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Abstract

Linear and nonlinear periodic systems are abundant
in nature. In optics, a typical example is a closely-
spaced waveguide array, in which collective behavior
of wave propagation exhibits many intriguing
phenomena that have no counterpart in homogeneous
media. Even in a linear waveguide array, the diffraction
property of a light beam changes due to evanescent
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coupling between nearby waveguide sites, leading to discrete diffraction. When
the waveguide array is embedded in a nonlinear medium, a balance between
discrete diffraction and nonlinearself-action gives rise to novel localized states
called "discrete solitons”. Although waveguide arrays can serve as a test
bench for studying many fascinating light behaviors, it has always been a
challenge to create or fabricate two-dimensional (2D) waveguide arrays in
bulk media, not to mention such arrays with structured defects. Recently, in a
series of experimental and theoretical studies, we have "fabricated" closed-
spaced waveguide arrays (photonic lattices) by optical induction, as well as
lattices with defects akin to optically-induced photonic crystal fibers (PCFs).
Such photonic structures have attracted great interest of research due to their
novel physics, link to photonic crystals, as well as potential applications in
optical switching and navigation. In this Chapter, we provide an overview of
experimental demonstration and theoretical understanding of lattice
fabrication (including 1D lattices, 2D square lattices and ring lattices, and
lattices with structured defects), as well as their linear and nonlinear light
guiding properties. In a fabricated uniform lattice, discrete diffraction and
self-trapping are demonstrated in a variety of settings, including fundamental
discrete solitons, discrete vector solitons, discrete dipole solitons, discrete
vortex solitons, and necklace-like solitons. Furthermore, we demonstrate the
formation of 1D and 2D lattices with single-site negative defects, and linear
bandgap guidance in these structures. In particular, ring-shaped periodic
index lattices with a low-index core are optically-induced, resembling
antiresonant microstructured fibers or photonic bandgap fibers. Our work
brings about the possibility for optical “fabrication” of reconfigurable
photonic structures as a new type of optical material for beam shaping and
light routing.

1. Introduction

In the last several years, there has blossomed an interest in the study of
collective behavior of wave propagation in closely-spaced nonlinear waveguide
arrays [1, 2]. Even in linear propagation, the diffraction property of a light beam
in the waveguide array (called discrete diffraction) is distinctively different from
that in homogeneous media. When the nonlinear effect of the light beam
becomes significant, a balance between discrete diffraction and nonlinear self-
focusing gives rise to localized states of light better known as "discrete solitons"
[3]. Discrete solitons (DSs) have been predicted to exist in a variety of other
nonlinear systems such as biology, solid state physics, and Bose-Einstein
condensates, but a convenient way to demonstrate such soliton states is to
employ a fabricated or optically-induced waveguide array in nonlinear optics.
Indeed, the first experimental demonstration of DSs was carried out in fabricated



3

one-dimensional (1D) AlGaAs semiconductor waveguide arrays [4, 5]. Recently,
it has been suggested that DSs could also form in optically-induced waveguide
arrays [6]. This soon led to various experimental observations of DSs in such
waveguide arrays established with optical induction, either via coherent beam
interference [7-9] or via amplitude modulation of a partially coherent beam [10,
11]. Meanwhile, in addition to fundamental discrete solitons, vortex discrete
solitons have also been predicted theoretically [12, 13] and demonstrated
experimentally [14, 15]. In all these studies, the localization of a light beam in
uniform periodic structures results from the combined effect of lattice
discreteness and nonlinear self-trapping, and the formation of a DS could be
considered as a self-induced nonlinear photonic defect mode.

On the other hand, it is well known that one of the unique and most
interesting features of the photonic band-gap (PBG) structures is a
fundamentally different way of waveguiding by defects in otherwise uniformly
periodic structures as opposed to conventional guidance by total internal
reflection or soliton-induced nonlinear self-guiding. Such a waveguiding
property has been demonstrated with an “air-hole” in photonic crystal fibers
(PCF) for optical waves [16, 17], in an isolated defect in two-dimensional
arrays of dielectric cylinders for microwaves [18], and recently in all-solid
PCF with a lower-index core [19, 20]. In fact, PBG guidance has been studied
for a wide range of spectra, and laser emission based on photonic defect modes
(DMs) has been realized in a number of experiments [21, 22]. In photonic
crystals and PCF, bandgap guidance is associated with the time-domain
frequency modes where the propagation constant is imaginary (i.e.,
propagation forbidden — band gaps). Within the gaps, light can be localized by
defects that support evanescent defect states [16-22]. Similarly, the analyses
of how a monochromatic light field distributes in waveguide lattices often
focus on the bandgaps of spatial frequency modes (i.e., propagation constant
vs. transverse wave vector) [23-25]. In one-dimensional (1D) fabricated
semiconductor waveguide arrays, previous experiments have investigated
nonlinearly induced escape from a defect state [26] and interactions of discrete
solitons with structural defects [27]. In optically-induced photonic lattices such
as those induced in photorefractive crystals, theoretical work has also predicted
the existence of linear DMs [28, 29]. However, direct observation of PBG
guidance at different bandgaps of optically induced lattices with structured
defects has remained a challenge until our recent experimental demonstrations
[30-32]. In these studies, the localization of a light beam results from linear
bandgap guidance or the formation of a linear photonic defect mode.

In this Chapter, we present a brief overview of our recent work on the
optical fabrication of 1D and 2D periodic lattices and lattices with single-site
negative defects, as well as their linear and nonlinear light guiding properties. In
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uniform photonic lattices, various nonlinear discrete solitons will be presented;
in a defective photonic lattice, linear guided modes (defect modes) will be
reported. We emphasize the difference between the two cases: for discrete
solitons in periodic lattices, the probe beam experiences high nonlinearity but the
lattice beam does not; whereas for light confinement by defects embedded in
otherwise uniform lattices, both the probe beam and the lattice beam experience
no or only weak nonlinearity. We discuss how to “fabricate” these lattices by the
method of optical induction, with lattice structures varying from 1D to 2D, from
square to ring, and from uniform to defective lattices. In the uniform lattices, we
demonstrate the formation of fundamental nonlinear discrete solitons, trains of
such solitons in stripe or necklace shape, as well as vector, dipole and vortex
solitons in lattices. Different from other experiments in which the lattice is
created by coherent multi-beam interference [7-9], in our setting the lattices are
created by spatial amplitude modulation of a partially spatially incoherent optical
beam. This in turn enables stable lattice formation due to suppression of
incoherent modulation instability [33, 34], and also brings about the possibility
to create other lattice structures such as ring lattices and lattices with single-site
defects which cannot be done by the interference method. In fact, it is in our
partially coherent stable lattices that detailed features of transition from discrete
diffraction to formation of discrete solitons were clearly demonstrated [10, 11].
In the defective lattices, we demonstrate the formation of linear defect modes
and bandgap guidance. We predict theoretically and demonstrate experimentally
PBG guidance in optically-induced photonic lattices with a single-site negative
defect. In such a defective lattice, the refractive index at the defect is lower than
that in the surrounding “rods” (akin to an “air defect” in photonic crystals or
hollow-core PCF, and much alike all-solid low-index-core PCF). Spatial
confinement of the probe beam at different wavelengths during its linear
propagation through the defect is clearly observed, although the defect is
repulsive and the beam itself has no nonlinear self-action. Such guidance of
light in the negative defect arises from linear propagation of the defect modes
formed in the spatial bandgap of the photonic lattice, which is fundamentally
different from linear guidance by total internal reflection or nonlinear self-
guidance as in a spatial soliton. In addition, we show that the “guided” patterns
by the defect display fine spatial structures such as dipole and vortex cells
which arise from the DM excited at higher bandgaps. Our optical induction of
reconfigurable photonic lattices with defects not only has direct linkage to
technologically important systems of periodic structures such as PCF, but also
brings about the possibility for studying, in an optical setting, many novel
phenomena in periodic systems beyond optics such as defect healing,
eigenmode splitting, and nonlinear mode coupling which have been intriguing
scientists for decades.
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2. "Fabrication” of 1D uniform lattices and nonlinear

discrete trapping

With today’s nano-fabrication technology, to create a closed-spaced 1D
waveguide array on a substrate material is not a problem. As an example, such
waveguide structures have been fabricated with AlGaAs semiconductor
materials or LiNbO; crystals. In fact, the first experimental demonstration of
DSs was carried out in fabricated 1D semiconductor waveguide arrays [4, 5].
Yet, it has always been a challenge to create or fabricate 2D or 3D waveguide
arrays in bulk media. Motivated by observation of DSs in higher dimensions, it
has been suggested that waveguide lattices could be optically-induced in a
photorefractive crystal [6]. Indeed, experimental observations of DSs in such
waveguide lattices were established with optical induction by sending multiple
interfering beams into the nonlinear crystal [7-9]. A typical example of such
an experimental setting is illustrated in Fig. 2.1, along with the observation of
discrete trapping in 1D waveguide lattices.

The coherent multiple-beam interference method has many disadvantages
for creating photonic lattice structures. For instance, the induced lattice tends
to be more sensitive to ambient perturbation. Furthermore, when the lattice

Figure 2.1. Left panel: Illustration for optical induction of 1D waveguide lattices in a
biased photorefractive crystal by the interference method. SBN: strantium barium
niobate. Right panels: Typical experimental results of discrete trapping of an optical
beam in optically induced 1D lattices (after Ref. [9]).
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beam itself experiences an appreciable nonlinearity, it becomes considerably
more susceptible to modulation instability and the lattice structure cannot be
stable either when the lattice spacing is too small or the nonlinearity is too high.
More importantly, the interference method cannot generate more complicated
lattice structures such as binary lattices or lattices with structured defects. In
view of that, we proposed a different method of optical induction which is
based on the periodic amplitude modulation of a partially coherent optical
beam. This incoherent amplitude-modulation method made possible the first
experimental demonstration of 2D solitonic lattices in a 3D bulk crystal [35].
In what follows, we describe our experimental arrangement for the lattice
induction, and our theoretical understanding of such induction method in the
1D case, while the approach can be easily modified to explain the generation
of 2D square lattices.

