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New solitary-wave structures in two-dimensional periodic media are obtained in the
context of a two-dimensional nonlinear Schriidinger equation with a periodic potential.
These new structures bifurcate from the edges of Bloch bands with two linearly indepen­
dent Bloch modes. Away from these band edges, superposition of these Bloch modes,
modulated by nonlinear effects, give rise to composite solitary waves with distinctive
intensity and phase profiles such as vortex arrays. Using perturbation methods, coupled
nonlinear envelope equations for the two Bloch waves near the band edges are analyt­
ically derived. Numerically, these composite solitons are directly computed both near
and far away from the band edges, and the analytical results are fully confirmed.

1. Introduction

Nonlinear wave propagation in periodic media is attracting a lot of attention these
days. This was stimulated in part by rapid advances in optics, Bose-Einstein conden­
sation, and related fields. In optics, various periodic and quasi-periodic structures
(such as photonic crystals, photonic crystal fibers, periodic waveguide arrays and
photonic lattices) have been constructed by ingeneous experimental techniques, with
applications to light routing, switching and optical information processing 1,2,3,4,5,6.

This periodic medium creates a wide range of new phenomena for light propagation,
even in the linear regime. For instance, the diffraction of light in a periodic medium
exhibits distinctively different patterns from homogeneous diffraction 3. If the peri­
odic medium has a local defect, this defect can guide light by a totally new physical
mechanism called repeated Bragg reflections 2,7,8. When the nonlinear effects be­
come significant, say with high-power beams or in strongly nonlinear materials such
as photorefractive crystals, the physical phenomena would be even richer and more
complex, and their understanding is far from complete yet. In Bose-Einstein con­
densates, one direction of recent research is to load these condensates into periodic
optical lattices 9. This problem and the above nonlinear optics problems are closely
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related, and are often analyzed together in the mathematical community.
Solitary waves play an important role in nonlinear wave systems. These waves

are nonlinear localized structures which propagate without change of shape. In
physical communities, they are often just called solitons, which we do occasion­
ally in this paper as well. If a physical system admits solitary waves, it often has
important consequences. For instance, optical fibers can support solitary waves
(pulses) when the nonlinearity of the pulse balances linear dispersion. This fact led
to soliton-based fiber communication systems, which greatly propelled the telecom­
munication industry in the end of the last century. In one-dimensional periodic
media, solitary waves (called lattice solitons) also exist, and they have been ob­
served in optical experiments 3,10,11,12. But two- (or higher-) dimensional periodic
media can support a much wider array of solitary wave structures which have no
counterpart in one-dimensional systems. One example is the vortex lattice solitons
which was predicted in 13,14 and later observed in 15,16. These vortex solitons lie
in the semi-infinite bandgap of the periodic system. Recently, Bartal, et al. 17

reported the observation of vortex solitons which lie in a higher bandgap of a peri­
odic medium, and Makazyuk, et al. 18 reported the observation of linear localized
light patterns which comprise of dipole or vortex-cell arrays in a defected 2D lattice.
Even though these two observations are quite different, their common feature is that
Bloch-wave superpositions were essential for their explanations. These observations
indicate that Bloch-wave superpositions can create novel and intricate solitary-wave
patterns. However, it is not clear at the moment what are all the possible solitary­
wave structures this Bloch-wave superposition can create, and which edges of Bloch
bands these structures can bifurcate from. In-depth analytical studies on these new
structures are totally missing as well.

