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Bifurcations of solitary waves are classified for the generalized nonlinear
Schrödinger equations with arbitrary nonlinearities and external potentials
in arbitrary spatial dimensions. Analytical conditions are derived for three
major types of solitary wave bifurcations, namely, saddle-node, pitchfork, and
transcritical bifurcations. Shapes of power diagrams near these bifurcations
are also obtained. It is shown that for pitchfork and transcritical bifurcations,
their power diagrams look differently from their familiar solution-bifurcation
diagrams. Numerical examples for these three types of bifurcations are given
as well. Of these numerical examples, one shows a transcritical bifurcation,
which is the first report of transcritical bifurcations in the generalized nonlinear
Schrödinger equations. Another shows a power loop phenomenon which
contains several saddle-node bifurcations, and a third example shows double
pitchfork bifurcations. These numerical examples are in good agreement with
the analytical results.

1. Introduction

Solitary waves are spatially localized and temporally stationary (or steadily
moving) solutions of nonlinear wave equations. Solitary waves play an important
role in the understanding of nonlinear wave dynamics and thus have been
heavily studied for a wide range of nonlinear wave models arising in diverse
physical disciplines [1, 2]. When the propagation constant of solitary waves
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or physical parameters in the nonlinear wave equations changes, bifurcations
of solitary waves can occur. Indeed, various solitary wave bifurcations in
miscellaneous nonlinear wave models have been reported. Examples include
saddle-node bifurcations (also called fold bifurcations) [2–11], pitchfork
bifurcations (sometimes called symmetry-breaking bifurcations) [11–19],
transcritical bifurcations [7], and so on. Most of these reports on bifurcations are
numerical. In the few analytical studies, focus was on the quantitative prediction
of symmetry-breaking bifurcation points in the nonlinear Schrödinger (NLS)
equations with symmetric double-well potentials [13, 15, 16, 18, 19] and the
prediction of saddle-node and pitchfork bifurcation points in the NLS equations
with periodic potentials [11]. A general treatment of these bifurcations and
general analytical conditions for their occurrences are still lacking at this time.

In this paper, we systematically classify solitary wave bifurcations in the
generalized NLS equations with arbitrary nonlinearities and external potentials
in arbitrary spatial dimensions. These generalized NLS equations include the
Gross–Pitaevskii equations in Bose–Einstein condensates [20] and nonlinear
light-transmission equations in refractive-index-modulated optical media [1, 2]
as special cases. For this large class of wave equations, we derive sufficient
analytical conditions for three major types of solitary wave bifurcations,
namely, saddle-node, pitchfork, and transcritical bifurcations. In addition,
shapes of power diagrams near these bifurcation points are also derived. We will
show that the power diagram near a saddle-node bifurcation is a horizontally
oriented parabola; the power diagram near a pitchfork bifurcation is an extra
power curve bifurcating out from a smooth power curve on one side of the
bifurcation point (like a slanted letter “y”); and the power diagram near a
transcritical bifurcation comprises two smooth curves tangentially connected at
the bifurcation point. These analytical results are followed by various numerical
examples. One example shows a transcritical bifurcation, which is the first
report of transcritical bifurcations in the generalized NLS equations to the
author’s best knowledge. Another example shows double pitchfork bifurcations
combined with saddle-node bifurcations, and a third example shows a power
loop phenomenon which contains a number of saddle-node bifurcations. These
numerical examples of bifurcations are found to be in good agreement with
our analytical results.

2. Preliminaries

We consider the generalized nonlinear Schrödinger (GNLS) equations with
arbitrary forms of nonlinearity and external potentials in any spatial dimensions.
These equations can be written as

iUt + ∇2U + F(|U |2, x)U = 0, (1)
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where ∇2 = ∂2/∂x2
1 + ∂2/∂x2

2 + · · · + ∂2/∂x2
N isthe Laplacian in the N -

dimensional space x = (x1, x2, . . . , xN ), and F(·, ·) is a general real-valued
function which includes nonlinearity as well as external potentials. These GNLS
equations are physically important because they include the Gross–Pitaevskii
equations in Bose–Einstein condensates [20] and nonlinear light-transmission
equations in refractive-index-modulated optical media [1, 2] as special cases.
Note that these GNLS equations are conservative and Hamiltonian.

For a large class of nonlinearities and potentials, these GNLS equations
admit stationary solitary waves

U (x, t) = eiμt u(x), (2)

where u(x) is a real localized function in the square-integrable functional space
which satisfies the equation

∇2u − μu + F(u2, x)u = 0, (3)

and μ is a real-valued propagation constant. Examples of such solitary waves
can be found in numerous books and articles (see [1, 2] for instance). In
these solitary waves, μ is a free parameter, and u(x) depends continuously
on μ. Under certain conditions, these solitary waves undergo bifurcations at
special values of μ. Reported examples of bifurcations in Equation (3) include
saddle-node [2, 8, 9, 11] and pitchfork bifurcations [11, 13–19]. Transcritical
bifurcations in this equation have not been reported yet (even though they have
been found in other nonlinear wave models [7]).

For later analysis, we introduce the linearization operator of Equation (3),

L1 = ∇2 − μ+ ∂u[F(u2, x)u], (4)

which is a self-adjoint linear Schrödinger operator. We also introduce the
standard inner product of functions,

〈 f, g〉 =
∫ ∞

−∞
f ∗(x) g(x) dx. (5)

In addition, we define the power of a solitary wave u(x;μ) as

P(μ) = 〈u, u〉 =
∫ ∞

−∞
u2(x;μ) dx. (6)

This power function not only conveniently characterizes solitary wave families,
but also plays an important role in the stability of these waves [2].

Our analysis of bifurcations starts with the basic observation that, if a
bifurcation occurs at μ = μ0, by denoting the corresponding solitary wave and
the linearization operator as

u0(x) = u(x;μ0), L10 = L1|μ=μ0, u=u0, (7)
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then the linear operator L10 should have a discrete zero eigenvalue. This is a
necessary condition for bifurcations, hence it can be used to determine where
a bifurcation might occur. This condition is not sufficient though. Indeed, if
the function F(|U |2, x) in (1) does not depend explicitly on a certain spatial
dimension x j , i.e., the GNLS equation (1) is translation-invariant along the
x j -dimension, then for any solitary wave u(x;μ), L1ux j = 0, i.e., L1 has a
discrete zero eigenvalue. But this zero eigenvalue of L1 only corresponds to a
spatial translation of u(x;μ) and does not imply solitary wave bifurcations.
More will be said on this issue in the later text (see Remark 3 in Section 3).

In the next section, we will derive sufficient conditions for three major types
of solitary wave bifurcations. To simplify the analysis, we will focus on the
case where this zero eigenvalue of L10 is simple. Hence, we introduce the
following assumption.

ASSUMPTION 1. Suppose at a certain propagation constant μ = μ0, L10

has a zero eigenvalue. Then it is assumed that this zero eigenvalue of L10 is
simple and discrete.

This assumption is satisfied for almost all one-dimensional bifurcations and
many higher dimensional bifurcations. The case of L10’s zero eigenvalue being
multifold (repeated) can be similarly treated, and that will be done elsewhere.

Remark 1. Because of Assumption 1, the zero eigenvalue of L10 is simple
and discrete, thus this zero eigenvalue is not embedded inside the continuous
spectrum of L10. This means that the solitary wave u0(x) at μ = μ0 is not
an embedded soliton [2]. This fact allows us to construct solitary waves in
the vicinity of μ = μ0 by perturbation series expansions without worrying
about continuous-wave tails beyond all orders of the perturbation expansion
[2, 21–23].

