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Saddle-node bifurcations of solitary waves in generalized nonlinear Schrödinger
equations with arbitrary forms of nonlinearity and external potentials in arbitrary
spatial dimensions are analyzed. First, general conditions for these bifurcations are
derived. Second, it is shown analytically that the linear stability of these solitary
waves does not switch at saddle-node bifurcations, which is in stark contrast with
finite-dimensional dynamical systems where stability switching takes place. Third,
it is shown that this absence of stability switching does not contradict the
Vakhitov–Kolokolov stability criterion or the results in finite-dimensional
dynamical systems. Fourth, it is shown that this absence of stability switching
holds not only for real potentials but also for complex potentials. Lastly, various
numerical examples will be given to confirm these analytical findings. In partic-
ular, saddle-node bifurcations with both branches of solitary waves being stable
will be presented.

1 Introduction

Saddle-node bifurcation is the generic and most common bifurcation in finite-
dimensional dynamical systems [1]. In this bifurcation, there are two fixed-point
branches on one side of the bifurcation point and no fixed points on the other side,
and the stability of these two fixed-point branches switches at the bifurcation point
(one branch stable and the other branch unstable). In nonlinear partial differential
equations (which can be viewed as infinite-dimensional dynamical systems),
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this bifurcation occurs as well (it is also called fold bifurcation in the literature).
For instance, solitary waves in nonlinear physical systems often exhibit this type of
bifurcation. Examples include the Boussinesq equations and the fifth-order
Korteweg-de Vries equation in water waves [2–4], the Swift–Hohenberg equation
in pattern formation [5], the nonlinear Schrödinger (NLS) equations with localized
or periodic potentials in nonlinear optics and Bose–Einstein condensates [6–9],
and many others. Motivated by stability switching of saddle-node bifurcations in
finite-dimensional dynamical systems, it is widely believed that in nonlinear
partial differential equations, stability of solitary waves also always switches at
saddle-node bifurcations (see [5–8] for examples). Even though it was claimed on
numerical evidence that both branches of saddle-node bifurcations were stable for
various solitons in a Kronig–Penney model with cubic-quintic nonlinearity [10],
that numerical evidence was not reliable since many solitons which the authors
claimed to be stable are actually unstable. Thus that work could not shake this
pervasive belief of stability switching.

In this paper, we show that this belief of universal stability switching at saddle-
node bifurcations in nonlinear partial differential equations is incorrect. Specifi-
cally, we show that in generalized nonlinear Schrödinger equations with arbitrary
forms of nonlinearity and external real or complex potentials, stability of solitary
waves actually does not switch at saddle-node bifurcations. This fact is proved
analytically in two ways by using the general conditions of saddle-node bifurca-
tions, eigenvalue-bifurcation analysis and the method of contradiction. It is also
verified numerically by several examples, where both branches of solitary waves
are stable at saddle-node bifurcations. In addition, we show that this absence of
stability switching does not contradict the Vakhitov–Kolokolov stability criterion
even though the lower and upper branches of the saddle-node bifurcation have
opposite signs of power slopes. Reconciliation of our results with those in finite-
dimensional dynamical systems is also provided.

2 Conditions for Saddle-Node Bifurcations

We consider generalized nonlinear Schrödinger equations with arbitrary forms of
nonlinearity and external potentials in arbitrary spatial dimensions,

iUt þr2U þ FðjUj2; xÞU ¼ 0; ð1Þ

where r2 is the Laplacian in the N-dimensional space x ¼ ðx1; x2; � � � ; xNÞ, and
Fð�; �Þ is a general function which contains nonlinearity as well as external poten-
tials. These equations include the Gross–Pitaevskii equation in Bose–Einstein
condensates and nonlinear light-transmission equations in linear potentials and
nonlinear lattices as special cases [11–14]. Below, we will first focus on the case
where the function F is real-valued, which applies when the system (1) is conser-
vative. Extension to the non-conservative case of complex functions of F will be
considered in Sect. 6 later.
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When the function F is real, Eq. (1) admits stationary solitary waves of the form