The experimental setup for our study is illustrated in Fig. 2.2. Our
experiments are performed in a biased photorefractive crystals (typically
SBN:60, with r33~280 pm/V and ri3~24 pm/V) illuminated by a laser beam
(either Coherent argon ion laser A=488 nm or solid-state laser A=532 nm)
passing through a rotating diffuser and an amplitude mask. The biased crystal
provides a self-focusing or -defocusing noninstantaneous nonlinearity [36].
The rotating diffuser turns the laser beam into a partially spatially incoherent
beam with controllable degree of spatial coherence, as first introduced in
experiments of incoherent optical solitons [37, 38]. The amplitude mask
provides spatial modulation after the diffuser on the otherwise uniform beam,
which exhibits a periodic intensity pattern at the input face of the crystal [35].
This partially coherent and spatially modulated beam is used as our lattice
beam. Another beam split from the same laser or a different laser but without
going through the diffuser and the mask is used as our probe beam,
propagating along with the lattice. As explained below, both the lattice beam
and the probe beam can be made to undergo linear or nonlinear propagation
through the biased crystal by adjusting their intensity, polarization, or
wavelengths. The two beams at input and output facets of the crystal are
monitored separately with a CCD camera. In addition, a white-light background
beam illuminating from the top of the crystal is typically used for fine-tuning
the photorefractive nonlinearity [35-38].

We emphasize that, the method of optical induction of waveguide lattices
and nonlinear self-trapping of discrete solitons in photorefractive crystals is
directly related to the anisotropic property of the photorefractive nonlinearity.
In general, in an anisotropic photorefractive crystal, the nonlinear index change
experienced by an optical beam depends on its polarization as well as on its
intensity. Under appreciable bias conditions, i.e., when the photorefractive
screening nonlinearity is dominant, this index change is approximately given by
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Figure 2.2. Experimental setup for optical induction of waveguide lattices in a biased
photorefractive crystal by amplitude modulation of a partially coherent beam. PBS:
polarizing beam splitter; SBN: strantium barium niobate. Top path is for incoherent
background illumination, middle path is for the modulated beam to induce the lattice,
and bottom path is for the probe which can be a Gaussian or vortex (when the vortex
mask is present) beam. The right insert shows a typical picture of 1D photonic lattice
created by optical induction.

An, =[n’r,E, /2]A+1)* and An, =[n’r,E,/2]L+1)™" for extraordinarily-
polarized (e-polarized) and ordinarily-polarized (o-polarized) beams respectively
[6-11]. Here Eq is the applied electric field along the crystalline c-axis (x-direction),
and | is the intensity of the beam normalized to the background illumination.
Due to the difference between the nonlinear electro-optic coefficient rs; and
ris, Ane is more than 10 times larger than An, under the same experimental
conditions in a SBN:60 crystal. Thus, if the lattice beam is o-polarized while
the probe beam is e-polarized, the lattice beam would experience only weak
nonlinear index change, and the lattice in this case could be considered as
undergoing linear propagation. In Fig. 2.2, the insert shows a typical example
of a 1D lattice pattern created in our experiment. The lattice has a spatial
period of about 40 um, but this spacing can be varied easily from 10 to 100 um
by using different masks or different magnification of imaging. Even for the
bias field as high as 3 kV/cm, the lattice structure still remains nearly invariant
when exiting the crystal. On the other hand, the polarization of the lattice beam
can also be changed to include an e-polarized component or to be completely
e-polarized, which will result in a “mixed” or “flexible” soliton-like nonlinear
lattice [10, 35, 39-42]. In our work with discrete solitons and linear defect
modes, the lattice beam has its polarization close to be o-polarized, thus the
lattice beam induces a weak index change for the waveguide arrays. The probe
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beam on the other hand is always a coherent e-polarized beam, but its intensity
and/or wavelength can be adjusted so it can undergo linear propagation (for
study of linear guidance or linear defect modes) or nonlinear propagation (for
study of nonlinear trapping or nonlinear defect modes) as detailed in later
sections.

To understand how a periodic lattice can stay stationary during its linear
propagation through the crystal, we need to understand how to eliminate the
Talbot effect (this effect was recently investigated also in discrete systems [43,
44]). The Talbot effect is a phenomenon of coherent light propagation in a
homogeneous media with spatially-periodic initial conditions. The
phenomenon is that light does not propagate stationarily --- it shrinks and
expands as it moves along, and its intensity pattern repeats itself periodically
along the propagation direction. Our lattice beam travels in a homogeneous
crystal (as it does not feel the probe beam), and its initial condition on the input
face of the crystal is periodic (due to the amplitude mask). Because of the
Talbot effect, it can not form a stationary lattice. To overcome this difficulty,
our idea is to use frequency filtering to remove half of the spatial frequencies
in the initial conditions. The filtered lattice beam, when slightly tilted, can
propagate stationarily along the crystal; thus, the Talbot effect is eliminated.
The stationary lattice so obtained is the basis for our further experiments on
probe beams.

To analytically understand the elimination of the Talbot effect by
frequency filtering, we consider the following non-dimensionalized Schroedinger
equation for linear coherent-light propagation in a 1D homogeneous media
under paraxial approximation:

iU, +U, =0. (2.1)

Here U is the envelope function of the light beam, z is the propagation
direction, and X is the transverse direction. To reproduce the Talbot effect, we
take the initial condition as a periodic function

U,(x) = A, + A, cos 2x, (2.2)

where Ay and A, are constants. If we take Ay = A, = 1, then the intensity pattern
of this initial condition is shown in Fig. 2.3 (1™ row, left column), and its
frequency spectrum shown in Fig. 2.3 (2" row, left column). The solution of
Eqg. (2.1) with this initial condition is

U(x,z) = A + A, cos2xe ™, (2.3)

Clearly, the intensity of this solution changes periodically along the
propagation direction z (with period 7 /2), see Fig. 2.3 (third row, left column).
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Figure 2.3. Elimination of the Talbot effect by frequency filtering and beam tilting.
First row: initial intensity patterns; second row: spectrum of the initial fields; third row:
evolution plots with the initial conditions as shown in the top row. Left column: for
periodic initial conditions (2.2) with no frequency filtering; middle column: for initial
conditions (2.2) with frequency filtering; right column: for initial conditions (2.2) with
both frequency filtering and beam tilting.

This is the familiar Talbot effect. To eliminate this effect, we first filter out the
left half of the initial spectrum, i.e., we remove the k = -2 frequency in Fig. 2.3
(2™ row, left column). The initial condition after this filtering is

U,(X)= A, +%A2e2“, (2.4)

and its intensity as well as spectrum are shown in Fig. 2.3 (1 and 2" rows,
middle column) . The solution for this initial condition becomes

U(x,2z)=A +% A, e, (2.5)

A remarkable fact about this solution is that it does not exhibit the Talbot
effect any more! Rather, the lattice propagates uniformly --- but at a small angle
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(see Fig. 2.3, third row, middle column). To further remove this slanted
propagation, we only need to tilt the initial lattice beam a little bit. This beam
tilting amounts to multiplying the initial condition (2.4) by a phase gradient, i.e.

U,(x) = (A +%Azem)e'ix, (2.6)

whose intensity profile remains the same as that of (2.4), but its spectrum is
shifted (see Fig. 2.3, 1% and 2" rows, right column). The solution for this
initial condition is

U(x,2)=(Ae™ +%A2e‘x) e, (2.7)

whose propagation now is stationary (see Fig. 2.3, third row, right column) !
Thus, by combining frequency filtering and beam tilting, we completely
removed the Talbot effect and obtained a lattice beam whose intensity pattern
is perfectly uniform upon propagation. It is noted that using similar ideas, two-
dimensional stationary lattices can be generated as well.

Experimentally, what we did to obtain a stationary 1D lattice was just that.
First a beam was launched through an amplitude mask to create a transverse-
periodic intensity pattern (Fig. 2.2). When this pattern was imaged onto the input
face of the crystal, an aperture was used at the Fourier plane to do spatial
filtering. After that, the lattice beam was titled slightly so that the lattice pattern
propagates collinearly with one of the crystalline axes. With such combined use
of spatial frequency filtering and beam titling, the lattice pattern remains
stationary during linear propagation through the crystal, or even so when weak
nonlinearity is applied provided that the lattice beam is o-polarized. When an e-
polarized probe beam is sent into such a lattice, 1D discrete diffraction and
discrete trapping similar to those shown in Fig. 2.1 were realized. However, our
results on 2D discrete trapping using the amplitude modulation method [10] are
significantly better than those previously obtained with the multiple beam
interference method [8]. Furthermore, our method makes it possible to induce
nonlinear photonic lattices and lattices with structured defects.

3. “Fabrication” of 1D defective lattices and linear

bandgap guidance

If a periodic lattice has a local defect, this defect can affect the propagation
of a probe beam in a fundamental way. For instance, if the defect is repulsive
(negative), i.e. the lattice intensity at the defect is lower than that in
neighboring lattice sites, the defect can guide a linear localized mode (defect
mode), which is counter-intuitive. The physical mechanism for this unusual
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light guiding is the repeated Bragg reflections, rather than the conventional
total internal reflections. This is analogous to light transmission in air-hole
photonic crystal fibers (PCFs). The PCFs need to be drawn mechanically,
which is an expensive process. It would be very appealing, from the point of
view of both fundamental research and physical applications, to optically
create periodic lattices with local defects. The question is: can this be
possible?

