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Embedded solitons are solitary waves residing inside the continuous spectrum
of a wave system. They have been discovered in a wide array of physical situa-
tions recently. In this article, we present the first comprehensive theory on the
dynamics of embedded solitons and nonlocal solitary waves in the framework
of the perturbed fifth-order Korteweg–de Vries (KdV) hierarchy equation.
Our method is based on the development of a soliton perturbation theory.
By obtaining the analytical formula for the tail amplitudes of nonlocal solitary
waves, we demonstrate the existence of single-hump embedded solitons for
both Hamiltonian and non-Hamiltonian perturbations. These embedded soli-
tons can be isolated (existing at a unique wave speed) or continuous (existing
at all wave speeds). Under small wave speed limit, our results show that the
tail amplitudes of nonlocal waves are exponentially small, and the product
of the amplitude and cosine of the phase is a constant to leading order.
This qualitatively reproduces the previous results on the fifth-order KdV
equation obtained by exponential asymptotics techniques. We further study
the dynamics of embedded solitons and prove that, under Hamiltonian per-
turbations, a localized wave initially moving faster than the embedded soliton
will asymptotically approach this embedded soliton, whereas a localized wave
moving slower than the embedded soliton will decay into radiation. Thus, the
embedded soliton is semistable. Under non-Hamiltonian perturbations, sta-
ble embedded solitons are found for the first time.
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1. Introduction

The Korteweg–de Vries (KdV) equation arises as an approximate equation
governing weakly nonlinear long waves in a shallow channel. When higher-
order effects are included, the extended KdV equation

ut + 6uux + uxxx + δ2�uxxxxx + c1uuxxx + c2uxuxx + c3u
2ux� = 0 (1)

results. Here, δ is a small parameter that measures the wave amplitude. With-
out loss of generality, we rescale δ = 1 throughout this article by employing
the variable transform

x̄ = x/δ� t̄ = t/δ3� ū = δ2u� (2)

and dropping the bars. This scaling is important, because it makes the con-
nection between our results in the present article and the previous results
by exponential asymptotics techniques. The coefficients c1, c2, and c3 in
Equation (1) depend on the physical situation. For irrotational gravity waves,
these coefficients have been derived by [1] and [2] using either the pertur-
bation techniques or Lagrangian methods. The coefficients given there are
both �c1� c2� c3� = �100/19� 230/19�−60/19�. Equation (1) with these coeffi-
cients are not Hamiltonian, however (the irrotational water wave equations
are Hamiltonian, see [3]). Hamiltonian equations have also been obtained
by [4–6] using the Hamiltonian perturbation methods, but the coefficients
they derived are not in agreement. For gravity–capillary waves on shal-
low water with Bond number close to 1/3, [7] have shown that the model
equation is (1) with c1 = c2 = c3 = 0. We call this equation the fifth-order
KdV equation in this article. If c1 = 10, c2 = 20, c3 = 30, Equation (1) is the
fifth-order KdV hierarchy equation. We call it the KdV5 equation hereafter.
If c1 = 15, c2 = 15, c3 = 45� the equation is the Sawada–Kotera (also called
Caudrey–Dodd–Gibbon) equation. Both these equations are exactly solvable
by the inverse scattering method.
In the past 10 years, there has been an intensive effort on the study of the

fifth-order KdV equation. The works of [8–15] have shown that this equation
does not allow true solitary waves for any positive velocity. Instead, only non-
local solitary waves with exponentially small tails can be found. The reason is
partially that the fifth-order derivative perturbation brings all positive wave
speeds into the continuous spectrum of the linear system. Thus, the solu-
tion at infinity is generally a continuous wave (cw) instead of a decaying
tail. These results imply that an initially localized gravity–capillary wave on
shallow water will shed exponentially small tail radiation and asymptotically
decay. On the other hand, recent works [16–22] have shown that embed-
ded solitons can exist inside the continuous spectrum for many wave systems,
including the extended KdV Equation (1) for irrotational gravity waves [21].
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These results suggest that gravity waves in the form of an embedded soliton
can travel down a narrow canal without emission of tail radiation. This pre-
diction is in striking contrast with the previous one from the fifth-order KdV
equation for gravity–capillary waves. Of course, for this new prediction to be
physically meaningful, the embedded solitons must be stable in some sense.
This problem remains to be properly addressed. In this article, we inves-
tigate the dynamics of embedded solitons in the context of the perturbed
KdV5 equation

ut + 6uux + uxxx + uxxxxx + 10uuxxx + 20uxuxx + 30u2ux = εF�u�� (3)

where

F�u� = −�auuxxx + buxuxx + cu2ux� (4)

is the perturbation term, ε � 1, and a, b, c are constant coefficients.
Equation (3) is Hamiltonian when b = 2a, and is non-Hamiltonian other-
wise (see Section 3). This article has three motivations. First, we want to
resolve the issue of gravity wave evolution on shallow water in light of the
existence of embedded solitons. This is done by examining the evolution of
KdV5 solitons under general perturbations. The second is more fundamen-
tal. As a generic object, embedded solitons have been identified in a number
of wave systems [16–22]. However, for a heuristic semistability argument on
single-hump embedded solitons we put forward for the second harmonic
generation system [18], the analytical study on the dynamics of embedded
solitons is still nonexistent for any wave system. This article presents the first
rigorous dynamic theory for embedded solitons under perturbations in the
perturbed KdV5 Equation (3). This article has obvious implications to the
dynamics of embedded solitons in other wave systems. Our third motivation
is to provide an alternative technique for calculating exponentially small tail
amplitudes of nonlocal waves. Thus far, only the exponential asymptotics
method as outlined in [8, 13] and the one based on the integral equations
idea [15] are available, and they are quite complex.
The results of this article can be summarized as follows. Our analysis is

based on the development of a soliton perturbation theory for the perturbed
KdV5 Equation (3). By obtaining the leading order analytical expression for
the tail amplitudes of nonlocal solitary waves in the underlying system, we
establish that, under certain conditions on system parameters, single-hump
embedded solitons can be found for both Hamiltonian and non-Hamiltonian
perturbations. These embedded solitons can be either isolated (existing at a
unique velocity) or continuous (existing at an arbitrary velocity). When taking
the small wave speed limit, our results show that the tail amplitude is expo-
nentially small, and the product of the tail amplitude and cosine of the phase
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is a constant. This qualitatively reproduces the previous results on the fifth-
order KdV equation by exponential asymptotics techniques [8, 12, 13]. We
also prove that, under Hamiltonian perturbations, asymmetric nonlocal soli-
tary waves with small cw tails cannot exist at wave speeds different from the
embedded soliton’s. For non-Hamiltonian perturbations, asymmetric nonlo-
cal waves do exist in certain parameter regions. Next, we present a compre-
hensive dynamic theory for embedded solitons. Our approach is to derive
the evolution equation for the velocity of KdV5 solitons in the presence of
general perturbations. In doing this, we are able to classify all possible soli-
ton evolution scenarios under perturbations. We show that, for Hamiltonian
perturbations, an initially localized wave moving faster than the embedded
soliton will slow down and asymptotically approach the embedded soliton.
However, a solitary wave initially moving slower than the embedded soliton
will further slow down and gradually lose all its energy to radiation. Thus,
the embedded soliton is semistable. This result is consistent with the heuristic
semistability argument we presented in [18] for single-hump embedded soli-
tons in a different Hamiltonian system. For non-Hamiltonian perturbations,
we prove that single-hump embedded solitons are stable in certain parameter
regimes. To the author’s knowledge, this is the first report of stable embed-
ded solitons in the literature. Another result we prove in this article is that,
when a KdV5 soliton is under perturbations, the cw tail it sheds selects a
phase that makes the tail amplitude minimal. A similar result was pointed
out by [23] for the fifth-order KdV equation, but no proof was given there.
The remainder of this article is organized as follows. In Section 2, we

examine nonlocal solitary waves in the perturbed KdV5 Equation (3). In
Section 3, we study the dynamics of embedded solitons in Equation (3) under
general perturbations. Section 4 presents some discussions.