Uðx; tÞ ¼ eiltuðxÞ; ð2Þ

where uðxÞ is a localized real function satisfying

r2u� luþ Fðu2; xÞu ¼ 0; ð3Þ

and l is a real propagation constant which is a free parameter. Under certain
conditions, these solitary waves undergo saddle-node bifurcations at special values
of l [6–9]. A signature of these bifurcations is that on one side of the bifurcation
point l0, there are no solitary wave solutions; but on the other side of l0, there are
two distinct solitary-wave branches which merge with each other at l ¼ l0: To
derive conditions for these bifurcations, we introduce the linearization operator of
Eq. (3),

L1 ¼ r2 � lþ ou½Fðu2; xÞu�: ð4Þ

We also introduce the standard inner product of functions

hf ; gi ¼
Z 1
�1

f �ðxÞgðxÞdx; ð5Þ

where the superscript ‘*’ stands for complex conjugation. Our analysis starts with
the basic observation that, if a bifurcation occurs at l ¼ l0, by denoting the
corresponding solitary wave and the linearization operator as

u0ðxÞ ¼ uðx; l0Þ; L10 ¼ L1jl¼l0; u¼u0
; ð6Þ

then the linear operator L10 should have a discrete zero eigenvalue. This is a
necessary condition for all types of bifurcations (not just for saddle-node bifur-
cations). To derive sufficient conditions for saddle-node bifurcations, let us make
the following assumption.

Assumption 1 It is assumed that this zero eigenvalue of L10 is discrete and
simple.

This assumption holds for all bifurcations in one spatial dimension since L10 in
this case is a Sturm–Liouville operator whose discrete eigenvalues are all simple.
This assumption holds for many bifurcations in higher spatial dimensions as well.
Under this assumption, we denote the unique discrete (localized) eigenfunction of
L10 at the zero eigenvalue as wðxÞ, i.e.,

L10w ¼ 0: ð7Þ

Since L10 is a real operator, we can normalize the eigenfunction w to be a real
function and hence require w real below. We also denote

Gðu; xÞ ¼ Fðu2; xÞu; GkðxÞ ¼ ok
uGju¼u0

; ð8Þ
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where k ¼ 1; 2; 3; � � �. Then the sufficient condition for saddle-node bifurcations of
solitary waves is given by the following theorem.

Theorem 1 Under Assumption 1 and the above notations, if hu0;wi 6¼ 0 and
hG2;w

3i 6¼ 0, then a saddle-node bifurcation of solitary waves occurs at l ¼ l0 in
Eq. (1).

Proof Solitary waves which exist near l ¼ l0 admit the following perturbation
series expansions

uðx; lÞ ¼
X1
k¼0

ðl� l0Þk=2ukðxÞ: ð9Þ

Inserting this expansion into Eq. (3), we get the following equations for uk at order

ðl� l0Þk=2, k ¼ 0; 1; 2;:

r2u0 � l0u0 þ Fðu2
0; xÞu0 ¼ 0; ð10Þ

L10u1 ¼ 0; ð11Þ

L10u2 ¼ u0 � G2u2
1=2!; ð12Þ

and so on. Equation (10) for u0 is satisfied automatically since u0 is a solitary wave
at l ¼ l0: The u1 solution to Eq. (11) is found from (7) as

u1 ¼ b1w; ð13Þ

where b1 is a constant. The u2 function satisfies the linear inhomogeneous equation
(12). Due to the Fredholm Alternative Theorem and the fact that L10 is self-adjoint,
Eq. (12) admits a localized solution for u2 if and only if the homogeneous solution
w is orthogonal to the inhomogeneous term, i.e.,

hw; u0 � G2u2
1=2i ¼ 0: ð14Þ

Inserting the solution (13) into this orthogonality condition and recalling the
conditions in Theorem 1, we find that

b1 ¼ �b; b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hu0;wi
hG2;w

3i

s
: ð15Þ

Thus, we get two b1 values �b which are opposite of each other. Inserting the
corresponding u1 solutions (13) into (9), we then get two perturbation-series
solutions of solitary waves uðx; lÞ as

u�ðx; lÞ ¼ u0ðxÞ � bðl� l0Þ1=2wðxÞ þ Oðl� l0Þ: ð16Þ

If hu0;wi and hG2;w
3i have the same sign, then b is real. Recalling that u0ðxÞ and

wðxÞ are both real as well, we see that these perturbation-series solutions (16) give
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two real-valued (legitimate) solitary waves when l [ l0, but these solitary waves
do not exist when l\l0. On the other hand, if hu0;wi and hG2;w