Under Assumption 1, we denote the single discrete (localized) eigenfunction
of L10 at the zero eigenvalue as ψ(x), i.e.,

L10ψ = 0. (8)

Because L10 is a real operator, the eigenfunction ψ can be normalized to be a
real function. Thus, ψ will be taken as a real function in the remainder of this
article. We also denote

G(u; x) = F(u2; x)u, Gk(x) = ∂k
u G|u=u0, k = 0, 1, 2, 3, . . . . (9)

These notations will be used in the next sections.
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3. The main results

In this section, we present sufficient analytical conditions for three major types
of solitary wave bifurcations, namely, the saddle-node bifurcation, the pitchfork
bifurcation, and the transcritical bifurcation. In addition, power diagrams of
these solitary waves near bifurcation points will also be described.

First, we explain what these three bifurcations are. A saddle-node bifurcation
is where on one side of the bifurcation point μ0, there are no solitary
wave solutions; but on the other side of μ0, there are two distinct solitary
wave branches. These two branches merge with each other as μ → μ0. This
bifurcation is also called a fold bifurcation in the literature (following a similar
practice in dynamical systems [24]). Examples of this bifurcation in the GNLS
equation (3) can be found in [2, 8, 9, 11]. A pitchfork bifurcation is where on
one side of the bifurcation point μ0, there is a single solitary wave branch;
but on the other side of μ0, there are three distinct solitary wave branches.
One of these three branches is a smooth continuation of the single-solution
branch from the other side of μ0, but the other two branches are new and they
bifurcate out at the bifurcation point μ0. As μ → μ0, these two new solution
branches merge with the smooth branch. Examples of pitchfork bifurcations
reported so far are all symmetry-breaking bifurcations [11, 13–19], where
a smooth branch of symmetric or antisymmetric solitary waves exists on
both sides of the bifurcation point, but two new branches of asymmetric
solutions appear on only one side of the bifurcation point. A transcritical
bifurcation is where there are two smooth branches of solitary waves which
exist on both sides of the bifurcation point μ0, and these solutions on both
branches approach each other as μ → μ0. So far, no examples of transcritical
bifurcations of solitary waves have been reported in the GNLS equation (3) yet
(to the author’s best knowledge). But these transcritical bifurcations do exist in
Equation (3), and one such example will be presented in Section 5 of this
article.

The main result of this article is the following theorem which gives
sufficient analytical conditions for the above three major types of solitary wave
bifurcations.

THEOREM 1. Under Assumption 1, the following three statements hold.

1. If 〈u0, ψ〉 	= 0 and 〈G2, ψ
3〉 	= 0, then a saddle-node bifurcation occurs at

μ = μ0. When these two nonzero quantities have the same (opposite) sign,
the solutions bifurcate to the right (left) side ofμ = μ0.

2. If 〈u0, ψ〉 = 〈G2, ψ
3〉 = 0, 〈1 − G2L−1

10 u0, ψ
2〉 	= 0, and 〈G3, ψ

4〉 −
3〈G2ψ

2, L−1
10 (G2ψ

2)〉 	= 0, then a pitchfork bifurcation occurs at μ = μ0.
When these two nonzero quantities have the same (opposite) sign, the new
solution branches bifurcate to the right (left) side of μ = μ0.
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3. If 〈u0, ψ〉 = 0, 〈G2, ψ
3〉 	= 0, and

〈1 − G2L−1
10 u0, ψ

2〉2 > 〈G2, ψ
3〉〈G2(L−1

10 u0)2 − 2L−1
10 u0, ψ〉,

then a transcritical bifurcation occurs at μ = μ0.

It is noted that under the conditions of Cases 2 and 3 in this theorem, real
quantities L−1

10 u0 and L−1
10 (G2ψ

2), which appear in these conditions, exist (see
Lemma 1 in the next section).

Theorem 1 shows that in the generic case of 〈u0, ψ〉 	= 0 and 〈G2, ψ
3〉 	= 0,

a saddle-node bifurcation occurs. Pitchfork and transcritical bifurcations would
arise only in more restrictive situations. For instance, pitchfork bifurcations
generally occur only in symmetric potentials, see [11, 13–19] and Remark 2
below. Transcritical bifurcations are more rare, which explains why they have
not been found in Equation (3) before. The above situation closely resembles
that in finite-dimensional dynamical systems [25]. More will be said on this in
the end of Section 5.

Remark 2. An important (dominant) class of pitchfork bifurcations is
the symmetry-breaking bifurcation. Suppose, the potential in Equation (1) is
symmetric, i.e.,

F(u2; −x) = F(u2; x). (10)

In addition, suppose the solitary wave u0(x) has certain symmetry (even or
odd in x), and the eigenfunction ψ(x) has the opposite symmetry of u0(x) (odd
or even), i.e.,

u0(−x) = ±u0(x), ψ(−x) = ∓ψ(x). (11)

From the notation (9), we see that

G2 = [
6u∂u2 F(u2; x) + 4u3∂2

u2 F(u2; x)
]

u=u0
,

which has the same symmetry as u0(x). Then obviously,

〈u0, ψ〉 = 〈G2, ψ
3〉 = 0,

thus the conditions of Case 2 in Theorem 1 are generically satisfied.
Consequently, a pitchfork bifurcation occurs at μ = μ0. In this case, the two
bifurcated solutions u±(x;μ) are simply related as

u−(x;μ) = u+(−x;μ). (12)

In addition, these bifurcated solutions break the symmetry of the original u0(x)
solution and are asymmetric, as can be seen from their asymptotic solution
formulae in Equation (66) later. This explains why this pitchfork bifurcation is
often called symmetry-breaking bifurcation in the literature. To the author’s
knowledge, all pitchfork bifurcations reported so far are symmetry-breaking
bifurcations.
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Remark 3. Suppose Equation (1) is translation invariant along a certain
spatial dimension x j , i.e., F(|U |2, x) in (1) does not depend explicitly on x j . If
this equation admits a solitary wave u0(x) at μ = μ0, then by differentiating
Equation (3) with respect to x j , we find that L10u0,x j = 0, thus zero is a
discrete eigenvalue of L10 with eigenfunction ψ = u0,x j . In this case, simple
calculations show that

〈u0, ψ〉 = 〈G2, ψ
3〉 = 〈

1 − G2L−1
10 u0, ψ

2
〉 = 0,

and

〈G3, ψ
4〉 − 3

〈
G2ψ

2, L−1
10 (G2ψ

2)
〉 = 0.

Thus, this case does not fall into any of the three cases in Theorem 1, hence no
solitary wave bifurcation can be predicted. This is not surprising, because a
zero eigenvalue induced by translation invariance does not create solitary wave
bifurcations in general.

Power diagrams are important not only for displaying solitary wave
bifurcations but also for predicting stability properties of these solitary waves [2].
The power diagrams near these three types of bifurcations are given in the
following theorem.