2. Nonlocal solitary waves and embedded solitons in
the perturbed KdV5 equation

In this section, we study nonlocal solitary waves in the perturbed KdV5
Equation (3) and analytically establish the existence of embedded solitons.
For this purpose, we substitute the traveling wave solution

u�x� t� = u�x− Ct� ≡ u�x̄� (5)

into (3), where C�>0� is the wave speed. Integrating once, and dropping the
bars, we obtain the ordinary differential equation for u�x�:

uxxxx + uxx − Cu+ 3u2 + 10uuxx + 5u2x + 10u3 = εG�u�� (6)
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where

G�u� = −
{
auuxx +

1
2
�b− a�u2x +

1
3
cu3

}
� (7)

Note that without rescaling (2), the wave speed would be C/δ2. Thus, the
limit δ→ 0 studied in previous works [8, 12] is equivalent to the limit C → 0
here. This fact is used later in this paper. We also note that the continuous
spectrum of the linear unperturbed equation of (6) is C ∈ �−1/4�∞�. Thus,
all positive wave speeds lie inside the continuous spectrum. One more remark
is that F�u� = Gx�u�. When ε = 0, Equation (3) has a one-parameter family
of solitons

u0�x� =
1
2
k2sech2

kx

2
� (8)

where C = k2 + k4, and k > 0. Here, k (or C) is a free parameter.
These solitons interact with each other elastically in the KdV5 model. When
0 
= ε � 1, these solitons in general will bifurcate into nonlocal solitary
waves. We study this bifurcation below and analytically determine the tail
amplitudes of those nonlocal waves. On the basis of these results, the exis-
tence of embedded solitons will be established.
For 0 
= ε � 1, we expand the solution u of Equation (6) into a regular

perturbation series:

u�x� = u0�x� + εu1�x� + ε2u2�x� + · · · � (9)

At order ε, the equation for u1 is

Lu1 = G�u0�� (10)

where the linear operator L is

L = d4

dx4
+ d2

dx2
− C + 6u0 + 10u0xx + 30u20 + 10

d

dx

(
u0

d

dx

)
� (11)

which is self-adjoint. To solve the inhomogeneous Equation (10), we first
determine the solutions to the homogeneous equation Lψ = 0. This is a
fourth-order system, and thus, has four linearly independent solutions. The
localized solution is trivial to get: it is ψ1 = u0x, which is antisymmetric.
The other solutions are nonlocal and are more difficult to find. By inspection
and with the help of Mathematica, we are able to obtain two other bounded
solutions

ψ2 =
1

p
k

(
1+ p2

k2

)
{
cospx

[
2p
k
tanh2

kx

2
−

(
p

k
+ p3

k3

)]

− sinpx
[
tanh3

kx

2
−

(
1+ 2p2

k2

)
tanh

kx

2

]}
� (12)
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and

ψ3 = − 1
p
k

(
1+ p2

k2

)
{
cospx

[
tanh3

kx

2
−

(
1+ 2p2

k2

)
tanh

kx

2

]

+ sinpx
[
2p
k
tanh2

kx

2
−

(
p

k
+ p3

k3

)]}
� (13)

Here, p �>1� is related to the wave speed C by the equation C = p4 − p2.
Interestingly, these linear modes are the same as those in the linearized KdV
equation after rescaling [23]. Notice that ψ2 is symmetric, and ψ3 is antisym-
metric. At infinity, the asymptotic behaviors of these solutions are

ψ2 −→ ± sin�px±φ2�� x→ ±∞� (14)

ψ3 −→ sin�px±φ3�� x→ ±∞� (15)

where

tanφ2 =
1− p2/k2

2p/k
� tanφ3 =

2p/k
1− p2/k2

� (16)

As C → 0+, φ2 → −π/2, and φ3 → 0. As C → ∞, φ2 → 0, and φ3 → π/2.
From Equation (16) and the above limiting values, it is easy to see that

φ3 −φ2 =
π

2
� (17)

This relation is used in the later analysis. The fourth solution ψ4 is unbounded
and symmetric. We did not pursue its exact expression, because it is not
needed in this article.
Now we are ready to solve the inhomogeneous Equation (10). If u1 should

be localized, the inhomogeneous term G�u0� must be orthogonal to the
bounded solutions ψk �k = 1� 2� 3� of the homogeneous equation, i.e.,

�G�u0�� ψ1� = �G�u0�� ψ2� = �G�u0�� ψ3� = 0� (18)

And vice versa. Here, the inner product �� � is defined as

�f �x�� g�x�� ≡
∫ ∞

−∞
f �x�g�x�dx� (19)

From Equations (7) and (8), we see that G�u0� is symmetric. Thus, it is
automatically orthogonal to ψ1 and ψ3. However, it is not orthogonal to ψ2
in general. In fact, using complex integration technique, and with the help of
Mathematica, we have found that

�G�u0�� ψ2� = − π

45
p�k2 + p2�{�14a+ 2b− 4c�k2

+�6a+ 3b− c�p2} e−πp/k

1− e−2πp/k
� (20)
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which is, indeed, nonzero in general. Thus, the u1 solution is nonlocal, so is
u�x�. In some special cases, �G�u0�� ψ2� does vanish, then embedded soli-
tons will be found. Next, we construct symmetric nonlocal solitary waves and
embedded solitons, and prove the existence and nonexistence of asymmetric
nonlocal waves.

2.1. Symmetric nonlocal solitary waves

In this section, we construct symmetric nonlocal solitary waves in Equation (6).
At infinity, these waves have the following asymptotic behaviors:

u1�x� −→ ±R sin�px±φ�� x −→ ±∞� (21)

Here, R and φ are the tail amplitude and phase of the nonlocal wave. Notice
that any multiple of ψ2 can be added to u1, and the new function still remains
a symmetric nonlocal solution of Equation (10). Thus, there must be a free
parameter in the u1 solution. In (21), there are two parameters, amplitude
R and phase φ. Below we show that only one of them is a free parameter.
The other parameter is related to the free one by a simple equation.
For this purpose, we go back to Equation (10). Recall that the operator

L is self-adjoint. Thus, we find that

�G�u0�� ψ2� = �u1xxxψ2 − u1xxψ2x + u1xψ2xx

−u1ψ2xxx + u1xψ2 − u1ψ2x��∞−∞� (22)

When the asymptotic behaviors of u1 and ψ2 in (14) and (21) are substituted
into the above equation, we conclude that

R sin�φ−φ2� =
�G�u0�� ψ2�
2p�2p2 − 1� � (23)