3i have the
opposite sign, b is purely imaginary. In this case, the perturbation series (16) give
two real-valued solitary waves when l\l0 but not when l [ l0:

The above perturbation calculations can be continued to higher orders. We can
show that the two real solitary-wave solutions (16), which exist on only one side of

l ¼ l0, can be constructed to all orders of ðl� l0Þ1=2: In addition, these two
solitary waves u�ðx; lÞ merge with each other when l! l0: We can also show
that except these two solitary-wave branches, there are no other solitary-wave
solutions near the bifurcation point. Thus a saddle-node bifurcation occurs at
l ¼ l0: This completes the proof of Theorem 1. h

Using the perturbation expansion (16) of solitary waves, we can also calculate
the power function PðlÞ of these waves near the saddle-node bifurcation point l0.
The power P of a solitary wave uðxÞ is defined as

P ¼
Z 1
�1

u2ðxÞdx: ð17Þ

Using (16) and the condition in Theorem 1, we readily find that

P�ðlÞ ¼ P0 � ðl� l0Þ1=2P1 þ Oðl� l0Þ; ð18Þ

where coefficients P0 and P1 are

P0 ¼ hu0; u0i; P1 ¼ 2bhu0;wi 6¼ 0;

and b is given in Eq. (15). It is seen that the power function is a horizontally-
oriented parabola, which is not surprising for a saddle-node bifurcation.

3 Stability Analysis for Saddle-Node Bifurcations

Stability properties of solitary waves near saddle-node bifurcations is an important
issue. In finite-dimensional dynamical systems, the stability of fixed points is
known to switch at saddle-node bifurcations, and this switching is caused by a
linear-stability eigenvalue of the fixed points crossing zero along the real axis [1].
For solitary waves in nonlinear partial differential equations (which can be viewed
as fixed points in infinite-dimensional dynamical systems), it is widely believed
that their stability also always switches at saddle-node bifurcations. We find that
this belief is incorrect. Below, we show that for solitary waves (2) in the gen-
eralized NLS equations (1), there are no linear-stability eigenvalues crossing zero
at a saddle-node bifurcation point, thus stability-switching does not occur.

To study the linear stability of solitary waves (2) in Eq. (1), we perturb them as [13]

Uðx; tÞ ¼ eilt uðxÞ þ ½vðxÞ þ wðxÞ�ekt þ ½v�ðxÞ � w�ðxÞ�ek�t
n o

; ð19Þ
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where v;w� 1 are normal-mode perturbations, and k is the mode’s eigenvalue.
Inserting this perturbed solution into (1) and linearizing, we obtain the following
linear-stability eigenvalue problem

LU ¼ �ikU; ð20Þ

where

L ¼ 0 L0

L1 0

� �
; U ¼ v

w

� �
; ð21Þ

L0 ¼ r2 � lþ Fðu2; xÞ; ð22Þ

and L1 has been given in Eq. (4).
At a saddle-node bifurcation point l ¼ l0, we denote

L00 ¼ L0jl¼l0; u¼u0
; L0 ¼ Ll¼l0; u¼u0 : ð23Þ

Then in view of Eq. (3), we have

L00u0 ¼ 0; ð24Þ

thus zero is a discrete eigenvalue of L00: From this equation as well as (7), we have

L0
0
u0

� �
¼ L0

w
0

� �
¼ 0; ð25Þ

thus zero is also a discrete eigenvalue of L0:
On the bifurcation of the zero eigenvalue in L0 when l moves away from l0,

we have the following main result.

Theorem 2 Assuming that zero is a simple discrete eigenvalue of L00 and L10,
then at a saddle-node bifurcation point l0, no eigenvalues of the linear-stability
operator L cross zero, thus no stability switching occurs.

Proof The idea of the proof is to show that, when l moves away from l0, the
algebraic multiplicity of the zero eigenvalue in L does not decrease, thus the zero
eigenvalue in L cannot bifurcate out to nonzero.