To explore this question, we prepare an initial periodic lattice with a
single-site negative defect using amplitude masks. To keep this defective
lattice propagating stationarily along the crystal, we apply the frequency
filtering and beam tilting techniques as before. However, we find that if this
propagation is linear, those techniques are not enough to maintain the defect
and keep the lattice stationary in our experimental conditions. The defect tends
to be washed out at the exit face of the crystal. In order to maintain the defect,
we need to employ additional techniques. One technique is to introduce a small
amount of nonlinearity into the lattice beam (by setting its polarization so that
it contains a small amount of e-polarized component), so the lattice is slightly
“mixed” rather than “fixed” [42]. This weak nonlinearity helps to prevent the
nearby lattice sites from spreading into the defect site. Another technique is to
introduce partial incoherence into the lattice beam (by letting the lattice beam
go through a rotating diffuser). This partial incoherence reduces the nonlinear
interference between lattice sites, which stabilizes the lattice. When all these
techniques are utilized, we finally succeeded in maintaining a defect in the
otherwise uniform lattice which remains nearly stationary. The experimental
result is shown in Fig. 3.1(a, b). Here Fig. 3.1 (a) is the input of the 1D lattice
with a defect (lattice spacing about 42 um). The polarization angle is about 8%
relative to the o-axis, and the propagation distance is 20 mm. At the bias field
of 1.1kV/cm, the output is shown in Fig. 3.1(b). It is seen that the defect is well
maintained throughout propagation. After such a lattice is “fabricated”, its light
guiding property can be studied. To do so, we launch a low-intensity e-
polarized probe beam into the defect. The experimental result is shown in Fig.
3.1 (c, d). It can be seen that after 20mm propagation, most of the probe-beam
energy is still confined inside the negative defect. This is remarkable, as
without the defect, the probe beam would strongly scatter to nearby lattice sites
due to discrete diffraction. The negative defect traps the probe beam against
discrete diffraction, which is quite unusual.

To further understand the linear light-guiding property of a negative
defect, we study this light guiding theoretically next [28, 29]. The non-
dimensionalized model for a probe beam propagating in this defective lattice is

EO

iU, +U,, - U =0,
z XX 1+ IL(X) (31)




12 Zhigang Chen & Jianke Yang

Figure 3.1. Transverse intensity patterns of the lattice beam at crystal input (a) and
output (b) with a single-site defect, and those of probe beam at input (c) and output (d)
after 20-mm of propagation through the defect channel. Lattice spacing: 42 um. Bias
field: 1.1 kV/cm. (after Ref. [32]).

Where E, is the applied bias field, 1.(x) = I, cos? x(1-fp(x)) is the lattice
intensity containing a defect, I, is the lattice peak intensity, and fp(x) = exp(-
x%/128) accounts for the single-site negative defect. If we take lo = 3, this
defective lattice is shown in Fig. 3.2(a). A surprising fact is that this negative
defect supports localized defect modes of the form U(x,z) = u(x)exp(-ixz),
where p is the propagation constant (defect-mode eigenvalue). These
eigenvalues versus Egare shown in Fig. 3.2(b). It is seen that these eigenvalues
all lie in the gaps between Bloch bands. None of them exists in the semi-
infinite bandgap (total internal reflection region). As E, increases, these modes
disappear from lower bandgaps, and appear in higher bandgaps. These modes
can be symmetric or anti-symmetric. Representative profiles on three different
defect-mode branches of Fig. 3.2(b) are shown in Fig. 3.2 (c, d, €). These
modes can be quite localized (see (e)), or quite broad (see (d)), depending on
where in the bandgap they lay, and which branch they belong to. In particular,
the experimentally observed defect mode in Fig. 3.1 (d) strongly resembles that
shown in Fig. 3.2(c), which lies in the first bandgap (between the two lowest
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Figure 3.2. (a) Lattice intensity profile with I, = 3; (b) applied bias field parameter E,
versus the propagation constant u; the shaded regions are Bloch bands. (c)-(e) three
defect modes at (Ey, ) points (1.2, 1.604) , (3.5, 5.812) and (7.5, 7.997), marked by
circles in (b). The shaded stripes indicate the locations of the lattice’s peak intensities
(after Ref. [28]).

Bloch bands). A signature of this defect mode is that neighboring intensity
peaks are separated by one lattice spacing. In higher bandgaps, neighboring
peaks of defect modes are separated by half a lattice spacing instead [see Fig.
3.2 (d, e)]. In all these defect modes, neighboring intensity peaks are out of
phase though.

The theoretical results shown in Fig. 3.2 predict that as the applied bias
field increases, defect modes shift from lower bandgaps to higher bandgaps.
We have confirmed this prediction experimentally. The experimental results
are shown in Fig. 3.3. Here the output probe beams at four different bias fields
are shown, with the input being a symmetric Gaussian beam. The top panel is the
intensity plot, while the bottom panel shows the interferogram of the probe
beam with a plane wave. We see that at a low bias field (0.5 kV/cm), the output
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Figure 3.3. Top: output probe beam. Bottom: interferogram of the probe beam with a
plane wave. From left to right: bias field is 0.5, 1.1, 1.7, and 2.3 kV/cm for the
normalized lattice intensity of 0.25 (after Ref. [32]).

probe beam [Fig. 3.3(a)] exhibits several properties of a defect mode located in
the first bandgap, including that the probe beam maintains a central lobe at the
defect site, and there is only one intensity peak with respect to each lattice site
away from the defect, and there is an anti-phase relation between the central
lobe in the defect and two side lobes in the tail since the interference fringes
interleave at off-site locations. At a higher bias field of 1.1 kV/cm, the probe
beam scatters away from the defect site, indicating that the Gaussian beam
cannot evolve into a defect mode under this condition [Fig. 3.3 (b)]. However,
as the bias field is increased to 1.7 kV/cm, the beam evolves into a defect
mode in the second bandgap [Fig. 3.3 (c)]. This can be examined not only from
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the intensity pattern which shows double peaks corresponding to each lattice
site except for the central defect site [see also Fig. 3.2(¢e)], but also from the
interferogram which shows the anti-phase relation for adjacent peaks. At an
even higher bias (2.3 kV/cm), the probe beam scatters away from the defect
site again [Fig. 3.3 (d)]. These results clearly illustrate a defect-mode transition
from the first bandgap [Fig. 3.3 (a)] to the second bandgap [Fig. 3.3 (c)] as we
increase the bias field. The theory also predicts anti-symmetric defect modes
between bias fields of Figs. 3.3 (a) and (c), see Fig. 3.2 (d). However, such
anti-symmetric modes can not be excited by symmetric Gaussian input beams.

4. “Fabrication” of 2D uniform square lattices and

nonlinear discrete trapping

The experimental setup for “fabrication” of 2D lattices is the same as that
illustrated in Fig. 2.2. A partially spatially incoherent light beam is generated
by converting an argon ion laser beam into a quasi-monochromatic light source
with a rotating diffuser. A biased photorefractive crystal is employed to
provide a saturable self-focusing noninstantaneous nonlinearity. To generate a
2D-waveguide lattice, we use an amplitude mask to spatially modulate (in two
orthogonal transverse directions) the otherwise uniform incoherent beam after
the diffuser. The mask is then imaged onto the input face of the crystal, thus
creating a pixel-like input intensity pattern which remains stationary through
the crystal after proper spatial filtering and beam tilting as explained in section
2. This lattice beam can be turned into either extraordinarily or ordinarily
polarized with a half-wave plate as necessary. A Gaussian beam split from the
same laser but without passing through the diffuser is used as the probe beam
propagating along with the lattice. For the vortex experiment, the probe beam
is sent through a transmission vortex mask (bottom path), and then focused
onto the crystal input face, propagating collinearly with the lattice.

Typical examples of 2D square lattices created by optical induction in our
crystal with both o-polarized and e-polarized beams are shown in Fig. 4.1. Our
experiment shows that the linear square lattices generated with o-polarized
partially coherent beams are stable and robust, even at small lattice spacing of
20 um or less [Fig. 4.1(a)]. However, to create a nonlinear (solitonic) square
lattice with the e-polarized beam, it is a challenge to obtain a stable lattice
without distortion at such small lattice spacing. In addition, due to the anisotropic
self-focusing nonlinearity, the pixels (or waveguides) tend to merge in the y-
direction if the square lattice is oriented in horizontal/vertical directions. The
diagonal orientation of the square lattice (i.e., its principal axes oriented in the
45° directions relative to x- and y-axis) favors stable lattice formation due to
enlarged y-separation between pixels, especially when the lattice spacing is small.
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Figure 4.1. Optically induced 2D square lattices by amplitude modulation of a partially
coherent beam in a biased photorefractive crystal. (a) is the 2D linear lattice with lattice
spacing of 20 um. (b) illustrates the probe beam location relative to the lattice as used in
the following experiments. (c) shows a typical 3D plots of the 2D nonlinear lattice (with
lattice spacing 70 um) formed as arrays of pixel-like spatial solitons (after Ref. [35]).

Figure 4.1(a) shows a stable 2D linear lattice with 20 um spacing created with
an o-polarized beam. If the polarization is changed to be e-polarized, the lattice
is strongly distorted at this spacing in the nonlinear regime. The reason for this
is quite intuitive. The e-polarized lattice experiences a strong nonlinear self-
focusing effect, and thus each lattice site tends to form a pixel-like soliton
itself. When the lattice spacing is small, the size of each soliton pixel is also
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small. With the photorefractive screening nonlinearity, the formation of
solitons must satisfy certain conditions better described by the soliton-
existence curve [45, 46]. In essence, forming a smaller soliton requires a higher
nonlinearity, which is usually achieved by increasing the bias field across the
nonlinear crystal. However, with a higher nonlinearity, an e-polarized lattice
beam tends to suffer from stronger modulation instability as driven by noise
such as defects and striations in the crystal, which afflicts the formation of a
stable solitonic lattice. This is why we introduce partial coherence in the lattice
beam. As has been previously predicted [33] and experimentally demonstrated
[34, 47-49], partial coherence can result in suppression of modulation
instabilities. Therefore, to create a nonlinear lattice with enhanced stability, it
often requires fine-tuning of the experimental parameters such as the bias field,
lattice spacing, as well as lattice beam intensity and spatial coherence. At
larger lattice spacing, nonlinear lattices of pixel-like spatial solitons were
realized in our earlier experiments. Figure 4.1(c) shows a typical example of a
stable nonlinear lattice (at 70 um spacing) obtained by the method of incoherent
amplitude modulation [35]. In fact, such nonlinear solitonic lattices with
spacing as small as 37 um were realized in our later experiments by fine-
tuning the nonlinearity [50].