In this paper, we analyze all possible solitary-wave structures due to Bloch-wave
superpositions in two-dimensional periodic media both analytically and numerically,
using the two-dimensional nonlinear Schrodinger equation with a periodic potential
as the mathematical model. First, we identify edges of Bloch bands which admit
two linearly independent Bloch modes. Then using perturbation methods, we derive
coupled nonlinear equations for envelopes of these superposing Bloch waves near
these band edges. We find that these envelope equations admit solutions which lead
to novel solitary-wave structures such as vortex-array solitons if the nonlinearity is
of the same sign as the second-order dispersion coefficients of Bloch waves on the
underlying band edges. Hence these composite solitons exist for both focusing
and defocusing nonlinearities. We have also computed these composite solitons
directly by numerical methods both near and further away from the band edges.
In the former case, the numerical results are in full agreement with the analytical
calculations.
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2. The Mathematical Model

The mathematical model for the study of solitary waves in periodic media is the two­
dimensional (2D) nonlinear Schr"odinger (NLS) equation with a periodic potential:

iUt + Uxx + Uyy - V(x, y)U + crlUI2U = 0, (1)

where V(x, y) is the periodic potential, and cr = ±1 is the sign ofnonlineariti This
model naturally arises for light propagation in a periodic Kerr medium, and for Bose­
Einstein condensates trapped in an optical lattice 9. In certain optical materials
(such as photorefractive crystals), the nonlinearity is of a different (saturable) type.
But it is known that these different types of nonlinearities give qualitatively similar
results 14,15,16,19.

In this article we take the periodic potential as

(2)

whose periods along the x and y directions are both equal to 7r. This potential
is separable, which facilitates our theoretical analysis. In addition, without loss of
generality, when specific computations are carried out, we always set Va = 6.

Solitary waves in Eq. (1) are sought in the form

U(x,y,t) = u(x,y)e-ipt, (3)

where amplitude function u(x, y) is a solution of the following equation:

uxx + Uyy - [F(x) + F(y)]u + f.LU + crlul2u = 0,

and JL is a propagation constant.

3. Bloch bands and band gaps

When function u(x, y) is infinitesimal, Eq. (4) becomes a linear equation:

Uxx + Uyy - [F(x) + F(y)]u + f.LU = O.

(4)

(5)

(6)

Solutions of this linear equation are the Bloch modes, and the corresponding propa­
gation constants f.L form Bloch bands. Since the potential in (6) is separable, Bloch
solutions and Bloch bands of the 2D equation (6) can be obtained from solutions
of a 1D equation. Specifically, the 2D Bloch solution u(x,y) of Eq. (6) and the
propagation constant f.L can be split into the following form:

u(x, y) = p(x; wa)p(y; Wb), f.L = Wa + Wb,

where p( x; w) is a solution of the following 1D equation:

Pxx - F(x)p + wp = O.

Eq. (8) is equivalent to the Mathieu equation. Its solution is

p(x;w) = eikxp(x;w),

(7)

(8)

(9)
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where p(x;w) is periodic with period 1r, and

w = w(k) (10)

is the 1D dispersion relation. This dispersion diagram is shown in Fig. l(a) (for
Va = 6). The bandgap structure at various values of Va are shown in Fig. l(b).
The four Bloch waves at both edges of the lowest two Bloch bands ate displayed in
Fig. 2.

(b)
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Figure L (a) Dispersion curves of the ID equation (8) with Va = 6; (b) Bloch bands (shaded
regions) and bandgaps at various values of potential levels Vo in the ID equation (8).

Using these 1D dispersion results and the above connection between 1D and 2D
Bloch solutions, we can construct the dispersion surfaces and band gap structures
for the 2D problem (6), and the results are shown in Fig. 3. In Fig. 3 (a), the
dispersion surfaces of the 2D problem are displayed at 110 = 6. The 2D bandgap
structure at various values of Va are shown in Fig. 3 (b). Unlike the 1D case, for a
given Va value, there are only a finite number of bandgaps in the 2D problem. The
first bandgap appears only when Va > 1.40, the second bandgap appearing when
Va > 4.13, etc. As Va increases further, more bandgaps will be found.