At the saddle-node bifurcation point l ¼ l0, ð0; u0ÞT and ðw; 0ÞT are two lin-
early independent eigenfunctions of the zero eigenvalue in L0 in view of Eq. (25).
Here the superscript ‘T’ represents the transpose of a vector. Under the assumption
of Theorem 2, zero is a simple discrete eigenvalue of L00 and L10: Thus it is easy to
see that L0 does not admit any additional eigenfunctions at the zero eigenvalue,
which means that the geometric multiplicity of the zero eigenvalue in L0 is two.
To determine the algebraic multiplicity of the zero eigenvalue in L0; we need to
examine the number of generalized eigenfunctions of this zero eigenvalue. The
lowest-order generalized eigenfunction ðf1; g1ÞT to the eigenfunction ð0; u0ÞT of
this zero eigenvalue satisfies the equation
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L0
f1

g1

� �
¼ 0

u0

� �
; ð26Þ

so the equation for f1 is

L10f1 ¼ u0: ð27Þ

From Eq. (7), we see that this inhomogeneous equation has a homogeneous
localized solution w: In addition, from conditions of saddle-node bifurcations in
Theorem 1, hu0;wi 6¼ 0: Furthermore, L10 is a self-adjoint operator. Thus, from the
Fredholm Alternative Theorem, the inhomogeneous equation (27) does not admit

any localized solution, which means that the eigenfunction ð0; u0ÞT of the zero
eigenvalue in L0 does not have any generalized eigenfunctions. Similarly, we can
show that the eigenfunction ðw; 0ÞT of the zero eigenvalue in L0 does not have any
generalized eigenfunctions either. Hence the algebraic multiplicity of the zero
eigenvalue in L0 is equal to its geometric multiplicity and is two.

Away from the bifurcation point (i.e., l 6¼ l0,) L always has a zero eigenmode

L 0
u

� �
¼ 0 ð28Þ

in view of Eq. (1). In addition, by differentiating Eq. (1) with respect to l, we also get

L ul

0

� �
¼ 0

u

� �
; ð29Þ

thus ðul; 0ÞT is a generalized eigenfunction of the zero eigenvalue in L: This
means that the algebraic multiplicity of the zero eigenvalue in L is at least two
when l 6¼ l0:

If nonzero eigenvalues bifurcate out from the zero eigenvalue in L, the alge-
braic multiplicity of this zero eigenvalue must decrease. Our results above show
that, when l moves away from l0, the algebraic multiplicity of the zero eigenvalue
in L does not decrease, thus there cannot be nonzero eigenvalues of L bifurcating
out from zero. Consequently, no eigenvalues of L cross zero at the saddle-node
bifurcation point, thus no stability switching occurs. This completes the proof of
Theorem 2. h

We would like to add that under the assumption of Theorem 2, we can readily
show that in the neighborhood of a saddle-node bifurcation point (0\jl� l0j � 1),
L does not admit any additional eigenfunctions or generalized eigenfunctions at the
zero eigenvalue, thus the algebraic multiplicity of the zero eigenvalue inL is exactly
two. This means that the algebraic multiplicity of L’s zero eigenvalue does not
change when l moves away from the bifurcation point l0, thus there is no eigenvalue
bifurcation out of the origin at a saddle-node bifurcation.

Alternative Proof Theorem 2 can also be proved by the following alternative
method of contradiction. For the eigenvalue problem (20), i.e.,
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L0w ¼ �ikv; L1v ¼ �ikw; ð30Þ

by taking the inner product of the first equation with the solitary wave uðxÞ and
noticing that L0 is a self-adjoint operator, we get

�ikhu; vi ¼ hu; L0wi ¼ hL0u;wi ¼ 0:

Thus, for any non-zero eigenvalue k, its eigenfunction v must be orthogonal to
u, i.e.,

hu; vi ¼ 0: ð31Þ

Similarly, by taking the inner product of the second equation in (30) with ul

and recalling L1ul ¼ u from (29), we get

�ikhul;wi ¼ hul; L1vi ¼ hL1ul; vi ¼ hu; vi:

Thus for any non-zero eigenvalue k, in view of the orthogonality (31), we see
that ul and w must be orthogonal as well, i.e.,

hul;wi ¼ 0: ð32Þ

Now suppose at a saddle-node bifurcation point l0, non-zero eigenvalues
bifurcate out from the origin. Then when l is very close to l0, these non-zero
eigenvalues are very small. Thus, from the eigenvalue Eq. (30) and our assumption
in Theorem 2, we see that