THEOREM 2. Suppose Assumption 1 holds. Denoting the power of the
solitary wave at the bifurcation point as P0 = 〈u0, u0〉, then

1. near the saddle-node bifurcation in Case 1 of Theorem 1, power functions
of the two solution branches u±(x;μ) are

P±(μ) = P0 ± P1 · (μ− μ0)1/2 + O(μ− μ0), (13)

where the constant P1 is given by

P1 = 2 〈u0, ψ〉
√

2〈u0, ψ〉
〈G2, ψ3〉 ; (14)

2. near the pitchfork bifurcation in Case 2 of Theorem 1, the power function
for the smooth solution branch u0(x;μ) is

P0(μ) = P0 + P0
1 · (μ− μ0) + O{(μ− μ0)2}, (15)

where the constant P0
1 is given by

P0
1 = 2

〈
u0, L−1

10 u0
〉
; (16)

power functions for the two bifurcated solution branches u±(x;μ) are

P±(μ) = P0 + P1 · (μ− μ0) + O{(μ− μ0)3/2}, (17)
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where the constant P1 is given by

P1 = 2〈u0, L−1
10 u0〉 + 6〈1 − G2L−1

10 u0, ψ
2〉2

〈G3, ψ4〉 − 3〈G2ψ2, L−1
10 (G2ψ2)〉 ; (18)

3. near the transcritical bifurcation in Case 3 of Theorem 1, power functions
for the two solution branches are

P±(μ) = P0 + P1 · (μ− μ0) + P±
2 · (μ− μ0)2 + O{(μ− μ0)3}, (19)

where the constants P1 and P±
2 are given by

P1 = 2
〈
u0, L−1

10 u0
〉
, P±

2 = 2〈u0, û±
2 〉 + 〈u±

1 , u±
1 〉, (20)

with u±
1 specified in Equation (78), û±

2 being particular solutions to
Equation (79), and b1 in (78) and (79) given in (81).

This theorem shows that the power diagram near a saddle-node bifurcation
is a horizontally oriented parabola. Near a pitchfork bifurcation, power curves
of the three solution branches are all linear functions of μ. In addition,
the two bifurcated solution branches u±(x;μ) have the same power slope at
the bifurcation point. In fact, in the dominant case of symmetry-breaking
bifurcations discussed in Remark 2, power curves P±(μ) of the two solution
branches u±(x;μ) are identical for all μ both near and not near the bifurcation
point, i.e., P+(μ) ≡ P−(μ), because of the relation (12). It is also important
to note that the smooth solution branch u0(x;μ) and the bifurcated solution
branches u±(x;μ) have different power slopes at the bifurcation point, i.e.,
P0

1 	= P1, because the numerator in the second term of Equation (18) is
nonzero for pitchfork bifurcations (see Theorem 1). Thus, the power diagram
near a pitchfork bifurcation looks like a slanted letter “y.” Near a transcritical
bifurcation, power slopes of the two solution branches at the bifurcation
point are the same, but their curvatures are different in the generic case.
Thus the power diagram near a transcritical bifurcation comprises two smooth
curves tangentially connected at the bifurcation point. These features of the
power diagrams (for pitchfork and transcritical bifurcations) differ significantly
from their familiar solution-bifurcation diagrams, and these differences are
illustrated schematically in Figure 1.

The upper row of this figure plots the deviation values u(x0;μ) − u0(x0), as
a function of μ, between solitary waves u(x;μ) away from the bifurcation
point and the solitary wave u0(x) at the bifurcation point at a representative
(fixed) x0 position. These curves are drawn using the leading-order perturbation
series solutions (32) (for the saddle-node bifurcation), (43) and (66) (for the
pitchfork bifurcation), and (88) (for the transcritical bifurcation), which we
will derive in the next section. Note that these deviation diagrams closely
resemble the corresponding bifurcation diagrams (of the same names) in
finite-dimensional dynamical systems [25]. The lower row of Figure 1 plots
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Figure 1. Schematic plots for solitary wave bifurcations (upper row) and the associated
power diagrams (lower row). (a) Saddle-node bifurcation; (b) pitchfork bifurcation; and
(c) transcritical bifurcation. The upper row shows the deviations u(x0;μ) − u0(x0) versus μ at
a representative x0 position. These plots are drawn using the perturbation-series solution (32)
for (a), (43) and (66) for (b), and (88) for (c). The power diagrams in the lower row are drawn
using the asymptotic power-function formula (13) for (a), (15) and (17) for (b), and (19) for
(c). Blue and red colors in columns (b and c) represent different solution branches.

the associated power diagrams for the bifurcations in the upper row. These
power curves are drawn using the power function’s asymptotic formulae
(13), (15), (17), and (19) in Theorem 2. Notice that the power diagram of
the pitchfork bifurcation has a double-branching structure rather than the
familiar triple-branching structure, and the power diagram of the transcritical
bifurcation has a tangential-intersection structure rather than the familiar “x”-like
crossing structure. These power-diagram behaviors have no counterparts in
finite-dimensional dynamical systems, and they should be borne in mind when
identifying solitary wave bifurcations in the GNLS equations (1).

4. Proofs of the main results

To prove the main results in Theorems 1 and 2, the following lemma will be
used.

LEMMA 1. Suppose f (x) is a localized function. Then under Assumption 1,
the linear inhomogeneous equation

L10φ = f (21)
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admits localized solutions φ if and only if the inhomogeneous term f is
orthogonal to the homogeneous solution ψ , i.e.,

〈ψ, f 〉 = 0. (22)

This lemma is a direct consequence of the Fredholm Alternative Theorem. It
can also be proved by expanding the localized function f (x) and the solution
φ(x) into the complete set of eigenfunctions of the Schrödinger operator L10

and then solving for φ(x) directly.
In the later text, the orthogonality condition (22) will be called the solvability

condition of the inhomogeneous equation (21) (for the existence of localized
solutions).

Proof of Theorem 1. We will use the constructive method to prove this
theorem. Specifically, we will explicitly construct solitary wave solutions, in
the form of perturbation series expansions, which exist near μ = μ0 under the
conditions of this theorem. It will be shown that these perturbation series
solutions can be constructed to all orders. The existence of available solitary
wave solutions near μ = μ0 will readily reveal the type of bifurcations at
μ = μ0.

Case 1: Saddle-node bifurcations

Here we consider the first case of Theorem 1, and show that under
its conditions 〈u0, ψ〉 	= 0 and 〈G2, ψ

3〉 	= 0, there exist two solitary wave
branches on only one side of μ = μ0, which merge with each other as μ → μ0.
We will also show that no other solitary wave solutions can be found near
μ = μ0. Hence, a saddle-node bifurcation occurs here.

The solitary waves which exist near μ = μ0 in this case have the following
perturbation series expansions

u(x;μ) =
∞∑

k=0

(μ− μ0)k/2uk(x)

= u0(x) + (μ− μ0)1/2u1(x) + (μ− μ0)u2(x) + · · · .
(23)

Inserting this expansion into Equation (3) and recalling the notations (9),
we get the following sequence of equations for uk at order (μ− μ0)k/2,
k = 0, 1, 2, 3, . . .:

∇2u0 − μ0u0 + F
(
u2

0, x
)
u0 = 0, (24)

L10u1 = 0, (25)

L10u2 = u0 − 1

2!
G2u2

1, (26)
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L10u3 = u1 − G2u1u2 − 1

3!
G3u3

1, (27)

L10u4 = u2 − 1

2!
G2

(
u2

2 + 2u1u3
) − 1

2!
G3u2

1u2 − 1

4!
G4u4

1,

· · ·
(28)

The Equation (24) for u0 is satisfied automatically because u0 is a solitary
wave of Equation (3) at μ = μ0. The u1 solution to Equation (25), under
Assumption 1, is

u1 = b1ψ, (29)

where b1 is a constant. The u2 function satisfies the linear inhomogeneous
Equation (26). Because of Lemma 1, Equation (26) admits a localized solution
for u2 if and only if 〈

ψ, u0 − 1

2
G2u2

1

〉
= 0. (30)

Inserting the u1 solution (29) into this orthogonality condition and recalling
the assumptions of Case 1, we find that

b1 = ±η, η ≡
√

2〈u0, ψ〉
〈G2, ψ3〉 . (31)

Thus, we get two b1 solutions ±η which are opposite of each other. Inserting
the corresponding u1 solutions (29) into (23), we then get two perturbation
series solutions of u(x;μ) as

u±(x;μ) = u0(x) ± η(μ− μ0)1/2ψ(x) + O(μ− μ0). (32)

If 〈u0, ψ〉 and 〈G2, ψ
3〉 have the same sign, then η is real. Recalling that u0(x)

and ψ(x) are both real localized functions, we see that these two perturbation
series solutions (32) give two real-valued (legitimate) solitary waves when
μ > μ0, but not when μ < μ0. On the other hand, if 〈u0, ψ〉 and 〈G2, ψ

3〉
have the opposite sign, η is purely imaginary. In this case, the perturbation
series solutions (32) give two real-valued solitary waves when μ < μ0, but not
when μ > μ0.

