ,

VD, |x | < 1
2 D,

(27)
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where

V1 = −E0, V2 = − E0

1 + I0
, VD = − E0

1 + ID
. (28)

To calculate defect modes in this potential, we first construct the transfer matrix
M of the uniformly-periodic lattice (without the defect) from the beginning to
the end of an interval of length T . Because this matrix depends on the starting
point of the T-length interval, we set this interval to start at the beginning of a
V 1 cell. Simple calculations show that the corresponding transfer matrix M is

M =
(

M11 M12

M21 M22

)
, (29)

where

M11 = cos θ1 cos θ2 −
√

µ + V1√
µ + V2

sin θ1 sin θ2, (30)

M12 = 1√
µ + V1

sin θ1 cos θ2 + 1√
µ + V2

cos θ1 sin θ2, (31)

M21 = −
√

µ + V1 sin θ1 cos θ2 −
√

µ + V2 cos θ1 sin θ2, (32)

M22 = cos θ1 cos θ2 −
√

µ + V2√
µ + V1

sin θ1 sin θ2, (33)

and

θ1 = 1

2
T

√
µ + V1, θ2 = 1

2
T

√
µ + V2. (34)

It can be easily checked that det(M) = 1. Thus, the eigenvalues of matrix M are

λ = 1

2

[
Tr(M) ±

√
Tr2(M) − 4

]
, (35)

while the Floquet exponent ik of a uniform lattice (as in Equation (5)) is given
by the relation

eikT = λ. (36)

For µ to be inside a Bloch band, solution k of the above equation must be
purely real. Thus, Bloch bands are specified by the relation |Tr(M)| ≤ 2, and
Tr(M) = ±2 gives band edges. The dispersion relation µ = µ(k) of a uniform
lattice follows from Equation (36) as cos kT = 1

2 Tr(M), i.e.,

cos kT = cos θ1 cos θ2 − 1

2

[√
µ + V1√
µ + V2

+
√

µ + V2√
µ + V1

]
sin θ1 sin θ2, (37)

while the corresponding Bloch waves u(x) are of the form (5) with p(x ; µ)
being a T-periodic function in x.
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Now we consider defect modes. Due to the symmetric nature of the defect,
defect modes are either symmetric or antisymmetric. First we discuss symmetric
defect modes. In the defect region |x | < 1

2 D, these modes have the form

u(x) = h cos
√

µ + Vd x, (38)

where h is some constant. For this solution to decay as |x | → ∞, the vector
[u(x), u′(x)]T evaluated at x = 1

2 D must be an eigenvector of the transfer
matrix M with eigenvalue λ such that |λ| < 1. Thus,

M

(
u

u′

)
x=D/2

= λ

(
u

u′

)
x=D/2

. (39)

The first equation of (39) gives λ as

λ = M11 − M12

√
µ + Vd tan θD, (40)

where

θD = 1

2
D

√
µ + Vd . (41)

On the other hand, recalling det(M) = 1, the two eigenvalues of M thus are λ

and 1
λ
. These two eigenvalues satisfy the trace relation

λ + 1

λ
= M11 + M22. (42)

When Equations (30)–(33) and (40) are substituted into the above relation, we
then get the eigenvalue µ of symmetric defect modes through the following
algebraic equation

(V2 − V1)
√

µ + Vd tan θD =
√

µ + V1
{
µ + V2 + (µ + Vd) tan2 θD

}
cot θ1

+
√

µ + V2
{
µ + V1 + (µ + Vd) tan2 θD

}
cot θ2.

(43)
Similarly, we can find the eigenvalue µ of antisymmetric defect modes through
the equation

(V1 − V2)
√

µ + Vd cot θD =
√

µ + V1
{
µ + V2 + (µ + Vd) cot2 θD

}
cot θ1

+
√

µ + V2
{
µ + V1 + (µ + Vd) cot2 θD

}
cot θ2.