ðv;wÞ ! ðc1w; c2u0Þ; when l! l0; ð33Þ

where c1 and c2 are certain constants which cannot be zero simultaneously. In
addition, we see from (16) that when l! l0, ul / w: Upon substituting these
expressions into the orthogonality conditions (31) and (32) and taking the limit of
l! l0; we find that

c1hu0;wi ¼ 0; c2hw; u0i ¼ 0: ð34Þ

Since at a saddle-node bifurcation, hu0;wi 6¼ 0 (see Theorem 1), the above
relations then give c1 ¼ c2 ¼ 0, which contradicts our earlier requirement that c1

and c2 not being zero simultaneously. Thus there cannot be eigenvalues bifurcating
out from the origin at a saddle-node bifurcation. This also proves Theorem 2. h

4 Consistency with the Generalized VK Criterion for Positive
Solitary Waves

The above result of no stability switching at a saddle-node bifurcation in the
generalized NLS equations (1) applies to general real-valued solitary waves,
certainly including positive (or equivalently sign-definite) solitary waves.
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For positive solitary waves in NLS-type equations, the stability result best known
in the physical community is the Vakhitov–Kolokolov (VK) stability criterion,
which says that the solitary wave uðx; lÞ is linearly stable if its power slope P0ðlÞ
is positive and linearly unstable if P0ðlÞ is negative [12, 13, 15]. Near a saddle-
node bifurcation, we know from Eq. (18) that the power function is a horizontally-
oriented parabola. Thus the lower and upper branches always have opposite signs
of power slope. Then from this VK stability criterion, one might conclude that the
lower and upper branches should have opposite stability as well, which would
contradict our result in Theorem 2. The error in this reasoning is that the above
(original) VK criterion, which derives linear stability exclusively from the power

slope, applies only when Eq. (1) has no external potentials (i.e., F ¼ FðjUj2Þ only)
[13]. This no-potential condition for the use of the original VK criterion is not well
recognized in the physical community. Saddle-node bifurcations, however, can
only occur when F depends also on x explicitly, i.e., Eq. (1) has external potentials
such as linear or nonlinear potentials (the latter means that the coefficients of
nonlinear terms are spatially modulated [14]). In this case, the original VK cri-
terion must be generalized. The generalized VK criterion derives linear stability
not only from the power slope but also from the number of positive eigenvalues in
the operator L1 [13]. Thus even though the lower and upper branches of a saddle-
node bifurcation have opposite signs of power slope, if the number of positive
eigenvalues in L1 also changes between the two branches, then both branches can
still have the same linear stability. Below we will show that the number of positive
eigenvalues in L1 does change at a saddle-node bifurcation, thus there is no
contradiction between our analytical result in Theorem 2 and the generalized VK
criterion. In Example 1 of the next section, we will further see explicitly that
Theorem 2 and the generalized VK criterion give exactly the same stability results.

Our result on positive eigenvalues in L1 near a saddle-node bifurcation is given
in the following theorem.

Theorem 3 Assume the conditions of Theorem 1 (for a saddle-node bifurcation)
hold. Then across this saddle-node bifurcation point (from the lower branch to the
upper one or vise versa), a simple real eigenvalue of L1 crosses zero, thus the
number of positive eigenvalues in L1 changes by one.

Proof The eigenvalue problem for the linear Schrödinger operator L1 is

L1W ¼ KW; ð35Þ

where K is a real eigenvalue and W is the associated eigenfunction. At the saddle-
node bifurcation point l ¼ l0, L10w ¼ 0 (see Eq. 7), thus K ¼ 0 is a discrete
eigenvalue of L1: In addition, due Assumption 1, K ¼ 0 is also a simple eigenvalue
of L1: Next we calculate how this simple zero eigenvalue of L1 bifurcates out when
l is away from the bifurcation point l0:

Before we start, we first expand the operator L1 as

L1 ¼ L10 þ ðl� l0Þ
1=2L11 þ ðl� l0ÞL12 þ � � � : ð36Þ
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The solitary wave uðxÞ is also expanded by Eq. (9). Upon substituting these two

expansions into the relation L1ul ¼ u out of (29), at order ðl� l0Þ
�1=2, we get

L10u1 ¼ 0: ð37Þ

This is consistent with our earlier formula (13) for u1: At Oð1Þ, we get

L11u1 ¼ 2ðu0 � L10u2Þ: ð38Þ

This relation will be needed later.
Now we expand K and W into the following perturbation series,