In what follows, we shall use the linear or “fixed” square lattice oriented
diagonally for the experiments on nonlinear discrete trapping and linear
photonic defect modes. Illustration of lattice orientation and excitation location
of the probe beam is shown in Fig. 4.1(b). For fundamental 2D discrete
solitons, this probe beam is focused with a circular lens into a 2D Gaussian
beam and launched into one of the lattice sites, while for demonstrating 1D
discrete soliton trains, the beam is focused with a cylindrical lens into a quasi
1D stripe beam. In experiments with dipole and vector lattice solitons, the
probe beam is split into two by a Mach-Zehnder interferometer. The two
beams exiting from the interferometer are combined with the lattice beam,
propagating collinearly through the crystal. When the two beams from the
interferometer are made mutually incoherent by ramping a piezo-transducer
mirror at a fast frequency, the vector components are realized by overlapping
the two beams onto the same lattice site, where each beam itself is coherent
and experiences a strong self-focusing nonlinearity [51]. When the two beams
from the interferometer are made mutually coherent with a controlled phase
relation, dipole-like discrete solitons are investigated by launching the two in-
phase or out-of- phase beams into two neighboring lattice sites such as those
marked as “0” and “2” in Fig. 4.1(b) [52]. If the two probe beams are launched
into two inter-site locations (i.e., two off-site locations between “0 and “2”),
they can also form symmetric or anti-symmetric (twisted) soliton states
depending on their relative phase [53].
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5. Discrete fundamental solitons

First, we present our results on 2D fundamental discrete solitons. A stable
waveguide lattice (spacing 20 um and the FWHM of each lattice site about
10 pm) is induced by an o-polarized partially coherent beam. Then, a probe
beam (whose intensity is 4 times weaker than that of the lattice) is launched
into one of the waveguide channels, propagating collinearly with the lattice.
Due to weak coupling between closely spaced waveguides, the probe beam
undergoes discrete diffraction when the nonlinearity is low, whereas it forms a
2D discrete soliton at an appropriate level of high nonlinearity. Typical
experimental results are presented in Fig. 4.2, where the first two photographs
show the Gaussian-like probe beam at the crystal input [Fig. 4.2(a)] and its
linear diffraction at the crystal output after 8 mm of propagation [Fig. 4.2(b)].
Discrete diffraction in the square lattice is observed at a bias field of 900 V/cm
[Fig. 4.2(c)], clearly showing that most of the energy flows from the center
towards the diagonal directions of the lattice. Even more importantly, a DS is
observed at a bias field of 3000 V/cm [Fig. 4.2(d)], with most of energy
concentrated in the center and the four neighboring sites along the principal
axes of the lattice.

These experimental results are truly in agreement with expected behavior
from the theory of discrete systems [54]. In fact, the above experimental
observations are corroborated by our numerical simulations of the probe-lattice
beam evolution equations using a fast Fourier transform multi-beam
propagation method, in which the partially coherent lattice beam is described by

Figure 4.2. Experimental demonstration of a discrete soliton in a partially coherent
lattice. (a) Input, (b) diffraction output without the lattice, (c) discrete diffraction at 900
Vicm, and (d) discrete soliton at 3000 V/cm. Top: 3D intensity plots; Bottom: 2D
transverse patterns (after Ref. [10], and animation of the experimentally observed
process can be viewed in Ref. [56] ).
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the so-called coherent density approach [55]. Typical numerical simulation
results obtained with supercomputing time are shown in Fig. 4.3. The
parameters chosen in simulation are close to those from the experiment. At a
low bias field, discrete diffraction is observed (left), whereas at a high bias
field the formation of a 2D discrete soliton is realized (right), in good
agreement with experimental results. We point out that to form a 2d
fundamental DS as shown in Fig. 4.2, a delicate balance has to be reached
between waveguide coupling offered by the lattice and the self-focusing
nonlinearity experienced by the probe beam through fine-tuning the parameters
(the lattice spacing, the intensity ratio, the bias field, etc.). A series of
experiments and numerical simulations were performed to show that large
deviation in the beam intensities and/or the applied field (thus the strength of
the nonlinearity) would hinder the DS formation [56].

@

X

Figure 4.3. Numerical results corresponding to Fig. 4.2(c-d). Inserts are 2D transverse
patterns.

6. Discrete vector and dipole solitons

The sensitivity of DS formation to the probe beam intensity not only
illustrates that forming DS is the outcome of nonlinear self-action of the probe
beam in the lattice, but also it can be used as a test bench for two-component
vector-like DS [57-59]. While vector solitons have been realized previously in
continuous nonlinear systems, they have been observed only very recently in a
discrete system of 1D AlGaAs waveguide arrays [60]. Here we demonstrate
that two mutually incoherent beams can lock into a 2D vector soliton while
propagating along the same lattice site, although each beam alone would
experience discrete diffraction under the same conditions. Typical experimental
results of a 2D discrete vector soliton are presented in the first row of Fig. 4.4. The



20 Zhigang Chen & Jianke Yang

two mutually incoherent beams (only one of them is shown in Fig. 4.4a) are
launched into the same lattice site with combined peak intensity about 6 times
weaker than that of the lattice beam. Discrete diffraction of each beam is
observed at a low bias field of 1 kV/cm (Fig. 4.4b), but the two beams are
coupled to form a discrete soliton pair at a high bias field of 2.9 kV/cm (Fig.
4.4c). The intensity patterns of each beam were taken immediately after
blocking the pairing beam. In contrast, Figs. 4.4d shows that, after the pairing
beam is removed and the remaining beam reaches a new steady state, each
beam itself does not form a discrete soliton under the same conditions. These
experimental results agree well with our numerical results shown in the bottom
row of Fig. 4.4. Since the two components are exactly the same, only one of the
components is shown. The exact solutions of such vector lattice solitons along
with their stability regions have also been investigated [51].

Next, we demonstrate the formation of dipole solitons in a 2D optically
induced photonic lattice by launching two mutually coherent beams into two
neighboring lattice sites along the diagonal direction of the square lattice rather
than overlapping them in the same lattice site. The two beams are made either
out-of-phase or in-phase with each other, and we have found theoretically that
both types of dipole-like solitons exist [52, 61]. The out-of-phase dipole
solitons are linearly stable in a large range of parameter spaces with
appropriate levels of nonlinearity, while the in-phase solitons are always
linearly unstable although their instabilities are rather weak in the low-intensity
regime [52, 61]. Experimentally, both types of lattice solitons are observed, but
only the out-of-phase dipoles are found to be stable and robust under appropriate

“

Figure 4.4. Experimental (top) and numerical (bottom) results of a 2D discrete vector
soliton. (a) input, (b) discrete diffraction at low bias field, (c, d) mutual trapping and
decoupled output at high bias field, respectively. Only one component is shown; the
other component is the same or similar (after Ref. [51]).
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conditions, while the in-phase dipoles suffer from instability as well as the
anisotropic effect of the photorefractive nonlinearity [52, 61]. In the absence of
the photonic lattice, these solitons cannot exist because of the repulsive or
attractive force between the two humps which makes them diverge from or
merge with each other. With the waveguide lattice, however, the lattice
potential could trap the two humps against repulsion or attraction. These novel
types of lattice solitons are related to the intrinsic localized modes found
previously in 1D and 2D periodic nonlinear systems [62-64].

Typical results of the out-of-phase dipole lattice solitons are shown in Fig.
4.5. For the experiment, the dipole beams are oriented in the vertical direction
(Fig. 4.5a), while the principal axes of the square lattice are oriented in
diagonal directions. At a low bias field, the dipole undergoes linear discrete
diffraction (Fig. 4.5b). At a high bias field, the dipole is trapped by the lattice
potential, leading to the formation of dipole lattice solitons (Fig. 4.5¢). Note
that the initial phase structures are preserved after the lattice solitons are
created, as seen from their output intensity patterns. Should one of the dipole
beams be turned off, the other forms a fundamental lattice soliton and
redistributes the energy to its center as well as four neighboring sites along the
principal axes of the lattice in a manner similar to that in Fig. 4.2. Similar
experiments have also been performed for the in-phase dipoles. A clear
distinction between the two types of dipoles lies in the intensity redistribution

Figure 4.5. Formation of out-of-phase dipole solitons in a 2D photonic lattice for on-
site probing with two mutually coherent beams. Top panel: experiment; bottom panel:
numerical simulations. (a) input; (b) output at a low bias field of 100v/mm; (c) and (d)
output at a high bias field of 320V/mm with and without the lattice, respectively. (after
Ref. [52]).
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after discrete diffraction at low bias fields: the intensity for the out-of-phase
dipole extends along the original direction of the dipole, while that for the in-
phase dipole extends along the orthogonal direction. However, at a high bias
field, in-phase dipoles are also trapped by the lattice potential, leading to the
formation of in-phase dipole solitons [61]. Without the lattice, the dipole
diverges in the out-of-phase case (Fig. 4.5d) and merges into a single soliton in
the in-phase case. Theoretically, we have simulated the evolution of out-of-
phase dipole solitons, and the results are shown in the bottom panel of Fig.4.5.
Qualitative agreement between numerical results and experimental observations
is evident. In the experimental result of Fig. 4.5d, in addition to out-of-phase
soliton repulsion, self-bending of the soliton elements towards crystalline c-
axis (upward in Fig. 4.5d) is noticed. This soliton self-bending due to the
diffusion effect enhanced by the high bias field is well known [65], so it has
not been included in our theoretical model for simplicity. In addition to the
dipole solitons presented above, we have also found other configurations of
dipole-like solitons as well as quadrupole solitons in 2D lattices [61].