Next we show that the two real localized perturbation series solutions (32),
which exist on only one side of μ = μ0, can be constructed to all orders of
(μ− μ0)1/2. Let us first consider the u2 Equation (26). When b1 is selected from
Equation (31), the orthogonality condition (30) is satisfied. Thus by Lemma 1,
localized solutions for u2 exist. Because the inhomogeneous term and the linear
operator L10 of (26) are both real, these localized u2 solutions can also be
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made real. Let us denote one of such real localized u2 solutions as û2, i.e.,

û2 = L−1
10

(
u0 − 1

2
η2G2ψ

2

)
,

then because ψ is a homogeneous localized solution of (26), the general
localized solution of (26) is

u2 = û2 + b2ψ, (33)

where b2 is a constant to be determined.
Now we proceed to the u3 Equation (27). Inserting the u1 and u2 solutions

(29) and (33) into (27), we get

L10u3 = b1

(
ψ − G2û2ψ − 1

3!
b2

1G3ψ
3 − b2G2ψ

2

)
. (34)

By Lemma 1, this equation admits localized u3 solutions if and only if its right
hand side is orthogonal to the homogeneous solution ψ . Imposition of this
orthogonality condition yields the b2 value as

b2 = 〈1 − G2û2 − η2G3ψ
2/3!, ψ2〉

〈G2, ψ3〉 , (35)

which is a real constant. Note that with this b2 value, the solution u2(x) in (33)
is the same for both choices ±η of b1 in the u1 solution (29), thus u2(x) is the
same for both branches of the perturbation series solutions u±(x;μ) in (32).
With the b2 value (35), Equation (34) admits localized solutions

u3 = b1 (̂u3 + b3ψ) , (36)

where û3 is a real-valued localized solution of Equation (34) but without the b1

factor on its right hand side, and b3 is a constant. This b3 will be determined
from the solvability (orthogonality) condition of the u4 Equation (28) and can
be found to be real. Note that û3(x) and b3 are also the same for both branches
of perturbation series solutions u±(x;μ).

Proceeding to higher orders and using the method of induction, we can
readily show that all even terms u2n are of the form

u2n = û2n + b2nψ, n = 1, 2, . . . , (37)

and all odd terms are of the form

u2n+1 = b1 [̂u2n+1 + b2n+1ψ] , n = 1, 2, . . . , (38)

where û2n(x) and û2n+1(x) are certain real localized functions, and b2n , b2n+1

are certain unique real constants. In addition, u2n(x), û2n+1(x), and b2n+1 are
the same for both branches of perturbation series solutions u±(x;μ). Thus, by
denoting ũ2n+1 = û2n+1 + b2n+1ψ , we have

u±
2n = u2n(x), u±

2n+1 = ±η ũ2n+1(x). (39)
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Inserting these u±
2n and u±

2n+1 solutions into (23), we obtain two perturbation
series solutions for u(x;μ), to all orders of (μ− μ0)1/2, as

u±(x;μ) = u0(x) +
∞∑

n=1

(μ− μ0)nu2n(x)

± η (μ− μ0)1/2

{
ψ(x) +

∞∑
n=1

(μ− μ0)nũ2n+1(x)

}
.

(40)

These two solutions exist on only one side of μ = μ0 and are real and
localized. The side of their existence depends on whether η in (31) is real or
imaginary. When μ → μ0, u±(x;μ) → u0(x), thus u±(x;μ) approach each
other and merge at the bifurcation point.

Finally, we show that except the above two solitary wave branches which
exist on only one side of the bifurcation point, we can not find other solitary
wave solutions near this bifurcation point. For instance, if we look for smooth
solitary wave branches which exist on both sides of μ = μ0, then their
perturbation expansions should be

u(x;μ) = u0(x) + (μ− μ0)u1(x) + (μ− μ0)2u2(x) + · · · . (41)

When this expansion is substituted into (3), the O(1) equation is still (24)
which is satisfied. At O(μ− μ0), we get the equation for u1 as

L10u1 = u0. (42)

Under conditions of Case 1, 〈ψ, u0〉 	= 0. Thus by Lemma 1, Equation (42) can
not admit any localized solution for u1. This means that solitary waves with the
perturbation expansion (41) can not exist in this case. We have also searched
solitary waves near μ = μ0 in other perturbation series expansions, and could
not find such solutions either. Thus a saddle-node bifurcation occurs at μ = μ0.

Case 2: Pitchfork bifurcations

Now we consider the second case of Theorem 1. We will show that under
conditions of this case, a smooth branch of solitary waves exists on both sides
of μ = μ0. In addition, two other solitary wave branches exist on only one
side of μ = μ0. As μ → μ0, all these solution branches approach the same
solitary wave u0(x). Thus a pitchfork bifurcation occurs at μ = μ0.

(i) We first construct the smooth branch of solitary waves which exists on
both sides of μ = μ0. These solitary waves have the following perturbation
series expansion

u0(x;μ) =
∞∑

k=0

(μ− μ0)kuk(x). (43)
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Inserting this expansion into Equation (3), we get the following sequence of
equations for uk at orders (μ− μ0)k , k = 0, 1, 2, 3, . . .:

∇2u0 − μ0u0 + F
(
u2

0, x
)
u0 = 0, (44)

L10u1 = u0, (45)

L10u2 = u1 − 1

2!
G2u2

1, (46)

L10u3 = u2 − G2u1u2 − 1

3!
G3u3

1, (47)

L10u4 = u3 − 1

2!
G2

(
u2

2 + 2u1u3
) − 1

2!
G3u2

1u2 − 1

4!
G4u4

1,

· · ·
(48)

The Equation (44) for u0 is satisfied automatically. Under conditions of
Case 2, 〈ψ, u0〉 = 0. Thus by Lemma 1, the solvability condition for the u1

Equation (45) is satisfied, hence this equation admits localized solutions

u1 = û1 + b1ψ, (49)

where

û1 = L−1
10 u0 (50)

is a real localized particular solution to Equation (45), and b1 is a constant to
be determined. Inserting this u1 solution into the u2 Equation (46), we get

L10u2 = û1 − 1

2
G2û2

1 + b1ψ(1 − G2û1) − 1

2
b2

1G2ψ
2. (51)

By Lemma 1, the solvability condition of this u2 equation is that its right
hand side be orthogonal to the homogeneous solution ψ . Under conditions of
Case 2, 〈G2, ψ

3〉 = 0. Thus this solvability condition gives

b1
〈
1 − G2L−1

10 u0, ψ
2
〉 =

〈
1

2
G2û2

1 − û1, ψ

〉
. (52)

Because the inner product on the left side of this equation is nonzero under
conditions of Case 2, this equation yields a unique b1 value as

b1 =
〈
G2û2

1/2 − û1, ψ
〉〈

1 − G2L−1
10 u0, ψ2

〉 , (53)

which is a real constant. Hence a real localized solution for u1 has been obtained.
With the above b1 value, the solvability condition of the u2 Equation (51) is

satisfied. Thus this equation admits a real localized particular solution û2, and
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its general solution is

u2 = û2 + b2ψ, (54)

where b2 is another constant to be determined.
Inserting this u2 solution into the u3 Equation (47), this equation becomes