Now we examine the 2D Bloch solutions on the edges of Bloch bands. To
illustrate, we consider the points A, B, C, D and E marked in Fig. 3 (b), where
Va = 6. At each of points A and B, there is a single Bloch solution, which is
symmetric along the x and y directions, Le., u(x,y) = u(y,x). In view of the
relation (7), it is easy to see that the Bloch solution at point A is p(x; Wl)P(y; Wl),

where Wl marked in Fig. l(a), and p(XjWz) is shown in Fig. 2(a). For convenience,
we denote point A as "1 + 1". Similarly, the 2D Bloch solution at point B is
p(x;wz)p(y;wz), where Wz marked in Fig. l(a), and p(x;wz) is shown in Fig. 2(b).
Point B is 2 +2 in our notations. Points C, D, E are different from A and B and are
much more interesting, however. At these points, there are two linearly independent
Bloch solutions, u(x, y) and u(y, x). For instance, at point C, these two solutions are
p(x; wI)p(y; W3) and p(y; Wl)P(X; W3), where W3 is marked in Fig. l(a), and p(x; W3)
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Figure 2. The first four 1D Bloch waves at edges of Bloch bands marked by letters WI, W2, W3 and
W4 in Fig. l(a). (a): WI = 2.063182; (b): W2 = 2.266735; (c): W3 = 5.165940; (d): W4 = 6.81429.
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Figure 3. (a) Dispersion surfaces of the 2D problem (6) at Vo = 6; (b) the 2D bandgap structure
for various values of Vo.

is shown in Fig. 2(c). Point C is "1+3". The solution P(X;Wl)P(Y;W3) is displayed
in Fig. 4(a). Point D is "2+4", where the two linearly independent Bloch solutions
are p(x; W2)P(Y; W4) and p(y; W2)P(X; W4), the former of which is displayed in Fig.
4(b). Point E is "1+5'~. Because of the existence of two linearly independent Bloch
solutions, their linear superposition remains a solution. These superpositions can
give rise to interesting composite patterns such as vortex arrays, as has been pointed
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Figure 4. (a) A 2D Bloch mode at point C marked in Fig. 3; (b) A 2D Bloch mode at point D
marked in Fig. 3.

The above superposing Bloch solutions exist on band edges with infinitesimal
amplitudes. When amplitudes of these solutions increase, these Bloch solutions
may localize and form solitary-wave structures. These solitary waves exist not on
band edges, but inside bandgaps. In the next section, we analyze these solutions by
perturbation methods in the limit when these solutions lie near the Bloch bands.

4. Asymptotic derivation of coupled envelope equations

In this section, we develop an asymptotic theory to analyze small-amplitude solitary
waves bifurcating from superimposing Bloch waves near band edges in Eq. (4).

Let us consider a 2D band edge /-Lo = WO,l + WO,2, where WO,n (n = 1,2) are 1D
band edges, two linearly independent Bloch modes P1(X)P2(Y) and P1(Y)P2(X) exist
at the edge, and Pn(x) = p(x; WO,n) (n = 1,2). Notice that

(11)

since WO,n is a 1D band edge, and L = 7r is the period of the potential F(x). We
take an infinitesimal solution u(x,y) of Eq. (4) which is a linear superposition of
these two Bloch modes. When u(x, y) is small but not infinitesimal, we can expand
the solution u(x,y) ofEq. (4) into a multi-scale perturbation series:·

(12)

(13)

where

(14)
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TJ = ±1, and X = lOX, Y = €y. Substituting the above expansions into Eq. (4), the
equation at 0(10) is automatically satisfied. At order 0(102), the equation is

( (Puo 02uO)Ulxx + Ulyy - (F(x) + F(Y))Ul + /-lOUl = -2 oxoX + oyoY .

Its homogeneous equation has two linearly independent solutions, PI (X)P2(Y)' and
PI (Y)P2(X). In order for the inhomogeneous equation (15) to admit a solution, the
following Fredholm conditions

(16)

(17)

must be satisfied. Here the integration length is 2L rather than L since the ho­
mogeneous solutions Pl(X)p2(Y) and P2(X)Pl(Y) may have periods 2L along the x

and Y direction (see Eq. (ll)). It is easy to check that these conditions are indeed
satisfied automatically, thus we can find a solution for Eq. (15) as

OAI OAI oA2 oA2

Ul = ax Vl(X)P2(Y) + ax V2(Y)Pl(X) + ax V2(X)Pl(Y) + ax Vl(Y)P2(X), (18)

where vn(x) is a periodic solution of equation

Vn,xx - F(x)vn + WO,nvn = -2Pn,x, n = 1,2.