Here, the quantity �G�u0�� ψ2� has been obtained in Equation (20) above.
Formula (23) relates the tail amplitude and phase and is an important result
of this article. We discuss its implications next.
When �G�u0�� ψ2� 
= 0, Equation (23) says that R 
= 0. In this case, the

solution u1, and u as well, is truly nonlocal. The minimum amplitude R occurs
when φ − φ2 = ±π/2; i.e., u1 and ψ2 are π/2 out of phase at infinity. The
maximum amplitude occurs when φ − φ2 = 0 or ±π, where R has a sim-
ple pole singularity. In the latter case, u1 and ψ2 are in phase or π-out of
phase. This is exactly the resonance explanation for the infinite tail ampli-
tude put forward by [10] on numerical grounds. Higher-order corrections to
Equation (23) can be systematically constructed by taking the perturbation
expansion (9) to higher orders.
To illustrate formula (23), we select a set of system parameters ε = 1,

a = 0, b = 1, and c = 1�5 for Equation (3). This ε is small compared with
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Figure 1. The amplitudes of nonlocal solitary waves in Equation (3) with ε = 1, a = 0, b = 1,
c = 1�5, and phase φ = 0. The solid curve is obtained from the theoretical formula (23), and
the dashed curve is the exact values obtained numerically.

the uuxxx, uxuxx, and u2ux coefficients in the unperturbed Equation (3). We
further choose the tail phase φ = 0 in Equation (21). Then the tail ampli-
tude R, as obtained from formula (23), is plotted in Figure 1 (solid curve).
Note that because ε = 1, this R curve is also the leading-order theoretical
prediction for the actual tail amplitudes of nonlocal waves. We see that the
magnitude of tail amplitudes is very small (on the order of 10−4). This fact
has important implications for the evolution of initially localized waves (see
Section 3). A distinctive feature of this curve is that R vanishes at a single
wave speed 0.96. This signals an isolated embedded soliton residing among
nonlocal solitary waves. To check the accuracy of this theoretical R curve,
we have numerically determined the tail amplitudes of nonlocal waves by the
shooting method. The results are also shown in Figure 1 (dashed curve) for
comparison. We see that the agreement is good for smaller C values and is
reasonable for larger C values. The numerical curve crosses the R = 0 axis
at wave speed 1.028. This is the true location of the embedded soliton. This
wave speed differs from the theoretical prediction 0.96 by about 7%.
Formula (23) is obtained for arbitrary values of wave speed C. Inter-

estingly, in the small wave speed C limit [i.e., δ → 0 in Equation (1)],
Equation (23) qualitatively reproduces all major results on nonlocal solitary
waves in the fifth-order KdV equation, which were obtained previously by
exponential asymptotics techniques [8, 10, 12, 13] (see also [15]). To see this,
we note that, as C → 0, k→ √

C, p→ 1, and φ2 → −π/2. Thus, to leading
order, Equation (23) reduces to

R cos
[
φ+O�

√
C�] = [

−π�6a+ 3b− c�
90

+O�
√
C�

]
e−π/

√
C� (24)
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This result indicates that, for small wave speed C, the tail amplitude R is
proportional to e−π/

√
C , which is exponentially small (see also Figure 1). This

reproduces the same result obtained by [8]. Furthermore, the leading order
phase-amplitude relation, R cosφ = const, is in complete agreement with
that established in [12, 15]. Thus, the pole singularity in R occurs at phases
φ = ±π/2 to leading order. Even the order of the next correction terms
(
√
C) in (24) agrees with that given in [10, 12, 15]. However, some differ-

ences do exist. In the numerical work of Boyd [10], it was shown that the
pole singularity in the tail amplitude R occurs at phases φ 
= ±π/2. This
fact was not captured by [12]’s higher-order calculations using the exponen-
tial asymptotics method, because their next order corrections were only on
the amplitude but not on the phase. In contrast, this fact is readily explained
by our formulas (23) and (24), because these formulas clearly predict the
O�√C� correction to the location of the pole singularity in R. In this respect,
our perturbation theory is more advantageous (we note that this phase cor-
rection was also obtained by [15] using the integral equations approach).
Another advantage of our theory is that C (or equivalently δ) does not need
to be small, whereas it has to be in the other method. From the above com-
parisons, we conclude that our soliton perturbation method offers a simple
and attractive alternative to the previous exponential asymptotics method.
However, the exponential asymptotics technique can be applied to a wide
variety of problems (see [24, 25]), whereas our method is restricted to per-
turbations of integrable equations supporting (embedded) solitons. Hence,
our method is not a replacement of the other one. However, when our the-
ory is applicable, it will generate much richer results. Last, we remark that
the pole singularity in the tail amplitude R is obtained above from the lead-
ing order perturbation theory. When R becomes very large (to order ε−1),
the perturbation result would break down. The recent theoretical analysis
by [26] and numerical calculations by [14] for the fifth-order KdV equation
show that the actual tail amplitude does not go to infinity for any phase φ,
although it does become very large at certain phase value if the coefficient
of the fifth-order derivative term is small.

2.2. Embedded solitons

When �G�u0�� ψ2� = 0; i.e.,
�14a+ 2b− 4c�k2 + �6a+ 3b− c�p2 = 0� (25)

the tail amplitude R in u1 vanishes according to formula (23). In this case,
u1 is a localized solution, and u�x� is a symmetric solitary wave (to order ε).
Higher-order corrections in (9) can be systematically calculated. These cor-
rections modify condition (25) slightly (see the end of this subsection) but still
keep u localized and symmetric. The resulting solitary wave resides inside the
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continuous spectrum of Equation (6), and is, thus, an embedded soliton. The
name embedded soliton was first proposed by the author and collaborators
in [18] when we studied second-harmonic generating systems. Such objects
have been identified in a number of other wave systems as well ([16–22]).
There are two cases when condition (25) holds. The structures of embedded
solitons are different in these two cases.

1. A one-parameter family of embedded solitons. This happens when
14a+ 2b− 4c = 6a+ 3b− c = 0, or �a� b� c� ∝ �1�−1� 3�. In this case, R = 0
for all positive wave speeds C. Thus, an embedded soliton can be obtained
for any C value. In principle, this result is valid only up to order ε, because
formula (23) itself is derived at this order. However, closer examination indi-
cates that, when �a� b� c� ∝ �1�−1� 3�, G�u0� vanishes for all wave speed C.
Thus, the soliton family (8) satisfies Equation (6) for any value of ε. Con-
sequently, a one-parameter family of embedded solitons (8) is found here.
In the special case where ε�a� b� c� = �5�−5� 15�, Equation (6) becomes the
Sawade–Kotera equation, which is known to possess the family of embedded
solitons (8) as well.