In addition to on-site excitation of the probe beams, we have also studied
off-site excitations in weakly-coupled lattices created by optical induction.
When a weak Gaussian-like probe beam (extraordinarily polarized, with a
photo-sensitive wavelength such as 488 nm) is launched between two lattice
sites, its energy switches mainly to the two closest waveguide channels evenly,
leading to a symmetric beam profile. However, as the intensity of the probe
beam exceeds a threshold value, the probe beam evolves into an asymmetric
beam profile, akin to that resulting from the symmetry breaking in a double-
well potential [66]. Should the probe beam itself experiences no or only weak
nonlinearity (e.g., the probe is at a photo-insensitive wavelength such as 633
nm), such symmetry breaking in the beam profile does not occur regardless the
increase of its intensity. When two probe beams are launched in parallel into
two off-site locations, they form symmetric or anti-symmetric (dipole-like
twisted [9, 52, 67]) soliton states depending on their relative phase as shown in
Fig. 4.6. Keeping all other experimental conditions unchanged, we obtained
quite different steady states between in-phase and out-of-phase excitations. In
the in-phase case, most of the energy flows into the central lattice site [Fig.
4.6(a)], while in the out-of-phase case, the energy flows mainly into the two
lateral sites in the vertical direction [Fig. 4.6(b)]. Radiation to other nearby
lattice sites is also visible due to waveguide coupling. Intuitively, one may
consider these new steady states as a result of constructive and destructive
interference, but they correspond to symmetric (in-phase) and anti-symmetric
(“twisted”) soliton states. The solitons are excited in an effectively three-well
potential as embedded in a weakly coupled waveguide lattice. In fact, we have
theoretically investigated this issue using a continuum model based on the saturable



Figure 4.6. Formation of symmetric and anti-symmetric (twisted) soliton states for
inter-site probing with two mutually coherent beams. Shown are the illustration of
probe beam locations (P1 and P2) in the lattice (left), the combined output beam profile
(middle), and the intensity pattern (right) for in-phase (a) and out-of-phase (b)
excitations. (after Ref. [53])

photorefractive nonlinearity with an effectively three-well potential. We have
found that in this setting any state with multiple in-phase beams (all centered
on-site) is always unstable. However, both symmetric states (corresponding to a
single beam on-site) and anti-symmetric states (corresponding to two out-of-
phase beams on two different sites) can be linearly stable [53].

7. Discrete vortex solitons

An important nonlinear phenomenon in 2D lattices is the propagation of
optical beams with complex internal structures in the lattice, e.g. the propagation
of optical vortices carrying orbital angular momentum. Optical vortex solitons
have been demonstrated earlier with continuous media in a number of
experiments [68, 69], and the basic properties of vortices and vortex solitons can
be found in a recent review article [70]. However, vortex solitons propagating in
photonic lattices have not been demonstrated, even though they have been
theoretically predicted [12, 13]. Here we present our experimental results of a
vortex probe beam propagating in a 2D linear waveguide lattice. In this case, the
lattice beam is o-polarized while the vortex beam is e-polarized. Typical
experimental results on discrete trapping of the vortex with unit topological
charge (m=1) are shown in Fig. 4.7, for which a waveguide lattice with 28 um
spacing is created. The vortex beam [normal diffraction shown in Fig. 4.7(a)] is
then launched straight into the middle of the four lattice sites, so that the vortex
center sits right in the middle of four lattice sites (off-site excitation [13, 14]).
Due to waveguide coupling, the vortex beam undergoes discrete diffraction when
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Figure 4.7. Formation of a singly-charged (m=1) discrete vortex soliton in a 2D
photonic lattice. Top panel shows the 3D intensity plots of the vortex beam at crystal
output of normal diffraction without the lattice (a), output of discrete diffraction at low
nonlinearity (b, c), and output of discrete soliton at high nonlinearity (bias field: 3000
Vicm). The lattice spacing is 28 um. Bottom panel shows discrete vortex soliton
reproduced in a lattice of 20 um spacing (e), and a series of interferogram between the
vortex soliton and a weak plane wave (f-h), confirming the nontrivial =/2 step-phase
structure of the vortex at different orientations. (after Ref. [14]).

the nonlinearity is low [Fig. 4.7(b-c)], but it evolves into a discrete vortex
soliton at an appropriate level of high nonlinearity [Fig. 4.7(d)], with most of
the energy concentrated at the central four sites along the principal axes of the
lattice. To confirm the nontrivial phase of the vortex soliton, a weak reference
beam is introduced to interfere with the discrete vortex after it exits the crystal.
We use a piezo-transducer mirror in the reference beam path in order to control
its phase relative to the vortex beam. As we actively move the PZT mirror, a
series of interferogram is recorded to reconstruct the phase of the vortex.
Examples of the interferograms are presented in Fig. 4.7(f-h), which shows
that one of the four lobes increases its intensity whereas the corresponding
diagonal lobe decreases its intensity. Furthermore, the lobe with the strongest
intensity is alternating among the four spots. These interferograms confirm that
the four lobes of the output vortex have a nontrivial phase relation -- {a /2
phase ramp}, as expected for the discrete vortex soliton. Removing the
reference beam, the discrete vortex soliton is restored in steady state [Fig.
4.7(e)].

In addition to self-trapping of vortices with unit topological charges
(m=1), we have also investigated the nonlinear propagation of high-order
vortices in optically induced photonic lattices. Typical experimental results of
discrete trapping of a doubly-charged (m=2) vortex are presented in Fig. 4.8,
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Figure 4.8. Formation of a doubly-charged (m=2) discrete vortex soliton in a 2D
photonic lattice with off-site (top) and on-site (bottom) excitations. (a) Input intensity
pattern and interferogram of the vortex. (b) Lattice pattern with vortex input position
marked by green circle. (c) Self-trapping of the vortex at bias field of 3.4 kV/cm. (d, e)
Interference between (c) and a broad beam (quasi-plane wave) with two different phase
delays, showing diagonal two spots are always in phase. (After ref. [71]).

where both on-site and off-site excitations with respect to the lattice orientation
are illustrated [Fig. 4.8(b)]. The intensity pattern of the input vortex beam and
its interferogram with a plane wave is shown in Fig. 4.8(a), confirming the
double topological charges. Without bias field, the vortex breaks up into two
singly-charged vortices during linear propagation. At a low bias field, the
vortex undergoes discrete diffraction with its energy coupled to several lattice
sites away from the vortex core, similar to that of Fig. 4.7(b) [71]. Self-
trapping of the charge-2 vortex is achieved as the bias field is increased to
above 2.0 kV/cm. The vortex breaks up primarily into 4 intensity spots as for
the discrete singly-charged vortex soliton, but with major difference in the
phase structure. For the singly-charged vortex soliton, it has been shown that
the diagonal two spots are always out of phase. In fact, the relative phase
among the 4 spots changes in steps of n/2, and such a step-phase structure is
“frozen” during propagation [as shown in Fig. 4.7(f-h)], confirming a true
vortex soliton [14, 15]. For the self-trapped doubly-charged vortex, similar
experiment shows that the diagonal two spots are always in phase [Fig. 4.8(d,
e)]. Furthermore, the interferograms show that the two spots in one diagonal
are out-of-phase with the other two spots in the other diagonal for both on-site
and off-site excitations. We note that, from Fig. 4.8(d) to Fig. 4.8(e), the
relative phase between the vortex beam and the plane wave is changed by
slightly moving a PZT mirror installed in the interferometer while keeping all
other experimental conditions unchanged. (The background noise is mainly
from the plane wave). From these measurements, it appears that the vortex
beam breaks up into a quadrupole structure in lattices.
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When the doubly-charged vortex breaks up into 4 spots in lattices,
experimentally it is a challenge to distinguish between a true m=2 vortex and a
guadrupole soliton, although the issue has been investigated extensively in
theory [72, 73]. The interferogram as in Fig. 4.8(d, €) would show similar
results, while the interferogram as in Fig. 4.8(a) could not be obtained with
good visibility due to weak central intensity and background noise.
Fortunately, the vortex carries angular momentum while the quadrupole does
not. Based on that, we examine the 4-spot pattern resulting from the vortex
breakup at different level of nonlinearity. By changing the vortex-beam
intensity or the bias field (both controls the photorefractive nonlinearity), we
observe that the 4-spot pattern rotates slightly clockwise, and then reverses the
direction of rotation to counterclockwise as the strength of the nonlinearity is
increased. These observations suggest that the vortex beam should undergo a
charge-flipping since the direction of rotation is related to the sign of the net
topological charge [74, 75]. Such rotation and flipping is attributed to the
nonlinearity-induced momentum exchange between the vortex and the lattice,
which would not occur for a quadrupole lattice soliton without vorticity. Our
numerical simulations show that the switching between clockwise (m=+2) and
anticlockwise (m=-2) rotational modes of the vortex occurs periodically
through a transition state, in which the vortex turns into a quadrupole-like
structure with no phase variation across each intensity spot [71].

