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Previous studies have shown that fractal scatterings in weak interactions of
solitary waves in the generalized nonlinear Schrödinger (NLS) equations are
described by a universal second-order separatrix map. In this paper, this
separatrix map is analyzed in detail, and hence a complete characterization of
fractal scatterings in these weak interactions is obtained. In particular, scaling
laws of these fractals are derived analytically for different initial conditions,
and these laws are confirmed by direct numerical simulations. In addition, an
analytical criterion for the occurrence of fractal scatterings is given explicitly.

1. Introduction

Solitary wave interactions are important phenomena in science and engineering
[1, 2]. These interactions can be divided roughly into two types depending on
the strength of the interactions. Strong interactions, often called collisions, are
the interactions of solitary waves at close distance. They would occur when two
solitary waves are initially far apart but move toward each other at moderate or
large speeds. Weak interactions are the interactions of solitary waves at far
distance through weak tail overlap. These interactions would occur if the two
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waves are initially well separated, and their relative velocities are small or
zero. In integrable systems, collisions of solitary waves are elastic [1], and
their weak interactions exhibit interesting but still simple behaviors [2–6]. For
certain integrable systems perturbed by higher-order corrections, if they can
be asymptotically transformed to integrable equations, then their solitary wave
interactions would closely resemble those in integrable systems [7–9]. If the
systems are nonintegrable, however, solitary wave interactions can be extremely
complicated, and they can depend on initial conditions in a sensitive, fractal
manner. This fractal-scattering phenomenon was first discovered for kink and
antikink collisions in the φ4 model [10–12], later in several other physical
systems as well [13, 14]. For these strong interactions, a resonant energy
exchange mechanism between the collision and internal/radiation modes was
found responsible for this fractal scattering. To analyze these fractal scatterings,
approximate collective-coordinate ODE models based on variational methods
[15] have been derived, and these ODEs are found to exhibit qualitatively
similar fractal scatterings as in the PDEs [12, 16–18]. Goodman and Haberman
further studied these collective-coordinate ODE models using dynamical
systems methods [19–23]. Performing asymptotic analysis along separatrix
(homoclinic) orbits, they derived separatrix maps which led to the prediction
of n-bounce resonance windows. It is noted that the separatrix maps derived in
[19–23] contain parameters which depend on initial conditions. In addition,
these maps differ from one PDE system to another. On weak interactions, fractal
scatterings have been found as well in a weakly discrete sine-Gordon equation
and a class of generalized nonlinear Schrödinger (NLS) equations [24–26]. For
these weak interactions, the mathematical analysis can be made more rigorous
and quantitative. Indeed, by extending the Karpman–Solovev perturbation
method [3], Zhu and Yang derived a simple and asymptotically accurate ODE
model for weak interactions in the generalized NLS equations with arbitrary
nonlinearities [26]. After various normalizations, this ODE system contains
only a single constant parameter which corresponds to different nonlinearities
in the PDEs. These ODEs are a two degrees of freedom Hamiltonian system
with highly coupled potentials, and their forms are quite different from the
collective-coordinate ODE models derived and studied previously for strong
interactions [12, 16–23]. Zhu, Haberman, and Yang further analyzed this
ODE model and derived a simple second-order map by using asymptotic
methods near separatrix orbits [27, 28]. A remarkable feature of this map
is that it does not contain any free parameters after various rescalings, thus
it is universal for all weak interactions of solitary waves in the generalized
NLS equations with arbitrary nonlinearities. Despite its simplicity, this map
can capture all the fractal-scattering phenomena of the original PDEs and the
reduced ODEs very well both qualitatively and quantitatively [27]. Reduction
of weak-interaction dynamics from the PDEs into a simple and universal
second-order map is the main contribution of [27–29]. With the availability
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of this universal map, one may now expect a complete characterization and
understanding of fractal scatterings in weak wave interactions. For instance, we
now would like to know under what conditions fractal scatterings would occur
or would not occur. For another instance, we now would like to know how
these fractals change as nonlinearities of the PDEs and initial conditions of the
solitary waves vary. In addition, we now would like to understand how the
zoomed-in structures of the fractal are related to the original structures, and
how these geometric structures dictate the features of interaction dynamics.
All these questions can be answered by a careful analysis of this universal
map.

In this paper, we analyze this universal map in detail, which will provide
a complete characterization of fractal scatterings in weak wave interactions
in the PDEs. First we will show that this map has a fractal structure of its
own. We will delineate the map’s fractal by tracking its singular curves. Then
we will connect the map’s fractal to that of the PDE, and thus reach a deep
understanding of the PDEs fractal as well as its solution dynamics. In addition,
we will determine how the PDEs fractal changes when the soliton parameters
and the nonlinearity of the PDE vary. A precise analytical criterion for the
occurrence of fractal scatterings in the PDEs will also be given explicitly. All
our analytical results are confirmed by direct numerical simulations. These
results significantly advance our understanding of fractal scatterings in weak
interactions of solitary waves.

2. Previous work

First, we summarize previous relevant work which will form the basis for our
later analysis. We consider weak interactions in the generalized NLS equations

iUt + Uxx + N (|U |2)U = 0. (1)

These equations admit solitary waves of the form

U = �(x − ξ )eiφ, (2)

where �(θ ) is a localized positive function, ξ = V t + x0 is the wave’s center
position, φ = V (x − ξ )/2 + (β + V 2/4)t − σ 0 is the phase function, and β

is the propagation constant (which determines the amplitude of the wave).
This wave has four free parameters: velocity V , amplitude parameter β, initial
position x0, and initial phase constant σ 0. In weak interactions, two such
solitary waves are initially well separated with small relative velocities and
amplitude differences. Then they would interfere with each other through tail
overlapping. When time goes to infinity, they either separate from each other
at constant velocities, or form a bound state. The exit velocity, defined as
�V∞ = |V2 − V1|t→∞, depends on the initial conditions of the two waves.
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When the two waves form a bound state, we define �V ∞ = 0. Throughout
this paper, we label the left and right waves by numbers 1 and 2 respectively.