2. A unique embedded soliton. When �a� b� c� is not proportional to
�1�−1� 3�, condition (25) can still be satisfied when

p2

k2
= −14a+ 2b− 4c

6a+ 3b− c
� (26)

or equivalently,

C = CES ≡ −�14a+ 2b− 4c��6a+ 3b− c�
�20a+ 5b− 5c�2 � (27)

This is an isolated embedded soliton moving at a unique wave speed CES
(“ES” in CES here is an abbreviation for embedded solitons). It exists only
when

14a+ 2b− 4c
6a+ 3b− c

< −1� (28)

or equivalently, c lies between 4a+b and 6a+3b. For convenience, we write
this condition as c ∈ �4a + b� 6a + 3b�. This notation does not imply that
6a+3b is larger than 4a+b, however. Contrary to the first case, formula (27)
is, indeed, valid only up to order ε (see also Figure 1). Higher-order correc-
tions to CES can be found when the perturbation expansion (9) is pursued
to higher orders (the exact CES value has been obtained by [16], see below).
However, these corrections do not destroy the existence of embedded soli-
tons, because CES is an isolated simple root of Equation (25) [or equivalently,
Equation (20)].
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It is important to emphasize that the above perturbation analysis
exhausts all possible single-hump embedded solitons in the perturbed KdV5
Equation (3). Under condition �a� b� c� ∝ �1�−1� 3�, embedded solitons (8)
have the exact sech2 shape. Under the other condition c ∈ �4a+ b� 6a+ 3b�,
the above perturbation analysis indicates only that the shape of this isolated
embedded soliton is close to sech2. One question arises: In the latter case,
does this embedded soliton also have the exact sech2 shape? The answer is
yes. Obviously, the reason cannot be found in the framework of the above
perturbation theory. It comes when we compare the present result with those
in [16], where special embedded solitons of exact sech2 shape were sought
and classified. In our notation, their results can be reformulated as follows.
The exact sech2 solitary waves

u�x� = h sech2λx (29)

exist in Equation (6) if the coefficients ρ = 4λ2 and σ = −4λ2/h satisfy the
following three polynomial equations:

ρ2 + ρ− C = 0� (30)

15ρσ + �30+ εa+ εb�ρ+ 3σ + 6 = 0� (31)

15σ2 + �40+ 2εa+ εb�σ + 2
3
�30+ εc� = 0� (32)

It can be shown from the above equation that, if �a� b� c� ∝ �1�−1� 3�,
Equation (6) allows the family of embedded solitons (8) for arbitrary wave
speed C. This agrees with our results above. More relevant to our ques-
tion is the case when �a� b� c� is not proportional to �1�−1� 3�. In this case,
we expand the parameters ρ and σ into regular perturbation series in ε. To
leading order, we get from Equations (31) and (32) that,

ρ = − 6a+ 3b− c

20a+ 5b− 5c +O�ε�� σ = −2 − 1
30

�6a+ 3b− c�ε+O�ε2�� (33)

When these relations are substituted into Equation (30), we find that the
exact sech2 soliton exists only at a single wave speed

C = −�14a+ 2b− 4c��6a+ 3b− c�
�20a+ 5b− 5c�2 +O�ε�� (34)

This is exactly the wave speed CES we found perturbatively before. This result
is expected, because our perturbation analysis has exhausted all embedded
solitons under small ε limit. Thus, the exact sech2 solution studied in [16]
must reduce to our perturbation result for ε� 1, and vice versa. The conclu-
sion is that, in the perturbed KdV5 Equation (3), all single-hump embedded
solitons have exact sech2 shape (29). Suggested by this result, we conjec-
ture that all single-hump embedded solitons in the general extended KdV
Equation (1) have exact sech2 shape (29).
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2.3. Asymmetric nonlocal solitary waves

Asymmetric nonlocal solitary waves with small cw tails attached to a single-
hump core have been examined before by [10] and [27] for the fifth-order
KdV equation. From energy flux viewpoint, [27] conjectured that such asym-
metric nonlocal waves cannot exist. Boyd [10] numerically tried to obtain
such asymmetric waves, but failed to find any. In this subsection, we prove
analytically that, in the perturbed KdV5 Equation (3), if the perturbation
is Hamiltonian, asymmetric single-hump nonlocal waves with small cw tails
cannot exist at wave speeds different from the embedded soliton’s. Under
non-Hamiltonian perturbations, such asymmetric waves can exist in certain
parameter regions. Note that the fifth-order KdV equation is Hamiltonian,
and it does not support embedded solitons (see [10]). Thus, if we extrapolate
our results to that equation, then the nonexistence of asymmetric nonlocal
waves in that equation would be established theoretically.
We start by revisiting the first-order perturbation solution u1 in

Equation (10). In the previous two subsections, we focused on symmet-
ric nonlocal solutions. In the general case, the u1 solution is

u1�x� = u1s�x� + αψ3�x�� (35)

where u1s is the symmetric inhomogeneous solution studied above, ψ3 is the
antisymmetric homogeneous solution given in (13), and α is an arbitrary con-
stant. Notice that u1 now is asymmetric if α 
= 0. Suppose the asymptotic
behaviors of solution u1s is given as in (21), then similar to Section 2.1, we
can show that R and φ are related by Equation (23).
To determine whether the asymmetric solution u�x� with u1 given in (35)

can exist, we calculate the higher-order corrections in the perturbation expan-
sion (9). At order ε2, the equation for u2 is:

Lu2 = W� (36)

where

W = −{
a�u0u1xx + u1u0xx� + �b− a�u0xu1x
+ cu20u1 + 3u21 + 10u1u1xx + 5u21x + 30u0u21

}
� (37)

The solution u2 must be bounded at infinity. Thus, the inhomogeneous term
W in Equation (36) must be orthogonal to the localized homogeneous solu-
tion u0x; i.e.,

�W�u0x� = 0� (38)
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The inner product �W�u0x� can be calculated as follows. Recalling the
form (11) of operator L, we have

�Lu1� u1x� =
[
u1xxxu1x −

1
2
u21xx +

1
2
u21x −

C

2
u21

]∞

−∞

−
∫ ∞

−∞
�3u21 + 10u1u1xx + 5u21x + 30u0u21�u0xdx� (39)

On the other hand, recalling Equation (10), we also have

�Lu1� u1x� =
∫ ∞

−∞

{
a�u0u1xx + u0xxu1� + �b− a�u0xu1x
+ cu20u1 − 3�2a− b�u0xxu1

}
u0xdx� (40)

When Equations (39) and (40) are equated, and the u1 expression (35) and
the asymptotic behaviors (15) and (21) of u1s and ψ3 utilized, we find that

�W�u0x� = α

{
2p2�2p2−1�R sin�φ−φ2�−3�2a−b�

∫ ∞

−∞
u0xu0xxψ3dx

}
� (41)

We have determined the integral in the above formula by complex integration
and Mathematica. The result is∫ ∞

−∞
u0xu0xxψ3dx = 2π

27
p2�p2 + k2�2 e−πp/k

1− e−2πp/k
� (42)

Equation (41) is an important result. We discuss its implications on the exis-
tence of asymmetric nonlocal solitary waves below.