At 0(103), the equation is

Substituting the expressions for Uo and Ul into this equation, we get

- [U2xx + U2yy - (F(x) + F(Y))U2 + /-lOU2]=

(19)

(20)
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Here the overbarrepresents complex conjugation. Before applying the Fredholm
conditions to this inhomogeneous equation, we notice the following identities:

and

where

n = 1,2,

(22)

(23)

(24)

(25)

Identity (22) holds since PI(X) and P2(X) are the eigenfunctions of the self-adjoint
linear Schr" odinger operator with different eigenvalues. Identity (23) can be con­
firmed by taking the inner product between Eq. (19) and functions Pn(x). Identity
(24) can be verified by expanding the solution of Eq. (8) around the edge of the
Bloch band W = WO,n' Utilizing these identities and (11), the Fredholm condi­
tions for Eq. (21) finally lead to the following coupled nonlinear equations for the
envelope functions Al and A2:

Here

{2L (2Lio io pt(x)p~(y) dxdy
a = 2£ 2£ '

1 1 pf(x)p~(y) dxdy

{2£ (2Lin in Pf(x)p~(x)Pf(Y)p~(y) dxdy
{3- 0 0- 2£ 2L '

1 1 pf(x)p~(y) dxdy

(26)

(27)

(28)

(29)
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and

{2L (2LJo Jo pf(X)p2(X)p~(Y)PI(Y) dxdy

'Y = {2L (2LJo Jo pf(x)p~(y) dxdy

Notice that a and /3 are always positive, but 'Ymay be positive or negative.
The coefficients in Eqs. (26)-(27) can be readily determined from solutions of

the ID equation (8). In particular, at point C,

DI = 0.434845, D2 = 2.422196, a = 0.142814, /3 = 0.032511, 'Y= 0; (31)

at point D,

DI = 0.586799, D2 = 13.264815, a = 0.086031, /3 = 0.029655, 'Y= 0;(32)

and at point E,

DI = 0.434845, D2 = 15.793172, Q = 0.971951, /3= 0.162160, 'Y= -0.054081. (33)

It is noted that near band edges where a single Bloch mode exists (such as points A
and B in Fig. 3), the envelope equation for this single Bloch mode can be more easily
derived. In this case, this single Bloch mode must be of the form p(x; wn)p(y; wn),

where Wn is a band edge in the ID problem (8). The resulting envelope equation
for this Bloch mode is

(82AI 82AI) 2DI 8X2 + 8y2 + 1]AI + (molAII Al = 0,

where

{2L (2L_ Jo Jo pt(x)pt(Y) dxdy
ao - 2L 2L '

1 1 pf(x)pI(Y) dxdy

(35)

and PI(X) = p(x;wn).

From the above asymptotic solutions, we can calculate the power of the corre­
sponding composite solitary wave as € -4 0 (i.e. on the band edge). Details will be
omitted here.

5. Solutions of the coupled envelope equations

Envelope equations (26)-(27) are the key results of this article. They have important
consequences. First, they show that solitary waves are possible only when 1]DI <
0,1]D2 < 0. In this case, /llies in the bandgap of the linear system as expected (see
Eq. (13). Second, they show that solitary waves exist only when the dispersion
coefficients DI' D2 and the nonlinearity coefficient a are of the same sign. For
instance, at point C in Fig. 3 where DI > 0, D2 > 0, solitary waves exist only when
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cr > 0, i.e., for focusing nonlinearity, not for defocusing nonlinearity. The situation
is opposite at point D.