8. Discrete soliton trains and necklace-like solitons

As more complex soliton clusters in 2D lattices, we now report our work
on formation of trains of 2D discrete solitons in a stripe shape as well as in a
necklace shape. First, the DS trains in a row are generated by sending a stripe
beam into a 2D square lattice [as the vertical stripe A in Fig. 4.1(b)]. When the
lattice is operated in the linear regime, we observe that the stripe beambreaks
up into 2D filaments, and then it evolves into a train of 2D discrete solitons as
the level of the nonlinearity for the stripe is gradually increased. The first two
photographs in Fig. 4.9 show the stripe beam at the crystal input [Fig. 4.9(a)]
and its linear diffraction at the crystal output after 8 mm of propagation with
the lattice absent [Fig. 4.9(b)]. The other photographs show the 2D discrete
diffraction [Fig. 4.9 (c)] and the DS train formed at a bias field of 3.0 kV/cm
[Fig. 4.9(d)] along with their corresponding 3D intensity patterns [Fig. 4.9(e,
f)]. The observed behavior of the stripe beam in Fig. 4.9(c, e) arises clearly
from discrete diffraction, in which most of the energy of the stripe beam goes
away from the center (indicated by an arrow) to the two sides due to the
waveguide coupling. When the self-focusing nonlinearity comes to play a role
for the stripe beam at a new steady-state, the DS train is observed with most
of energy being concentrated in the central column [Fig. 4.9(d, f)] to which the
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Figure 4.9. Experimental demonstration of 2D discrete soliton trains. Shown are the
transverse intensity patterns of a stripe beam taken from crystal input (a) and output (b-d)
faces. (b) Normal diffraction, (c) discrete diffraction, and (d) discrete soliton trains.
Arrows in (c) and (d) indicate initial location of the stripe beam. (e) and (f) are 3D
intensity plots corresponding to (c) and (d), respectively. (after Ref. [11]).

stripe beam was initially aimed. These experimental results are corroborated
by numerical simulation of the stripe-lattice evolution equations using a fast
Fourier transform multi-beam propagation method [10, 11]. The stability of
such DS trains as well as the formation of DS trains in other configurations
such as a necklace-like ring discrete solitons discussed below certainly merits
further investigation. We note that the formation of soliton trains mediated
from modulation instability is a fundamental nonlinear wave problem as
discussed recently also with coherent matter waves [76, 77].

Next, we present the results on the DS trains in a necklace shape which are
generated by sending a high-order vortex (m=4) beam into a 2D square lattice
[as illustrated in Fig. 4.10(a)]. Our experiments were performed in a 2D
squarelattice optically induced by passing a laser beam (with wavelength 488
nm) through a rotating diffuser, an amplitude mask, and a biased PR crystal, as
described earlier. The biased crystal (20 mm long SBN:60) provides a self-
focusing noninstantaneous nonlinearity. Because of the anisotropic property
of the PR crystal, the ordinarily polarized lattice beam experiences only a weak
nonlinearity and forms a stable 2D waveguide array nearly invariant during



28 Zhigang Chen & Jianke Yang

Figure 4.10. Formation of a necklace-like soliton in a 2D photonic lattice. (a) a 2D
photonic lattice created by optical induction, where the circle indicates the off-site
vortex location. (b, ¢) the interferograms of a charge-4 vortex with a spherical and a
plane wave, respectively. (d) experimental observation of the self-trapped vortex into a
necklace shape. (e) the electric field distribution of a necklace soliton as obtained from
theory, where the red and blue spots have © phase difference between adjacent pearls.
(after Ref [78]).

propagation in the crystal. The principal axes of the square lattice are again
oriented in the diagonal directions. To facilitate the formation of a necklacelike
soliton, a ring vortex beam is launched into the lattice such that the ring covers
8 lattice sites, with the center of the ring located in an empty site (off site) as
shown in Fig. 4.10(a). The ring vortex is created with a charge-4 (m=4)
helicoidal phase mask, and the phase singularity of the vortex is shown in the
interferograms of Figs. 4.10(b, c). The vortex beam is coherent (without going
through the diffuser) and extraordinarily polarized. Thus, it experiences a
much higher nonlinearity while propagating collinearly with the lattice beam
through the biased crystal. Typical experimental observation of self-trapping of
the high-order vortex is presented in Fig. 4.10(d). To achieve self-trapping, a
stable square lattice (with 40 um lattice spacing) is created in the crystal first.
A vortex beam with charge-4 and intensity about 5 times weaker than that of
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the lattice is then launched into the lattice, with the vortex ring covering 8 sites
in a necklace or octagon shape. The vortex beam exhibits significant
diffraction after linear propagation through the crystal. Without the lattice, the
charge-4 vortex breaks up into many filaments in the self-focusing nonlinear
crystal, leading to disordered patterns driven by noise and modulation
instability [78]. In the presence of the lattice, however, the behavior of the
vortex is dramatically different, characterized by the confinement of the
filaments at about the location of the initial vortex ring. This is shown in Fig.
4.10(d), where the vortex has evolved into an octagon (necklace-like) structure
at an appropriate level of high nonlinearity. Such a soliton cluster is stationary
and quite stable during the period of observation (typically more than 30 min),
so the soliton structure is observed in steady state. This structure is due to the
nonlinear self-action of the vortex-ring beam. When the center of the initial
vortex ring is moved from the off-site position to an on-site one, the octagon
structure disappears. But when the vortex ring is lined up again with 8
octagon-shaped lattice sites (at a different off-site location), the necklace
structure is restored in a new steady state [78]. Thus the offsite excitation
favors the formation of the necklace soliton. The experiment was repeated with
vortices of different topological charges. When a ring vortex beam with charge
lower than 4 is launched into the same octagon-shaped lattice sites, less
confined necklace structures are observed. Even for the case of a charge-4
vortex where the robust necklace structure is observed, we could not achieve
sufficiently high visibility to determine the entire phase structure of the
necklace soliton by the interference technique, as was done for lower-order
vortex solitons described earlier. This is simply due to the imperfection of the
vortex mask that results in unequal intensities for the pearls in the necklace and
the strong sensitivity to the background noise. The above experimental results
were corroborated by our theoretical studies through two different (yet
complementary) approaches; one is to use the continuous model with a
periodic lattice potential, and the other is to use the discrete nonlinear
Schrodinger equation [78]. Both approaches revealed existence of suchnecklace
solitons. Furthermore, it has been shown that stable necklace-like solitons can
only be obtained when the adjacent pearls in a necklace are out-of-phase rather
than in-phase, as shown in Fig. 4.10(e).

9. “Fabrication” of 2D ring lattices and nonlinear

discrete trapping

Although discrete solitons have been demonstrated experimentally in a
variety of settings, including semiconductor waveguide arrays with Kerr
nonlinearity [4, 5], optically-induced waveguide lattices with photorefractive
nonlinearity [7-11], fabricated channel waveguides in lithium niobate crystals
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with quadratic nonlinearity [79], and voltage-controlled waveguide arrays in
liquid crystals with orientational nonlinearity [80], all the experimental work
on discrete solitons has been performed either in 1D lattices or in 2D lattices
with no rotational symmetry (e.g., planar or square lattices). On the other hand,
in the 2D domain, many fundamental features are expected to occur not only
because lattice structures can be richly configured with different lattice
symmetry, but even in a given lattice symmetry (such as in square lattices),
spatial solitons that have no analog in the 1D domain can be realized. When
the rotational symmetry is desired, one can have another important class of
lattices such as those created by nondiffracting Bessel beams [81]. Such lattice
symmetry may lead to new soliton features attractive for applications in soliton
manipulation including the possibility to induce rotary soliton motions and
reconfigurable soliton networks [82].

Motivated by this, we demonstrate for the first time the formation of
Bessel-like photonic lattices by optical induction. Such ring-shaped lattices
remain nearly invariant in a 10-mm long photorefractive nonlinear crystal.
Different from what was used earlier for generation of soliton pixels [35] and
DS in square lattices [10, 11, 14], here we use an amplitude mask with an
equally-spaced concentric ring pattern. A coherent laser beam operating at
532-nm wavelength is split into two beams by a polarizing beamsplitter
(PBS) before entering into a 10-mm long SBN:60 photorefractive crystal.
The lattice-forming beam passing through the mask is ordinarily-polarized
(o-beam), and the soliton-forming beam is extraordinarily-polarized (e-
beam). When the mask is imaged onto the input face of the crystal, a spatial
bandpass filter is introduced in the Fourier plane. After proper filtering, the
mask gives rise to a Bessel-like intensity pattern at the crystal input [Fig. 5.1,
left panel], which remains nearly invariant during linear propagation. We
note that the ring pattern created this way is slightly different from the true
Bessel pattern, since both the intensity and the spacing between adjacent
rings do not decrease so dramatically in the radial direction. (In fact, the true
Bessel pattern has a normalized intensity of 1.00, 0.16, 0.09 and 0.06 for the
first four maxima, while our measured normalized intensity is 1.00, 0.25,
0.14, and 0.10. Starting from the first ring, the measured spacing between
adjacent rings is about 20 um even far away from the center). With an
appropriate bias field, such a ring pattern from o-beam induces a periodic
ring waveguide lattice that propagates nearly linearly throughout the 10-m
long crystal. To fine-tune the lattice potential and the nonlinearity of the
probe beam, a background illumination from an incandescent lamp is used to
cover the entire crystal from the top.

Discrete diffraction and discrete solitons are observed when a probe beam is
launched both into the lattice center and into different lattice rings. In the former
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case (center excitation), we demonstrate a clear transition from discrete
diffraction to linear single-channel guidance by fine-tuning the lattice potential
and to nonlinear self-trapping of the probe beam by fine-tuning the self-
focusing nonlinearity. In the latter case (off-center excitation), we also
demonstrate controlled soliton rotation in different lattice rings by imposing an
initial transverse momentum to the soliton. To ensure trapping of the probe
beam results from nonlinear self-action rather than simple guidance, we take
advantage of noninstantaneous nature of the photorefractive nonlinearity.
Experimental results are illustrated in Fig. 5.1, where (a, c) show the linear
diffraction patterns which were taken 0.05 s after the probe beam (11.5um,
FWHM) was launched into the lattice (before self-action took place), and (b, d)
shows the corresponding self-trapped patterns taken 60 s later when the crystal
has reached a new steady-state. For on-center excitation [Fig. 5.1, top], the
peak intensity ratio between the central core of the lattice and the probe beam
is about 1:4, and the applied dc field is 3.00 kV/cm. For off-center excitation
[Fig. 5.1, bottom] where the probe is aimed at the third ring, the intensity ratio
between the third lattice ring and the probe beam is about 1:8, and the applied
field is 3.80 kV/cm. As seen from these figures, the probe beam undergoes
strong discrete diffraction before nonlinear self-action takes place, with the
diffracted beam covering several lattice rings, but its energy becomes much
more localized due to nonlinear self-trapping. We emphasize that the results in
Fig. 5.1 are from the nonlinear self-action of the beam in the lattice, which is
different from linear guidance of light by a high-index core as in an optical
fiber.