1. For Hamiltonian perturbations, b = 2a. Under such perturbations, if
condition (25) does not hold, we have R sin�φ−φ2� 
= 0 [see Equations (20)
and (23)]. Then Equation (41) indicates that �W�u0x� does not vanish unless
α = 0. Thus, no asymmetric nonlocal solitary waves will be obtained. Note
that Equation (25) is the condition for the existence of embedded solitons.
Thus, we conclude that, for Hamiltonian perturbations, at parameter values
where embedded solitons do not exist, asymmetric nonlocal solitary waves
with small cw tails cannot exist either. Recalling results from Section 2.2, the
above statement can be made more specific. When c /∈ �4a+ b� 6a+ 3b�, or
c /∈ �6a� 12a� in view of the Hamiltonian condition b = 2a, asymmetric non-
local solitary waves cannot exist for any wave speed C. When c ∈ �6a� 12a�,
such asymmetric waves cannot exist for any C 
= CES, where CES is given in
Equation (27). In the latter case, whether asymmetric waves exist or not at
C = CES needs further investigation.
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2. For non-Hamiltonian perturbations, b 
= 2a. In this case, we substi-
tute Equations (20), (23), and (42) into Equation (41), and find that

�W�u0x� = −απ
45

p2�p2 + k2�{�34a− 8b− 4c�k2
+�26a− 7b− c�p2} e−πp/k

1− e−2πp/k
� (43)

To make �W�u0x� vanish for α 
= 0, we must have
�34a− 8b− 4c�k2 + �26a− 7b− c�p2 = 0� (44)

This condition is satisfied in two cases. First, 34a− 8b− 4c = 26a− 7b− c =
0; i.e., �a� b� c� ∝ �2� 7� 3�. In this case, Equation (44) holds for all wave
speeds C. Second, �34a−8b−4c��26a−7b−c� 
= 0. In this case, condition (44)
is met when

p2

k2
= −34a− 8b− 4c

26a− 7b− c
� (45)

or equivalently,

C = CAW ≡ −�34a− 8b− 4c��26a− 7b− c�
�60a− 15b− 5c�2 � (46)

Here, wave speed CAW does not correspond to an embedded soliton, because
it does not satisfy condition (25). Instead, it corresponds to an asymmetric
nonlocal wave (see below and Section 3). Here, “AW” in CAW is an abbrevi-
ation for asymmetric waves. This isolated wave speed exists when

34a− 8b− 4c
26a− 7b− c

< −1� (47)

that is, c lies between 12a − 3b and 26a − 7b. As before, we denote this
condition as c ∈ �12a− 3b� 26a− 7b�.
When condition (44) does not hold, for �W�u0x� to vanish, α must be zero.

Thus, no asymmetric nonlocal solitary waves will be found. If (44) does hold,
our perturbation analysis above shows that asymmetric nonlocal waves exist
up to order ε2. Will they exist up to all orders? The answer is yes, at least
in the case when c ∈ �12a − 3b� 26a − 7b�. The reason is the following. In
Section 3, we show that the speed evolution of a KdV5 soliton under non-
Hamiltonian perturbations is controlled by Equation (73) to leading order.
Moreover, the wave speeds that satisfy condition (44) are the fixed points
of that equation. The key observation we make is that, if a fixed point of
Equation (73) is isolated and simple [i.e., the fixed point is a simple root of
the dC/dT function in (73)], then higher-order corrections to this equation
will not destroy this fixed point, but only slightly shift it. When c ∈ �12a −
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3b� 26a− 7b�, the dC/dT function is illustrated in Figure 3(a, b, e, f), where
CAW is an isolated and simple fixed point. Thus, this fixed point will persist
to all orders of the perturbation expansion [the leading order value is given
in (46)]. This point does not correspond to an embedded soliton. Rather,
at this speed, the solitary wave will dynamically maintain its speed and core
shape, meanwhile exciting upstream a low cw tail of constant amplitude. This
cw tail extends to infinity at its group velocity, which is larger than the speed
of the core. Thus, this fixed point corresponds to an asymmetric, one-sided
nonlocal wave, which does exist under condition c ∈ �12a − 3b� 26a − 7b�.
To the author’s knowledge, this is the first demonstration of the existence
of asymmetric nonlocal waves in the fifth-order KdV-type equations. If one
wishes to perturbatively calculate this asymmetric wave, one needs to expand
the wave speed CAW into a perturbation series too, because this wave speed
needs to be determined as well. In the other case where condition (44) holds,
i.e., �a� b� c� ∝ �2� 7� 3�, the evolution Equation (73) becomes dC/dT = 0
for all wave speeds. In this case, when higher-order effects are included,
it is possible that the full dC/dT equation does not have fixed points any
more. When that happens, we will not find asymmetric nonlocal waves. To
settle the existence of asymmetric waves in this case, we need to pursue the
perturbation expansion (9) to higher orders, which will not be done in this
article.

3. Dynamics of embedded solitons

In this section, we study how the KdV5 solitons evolve under general per-
turbations [see Equation (3)]. We show that this evolution depends critically
on whether or not embedded solitons exist, and whether or not the perturba-
tion is Hamiltonian. Our method is to develop a dynamic soliton perturbation
theory for Equation (3). Results from Section 2 are utilized extensively in
this section.
When ε = 0, Equation (3) is the integrable KdV5 equation, which supports

a family of solitons given by (5) and (8). These solitons move at constant
speed C and are stationary. When perturbations are imposed (0 
= ε � 1),
the velocity C of the soliton will change on the slow time scale T = ε2t.
Meanwhile, energy radiation arises as well. In this case, it is appropriate to
introduce the spatial coordinates

x̄ = x−
∫ t

0
C dt� (48)

which moves with the soliton. In this frame, with the bars dropped,
Equation (3) becomes

ut − Cux + 6uux + uxxx + uxxxxx + 10uuxxx
+ 20uxuxx + 30u2ux = εF�u�� (49)
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The solution of this equation can be expanded into a perturbation series:

u�x� t� = u0�x� T � + εu1�x� t� T � + ε2u2�x� t� T � + · · · � (50)

Here, u0 is given in Equation (8). Note that C = C�T �, thus k = k�T �. This is
why u0 depends on slow time T as well. One of the primary objectives of this
section is to derive the evolution equation for the wave speed C on time scale
T . This will be achieved when we pursue the perturbation expansion (55) to
order ε2. We remark here that, in general, when perturbations are imposed,
the position as well as the velocity of the soliton would evolve slowly (see
[23, 28]). This position evolution can be worked out readily in the present
perturbation theory, too. However, this evolution does not affect the velocity
evolution [see Equation (62)], nor does it affect the amplitude (shape) of the
soliton. Thus, it is not pursued here.
At order ε, the equation for u1 is obtained:

u1t + �Lu1�x = Gx�u0�� (51)

Here, the fact Gx�u� = F�u� has been utilized. In general, the inhomo-
geneous term in the above equation will continuously excite the cw tails
that propagate into the far field. A key observation is that these cw tails
appear only ahead of the soliton, not behind it. The reason is that, at infin-
ity, the group velocity of the cw waves in u1 relative to the moving frame is
d�pC�/dp− C = 2p2�2p2 − 1� > 0 for all C > 0. Thus, at t � 1,

u1�x� t� −→
{
R̃ sin�px+ φ̃�� x� 1,
0� x� −1. (52)

The amplitude R̃ and phase φ̃ can be obtained as follows. As t → ∞, the
solution u1 approaches a steady state with the same asymptotic behavior (52)
at large distances. In this case, the time derivative in Equation (51) can be
dropped. Integrating once with respect to x, and utilizing the asymptotic
behavior (52), of u1 as x → −∞, we find that the steady-state solution
satisfies Equation (10) and the boundary condition (52). Recall that L is self-
adjoint. Then utilizing Equations (17) and (22) and the asymptotic behaviors
(14), (15), and (52), we obtain

�G�u0�� ψ2� = p�2p2 − 1�R̃ sin�φ̃−φ2�� (53)

�G�u0�� ψ3� = p�2p2 − 1�R̃ sin�φ̃−φ3� = 0� (54)

Thus, the amplitude R̃ and phase φ̃ are found to be:

R̃ = �G�u0�� ψ2�
p�2p2 − 1� � φ̃ = φ3� (55)
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Here �G�u0�� ψ2� has been given in Equation (20) before. Note that the
other solution to Equations (53) and (54) is φ̃ = φ3 ± π, and R̃ is negative
of that given in (55). However, this solution results in the same tail behavior
(52) as (55) does, and thus can be dropped.
Equation (56) is another important result of this article. First, φ̃ = φ3 says

that the phase of the cw tail ahead of the soliton is the same as the phase
of the antisymmetric homogeneous solution at infinity. At this phase, R̃ is
minimal [see Equations (17) and (53)]. Thus, the soliton, when perturbed,
sheds minimum cw tail radiation possible. This is a nontrivial and stimulating
result. It has been observed by [29] before for the fifth-order KdV equation,
but no proof was given there. Second, the tail amplitude R̃ of the one-sided
nonlocal solitary wave is twice that of the symmetric nonlocal wave with the
same phase [see Equations (23) and (53)]. This fact is more or less obvious
(see also [8, 29]). The reason is that we can decompose the steady-state
solution u1 as

u1�x� = u1s�x� +
1
2
R̃ψ3�x�� (56)

where u1s is the symmetric component and has the asymptotic behavior

u1s�x� −→ ±1
2
R̃ sin�px±φ3�� x −→ ±∞� (57)

Thus, the tail amplitude R̃ of u1 is, indeed, twice that of the symmetric non-
local wave u1s. The u1 decomposition (56) is used later in this article.
With the first-order solution u1 fully determined, we proceed to order ε2.

The equation for u2 is

u2t + �Lu2�x = Wx − u0T � (58)

where the expression for W is given in Equation (37). From this equation,
we find that

�u2� u0�t = �Wx − u0T � u0�� (59)

To suppress secular growth in u2, we must require that

�Wx − u0T � u0� = 0� (60)

This equation leads directly to the evolution equation for the soliton
wavespeed C:

dC

dT
= −2�2k

2 + 1�
k

�W�u0x�� (61)
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Here, the relation C = k2+k4 has been utilized. The inner product �W�u0x�
can be found from Equations (39), (40), (52), and (56). When the result is
substituted into Equation (61), we finally obtain the C evolution equation

dC

dT
= −2k

2 + 1
k

R̃

{
p2�2p2 − 1�R̃− 3�2a− b�

∫ ∞

−∞
u0xu0xxψ3dx

}
� (62)

Here, R̃ and the integral are given by Equations (20), (42), and (55).
Equation (62) is the key result of this article. It controls the dynamic
evolution of the soliton under general perturbations in Equation (3).
Another way to derive the dynamic Equation (62) is to use conservation

laws after the first-order solution u1 and its frontal cw tail amplitude R̃ have
been obtained. Equation (3) always conserves the quantity∫ ∞

−∞
udx�

which can be interpreted as mass. When b = 2a, Equation (3) is Hamiltonian.
It can be cast in the form

ut = −DxδH� (63)

where the Hamiltonian functional H is

H�u� ε� =
∫ ∞

−∞

{
u3 − 1

2
u2x +

1
2
u2xx −

10+ εa

2
uu2x +

30+ εc

12
u4

}
dx� (64)

and δ represents the functional derivative. We obtained this Hamiltonian with
the aid of the Mathematica program developed by Goktas and Hereman [30]
for the computation of conserved densities. The Hamiltonian can be inter-
preted as energy, and is also conserved. When the system (3) is Hamiltonian,
it conserves one more quantity ∫ ∞

−∞
u2 dx�

which can be interpreted as momentum. If Equation (3) is not Hamiltonian
(b 
= 2a), the corresponding momentum and energy conservation laws
become

d

dt

∫ ∞

−∞
u2dx = 2�2a− b�ε

∫ ∞

−∞
uuxuxx dx� (65)

and

dH

dt
= �2a− b�ε

∫ ∞

−∞

{
uxxxx + uxx + 3u2 + �10+ εa�uuxx

+ 10+ ε�b− a�
2

u2x +
30+ εc

3
u3

}
uxuxxdx� (66)
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The mass conservation law does not lead to any interesting results on soliton
evolution. However, either of the momentum and energy conservation laws
(65) and (66) yields the identic dynamic Equation (62) for wave speed C.
This is shown below.
We first start from the momentum conservation law (66). When the per-

turbation expansion (50) is substituted into Equation (65) and terms up to
order ε2 retained, we get

d

dt

∫ ∞

−∞

{
u20 + 2εu0�u1 + εu2� + ε2u21

}
dx

= 6�2a− b�ε2
∫ ∞

−∞
u0xu0xxu1 dx� (67)

Now the following facts need to be utilized. First, u20 changes on time scale
T = ε2t. This can be seen directly from Equation (67). Second, u1 and u2
solutions at the soliton core quickly become stationary. Thus, the middle term
in the left-hand side of Equation (67) can be dropped. Third, u1 solution
develops at its front side a cw tail whose amplitude R̃ has been given in
Equation (55). This tail, with wavenumber p, moves at its group velocity
Cg = �Cp�p = 5p4−3p2, which is larger than the wave velocity C �=p4−p2�.
From this fact, we have

d

dt

∫ ∞

−∞
u21 dx = 1

2
R̃2�Cg − C� = p2�2p2 − 1�R̃2� (68)

When Equation (68) and the u1 decomposition (56) are substituted into
Equation (67), Equation (62) is then reproduced.
The derivation of Equation (62) from the energy conservation law (66) is

quite similar. When the perturbation expansion (50) is substituted into (66),
and terms of order ε3 and higher neglected, we get

d

dt

{
H�u0� 0� +

1
2
ε2

∫ ∞

−∞
�u21xx − u21x�dx

}

= 3ε2�2a− b�C
∫ ∞

−∞
u0xu0xxu1 dx� (69)

Notice that

d

dt

∫ ∞

−∞
�u21xx − u21x�dx = 1

2
R̃2�p4 − p2��Cg − C� = Cp2�2p2 − 1�R̃2� (70)

and

H�u0� 0� =
1
35

�5k7 + 7k5�� (71)



356 J. Yang

When these relations and u1 decomposition (56) are substituted into
Equation (69), Equation (62) is reproduced again.
Last, we study the dynamics of Equation (62), and classify all possible

scenarios of KdV5 soliton evolution under general perturbations. The evolu-
tion behaviors for Hamiltonian and non-Hamiltonian perturbations are very
different, and are treated separately below.

1. Evolution under Hamiltonian perturbations. In this case, b = 2a.
Thus, when the R̃ formulas (55) and (20) are substituted into Equation (62),
we find that

dC

dT
= − 2k2 + 1

k�2p2 − 1�
[
π

45
p�p2 + k2� e−πp/k

1− e−2πp/k

]2

× [�14a+ 2b− 4c�k2 + �6a+ 3b− c�p2]2 � (72)

This equation has a unique fixed point C = CES when condition (25) is sat-
isfied; i.e., c ∈ �6a� 12a�. At this wave speed, an embedded soliton can be
found. In this case, the dC/dT function in (72) is illustrated in Figure 2a.
We see that, for initial wave speed C0 > CES, C decreases and approaches
C+
ES as t → ∞. Thus, the soliton slows down and asymptotically approaches
this unique embedded soliton. However, when C0 < CES, C decreases to zero,
and the soliton asymptotically decays into radiation. Thus, the fixed point CES
is semistable, as is the embedded soliton. The semistability of single-hump
embedded solitons in a Hamiltonian system was first established heuristi-
cally by the author and collaborators in the context of the second-harmonic-
generating system [18]. There, our argument was based on the fact that the
embedded soliton was an isolated member of a family of nonlocal solitary
waves. Thus, a generic small perturbation tends to move any embedded soli-
ton over into an adjacent state, which is always a nonlocal solitary wave with
a nonzero infinite tail. If the perturbed embedded soliton state has energy
less than that of the embedded soliton, the energy lost in an attempt to build