Below we study solutions of envelope equations (26)-(27). This system allows
various reductions. If 'Y= 0, it allows the following three simple reductions:

(a) Al > 0, A2 = 0, or Al = 0, A2 I- o. In this case, the solution is a single
Bloch-wave envelope solution.

(b) Al > 0, A2 > O. In this case, the solution is a composite real-valued
envelope state. Note that the Al > 0, A2 < 0 solution, or Al < 0, A2 >
o solution, or Al < 0, A2 < 0 solution, or AI, A2 being both purely ..

imaginary solution, is equivalent to the Al > 0, A2 > 0 solution in (26)- '1.(27), and leads to the equivalent solitary waves in the original system •(4).

(c) Al > 0, A2 = i.A2, .A2 > O. In this case, the solution is a composite
complex-valued envelope state. Note that other solutions of Al purely
imaginary and A2 real are equivalent to this real Al and purely imaginary
A2 solution.

If 'YI- 0, however, the reductions are quite different. For instance, the first and third
reductions of case 'Y= 0 no longer hold. In this case, the following two reductions
are allowed:

(a) Al > 0, A2 > O. In this case, the solution is a composite real-valued
envelope state;

(b) Al > 0, A2 < O. In this case, the solution is another composite real­
valued envelope state different from the Al > 0, A2 > 0 reduction.

It is note-worthy that at band edges with 'YI- 0, the single Bloch-wave envelope
reduction of Al I- 0, A2 = 0 or Al = 0, A2 I- 0 is not possible. Physically, this is
due to a resonance between the two Bloch modes, which prevents the existence of
a single Bloch mode envelope solution. For instance, at point E in Fig. 3 where
the two Bloch solutions are p(x; WI)P(Y; ws) and p(y; wI)p(x; ws), both p(x; WI) and
p(x; ws) are symmetric in x and have period 1f. Thus these two modes are in
resonance. At points where 'Y= 0 (such as point C and D in Fig. 3), the two Bloch
solutions are not in resonance due to different symmetries, thus single Bloch-wave
reduction is possible there.

To illustrate the composite solitary waves admitted by Eqs. (26)-(27), we con­
sider points C and D in Fig. 3, where 'Y= O. We look for the third reduction
discussed above, Le., Al > 0, A2 = i.A2, .A2 > O. In this case, the envelope solu­
tions Al and .A2 near points C and D with E = 0.2 are displayed in Figs. 5 and 6
respectively. At point C, cr = 1 (focusing nonlinearity), and 'r/= -1; while at point
D, cr = -1 (defocusing nonlinearity), and 'r/= 1.

It should be noted that even though the envelope equations (26)-(27) are
translation-invariant along the X and Y directions, the original equation (4) does
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not allow that invariance due to the potential term. Hence envelopes AI, A2 can
not be placed arbitrarily relative to the periodic potential. In the 1D case, it has
been shown that the envelope solution can only be placed at two special locations
of the potentiall2. In the present 2D case, we can show that envelopes (AI, A2) can
only be placed at four special positions relative to the periodic potentials. Specif­
ically, the centers of these envelopes must be at (x, y) = (0,0), (0, 7f/2), (7f/2,0) or
(7f/2,7f/2), hence four different solitary waves can be obtained. Of course, these
center positions can also be shifted by multiple periods 7f along either of the x and
y directions, but the resulting solutions are equivalent to the four mentioned above.