L10u3 = b2ψ(1 − G2u1) + û2(1 − G2u1) − 1

3!
G3u3

1. (55)

By Lemma 1, the solvability condition of this u3 equation is that its right hand
side be orthogonal to ψ . Using the u1 solution (49) and the conditions of
Case 2, we see that

〈ψ(1 − G2u1), ψ〉 = 〈
1 − G2L−1

10 u0, ψ
2
〉 	= 0. (56)

Thus, the solvability condition of Equation (55) yields a unique real b2 value,

b2 = −
〈̂
u2(1 − G2u1) − G3u3

1/3!, ψ
〉

〈ψ(1 − G2u1), ψ〉 ,

hence a real localized u2 solution (54) is then obtained. At this b2 value,
Equation (55) admits a real localized particular solution û3, and its general
solution is

u3 = û3 + b3ψ, (57)

where b3 is another constant to be determined.
Pursuing this calculation to higher orders, it is easy to see that for any

n ≥ 2, the un solution is of the form

un = ûn + bnψ, (58)

where ûn is a real localized particular solution of the un equation, and bn is a
constant to be determined from the solvability condition of the un+1 equation.
The un+1 equation is always of the form

L10un+1 = (1 − G2u1)un + Fn+1(u0, u1, . . . , un−1; x), (59)

where Fn+1 is some real function which depends on the already obtained real
localized solutions u0, u1, . . . , un−1 as well as x. Inserting the un solution (58)
into (59) and using Equation (56), the solvability condition of (59) is met at
a unique real bn value, hence a real localized un solution (58) is obtained.
Meanwhile, because the solvability condition of (59) is met, a real localized
particular solution ûn+1 exists, and the general un+1 solution is of the form (58)
with the index n replaced by n + 1. This process then repeats itself. Hence, a
real-valued and localized perturbation series solution (43) is constructed to all
orders, and it gives a branch of real-valued solitary waves u0(x;μ) which
exists on both sides of μ = μ0 and depends smoothly on μ.
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(ii) Next we construct two additional solitary wave branches which exist
on only one side of μ = μ0 and merge with the above smooth solution
branch at μ = μ0. These additional solitary wave branches have the following
perturbation series expansion

u(x;μ) =
∞∑

k=0

(μ− μ0)k/2uk(x). (60)

This perturbation series is of the same form as (23) in Case 1. Thus, when this
perturbation series is substituted into Equation (3), the resulting equations for
uk are the same as (24)–(28) before. But because the conditions for Case 2 are
different from those for Case 1, solutions uk for the perturbation series here
will differ from those in (23), as we will show below.

First, the Equation (24) for u0 is satisfied automatically because u0 is a
solitary wave of (3) at μ = μ0. The solution u1 to Equation (25), under
Assumption 1, is

u1 = b1ψ, (61)

where b1 is a constant to be determined. Inserting this u1 solution into the u2

Equation (26), we get

L10u2 = u0 − 1

2
b2

1G2ψ
2. (62)

Because of conditions of Case 2, both u0 and G2ψ
2 are orthogonal to ψ . Thus

by Lemma 1, both L−1
10 u0 and L−1

10 (G2ψ
2) exist and are certain real localized

functions. Hence, the solution u2 to Equation (62) is

u2 = L−1
10 u0 − 1

2
b2

1 L−1
10 (G2ψ

2) + b2ψ, (63)

where b2 is another constant to be determined. Inserting these u1 and u2

solutions into (27), the u3 equation is

L10u3 = b1

{(
1− G2L−1

10 u0
)
ψ− 1

3!
b2

1

[
G3ψ

3 −3G2ψL−1
10 (G2ψ

2)
]−b2G2ψ

2

}
.

(64)

In view of the conditions of Case 2, the solvability condition of this u3 equation
yields the b1 value as

b1 = ±ν, ν ≡
√√√√ 6

〈
1 − G2L−1

10 u0, ψ2
〉

〈G3, ψ4〉 − 3
〈
G2ψ2, L−1

10 (G2ψ2)
〉 . (65)

Two b1 values ±ν are obtained which are opposite of each other. Inserting the
corresponding u1 solutions (61) into (60), we then get two solutions u±(x;μ)
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as perturbation series

u±(x;μ) = u0(x) ± ν(μ− μ0)1/2ψ(x) + O(μ− μ0), (66)

where ν is given in (65). If the numerator and denominator under the square
root of (65) have the same sign, then ν is real. In this case, two real localized
perturbation series solutions (66) are obtained when μ > μ0. If the numerator
and denominator in (65) have the opposite sign, then ν is purely imaginary. In
this case, two real localized perturbation series solutions (66) are obtained
when μ < μ0.

Next, we show that the two real localized perturbation series solutions (66),
which exist on only one side of μ = μ0, can be constructed to all orders of
(μ− μ0)1/2. With the choice of b1 values in (65), the solvability condition of
the u3 Equation (64) is met, thus the u3 solution is

u3 = b1
[̂
u3 − b2L−1

10 (G2ψ
2) + b3ψ

]
, (67)

where û3 is a real localized function which satisfies the equation

L10û3 = (
1 − G2L−1

10 u0
)
ψ − 1

3!
ν2

[
G3ψ

3 − 3G2ψL−1
10 (G2ψ

2)
]
, (68)

and b3 is a constant to be determined. Inserting these u1, u2, and u3 solutions
into (28), the u4 equation becomes

L10u4 = b2

{(
1 − G2L−1

10 u0
)
ψ − 1

2
b2

1

[
G3ψ

3 − 3G2ψL−1
10 (G2ψ

2)
]}

− 1

2
b2

2G2ψ
2 + F4

(
u0, ψ, b2

1, x
) − b2

1b3G2ψ
2,

(69)

where F4 is a real localized function which depends on u0, ψ , b2
1, and other

already obtained real functions (such as û3). Using the b1 formula (65) as well
as conditions of Case 2, the solvability condition of this u4 equation is met at
the unique real b2 value,

b2 = 〈F4, ψ〉
2
〈
1 − G2L−1

10 u0, ψ2
〉 . (70)

When this b2 value is inserted into (63), a real localized u2 solution is then
obtained. Note that this b2 is the same for both choices ±ν of b1 in the u1

solution (61), thus u2(x) is the same for both branches of the perturbation
series solutions u±(x;μ) in (66).

For the b2 value given in (70), the solvability condition of the u4 Equation (69)
is satisfied, thus this equation admits the following localized solution

u4 = û4 − ν2b3L−1
10 (G2ψ

2) + b4ψ, (71)

where û4 is a real localized function which satisfies the u4 Equation (69) but
without the last (b3) term, and b4 is a new constant to be determined.
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Starting from n ≥ 5, the un equation can be derived from (3) and the
expansion (60), and is all of the form

L10u2n+1 = u2n−1 − G2(u1u2n + u2u2n−1) − 1

2
G3u2

1u2n−1

+ b1H2n+1
(
u0, ψ, b2

1, x
)
, n ≥ 2, (72)

L10u2n+2 = u2n − G2(u1u2n+1 + u2u2n) − 1
2 G3u2

1u2n

+H2n+2(u0, ψ, b2
1, x), n ≥ 2, (73)

where H2n+1 and H2n+2 are real localized functions which depend on u0, ψ ,
b2

1, and other already fully determined real quantities (such as û3, û4, b2, etc.).
Using the method of induction as well as conditions of Case 2, we can show
that all un solutions are of the form

u2n+1 = b1
[̂
u2n+1 − b2n L−1

10

(
G2ψ

2
) + b2n+1ψ

]
, n ≥ 1, (74)

u2n+2 = û2n+2 − ν2b2n+1L−1
10 (G2ψ

2) + b2n+2ψ, n ≥ 1, (75)

where û2n+1 and û2n+2 are certain real localized functions, and b2n+1 and
b2n+2 are real constants which are determined uniquely from the solvability
conditions of the u2n+3 and u2n+4 equations. We can also show that û2n+1,
û2n+2, b2n+1, and b2n+2 depend on b2