Figure 5.1. Left panel: Optically induced Bessel-like ring lattices in a self-focusing
medium. Right panels: Transition from discrete diffraction (a, ¢) to nonlinear self-
trapping (b, d) of a probe beam launched in the center (a, b) and the third ring (c, d) of
the lattice. Patterns in (a, ¢) were taken instantaneously (<0.1 s) while those in (b, d)
were taken in steady state. The arrow indicates the center of the ring lattice, and the
cross indicates the input position of the probe beam. (after Ref. [83]).
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A fascinating property of solitons particular to the setting of ring lattices
is that such solitons can rotate around the rings without much radiation
during their rotary motion [81]. To demonstrate such soliton rotation
experimentally, we launch the probe beam on the far right side of the ring
with a tilting angle towards the y-direction, thus imposing an initial
transverse momentum to the probe. We observe that the degree of soliton
rotation increases with the tilting angle for the same ring excitation, but
decreases as the soliton is created at the larger rings. Figure 5.2 shows the
rotary motion of the soliton in different rings with the same tilting angle (top
panel), and in the same ring with different tilting angles (bottom panel). For
these experimental results, the space between the rings is about 40um, the
intensity ratio between the ring which the soliton locates and the peak of the
probe beam is about 4:9, and the applied dc field is 5.2 kV/cm. From Fig. 5.2,
we see clearly that the probe beam with a tilting angle can form a spatial
soliton that rotates along the ring it is created. Furthermore, with the same
tilting angle, the rotary angle decreases as the soliton is excited in the outer
rings, as expected from particle rotation. Our experimental results are in good
agreement with the theoretical analysis of these effects [83]. These rotary
solitons are expected to play new roles in soliton-driven photonics, and their
experimental realization might provide insights for studying similar
phenomena in other nonlinear systems of periodic ring structures.

Figure 5.2. Soliton rotation in optically-induced ring lattices. From (a) to (c), the probe
was aimed at the far right side of the first, second and third ring with the same tilting
angle (about 0.4 degree) in y-direction. From (d) to (f), the probe was aimed at the
same second ring but with different tilting angles of 0, 0.4 and 0.6 degree, respectively.
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It should be pointed out that all work presented in Sect. 4 and Sect. 5 is
about discrete solitons in 2D linear waveguide lattices where the probe beam
experiences a strong self-focusing nonlinearity but the lattice beam does not.
Discrete solitons are so called because a delicate balance between self-focusing
from nonlinearity and discrete diffraction from lattices has been reached for each
of these self-trapped states, so that the wavepackets could propagate invariantly
through the periodic medium. On the other hand, such balance may not be
reached should the lattice beam itself experiences strong nonlinearity. In this
latter case, however, it is possible to demonstrate a number of novel
phenomena associated with soliton-lattice and vortex-lattice interactions,
including soliton-induced lattice dislocation, lattice deformation and compression,
and vortex-induced lattice twisting due to the transfer of angular momentum
carried by the vortex into a nonlinear solitonic lattice. Part of the work with
nonlinear solitonic lattices are reviewed in Ref. [50]. For discrete solitons in
linear lattices, only the probe beam experiences high nonlinearity. For soliton-
lattice interaction, both the probe beam and the lattice beam experience high
nonlinearity. In what follows (Sect 6. and Sect 7), we shall discuss light
confinement by defects embedded in otherwise uniform lattices, in which both
the probe beam and the lattice beam experience no or only weak nonlinearity.

10. “Fabrication” of 2D defective square lattices and

linear bandgap guidance

Periodic lattices with impurities and defects are well known in solid state
physics, photonic crystals and fabricated semiconductor waveguide arrays. In
particular, bandgap guidance by defects in otherwise uniformly periodic
structures such as hollow-core photonic crystal fibers (PCF) is fundamentally
different from traditional guidance by total internal reflections (TIR). As
mentioned earlier, such PBG has been demonstrated earlier in 2D arrays of
dielectric cylinders with isolated defects for microwaves, and recently in all-
solid PCF with a lower-index core for optical waves.

In photonic lattices optically-induced in a photorefractive crystal [6-11],
the induced refractive index variation is typically orders of magnitude smaller
than that in photonic crystals, while the lattice spacing is also much larger than
the optical wavelength. A natural question arises: is it possible to optically
induce 2D waveguide lattices with a single-site defect so that light can be
confined in the defect akin to those achieved in hollow-core PCF? That would
open up another avenue for studying the defect-related phenomena in periodic
systems, taking advantage of the unusual features of photorefractive materials
such as wavelength-sensitive and reconfigurable nonlinear refractive index
patterns induced at very low power levels.
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Here we report the first experimental demonstration of PBG in optically-
induced 2D photonic lattices with a single-site negative defect [31]. In such a
defective lattice, the refractive index in the defect is lower than that in the
surrounding “rods” (akin to an “air defect” in photonic crystals or hollow-core
PCF [16, 17], and much alike all-solid low-index-core PCF [19, 20]). We
observe that a probe beam at different wavelengths is spatially confined in the
defect during its linear propagation, although the defect is repulsive and the
beam itself has no nonlinear self-action. The observed “guidance” of light in
the negative defect arises from linear propagation of the DM formed in the
spatial bandgap of the photonic lattice, which is fundamentally different from
linear guidance by TIR or nonlinear self-guidance as in a spatial soliton. In
addition, we show that the “guided” patterns by the defect display fine spatial
structures such as dipole and vortex cells which arise from the DM excited at
higher bandgaps.

Using experimental techniques similar to those for 1D defective lattices,
we can optically generate 2D square defective lattices as well. As before, we
not only need to employ frequency filtering and beam tilting to eliminate the
Talbot effect, but also need to introduce weak nonlinearity and partial
incoherence to maintain the defect against washing-out. The experimental
results are shown in Fig. 6.1 (top panel). Here Fig. 6.1 (a) is the lattice input,
with lattice spacing about 27um. The propagation distance is 20mm. In purely
linear propagation, the defect disappears at the exit face of the crystal [see Fig.
6.1(b)]. However, when weak nonlinearity is introduced to the lattice beam,
the defect is well maintained [see Fig. 6.1(c)]. The 2D defect can guide 2D
localized modes as well, similar to the 1D case. To demonstrate, we
experimentally launch a weak probe beam into the defect nested in the
otherwise uniform lattice as shown in Fig. 6.1 (bottom panel). The input of the
probe beam is shown in Fig. 6.1(a). When the defect is not maintained as in
(b), the probe beam strongly diffracts (see bottom (b)). However, when the
defect is well maintained, the probe beam is very well guided inside the defect
(see bottom (c)). It is important to point out that, should the lattice be removed,
the probe beam itself has no (or very weak) self-action so that it diffracts
normally. Since the probe beam is guided by the defect where the refractive
index is lower compared to its surroundings (negative defect), total internal
reflection does not occur here.

One of the interesting phenomena in 2D defect guiding is the observation
of fine structures in the “tails” of DM patterns, which has no counterpart in 1D
defect guiding. These fine structures appear at different lattice conditions. In
Fig.6.2, three such characteristic patterns are presented. At lattice spacing of 27
um, the “tails” resulting from the leakage of light extend afar from the center
core and cover more than just a single diagonal line of the lattice (Fig. 6.2(a)).
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Figure 6.1. Top panel: intensity pattern of a 2D induced lattice with a single-site
negative defect at crystal input (a) and output (b, c). The defect disappears in linear
region (b) but can survive with nonlinearity (c) after propagating through 20-mm long
crystal. Bottom panel: input (a) and output (b, c) of a probe beam showing normal
diffraction without the lattice (b) and bandgap guidance by the defect (c) under the
same bias condition. (after Ref. [31]).

At spacing 42 um, the “tails” in the output patterns display even more
interesting fine structures associated with non-trivial phase distributions (Fig.
6.2 (b, c)). Such phase pattern was recorded by the interference between the
probe beam forming the DM and a broad beam (quasi-plane wave). It
revealed that the “tails” along the lattice principal axes contain either dipole-
like (Fig. 6.2 (b)) or vortex-like (Fig. 6.2 (c)) arrays. Figure 6.2 (d) shows a
typical interferogram corresponding to intensity pattern of Fig. 6.2 (c), where
the locations of vortices are indicated by arrows. It is apparent that the vortex
cells have different sign of topological charge in two diagonal “tails”.

To theoretically understand these various patterns of 2D defect-mode
structures, we use the 2D model equation

iuz+uxx+uw—iu =0, (6.1)
1+1.(x)

where U is the envelope function of the probe beam, E, is the applied bias
field,
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Figure 6.2. Intensity patterns of DM under different lattice conditions. (a) lattice spacing
27 um, bias field E= 2.6 kV/cm; (b) lattice spacing 42 pm, E= 2.4 kV/cm; (c) lattice
spacing 42 um, E= 3.0 kV/cm. (d) zoom-in interferogram of (c) with a plane wave
where arrows indicate location of vortices. The brightest spot corresponds to the defect
site (after Ref. [31]).