(44)
The above two equations give all defect modes in the piecewise-constant
potential (25). The reader is reminded that when plotting µ from the above
two equations, one should check that the corresponding λ from Equation (40)
meets the condition |λ| < 1. Otherwise, the resulted solution u(x) is unbounded
as |x | → ∞ and hence is not a defect mode.
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Figure 13. The applied dc field parameter E0 versus the defect-mode eigenvalue µ

for the piece-wise-constant potential with a repulsive defect. Here the parameters are
T = π, D = 1

2 π, I0 = 3, and I D = 0. The shaded region is the Bloch bands. The dashed line
is a solution of Equation (43) but does not give localized defect modes. Letters “S” and “A”
indicate branches of symmetric and antisymmetric defect modes, respectively.

As an example, we take specific parameter values T = π, D = 1
2π, I0 = 3,

and I D = 0, which give a potential resembling the one for a repulsive defect with
ε = −1 in Figure 8(a). For these parameters, the defect-mode eigenvalues as
given by formulae (43), (44) and the condition |λ| < 1 are plotted in Figure 13
(solid lines). In the first bandgap, we found a branch of symmetric defect
modes that exists when 0 < E0 < 5.2. In the second bandgap, there are
two defect-mode branches. The lower one is antisymmetric and exists when
0 < E0 < 16.7, while the upper one is symmetric and exists when 6.9 < E0 <

21.3. These results are in perfect qualitative agreement with those in Figure 7
for the original potential (2). The third bandgap in Figure 13 is interesting
in that as E0 increases, this bandgap first opens up, then closes (at E0 ≈
16.7), then opens up again. In this bandgap, Figure 13 shows a branch of
antisymmetric defect modes. In the fourth bandgap, a branch of symmetric
defect modes is found. In Figure 7 with the original potential, defect modes in
the third and higher bandgaps were not examined.

One of the advantages of these analytical results is that they enable us to
better understand the birth and death of defect-mode branches in repulsive
defects. As an example, we reconsider Figure 13. In the first bandgap, a
branch of symmetric defect modes merges into the edge of the Bloch band and
disappears at E0 = 5.2. This branch is a solution of Equation (43). Prior to
merging, |λ| < 1 (as can be checked from Equation (40)). At the point of
merging, |λ| = 1. Interestingly, we found that Equation (43) also admits other
solutions above E0 = 5.2. These solutions are also plotted in Figure 13 as a
dashed curve. This dashed curve connects with the defect-mode branch (solid
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curve) on the edge of the Bloch band at E0 = 5.2, and it persists for all E0 >

5.2 values. However, on this dashed curve, |λ| > 1. Thus, the dashed curve is
not true defect modes. Rather, it corresponds to solutions u(x) of Equation
(26), which grow exponentially as |x | → ∞. These results indicate that when
a branch of defect modes disappears, it has to merge into the boundary of
a Bloch band. After merging, localized defect modes become nonlocalized
solutions and thus disappear.

7. Summary

In this paper, localized defect modes in one-dimensional optically induced
photonic lattices are analyzed in detail. It is found that these defect modes
bifurcate out from the edges of Bloch bands whenever a weak defect is present.
If the defect is attractive, a defect mode bifurcates from the left edge of every
Bloch band; while if the defect is repulsive, a defect mode bifurcates from the
right edge of every Bloch band. When the defect is not weak, defect modes are
studied by numerical methods. It is shown that in a repulsive defect, strongly
localized defect modes arise when the lattice light intensity at the defect site is
nonzero rather than zero. In addition, as the potential strength increases, defect
modes disappear from lower bandgaps and appear in higher bandgaps. In an
attractive defect, however, defect modes persist in every bandgap as the potential
strength increases. Using a piecewise-constant potential model, defect modes
are calculated analytically. The analytical results qualitatively explain the main
features of numerical results. Experimental work on generation of lattices with
defects and formation of defect modes as predicted above is currently underway.
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