Figure 2. Classification of soliton evolution under Hamiltonian perturbations �b = 2a�; (a) c ∈
�6a� 12a�; (b) c 
∈ �6a� 12a�.
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the infinite tail drives the solution further away from the initial state. As a
result, the perturbed embedded soliton can be expected to decay. On the
other hand, if the perturbed state has higher energy than the embedded soli-
ton, the energy lost through tail generation drags the pulse back toward the
unperturbed embedded soliton. Thus, the embedded soliton under such per-
turbations would be stable. This heuristic semistability argument makes sense
for single-hump embedded solitons, and this was backed up by our numer-
ical simulations [18]. However, it is not a mathematical proof. Our analysis
detailed above gives the first rigorous justification of that semistability result
in the Hamiltonian Equation (3). This justification puts the heuristic argu-
ment of [18] on solid ground. Recall that the heuristic argument of [18]
works equally well for any Hamiltonian system, thus the justification of that
argument in this article for Equation (3) suggests that semistability of single-
hump embedded solitons is a universal property in all Hamiltonian systems.
If C /∈ �6a� 12a�, the dC/dT function is sketched in Figure 2b. In this case,
dC/dT < 0 for all wave speeds. Thus, for any initial wave speed C0, C → 0 as
t → ∞. In other words, the soliton always decays into radiation. From these
results, we see that the existence of an embedded soliton changes the dynam-
ics of soliton evolution drastically. Higher-order corrections to Equation (72)
can be systematically determined by carrying out the perturbation expan-
sion (50) to higher orders. However, these corrections will not cause quali-
tative changes to the soliton evolution behavior. The reason is that, for one
thing, these corrections will not destroy the existence of embedded solitons
(see Section 2.2). Furthermore, derivation of dC/dT Equation (62) from con-
servation laws approach indicates that, with higher-order corrections, dC/dT
will still be proportional to R2, where R is the modified tail amplitude and
R = 0 gives the embedded soliton. Thus, semistability of embedded solitons
still holds.

2. Evolution under non-Hamiltonian perturbations. Non-Hamiltonian
perturbations also strongly influence the soliton evolution. In this case,
b 
= 2a. After substituting the R̃ and integral formulas (55) and (42) into
Equation (62), we obtain

dC

dT
= − 2k2 + 1

k�2p2 − 1�
[
π

45
p�p2 + k2� e−πp/k

1− e−2πp/k

]2
× [�14a+ 2b− 4c�k2 + �6a+ 3b− c�p2]
× [�34a− 8b− 4c�k2 + �26a− 7b− c�p2] � (73)

This equation has fixed points when either condition (25) or (44) is satis-
fied. In the former case, the fixed point corresponds to an embedded soliton.
In the latter case, the fixed point does not correspond to an embedded soli-
ton, as with such parameters, the tail amplitude R̃ 
= 0. Instead, the fixed
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point represents an asymmetric nonlocal wave that consists of a stationary
soliton core plus a cw tail of amplitude R̃ extending to infinity at the front
side of the core. From energy point of view, this steady nonlocal asymmetric
wave is possible, because the perturbation is non-Hamiltonian. Thus, energy
can be injected into the system by the perturbations. Higher-order correc-
tions to Equation (73) can be determined systematically. However, if a fixed
point of Equation (73) is isolated and simple, then its existence will not be
affected by those higher-order corrections. Only its location will be shifted
slightly.

Next, we classify all possible evolution scenarios of KdV5 solitons under
non-Hamiltonian perturbations. Here, the conditions (25) and (44) play a
critical role.
If �a� b� c� ∝ �1�−1� 3�, condition (25) is satisfied for all wave speeds.

Thus, dC/dT = 0. This is not surprising. As we mentioned in Section 2.2,
when �a� b� c� ∝ �1�−1� 3�, the KdV5 solitons (8) remain exact solitary wave
solutions of the perturbed system (3). Thus, the wave speed C does not
change under perturbations. In this case, one gets a continuous family of
embedded solitons. Dynamically, this family of embedded solitons can be
viewed as being neutrally stable.
If �a� b� c� ∝ �2� 7� 3�, condition (44) is satisfied for all wave speeds, and

we also have dC/dT = 0. This means that a KdV5 soliton of arbitrary ini-
tial velocity can still keep its velocity unchanged. Here, the soliton does not
remain localized any longer. Instead, the soliton core continuously sheds a cw
tail of constant amplitude R̃ at its front side. This evolution scenario holds up
to order ε2� however. At this order, every wave speed can be viewed as a neu-
tral fixed point. When higher-order effects are included, these fixed points
may all be destroyed; i.e., the full dC/dT equation may not have any fixed
points. In such cases, the asymptotic evolution of KdV5 solitons beyond slow
time scale T will be changed qualitatively. To capture this asymptotic evolu-
tion, the perturbation calculations need to be carried out to higher orders.
This lies beyond the scope of the present article.
When �a� b� c� is not proportional to either �1�−1� 3� or �2� 7� 3�, the soli-

ton evolution can be classified into eight more categories.
When c ∈ �4a + b� 6a + 3b� and �12a − 3b� 26a − 7b�, there is a unique

root CES and CAW to Equations (25) and (44), respectively. The expressions
for CES and CAW can be found in (27) and (46). Here, we must have �26a−
7b − c��6a + 3b − c� > 0. The reason is as follows. Because CES exists,
�14a+ 2b− 4c�/�6a+ 3b− c� < 0. We rewrite Equation (44) as

26a− 7b− c

6a+ 3b− c

p2

k2
+ 26a− 7b− c

6a+ 3b− c
+ 14a+ 2b− 4c

6a+ 3b− c
− 1 = 0� (74)

If �26a−7b−c��6a+3b−c� < 0, every term in the above equation is negative.
This contradicts our assumption that Equation (44) has a root CAW. Note that
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both fixed points CES and CAW here are isolated and simple, thus they will
persist to all orders of the perturbation expansion. At the first fixed point,
an isolated embedded soliton exists; at the second fixed point, asymmetric
nonlocal solitary waves can be found.
Under the above conditions, we have two different cases.

• �2a−b��6a+3b−c� > 0: In this case, we can easily show that CES < CAW.
The shape of the function dC/dT is shown in Figure 3a. Clearly, the fixed
point CES of Equation (73) is unstable, and the fixed point CAW is stable.
If the initial velocity of a soliton C0 > CES, then C → CAW. Otherwise,
C → 0. In the former case, the solution approaches a unique asymmetric
(one-sided) nonlocal wave moving at speed CAW.

• �2a− b��6a+ 3b− c� < 0: Now CES > CAW, and the dC/dT is shown in
Figure 3b. This CES is then a stable fixed point and CAW an unstable one.
In this case, we find an isolated stable embedded soliton at wave speed
CES. Under perturbations, a KdV5 soliton with C0 > CAW asymptotically
approaches this embedded soliton, and that soliton with C0 < CAW decays
into radiation. The existence of this stable embedded soliton under non-
Hamiltonian perturbations is a novel discovery of this article.