K ¼ ðl� l0Þ1=2c1 þ ðl� l0Þc2 þ � � � ; ð39Þ

W ¼ W0 þ ðl� l0Þ1=2W1 þ ðl� l0ÞW2 þ � � � : ð40Þ

Substituting these expansions as well as the expansion of L1 above into the
eigenvalue equation (35), at Oð1Þ we get

L10W0 ¼ 0: ð41Þ

For convenience, instead of taking the W0 solution as w, we take it as

W0 ¼ u1: ð42Þ

Note that u1 is related to w by a non-zero constant [see Eqs. (13) and (15)].

At order ðl� l0Þ1=2, we get the equation for W1 as

L10W ¼ c1u1 � L11u1: ð43Þ

Inserting (38) into this equation and imposing the Fredholm solvability condition
(which says that its right hand side must be orthogonal to the homogeneous
solution u1), we find that the eigenvalue coefficient c1 is obtained as

c1 ¼
2hu1; u0i
hu1; u1i

: ð44Þ

For the two branches of the saddle-node bifurcation, the solutions u1 are given by
Eqs. (13) and (15), i.e.,

u1 ¼ �bw: ð45Þ

Inserting this u1 into the c1 formula (44) and then back into the eigenvalue
expansion (39), we find that the leading-order term of the eigenvalues on the two
solution branches are

K� ¼ �ðl� l0Þ1=2a; ð46Þ
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where

a � 2hu0;wi
bhw;wi 6¼ 0: ð47Þ

This eigenvalue formula shows that as the solution moves from the lower to the
upper branches (or vise versa), this eigenvalue crosses zero and changes sign. Thus
the number of positive eigenvalues in L1 changes by one. This completes the proof
of Theorem 3. h

5 Numerical Examples

In this section, we use two examples to confirm the above analytical findings.

Example 1 Consider Eq. (1) with a symmetric double-well potential and cubic-
quintic nonlinearity, i.e.,

iUt þ Uxx � VðxÞU þ jUj2U � jUj4U ¼ 0; ð48Þ

where the double-well potential

VðxÞ ¼ �3 sech2ðxþ 1:5Þ þ sech2ðx� 1:5Þ
� �

ð49Þ

is shown in Fig. 1a, and the quintic nonlinearity has the opposite sign of the cubic
nonlinearity. A similar model and its various solitary waves were considered in
[16]. Solitary waves in this conservative system (48) are of the form (2), where
uðxÞ is real. We have computed these solitary waves by the Newton-conjugate-
gradient method [13], and their power curve is plotted in Fig. 1b. It is seen that a
saddle-node bifurcation occurs at l0 	 2:16: Two solitary waves at l ¼ 2:1 on the
lower and upper branches near this bifurcation point are displayed in Fig. 1c, d. To
determine the linear stability of these solitary waves, we have computed their
linear-stability spectra by the Fourier collocation method [13], and these spectra
are shown in Fig. 1e, f respectively. It is seen that none of the spectra contains
unstable eigenvalues, indicating that these solitary waves on both lower and upper
branches are linearly stable. We have also performed this spectrum computation
for other solitary waves on the power curve of Fig. 1b, and found that they are all
linearly stable. Thus there is no stability switching at the saddle-node bifurcation
point, in agreement with our analytical result. Additionally, we have found
numerically that the zero eigenvalue for all these solitons has algebraic multi-
plicity two, again in agreement with our analytical result.

In the spectra of Fig. 1e, f, one may notice that there is a pair of purely imaginary
eigenvalues �k near the origin and may wonder whether that pair of eigenvalues
ever collide at the origin at the saddle-node bifurcation point. Numerically we have
tracked this pair of eigenvalues as the solitary wave crosses the bifurcation point,
and the eigenvalue k (with a negative imaginary part) versus l is shown in Fig. 1g.
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Here the plotted quantity is ik , which is real positive. We find that as the solitary
wave crosses the saddle-node bifurcation point, this pair of imaginary eigenvalues
never collide at or cross the origin. This confirms our analytical result in Theorem 2
that no eigenvalues cross zero at the saddle-node bifurcation point.