1 as a whole and are thus the same for both
solution branches u±(x;μ). Inserting these solutions into the perturbation series
(60), we obtain two branches of solitary waves u±(x;μ) whose perturbation
series expansions are

u±(x;μ) = u0(x) +
∞∑

n=1

(μ− μ0)nu2n(x)

±ν(μ− μ0)1/2

{
ψ(x) +

∞∑
n=1

(μ− μ0)nũ2n+1(x)

}
,

(76)

where real localized functions u2n are given by (63) and (75), real localized
functions ũ2n+1 are as u2n+1 in (74) but without the b1 factor, and ν is given in
(65). These two real solitary waves exist on the side of μ > μ0 (μ < μ0)
when ν is real (purely imaginary). When μ → μ0, they both approach u0(x),
thus these u±(x;μ) solution branches merge with the smooth u0(x;μ) solution
branch in (43) at μ = μ0.

The existence of the smooth solution branch u0(x;μ) in (43) on both
sides of μ = μ0 as well as two additional solution branches u±(x;μ) in (76)
on only one side of μ = μ0 indicates that a pitchfork bifurcation occurs at
μ = μ0.
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Case 3: Transcritical bifurcations

Now we consider the third case of Theorem 1. We will show that under
conditions of this case, two smooth branches of solitary waves exist on both
sides of μ = μ0, and these branches intersect at μ = μ0 where solitary waves
on the two branches become identical. Thus a transcritical bifurcation occurs
at μ = μ0.

In this third case, we seek solitary wave solutions which exist on both sides
of μ = μ0 and depend smoothly on μ near μ = μ0. The perturbation series
expansion of such solutions is

u(x;μ) =
∞∑

k=0

(μ− μ0)kuk(x). (77)

The form of this expansion is the same as (43) in Case 2, thus the equations
for uk are also the same as (44)–(48) before. However, the solutions to these
equations will differ from the previous ones in Case 2 because of different
conditions of the present case.

The u0 Equation (44) is satisfied automatically because u0 is a solitary
wave of Equation (3) at μ = μ0. Under conditions of Case 3, the solvability
condition of the u1 Equation (45), 〈u0, ψ〉 = 0, is met. Thus by Lemma 1,
localized u1 solutions of the form

u1 = L−1
10 u0 + b1ψ (78)

are admitted. Here L−1
10 u0 is a real and localized particular solution to

Equation (45), and b1 is a constant to be determined. Inserting this u1 solution
into the u2 Equation (46), this equation becomes

L10u2 = L−1
10 u0 − 1

2
G2

(
L−1

10 u0
)2 + b1

(
1 − G2L−1

10 u0
)
ψ − 1

2
b2

1G2ψ
2. (79)

The solvability condition of this equation gives the following quadratic equation
for b1:

〈G2, ψ
3〉b2

1 − 2
〈
1 − G2L−1

10 u0, ψ
2
〉
b1 + 〈

G2
(
L−1

10 u0
)2 − 2L−1

10 u0, ψ
〉 = 0. (80)

Under conditions of Case 3, the coefficient of the b2
1 term in this quadratic

equation is nonzero, and

� ≡ 〈
1 − G2L−1

10 u0, , ψ
2
〉2 − 〈

G2, ψ
3
〉〈

G2
(
L−1

10 u0
)2 − 2L−1

10 u0, ψ
〉
> 0.

Thus, this quadratic equation admits the following two real roots

b1 = b±
1 ≡

〈
1 − G2L−1

10 u0, ψ
2
〉 ± √

�〈
G2, ψ3

〉 . (81)

For each of these two b1 values, a real localized u1 solution (78) is obtained.
In addition, a real and localized particular solution û2 to the u2 Equation (79)
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exists, hence the u2 solution is

u2 = û2 + b2ψ, (82)

where b2 is a new constant to be determined.
Inserting the above u2 solution into the u3 Equation (47), we get

L10u3 = b2(1 − G2u1)ψ + (1 − G2u1)̂u2 − 1

3!
G3u3

1. (83)

Using the u1 solution (78) and the b1 formula (81), we find that

〈(1 − G2u1)ψ,ψ〉 = 〈
1 − G2L−1

10 u0, ψ
2
〉 − b1〈G2, ψ

3〉 = ∓
√
� 	= 0. (84)

Thus the solvability condition of Equation (83) yields a real constant b2 as

b2 = −
〈
(1 − G2u1)̂u2 − G3u3

1/3!, ψ
〉

〈(1 − G2u1)ψ, ψ〉 .

For this b2 value, the solvability condition of the u3 Equation (83) is satisfied,
thus this equation admits a real localized particular solution û3, and the general
u3 solution is

u3 = û3 + b3ψ, (85)

where b3 is another constant to be determined.
Pursuing this calculation to higher orders, it is easy to see that for any

n ≥ 2, the un solution is of the form

un = ûn + bnψ, (86)

where ûn is a real localized particular solution of the un equation, and bn is
a real constant to be determined from the solvability condition of the un+1

equation. The un+1 equation is always of the form

L10un+1 = (1 − G2u1)un + Fn+1(u0, u1, . . . , un−1; x), (87)

where Fn+1 is some real function which depends on the already obtained real
localized solutions u0, u1, . . . , un−1 and x. Inserting the un solution (86) into
(87) and in view of Equation (84), the solvability condition of (87) then yields
a unique real value for the constant bn .

In the above solution process, because b1 can take either one of the two real
roots b±

1 in (81), u1 in (78) then has two corresponding solutions u±
1 . These

two u1 solutions cascade up to higher orders, and thus all un functions have
two solutions u±

n . Consequently, two real-valued and localized perturbation
series solutions

u±(x;μ) = u0(x) +
∞∑

k=1

(μ− μ0)ku±
k (x) (88)
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are obtained to all orders, and they provide two branches of real-valued solitary
waves u±(x;μ) which exist on both sides of μ = μ0 and depend smoothly
on μ. When μ → μ0, both u±(x;μ) approach u0(x), thus these two solution
branches intersect at μ = μ0. As a result, a transcritical bifurcation occurs at
μ = μ0. This completes the proof of Theorem 1. �

Next, we prove Theorem 2 on power diagrams near bifurcation points.

Proof of Theorem 2. The power formula (13) of saddle-node bifurcations
can be derived easily from the perturbation series solutions (23) and the u1

solution (29) with b1 given by Equation (31). The power formula (15) for
the smooth solution branch u0(x;μ) in a pitchfork bifurcation can be derived
readily from the perturbation series solutions (43) and the u1 solution (49). To
derive the power formula (17) for the two bifurcated solution branches in a
pitchfork bifurcation, we substitute the u1, u2 solutions in (61) and (63) into
the expansion (76), and find that the power function is given by (17), where

P1 = 2
〈
u0, L−1

10 u0
〉 + b2

1

[〈ψ,ψ〉 − 〈
u0, L−1

10

(
G2ψ

2
)〉]
, (89)

whose value is the same for both bifurcated branches. Because L−1
10 is

self-adjoint and L−1
10 u0 exists (by Lemma 1), this P1 coefficient can then be

rewritten as (18) (here the b1 formula (65) is also used). The power formula
(19) for transcritical bifurcations can be derived easily from the perturbation
series solutions (88) and the u1, u2 solutions (78), (82). �

5. Numerical examples of solitary wave bifurcations

In this section, we present numerical examples for these three types of solitary
wave bifurcations, and compare them with the analytical results presented in
Theorems 1 and 2. So far, examples of saddle-node and pitchfork bifurcations
of solitary waves have been reported in the GNLS equations (1) with various
potentials and nonlinearities [2, 8, 9, 11, 13–19]. Here we will present some
new examples of saddle-node and pitchfork bifurcations in the GNLS equations
which exhibit interesting novel features. In addition, we will present the first
example of transcritical bifurcation in these GNLS equations.