When envelope solutions (AI, A2) of Eqs. (26)-(27) are substituted into the
pertur bation series (12), solutions of the original system (4) will be analytically
obtained. To illustrate, we take the envelope solutions displayed in Figs. 5 and 6 for
points C and D, and let them be centered at the origin (x, y) = (0,0). Substituting
these envelopes into the expansion (12), the leading-order solutions of Eq. (4)
near points C and D are displayed in Fig. 7. We see that these solutions have
interesting amplitude and phase structures. These structures have many common
features. First, the amplitude fields of both solutions are dominant along the x
and y directions, forming a cross pattern. Second, at the center of each lattice, i.e.
points x = m7f, y = n7f with m, n being integers, the amplitudes are zero in both
cases. Around each lattice center, the phase increases or decreases by 27f. Thus
the solution around each lattice center has a vortex-cell structure. Because of this,
we can call these solutions vortex-array solitons. Differences between these two
solutions are also apparent. One difference is that, at point D, the whole field is
divided into disconnected cells. But at point C, only the outer field seems divided
into disconnected cells; the inner field is totally connected. Another difference is
that, at point D, each cell is either a vortex ring or dipole. At point C, however,
the cells look quite different.
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Figure 5. Envelop solutions Al (left) and ib (right) near point C with £ = 0.2.
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Figure 6. Envelop solutions Al (left) and ;h (right) near point D with € = 0.2.
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Figure 7.

The leading-order analytical solutions near points C (left column) and D (right column)

when E = 0.2. The top rows are amplitude plots, and the bottom rows are phase plots.

6. Numerical solutions of solitary waves at arbitrary amplitudes

The above multi-scale perturbation analysis is very valuable, as it clearly predicts
various types of low-amplitude composite solitary waves near edges of Bloch bands.
As the propagation constant /1 moves away from these band edges, these solutions
become more localized, and their amplitudes become higher. In such cases, the
perturbation analysis starts to break down, and solutions need to be computed
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numerically. In this section, we numerically determine whole families of compos­
ite solitary-wave solutions bifurcating from edges of Bloch bands. The numerical
method we use is the modified squared-operator iteration method described in 20.

In these numerical computations, the above analytical solutions from the pertur­

bation analysis are very important, as they are the starting point of .our iteration
scheme.

For illustration purpose, we present the families of solutions bifurcating from
the vortex-array solitons of Fig. 7. The power curves of these solution families are
shown in Fig. 8. Both curves have a power threshold, below which the solutions
do not exist. As p, approaches the band edges, the powers of the C-family (left)
and D-family (right) approach 10.4254 and 19.5470 respectively. Two solutions on
each family (marked in the power curves of Fig. 8) are displayed in Figs. 9 and 10.
In both figures, the left solution is close to the band edge, while the right solution
is deep inside the band gap. As expected, when the solution is close to the band
edge, its amplitude is low, and it is similar to the analytical solution shown in Fig.
7. This is a partial confirmation of our asymptotic analysis in the previous section.
Deep inside the band gap, however, the solutions are very localized, and their
profiles look quite different from the low-amplitude solutions. The features of these
localized solutions can not be gleamed entirely from the analytical solutions, thus
their numerical computations are necessary and helpful. The vortex-array soliton
in the right column of Fig. 9 corresponds to the higher-band vortex observed in
17 (where nonlinearity is of focusing type). The vortex-array soliton in the right
column of Fig. 10 for defocusing nonlinearity has never been reported before in the
literature.
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Figure 8. Power curves of composite vortex-array solitons bifurcating from points C (left) and
D (right) of Fig. 3. The circle points are where we plot the numerical solutions in the following
figures. In the left band gap, the circle points are 1.04 and 0.04 from the band edge. In the right
band gap, the circle points are 0.54 and 0.04 from the band edge.
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Figure 9. The amplitude (top) and phase (bottom) structures of two vortex-array solitons bifur­
cating from point C of Fig. 3 for focusing nonlinearity. The propagation constants of these two
solutions are 7.1891 (left) and 6.1891 (right), as marked in Fig. 8.