The other six cases for c ∈ �4a+ b� 6a+ 3b� but c /∈ �12a− 3b� 26a− 7b�,
c /∈ �4a + b� 6a + 3b� but c ∈ �12a − 3b� 26a − 7b�, and c /∈ either of
�4a+b� 6a+3b� and �12a−3b� 26a−7b� can be classified similarly. Instead of
listing them one by one, we summarize all possible evolution scenarios, under
both Hamiltonian and non-Hamiltonian perturbations, in Tables 1 and 2 and
Figures 2 and 3. Here, we want to remind the reader that c ∈ �� � in these
tables simply means that c lies between the two numbers inside the paren-
theses. It does not imply that the second number in the parentheses must
be larger than the first one. We also remind the reader that the results in
these tables and figures are the leading order results in the perturbation the-
ory. When higher-order effects are included, the claims for the �a� b� c� ∝
�1�−1� 3� case remain the same; the statements for the �a� b� c� ∝ �2� 7� 3�
case may be changed qualitatively, and the results for the other cases are
qualitatively the same but quantitatively modified slightly.
Although the analysis above gives the correct asymptotic evolution of

KdV5 solitons under perturbations, the time scale of the evolution is also
important. From Figure 1, we know that the amplitude of the cw tail shed
from a KdV5 soliton is very small. This implies that the evolution of a KdV5
soliton into its asymptotic state is very slow. This fact can be seen more
clearly from Equation (62): smaller R̃ leads to slower C change. For the sys-
tem parameters ε = 1� a = 0� b = 1, and c = 1�5 (as in Figure 1), we have
found from Equation (62) or, equivalently (73), that the magnitude of the
dC/dT function is on the order of 10−5 (the graph is qualitatively the same
as Figure 3d and is not shown here). Thus, although any KdV5 soliton would
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Figure 3. Classification of soliton evolution under non-Hamiltonian perturbations (b 
= 2a).
The parameter conditions for each graph are listed in Table 2.
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Table 1
Classification of Soliton Evolution Under Hamiltonian

Perturbations �b = 2a�

Parameter Conditions dC
dT
Graph CES

c ∈ �6a� 12a� Figure 2a Semistable
c /∈ �6a� 12a� Figure 2b

asymptotically approach the unique stable embedded soliton, the time scale
of this evolution is on the order of 105, which is extremely slow. Qualitatively,
this is true for other evolution scenarios as well.

4. Discussion

In this article, we presented the first comprehensive dynamical theory for
embedded solitons in the context of the perturbed KdV5 Equation (3). We
analytically established that embedded solitons can exist as an isolated solu-
tion, or as a continuous family of solutions, inside the continuous spectrum
of the linear system. Under small wave speed limit, our results on symmetric
nonlocal solitary waves qualitatively reproduced all major results by expo-
nential asymptotics techniques on the fifth-order KdV equation, including
the exponential smallness of the tail amplitudes and the amplitude-phase
relation. We further studied the dynamics of embedded solitons in detail by
classifying all possible scenarios of KdV5 soliton evolution under general per-
turbations. In particular, we proved that, under Hamiltonian perturbations,
embedded solitons are semistable. Stable embedded solitons were found for
non-Hamiltonian perturbations.
It is noted that, the embedded solitons studied in this article are all single-

humped. In fact, we have shown in Section 2.2 that these embedded solitons
all have sech2 shape. Such solitons are called fundamental in the literature.
Multihumped embedded solitons have also been found in a number of
Hamiltonian systems by the author and others [14, 17, 18, 21]. In particular,
they have been identified in extended Hamiltonian KdV Equations [14, 21].
It is possible that such embedded solitons also exist in the perturbed KdV5
Equation (3). However, evidence shows that multihumped embedded soli-
tons in Hamiltonian systems are linearly unstable [18]. Whether they can be
stable in non-Hamiltonian systems such as (3) remains an open question.
Last, we discuss the physical implications of our results to gravity waves

on shallow water. The extended KdV Equation (1) has been derived by a
number of authors for long gravity waves as an attempt to include higher-
order effects into the celebrated KdV equation [1–6]. As we mentioned in
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Table 2
Classification of Soliton Evolution Under Non-Hamiltonian Perturbations �b 
= 2a�

Parameter Conditions dC
dT
Graph Features

�a� b� c� ∝ �1�−1� 3� 0 A family of neutrally stable embedded solitons
�a� b� c� ∝ �2� 7� 3� 0 A family of asymmetric nonlocal waves

Parameter Conditions dC
dT
Graph CES CAW

c ∈ �4a+ b� 6a+ 3b� �2a− b��6a+ 3b− c� > 0 Figure 3a Unstable Stable
c ∈ �12a− 3b� 26a− 7b� �2a− b��6a+ 3b− c� < 0 Figure 3b Stable Unstable
c ∈ �4a+ b� 6a+ 3b� �2a− b��6a+ 3b− c� > 0 Figure 3c Unstable
c /∈ �12a− 3b� 26a− 7b� �2a− b��6a+ 3b− c� < 0 Figure 3d Stable
c /∈ �4a+ b� 6a+ 3b� �2a− b��26a− 7b− c� > 0 Figure 3e Stable
c ∈ �12a− 3b� 26a− 7b� �2a− b��26a− 7b− c� < 0 Figure 3f Unstable
c /∈ �4a+ b� 6a+ 3b� �6a+ 3b− c��26a− 7b− c� > 0 Figure 3g
c /∈ �12a− 3b� 26a− 7b� �6a+ 3b− c��26a− 7b− c� < 0 Figure 3h
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the introduction, both Hamiltonian and non-Hamiltonian systems have been
derived, and the �c1� c2� c3� coefficients in those works are not in agreement.
Those coefficients do not fall into the parameter regime of the perturbed
KdV5 Equation (3) either. However, the systems derived in [1, 2, 6] and
Equation (3) have things in common. It has been shown by [21] that, for the
Hamiltonian coefficients obtained in [6], a single-hump embedded soliton
exists at a unique wave speed. For the non-Hamiltonian coefficients derived
in [1, 2], we have found numerically that an isolated single-hump embedded
soliton exists as well (unpublished results). On the basis of our results for
the perturbed KdV5 Equation (3), we expect that the single-hump embed-
ded soliton of [21] is semistable. A solitary wave initially moving faster than
the embedded soliton will slow down and approach this embedded soliton;
whereas, such a wave initially moving slower than the embedded soliton will
decay into radiation. For non-Hamiltonian perturbations in [1, 2], we expect
the single-hump embedded soliton to be stable or unstable. In the former
case, the embedded soliton would be a robust object that may be observ-
able in experiments. Of course, the real water waves are always subject to
viscosity-induced damping, which was not accounted for in the perturbed
KdV5 Equation (3) and all the extended KdV equations derived in [1, 2,
4–6]. Thus, we need to be cautious when applying our theory in this arti-
cle to the real system. Nonetheless, we have offered a different picture for
gravity wave evolution on shallow water that is in dramatic contrast with the
traditional one based on the fifth-order KdV equation. In the traditional pic-
ture, an initially localized water wave always decays because of emission of
tail radiation. In our new picture, the water wave can approach an embed-
ded soliton state, which moves at a constant, generally unique, speed. The
implications of our theory to other embedded-soliton-bearing physical sys-
tems, such as the three-wave interaction system [20] and the coupled KdV
equations [17], are similar, and are not detailed here.
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