The solitary waves in Fig. 1 are positive, thus the generalized VK stability
criterion applies. Now we show that this generalized VK criterion predicts linear
stability for both branches of these solitary waves as well. For this purpose, we
have numerically computed the largest eigenvalue K in operator L1 for each
solitary wave, and this K versus l is plotted in Fig. 1h. We see that this K crosses
zero at the saddle-node bifurcation point, in agreement with Theorem 3. In addi-
tion, on the lower branch of the power curve (where the power slope is positive),
K [ 0, thus L1 has a single positive eigenvalue; whereas on the upper branch of
the power curve (where the power slope is negative), K\0, thus L1 has no positive
eigenvalues. Then according to the generalized VK stability criterion [13], solitary
waves on both branches of the power curve are linearly stable, in agreement with
Theorem 2 and the numerical spectra in Fig. 1e, f.

Lastly, we have also checked numerically that zero is a simple discrete
eigenvalue for both L10 and L00 (the zero eigenvalue being simple in L10 is already
clear from Fig. 1h). In addition, hu0;wi 6¼ 0 and hG2;w

3i 6¼ 0. Thus assumptions
of Theorems 1–3 are all met, hence these theorems apply to this example.
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Fig. 1 Saddle-node bifurcation and linear-stability behaviors of solitary waves in Example 1.
a Potential (49); b power curve of solitons; c, d soliton profiles at points marked by the same
letters in (b); e, f stability spectra of solitons in(c, d); g the imaginary discrete eigenvalue k (near
the origin) versus l ; h the largest real eigenvalue K in L1 versus l . The letters ‘c, d’ in
(g, h) correspond to those on the power curve in (b) to show correspondence of solution branches
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In saddle-node bifurcations in Eq. (1), solitary waves sometimes possess a
non-zero minimum power, and the power curve assumes a slanted U-shape [7, 13].
In some reports of such bifurcations, the two solution branches were marked with
opposite stability, giving readers the impression that stability switching occurs at
the saddle-node bifurcation point (see [7], Fig. 3). Those markings contradict our
Theorem 2 and are incorrect. What happens is that the stability switching actually
occurs at the power minimum point (see [13], Sect. 5.4). Since this power minima
is often very close to the saddle-node bifurcation point, one might get the wrong
impression of stability switching at the saddle-node bifurcation instead. In the next
example, we will clarify this issue explicitly.

Example 2 In this example, we consider the NLS equation with an asymmetric
double-well potential,

iUt þ Uxx � VðxÞU þ jUj2U ¼ 0; ð50Þ

where the asymmetric potential VðxÞ is taken as

VðxÞ ¼ �3:5sech2ðxþ 1:5Þ � 3sech2ðx� 1:5Þ ð51Þ

and is shown in Fig. 2a. Solitary waves in this conservative system are of the
form (2), where uðxÞ is a real localized function. A family of solitary waves with
more of their energy located at the right (shallower) potential well exists
(see Fig. 2c), and their power curve is shown in Fig. 2b. It is seen that this power
curve exhibits a slanted U-shape with a non-zero minimal power, and a saddle-
node bifurcation occurs. We have determined the linear stability of these solitary
waves and the results are indicated on the power curve of Fig. 2b (with solid blue
for stable waves and dashed red for unstable ones). From first sight, one may see
that the lower branch is stable and the upper one unstable, thus stability switching
seems to occur at the saddle-node bifurcation point (as Fig. 3 of [7] conveys to the
reader). However, when we amplify the bifurcation region of the power curve
(see Fig. 2d), we find that stability switching actually occurs at the minimum-
power point (as explained in [13]) rather than the saddle-node bifurcation point.
Indeed, from the spectra for solitary waves on the lower and upper branches very
close to the saddle-node bifurcation point (see Fig. 2e, f), we see that both waves
are linearly unstable, thus there is no stability switching at the saddle-node
bifurcation, in agreement with Theorem 2.