I.(xy)=1,cos? [%)cosz [%j{l_gexp[_%ﬂ (6.2)

is the 2D defective lattice, |, is the lattice peak intensity, and ¢ is the defect
depth. When we take Eq = 12, I = 3, and &= 0.1, we find various 2D defect
modes which are shown in Fig. 6.3. In this figure, (a) shows the bandgap
structure of this 2D lattice system. At point B which lies in the first bandgap
(between the two lowest Bloch bands), there is a single defect mode shown in
(b). This mode is symmetric along the two lattice principal axes, and it closely
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Figure 6.3. (a) Bandgap structure of a 2D uniform lattice (I = 3); (b) a defect mode
found at point B in (a); (c) another defect mode y (X,y) found at point D in (a); (d) a

linear superposition of defect modes t(X,y) and  (y, X) with a n/2-phase delay. Upper
panel shows intensity patterns and lower panel the phase plots (after Ref. [31]).

resembles the one observed in Fig. 6.1(a) and 6.2(a). However, at point D,
which lies in the second bandgap, we find two defect modes  (x,y) and v (y, X)
which are asymmetric along the two lattice principal axes. One of these two
modes is shown in Fig. 6.3 (c), while the other one is a 90-degree rotation of
Fig. 6.3(c). Due to the linear nature of this system, any linear superposition of
these two defect modes remains a defect mode. Depending on the relative
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phase between these two modes, their linear superposition can give rise to very
interesting mode patterns. For instance, when these two modes have a 90-degree
phase delay, their superposition w (x,y) + iy (y, X) is shown in Fig. 6.3 (d). It is
seen that this new defect mode contains an array of vortex cells, dominated along
the two lattice principal axes. This pattern is quite similar to the one observed in
Fig. 6.2 (c, d). The dipole arrays observed in Fig. 6.2 (b) may be explained in a
similar way. These experimental and theoretical findings reveal that light guiding
behaviors by 2D defects are much richer and merit further study.

11. “Fabrication” of 2D ring lattices with a low-index

core and its linear guidance

As discussed in previous sections, recent work has predicted the possibility
of spatial confinement of light (defect modes) in optically-induced waveguide
lattices with local defects. Indeed, such defect modes have been observed in
both 1D stripe and 2D square lattices with a single-site defect. However, it
remains a challenge to optically induce a PCF-like lattice structure with a
negative defect (a low-index core) to demonstrate PBG guidance. Although in
the nonlinear region a light beam itself can induce a defect via nonlinearity in
waveguide lattices, and thereby localize itself in the induced defect such as
“discrete solitons” [1-15], these localizations via nonlinear self-action are
fundamentally different from the PBG guidance in which a light beam itself
undergoes linear propagation.

In this section, we present the results on the formation of Bessel-like
photonic lattices by optical induction in a self-defocusing photorefractive
crystal, as well as the light guiding property in such lattices [30]. When
propagating through the crystal, a spatially modulated lattice beam induces a
set of concentric rings of index change with a low index core. Such index
structure is similar to those of Bragg fiber and Omniguide fiber, but it is
reconfigurable with low index change on the order of 10 to 10 and the
lattice period (“pitch”) on the order of tens of microns. A transition of probe
beam from linear discrete diffraction to the guidance into the low-index core is
clearly observed by fine-tuning the lattice potential. We show theoretically that
this guidance persists when the outer rings of the lattice are removed, and
discuss the possible mechanism for the observed guidance in experiment.

The crystal used in our experiment is a 10-mm long SBN:61. The
experiment setup is similar to that used for generation of discrete ring lattice
solitons reported in Sect. 5, except that the Bessel-like lattices are induced with
a self-defocusing nonlinearity, so the center of the lattice is a low index core.
With proper filtering, the mask gives rise to a Bessel-like intensity pattern at the
crystal input [Fig. 7.1(a)], which remains nearly invariant during the propagation



Figure 7.1. Intensity pattern of a ring lattice at crystal input (a) and output (b) after 10-
mm of propagation. (c) A broad incoherent beam probing through the lattice shows a
reversed contrast respective to (b). The arrow in (c) marks the center of the lattice (i.e.,
the low-index core). (after Ref. [30]).

throughout the 10-mm long crystal even under a negative bias field of 2 kV/cm
[Fig. 7.1 (b)]. Starting from the first ring, the measured spacing between
adjacent rings in Fig. 7 is about 20 um. We note that the ring pattern created
this way is somewhat different from the true Bessel pattern, since the intensity
of rings does not decrease as dramatically in the radial direction as in a true
Bessel pattern. With a negative bias, the crystal has a self-defocusing
nonlinearity [36, 45, 46]. This means that the locations of the ring waveguides
correspond to the dark (low intensity) areas of the lattice beam, while the
center (high-intensity) corresponds to an anti-guide. Thus the ring pattern in
Fig. 7.1(b) induces a periodic ring waveguide lattice with a low-index core,
tested by sending a broad white-light probe beam as shown in Fig. 7.1(c). The
guided pattern of the probe beam has a reversed contrast as compared to the
intensity pattern of the lattice beam.

To investigate the waveguiding property in such an induced ring lattice, a
Gaussian-like probe beam (FWHM: 14 um) is launched directly into the core
and propagate collinearly with the lattice. The probe beam is e-polarized but
has a wavelength of 632.8 nm that is nearly photo-insensitive for our crystal,
so that nonlinear self-action of the probe beam is negligible. Since the index at
the center of the lattice is lower than that at its surrounding, the probe beam
tends to escape from the center and couple into the surrounding ring
waveguides due to evanescent coupling. As such, the peak intensity of the
probe beam does not stay in the core after linear propagation and discrete
diffraction. However, under appropriate conditions, guiding of the probe beam
into the core is observed. Typical experimental results are presented in Fig. 7.2
for a ring lattice with the spacing of 37 um. Figure 7.2 shows the output patterns
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Figure 7.2. Propagation of the probe beam in the ring lattice. (a-d) 2D output transverse
patterns (top) and corresponding 3D intensity plots (bottom) of the probe at a fixed
lattice intensity while the negative bias is increased gradually (0.6, 1.0, 1.4, and 2.0
kV/cm) (after Ref. [30]).

of the probe beam as the applied dc field is set at different levels while the
lattice intensity (normalized to background illumination) is fixed. When the
bias field is low, the probe beam tends to diffract away from the core [Fig. 7.2
(a)], but as the bias field increases, the probe beam undergoes a transition from
discrete diffraction to central guidance [Fig. 7.2 (c)]. This phenomenon
resembles that reported for 1D and 2D defect modes presented earlier. At even
higher bias field, the guidance starts to deteriorate [Fig. 7.2 (d)] because the
experimental condition deviates from that for the formation of the defect mode.
We emphasize that in these experiments the probe beam has no self-action
because of its photo-insensitive wavelength. Should the probe beam be at a
photo-sensitive wavelength (e.g., 488 nm), it would experience the self-
defocusing nonlinearity which in turn would make the beam spread more. If a
positive bias is used to turn the crystal into a self-focusing medium, the
induced ring lattice will have a high-index core, where a probe beam can be
either guided (by total internal reflection) or self-trapped to form a discrete
soliton. Since our observed guidance differs from total internal reflection and
nonlinear self-induced waveguiding, its mechanism merits further investigation.
To better understand the experimental results in Fig. 7.2, we use the model
EO
S N NGl

and r=4/x’+y?. Here x and y are normalized by the spacing (pitch) of the
lattice far away from the center, and normalizations for 1y, Ey and z are the
same as in [30]. The Bessel function | J, (r) | % was chosen for the ring lattice
since the first four peaks of this function decay as 1.00, 0.25, 0.16, 0.12 [Fig.
7.3(a)], closely resembling those in the experiments. Numerical simulations
under experimental conditions produce results qualitatively similar to those in

equation iU, +U,_ +U U =0, where Jo(r) is the Bessel function,
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Figure 7.3. Ring waveguides and their quasi-localized modes. (a) A Bessel-like ring
lattice; (b) a guided mode in (a); (c) the lattice of (a) with outer rings removed; (d) a
guided mode in (c). Normalized parameters are Ey = -15, 15 = 750, and = 0.97 (E; = -
15 corresponds to —1.4 kV/cm).

Fig. 7.2. Furthermore, we have also searched for guided modes of the above
model in the form of U(x, y, X) = e™*u(r), and found solutions u(r) which have
a high central peak and weak oscillatory tails. One such solution is shown in
Fig. 7.3(b), which resembles those observed in Fig. 7.2(c). The amplitudes of
the tails in such solutions depend on Ey, Iy and . Note that in our ring lattice,
the intensity decays along the radial direction, and thus bandgaps do not really
open in the above model. Thus, the solution in Fig. 7.3(b) can not be a truly
localized defect mode. If we keep only the central beam and the first ring of
the lattice [see Fig. 7.3(c)], we find that quasi-localized modes as in Fig. 7.3(b)
persist [see Fig. 7.3(d)]. This finding indicates that the guidance observed
above may not be attributed to the repeated Bragg reflections of outer rings,
but rather it is dominated by the first high-index ring in our lattice. This
guidance seems analogous to that in antiresonant reflecting optical waveguides
[84], and certainly merit further investigation. For instance, one of the
subjects in our future research is to see if such low-index core can create any
“coloring” effect as that occurred in photonic crystal fibers.

12 . Summary

In summary, we have successfully fabricated, or optically induced, 1D and
2D uniform and defective photonic lattices by the method of amplitude
modulation together with several other techniques such as frequency filtering,
partial spatial coherence, and polarization-controlled index variation. These
lattices can propagate in linear, weakly nonlinear and strongly nonlinear
regimes. We have also demonstrated that these lattices can support linear and
nonlinear localized states of beam propagation with various geometrical and
phase structures, such as dipole solitons, vortex solitons, necklace-like
solitons, linear defect modes, and bandgap guidance akin to that occurs in
photonic crystals. The mechanisms for light confinement in these lattice
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structures range from nonlinear discrete self-trapping, repeated Bragg
reflections, and the anti-resonance effect. Our results pave the way for further
study of new phenomena in periodic and irregular photonic structures, as well
as for exploring potential applications in beam shaping and light routing with
reconfigurable lattices.

We close by mentioning that, in this Chapter, we have provided an
overview mainly about our own work on optically-induced photonic lattices
and their linear and nonlinear light guiding properties. There are a number of
research groups worldwide actively working in this dynamically changing field
of nonlinear optics and photonics [85].
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