EXAMPLE 1. Combined saddle-node and double-pitchfork bifurcations. The
first example we choose is the one-dimensional GNLS equation (1) with a
symmetric double-well potential and cubic-quintic nonlinearity:

iUt + Uxx − V (x)U + |U |2U − γ |U |4U = 0, (90)

where the symmetric double-well potential V (x) is taken of the form

V (x) = −V0
[
sech2(x + x0) + sech2(x − x0)

]
, (91)
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V0 > 0 is the potential depth, 2x0 is the separation between the two wells, and
γ > 0 is the coefficient of the quintic nonlinearity. Note that the cubic and
quintic nonlinear terms in (90) have the opposite sign, and the quintic term
induces a self-defocusing effect which counters the self-focusing effect of the
cubic term. One may also view this opposing cubic-quintic nonlinearity as
a Taylor-series approximation to the saturable nonlinearity in photorefractive
crystals [26]. The parameter values in the above GNLS model are chosen as

V0 = 2.8, x0 = 1.5, γ = 0.25. (92)

Solitary waves in Equation (90) are sought of the form (2), where u(x) is a
real localized function satisfying the equation

uxx − μu − V (x)u + u3 − γ u5 = 0. (93)

When u(x) is infinitesimal, the linear Schrödinger operator of Equation (93)
admits a positive symmetric discrete eigenfunction at eigenvalue μ ≈ 1.7896.
This eigenmode is the ground state of the underlying double-well potential.
From this linear (infinitesimal) eigenmode, a family of positive symmetric
solitary waves bifurcates out. The power curve of this symmetric-soliton family
is shown in Figure 2 (blue curve in the upper left panel). We have computed
the spectra of the linearization operator L1 for these solitary waves, and found
that their spectra contain a simple zero eigenvalue at three locations marked by
letters “A, B, C” on the power curve. This is evidenced in the upper right panel
of Figure 2, where the L1-spectra of solitary waves at these three locations are
displayed. Note that at locations “A, B,” the second largest eigenvalue of the
spectrum is zero, whereas at location “C,” the largest eigenvalue is zero. At
these three locations, solitary waves u0(x) and eigenfunctions ψ(x) of the zero
eigenvalue in L1’s spectra are plotted in the lower row of Figure 2 (as solid blue
and dashed red curves, respectively). Note that eigenfunctions ψ(x) at points
“A, B” are antisymmetric, whereas the eigenfunction at point “C” is symmetric.

At these “A, B, C” points, zero is a simple discrete eigenvalue of L1, thus
Assumption 1 is met and Theorem 1 applies. In addition, for the present
example,

G2 = 6u0 − 20γ u3
0, G3 = 6 − 60γ u2

0.

Now we use our analytical criterion in Theorem 1 to determine if and what
bifurcations occur at these points.

At points “A, B,” it is easy to see from symmetry that

〈u0, ψ〉 = 〈G2, ψ
3〉 = 0.

In addition, when the eigenfunction ψ is normalized to have unit amplitude
(see Figure 2, lower row), we find numerically that at point “A,”〈
1−G2L−1

10 u0, ψ
2
〉=−4.9313,

〈
G3, ψ

4
〉−3

〈
G2ψ

2, L−1
10

(
G2ψ

2
)〉=−58.4035;



Classification of Solitary Wave Bifurcations in GNLS Equations 155

1.8 2 2.2 2.4 2.6 2.8
0

5

10

15

μ

po
w

er

A

B
C

0
A

0
B

−3 −2 −1 0 1

0

λ

C

−10 −5 0 5 10
−1

0

1

x

A

u0

ψ
−10 −5 0 5 10
−1

0

1

x

B
u0

ψ
−10 −5 0 5 10
−1

0

1

x

Cu0

ψ

Figure 2. Bifurcations of solitary waves in Example 1. Upper left: the power diagram; the
blue curve is for the family of symmetric solitary waves, and the red curve is for the family of
asymmetric solitary waves which bifurcate out from points “A, B” through double pitchfork
bifurcations. Upper right: L1’s spectra for solitary waves at bifurcation points “A, B, C” of the
power diagram. Lower row: solitary waves u0(x) and eigenfunctions ψ(x) of L1’s zero eigenvalue
at bifurcation points “A, B, C” (the eigenfunctions are normalized to have unit amplitude).

and at point “B,”〈
1−G2L−1

10 u0, ψ
2
〉=23.9913, 〈G3, ψ

4〉−3
〈
G2ψ

2, L−1
10

(
G2ψ

2
)〉=−110.9244.

Then according to Theorem 1, pitchfork bifurcations occur at both “A” and
“B” points. In addition, the new (asymmetric) solitary waves bifurcate out on
the right side of point “A” and on the left side of point “B.”

At point “C,” we find

〈u0, ψ〉 = 6.4879, 〈G2, ψ
3〉 = −21.0632,

thus according to Theorem 1, a saddle-node bifurcation occurs at this point. In
addition, the bifurcated solutions appear on the left side of point “C.”

These analytical predictions of bifurcations prove to be completely correct.
Specifically, at points “A, B,” symmetry-breaking pitchfork bifurcations occur.
The two bifurcated asymmetric solitary waves u±(x ;μ) are related to each
other by a mirror reflection in x , i.e., u+(−x ;μ) = u−(x ;μ), and their power
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Figure 3. Power diagram and profiles of solitary waves near the pitchfork bifurcation point
“A” in Figure 2. First panel: power diagram; (a, b, c) solitary waves at locations marked by
the same letters on the power diagram.

curves (which are identical) are displayed as the red line in Figure 2 (upper left
panel). Note that these bifurcated solutions appear on the right side of point
“A” and on the left side of point “B,” as predicted by the above analysis. To
illustrate solution profiles before and after these bifurcations, we focus on
point “A.” The power diagram near this bifurcation point is amplified from
that in Figure 2 and shown in Figure 3 (first panel from the left). Note that the
power curves near this bifurcation point are linear functions of μ, in agreement
with Theorem 2 and Figure 1(b). We have also compared the slopes of the
power curves at point “A” in Figure 3 with the analytical power slopes in
Equations (15)–(18), and found excellent agreement. At three locations “a, b,
c” on the two sides of the bifurcation point “A” in the power diagram, profiles
of the solitary waves are displayed in Figures 3(a–c), respectively. Solutions in
Figures 3(a, b) are symmetric and lie on the symmetric branch of the power
diagram (blue line), whereas the two solutions in Figure 3(c) are asymmetric
and lie on the asymmetric (bifurcated) branch of the power diagram (red line).
Note that on the left side of the bifurcation point, there is a single (symmetric)
solitary wave (see Figure 3a); but on the right side of the bifurcation point,
there are three solitary waves, one symmetric (see Figure 3b) and the other two
asymmetric (see Figure 3c). These behaviors of the pitchfork bifurcation agree
fully with our analytical results as well as the schematic plots in Figure 1(b).

It is interesting to observe from Figure 2 (upper left panel) that the
asymmetric soliton branch starts out from point “A” and terminates at point
“B,” thus it appears and then disappears through double pitchfork bifurcations.
In between, its power curve exhibits a “S” shape, indicating that double
saddle-node bifurcations also occur on this asymmetric branch. These features
of bifurcations are quite novel for the GNLS equations (1). In a different
nonlinear wave system, namely, nonlinear saturable couplers, a similar double
pitchfork bifurcation also exists [12].