6 Extension to Complex Potentials

In this section, we extend the above results to complex potentials, i.e., the function
Fð�; �Þ in (1) is complex-valued. In this case, if F admits parity-time (PT)
symmetry

F�ðjUj2; xÞ ¼ FðjUj2;�xÞ;
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then solitary waves (2) can still exist over a continuous range of real l values
[17, 18], and saddle-node bifurcations can also occur. By slightly modifying the
previous analysis, we can show that there is no stability switching at saddle-node
bifurcations in these nonconservative systems either. Details of these slight
modifications will not be presented here. For our purpose, it would suffice to
present a numerical example.

Example 3 We still consider Eq. (48) in Example 1 but now with a complex PT-
symmetric localized potential

VðxÞ ¼ � 3 sech2ðxþ 1:5Þ þ sech2ðx� 1:5Þ
� �

þ 0:25i sech2ðxþ 1:5Þ � sech2ðx� 1:5Þ
� �

;
ð52Þ

see Fig. 3a. This nonconservative system still admits solitary waves (2) for con-
tinuous real ranges of l, but uðxÞ is complex-valued now. We have numerically
obtained a family of these solitons by the Newton-conjugate-gradient method
applied to a normal equation [13], and the power curve of these solitons is plotted
in Fig. 3b. Again a saddle-node bifurcation can be seen at l0 	 2:02: For solitary
waves on the lower and upper branches near this bifurcation point (see Fig. 3c, d),
their stability spectra lie entirely on the imaginary axis (see Fig. 3e, f), indicating
that they are all linearly stable. Hence no stability switching occurs at saddle-node
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Fig. 2 Saddle-node bifurcation and linear-stability behaviors of solitary waves in Example 2.
a Potential (51); b power curve of solitons (solid blue and dashed red represent stable and
unstable solitons respectively); c profiles of solitons at points ‘c1; c2 ’ of (b), with solid blue for
point c1 and dashed red for point c2; d amplification of the power curve in (b) near the bifurcation
point; point ‘m’ is the power minimum, and point ‘s’ is the bifurcation point; e, f stability spectra
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bifurcations in this nonconservative system either. For this system, the zero
eigenvalue of all solitons on the power curve also has algebraic multiplicity two as
in the previous two examples. This explains why no zero-eigenvalue bifurcation
occurs in this case either.

7 Summary and Discussion

In summary, we have derived analytical conditions for saddle-node bifurcations of
solitary waves in generalized NLS equations (1) with arbitrary nonlinearities and
potentials. More importantly, we have shown, both analytically and numerically,
that for real as well as complex potentials, stability of solitary waves does not
switch at saddle-node bifurcations. This disproves a wide-spread belief that such
stability switching should always occur in nonlinear partial differential equations.
We have also shown that for positive solitary waves in Eq. (1), this absence of
stability switching at a saddle-node bifurcation is consistent with the generalized
Vakhitov–Kolokolov stability criterion. Since the generalized NLS equations (1)
arise frequently in nonlinear optics, Bose–Einstein condensates and other physical
disciplines, our finding could have broad impact.

How can one reconcile our result of no-stability-switching in the generalized
NLS equations (1) with the widely accepted result of stability switching in finite-
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Fig. 3 Saddle-node bifurcation and linear stability of solitons in PT-symmetric potentials of
Example 3. a PT potential (52); solid blue is the real part of the potential and dashed red is the
imaginary part; b power curve of solitons; c, d soliton profiles at points ‘c, d’ in (b); solid blue is
the real part of u and dashed red is the imaginary part; e, f stability spectra of solitons in (c, d)
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dimensional dynamical systems? One might argue that Eq. (1) is an infinite-
dimensional dynamical system, thus results from finite-dimensional dynamical
systems do not apply. While this explanation sounds reasonable, it is not the key
reason in our opinion. We believe the key reason is that, when the result of
stability switching is derived in finite-dimensional dynamical systems, it is always
assumed that zero is a simple eigenvalue of the Jacobian (linearization) matrix of
the system at a saddle-node bifurcation point (see Ref. [1], Theorem 3.4.1,
Hypothesis SN1). For the generalized NLS equations (1), the counterpart of this
Jacobian matrix is the linearization operator L0 defined in Eq. (23), but zero is not
a simple eigenvalue of L0 in view of Eq. (25). Thus the assumption for stability
switching is not met in our system, hence our result of no stability switching does
not contradict that in finite-dimensional dynamical systems.

This work is supported in part by the National Science Foundation and the Air
Force Office of Scientific Research.
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