7. Conclusion

In this paper, we obtained new solitary-wave structures in two-dimensional peri­
odic media both analytically and numerically. These new structures bifurcate from
the edges of Bloch bands with two linearly independent Bloch modes. Using per­
turbation methods, we derived the coupled nonlinear envelope equations for these
composite solitons near the band edges. These envelope equations admit solutions
which give rise to new soliton structures such as vortex-array solitons. Using nu­
merical methods, we also computed these composite solitons directly both near and
further away from the band edges. The numerical results are in full agreement with
analytical ones near band edges.
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References

1. J.D. Joannopoulos, RD. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow

of Light, Princeton University Press, 1995.
2. P. Russell, "Photonic Crystal Fibers", Science, 299, pp. 358 - 362 (2003).
3. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R Boyd, and J. S. Aitchison, Discrete

Spatial Optical Solitons in Waveguide Arrays, Phys. Rev. Lett. 81, 3383-3386 (1998).
4. J.W Fleischer, M. Segev, N.K Efremidis, and D.N Christodoulides, "Observation oftwo­

dimensional discrete solitons in optically induced nonlinear photonic lattices", Nature
422, 147 (2003).

5. H. Martin, E.D. Eugenieva, Z. Chen and D.N. Christodoulides, Discrete solitons and
soliton-induced dislocations in partially-coherent photonic lattices, Phys. Rev. Lett. 92,
123902 (2004).

6. R. Iwanow, R Schiek, G. 1. Stegeman, T. Pertsch, F. Lederer, Y. Min, and W. Sohler,
Observation of Discrete Quadratic Solitons, Phys. Rev. Lett. 93, 113902( 2004).

7. F. Fedele, J. Yang, and Z. Chen, "Defect modes in one-dimensional photonic latices."
Opt. Lett. 30, 1506 (2005).

8. 1. Makasyuk, Z. Chen and J. Yang, "Bandgap guidance in optically-induced photonic
lattices with a negative defect", Phys. Rev. Lett. 96, 223903 (2006).

9. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, "Theory of Bose-Einstein
condensation in trapped gases", Rev. Mod. Phys. 71, 463 (1999).

10. J.W. Fleischer, T. Carmon, M. Segev, N.K. Efremidis, and D.N. Christodoulides,
Observation of Discrete Solitons in Optically Induced Real Time Waveguide Arrays,



226

Phys. Rev. Lett. 90, 023902 (2003).
11. D. Neshev, E. Ostrovskaya, Yu.S. Kivshar, W. Krolikowski, Spatial solitons in opti­

cally induced gratings, Opt. Lett. 28, 710 (2003) ..
12. D. E. Pelinovsky, A. A. Sukhorukov, and Y. S. Kivshar, "Bifurcations and stability

of gap solitons in periodic potentials", Phys. Rev. E 70, 036618 (2004).
13. B. A. Malomed and P. G. Kevrekidis, Discrete vortex solitons, Phys. Rev. E 64, 026601

(2001).
14. J. Yang and Z.H. Musslimani, Fundamental and vortex solitons in a two-dimensional

optical lattice. Opt. Lett. 23, 2094 (2003).
15. D.N. Neshev, T.J. Alexander, E.A. Ostrovskaya, Y.S. Kivshar, H. Martin, Z. Chen,

Observation of Discrete Vortex Solitons in Optically Induced Photonic Lattices. Phys.
Rev. Lett. 92, 123903 (2004).

16. J.W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, D.N.
Christodoulides, Observation of vortex-ring discrete solitons in 2D photonic lattices.
Phys. Rev. Lett. 92, 123904 (2004).

17. G. Bartal, O. Manela, O. Cohen, J.W. Fleischer, and M. Segev, "Observation of
Second-Band Vortex Solitons in 2D Photonic Lattices", Phys. Rev. Lett. 95, 053904
(2005).

18. I. Makasyuk, Z. Chen and J. Yang, "Bandgap guidance in optically-induced photonic
lattices with a negative defect", Phys. Rev. Lett. 96, 223903 (2006).

19. J. Yang, Stability of vortex solitons in a photorefractive optical lattice. New Journal
of Physics 6, 47 (2004).

20. J. Yang and T.I. Lakoba, "Squared-operator iteration methods for solitary waves in
general nonlinear wave equations." To appear in Stud. Appl. Math.