At point “C” of Figure 2, we have found that a saddle-node bifurcation occurs
as predicted. This is already obvious from the power diagram in Figure 2,
which shows that the power curve turns around at this point. The power
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Figure 4. Power diagram and profiles of solitary waves near the saddle-node bifurcation
point “C” in Figure 2. Left panel: power diagram; (a, b) solitary waves at locations marked by
the same letters on the power diagram.

diagram near this saddle-node bifurcation point “C” is amplified and shown
again in Figure 4. This numerical power curve is compared with the analytical
saddle-node power formula (13) and complete agreement is obtained. At two
locations “a, b” of the power curve below and above the bifurcation, profiles of
the solitary waves are displayed in Figures 4(a, b). These solutions are all
symmetric, and their amplitudes vary when going through the bifurcation.

EXAMPLE 2. Power loop phenomena.
Our second example is still the GNLS equation with opposing cubic and

quintic nonlinearities,

iUt + Uxx − V (x)U + |U |2U − 0.15|U |4U = 0, (94)

but the double-well potential V (x) is now asymmetric instead:

V (x) = −3.5 sech2(x + 1.5) − 3 sech2(x − 1.5). (95)

This potential is displayed in Figure 5(a). As usual, solitary waves in this
equation are sought of the form (2), where u(x) is a real localized function.
We find that in this system, there exist a family of positive solitary waves
whose power curve forms a closed loop. This power loop is displayed in
Figure 5(b). This power loop shows that this family of solitary waves has
a nonzero minimal power and a finite maximal power, and it exists over a
finite propagation constant interval. In addition, four saddle-node bifurcations
are clearly visible on this loop. We have checked that at these saddle-node
bifurcation points, the bifurcation conditions in Theorem 1 (Case 1) are all
satisfied. At four locations of the power loop, three of them (“c, e, f”) being
saddle-node bifurcation points and the remaining one (“d”) slightly below a
saddle-node bifurcation point, profiles of the solitary waves are displayed in
Figures 5(c–f). It is seen that the energy of these solitary waves resides
primarily in the shallower (right) well of the potential. Thus, this family of
solitary waves is different from the family of ground-state solitary waves in
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Figure 5. Power loop phenomenon in Example 2 (i.e., Equation (94)). (a) The asymmetric
double-well potential V (x) in Equation (95); (b) the power loop; and (c–f) profiles of solitary
waves at locations marked by the same letters on the power loop of (b).

this system, whose energy resides primarily in the deeper (left) well of the
potential. One may notice that this power loop in Figure 5(b) self-crosses itself
in the middle (above point “d”). This power-curve crossing does not signal a
transcritical bifurcation however, because as μ approaches this crossing point
along the two intersecting curves, the solitary waves do not approach each
other. This power loop phenomenon of solitary waves has not been reported
before in the GNLS equations (1) (to the author’s knowledge), but a similar
momentum loop phenomenon for solitons sitting on constant backgrounds has
been discovered in the externally driven NLS equations [27].

EXAMPLE 3. Transcritical bifurcation.
Our last example is the GNLS equation with competing cubic, quintic, and

seventh-power nonlinearities,

iUt + Uxx − V (x)U + |U |2U − 0.2|U |4U + κ|U |6U = 0, (96)

where V (x) is the same asymmetric double-well potential (95) as in Example 2,
and κ is a real constant. In this example, a transcritical bifurcation of solitary
waves is found at

κ = κc ≈ 0.01247946. (97)

The power diagram of this bifurcation is shown in Figure 6(b). We see that two
smooth solution branches, namely, the upper c1–c2 branch and the lower d1–d2
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Figure 6. Transcritical bifurcation in Example 3 (see Equation (96)). (a) The asymmetric
double-well potential V (x) in this example; (b) the power diagram; (c) profiles of solitary
waves at locations c1 (solid blue) and c2 (dashed red) of the upper power curve in (b); and (d)
profiles of solitary waves at locations d1 (solid blue) and d2 (dashed red) of the lower power
curve in (b).

branch, tangentially connect at the bifurcation point (μ0, P0) ≈ (3.28, 14.35).
Profiles of solitary waves at the marked c1, c2, d1, d2 locations on this power
diagram are displayed in Figures 6(c–d). Note that these solutions are close to
each other because the c1, c2, d1, d2 locations are near the bifurcation point
(μ0, P0). As μ approaches this bifurcation point, we find that these solitary
waves along both the lower and upper power branches approach each other,
confirming that this is a transcritical bifurcation. Notice that the power diagram
in Figure 6(b) agrees with the analytical power formula (19) of transcritical
bifurcations (see also the schematic power diagram in Figure 1c). In addition,
we have checked the conditions of transcritical bifurcations in Theorem 1
(Case 3), and found them satisfied here as well.

What would happen to the bifurcations in the above three examples if the
potential or the nonlinearity in those underlying GNLS equations is slightly
perturbed? We have numerically studied this question and found that in Example
1, when the nonlinearity or the potential is slightly and arbitrarily perturbed
(including perturbations to make the double-well potential (91) asymmetric),
the saddle-node bifurcations (at point “C” of the symmetric-soliton branch and
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two others on the asymmetric-soliton branch in Figure 2) always persist. For the
two pitchfork bifurcations in this example (at points “A, B” of Figure 2), if the
perturbed potential is still symmetric, then these pitchfork bifurcations would
survive; but if the perturbed potential becomes asymmetric, then these pitchfork
bifurcations are destroyed. In Example 2, the four saddle-node bifurcations
on the power loop of Figure 5 always persist under weak perturbations in
the nonlinearity or the potential. In Example 3, the transcritical bifurcation is
extremely sensitive and is destroyed under generic small perturbations to the
system (such as when κ 	= κc). From these numerical results, we conclude that
saddle-node bifurcations are generic and robust under weak perturbations to the
system; pitchfork bifurcations are generally reliant on a symmetric potential;
and transcritical bifurcations are very fragile and generally disappear under
perturbations. These behaviors are consistent with similar statements on these
bifurcations based on the bifurcation conditions below Theorem 1.

6. Summary and discussion

In this paper, we classified solitary wave bifurcations in the generalized NLS
equations (1) with arbitrary nonlinearities and external potentials in arbitrary
spatial dimensions. Sufficient analytical conditions were derived for three
major types of solitary wave bifurcations, namely, saddle-node, pitchfork, and
transcritical bifurcations. These conditions show that the generic solitary wave
bifurcation is the saddle-node bifurcation; the pitchfork bifurcation generally
requires certain symmetry conditions; and the transcritical bifurcation is rare.
For these bifurcations, shapes of power diagrams near the bifurcation points were
also obtained. It was shown that the power diagram for a pitchfork bifurcation
exhibits double branching rather than the familiar triple branching, and the
power diagram for a transcritical bifurcation features two curves tangentially
touching each other rather than the familiar “x”-crossing. Numerical examples
for these three types of bifurcations were presented as well. These examples
show novel features such as power loops and double pitchfork bifurcations.
The example of transcritical bifurcation seems to be the first report of such
bifurcation in the GNLS equations (1).

The results in this paper are important not only for a general classification
and understanding of solitary wave bifurcations in the GNLS equations (1).
More importantly, the bifurcation conditions in Theorem 1 will be the basis
for a general treatment of linear stability of solitary waves near bifurcation
points. This stability analysis lies outside the scope of the present article and
will be reported elsewhere. We do want to say here that the stability properties
of solitary waves near bifurcation points in Equation (1) show some important
qualitative differences from those in finite-dimensional dynamical systems
[25]. Details will be presented in a forthcoming article.
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