In [26], we have shown that for a large class of nonlinearities N (|U |2), this
weak interaction depends on the initial conditions in a sensitive, fractal manner.
To analyze this fractal-scattering phenomenon, an extended Karpman–Solov’ev
perturbation method was utilized, and the following simple set of dynamical
equations for soliton parameters were derived [26]:

ζττ = cos ψeζ ,

ψττ = (1 + ε) sin ψeζ ,
(3)

where

ψ = �φ, ζ = −
√

β�ξ, τ =
√

16β3/2c2

P
t, ε = P

2β Pβ

− 1, (4)

�ξ and �φ are the distance and phase difference between the two waves, β =
(β1,0 + β2,0)/2, βk,0 (k = 1, 2) are the initial propagation constants of the two
waves, c is the tail coefficient of the solitary wave with propagation constant β,
and P(β) is the power function of the wave. This ODE system is universal for
the PDE (1), and different nonlinearities N (|U |2) only correspond to different
constant parameter ε. If ε = 0 [such as when Equation (1) is the original
NLS equation], the ODEs (3) are integrable, and their solutions have explicit
functional expressions [26, 28]. If ε 	= 0, (3) is not integrable. In this case,
when ε > 0 and under certain initial conditions, we have found that these
ODEs exhibit fractal scattering structures which agree with those in the PDEs
(1) both qualitatively and quantitatively. However, when ε < 0, no fractal
scatterings arise in these ODEs and their corresponding PDEs under any initial
conditions [26].

To further understand these fractal scatterings, we have analyzed the ODE
system (3) extensively in [27, 28] for |ε| 
 1, using perturbation methods
near separatrix orbits. These ODEs are a two-degree-of-freedom Hamiltonian
system with the conserved Hamiltonian

H (ζ, ζ̇ , ψ, ψ̇) = E + ε

2(1 + ε)
ψ̇2, (5)

where

E = 1

2
(ζ̇ 2 − ψ̇2) − eζ cos ψ (6)

is called the energy. We also define the momentum M of Equations (3) as

M = ζ̇ ψ̇ − eζ sin ψ. (7)

Both E and M are conserved when ε = 0, but vary over time when ε 	= 0. If
the orbits are escape orbits where ζ∞ ≡ ζ |τ→∞ = −∞ (i.e., the two solitary
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waves eventually separate from each other after weak interactions), then the
exit velocities |ζ̇ |∞ can be calculated from Equations (5) and (7) as

|ζ̇ |∞ =
√

H +
√

H 2 + M2∞
/

(1 + ε). (8)

In addition, ψ̇∞, which determines the amplitudes of exiting solitary waves,
can also be obtained as ψ̇∞ = M∞/ζ̇∞. Thus M∞ is a key parameter for the
prediction of weak-interaction outcomes. In order to calculate M∞, we notice
that for weak wave interactions and when |ε| 
 1, the ODE solutions [such as
ζ (τ )] oscillate near a sequence of separatrix orbits of the unperturbed (ε = 0)
system before they escape to infinity. On these separatrix orbits, E = M = 0. If
we consecutively enumerate the minimums of ζ (τ ) (where interactions are the
weakest) and denote their energy and momentum values as En and Mn (where
n is the index of the ζ -minimum), then we can analytically calculate En and
Mn successively by integrating along the separatrix orbits of the unperturbed
system. This was done in [27, 28], and we found that for |ε| 
 1, En does not
change, i.e., En = E0 for all n ≥ 1. However Mn does change. In the asymptotic
limit of En 
 1, Mn 
 1 and Mn/En 
 1, we found that the change of Mn

is asymptotically governed by the following second-order separatrix map

Mn+1 = Mn − sgn(Qn)
8|E0|3ε
π Q2

n

, (9)

Qn+1 = Qn + 2Mn+1, (10)

with initial conditions M0 and Q0, where Q0 = −S0 M0, S0 = S|τ=0, and

S = 2|C |2Im(F)

πRe(C)
, C =

√
E + iM

2
, F = − 1

C
acoth

(
ζ̇ + iψ̇

2C

)
. (11)

Here the multi-valued functions
√· and acoth (·) are chosen uniquely by

requiring Im(
√·) ≥ 0 and Im (acoth (·)) ∈ [0, π ) at the initial time. The variable

Qn in the above map is an auxiliary variable which is related to the function S.
When the ODEs (3) are integrable (ε = 0), S is a conserved quantity.

In this case, the integrable solution ζ (τ ) develops finite-time singularity if
S0 = 2k, Re(C0) 	= 0, k = 0, ±1, ±2, . . . , or Re(C0) = 0, Im(F0) = 0, see [28]
for details. These finite-time singularities play important roles in the formation
of fractal scatterings. Indeed, it was observed from numerical simulations in
[26] that fractal structures for ε 	= 0 bifurcate out from points where integrable
solutions develop finite-time singularities. This fact will be proved in this paper
by the analysis of the map.

The map (9)–(10) can be normalized into a very simple form. Let

G = 8|E0|3ε
π

, mn = G−1/3 Mn, qn = G−1/3 Qn, (12)
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then this map becomes

mn+1 = mn − sgn(εqn)

q2
n

, (13)

qn+1 = qn + 2mn+1. (14)

This normalized map is second-order, and it does not contain any free
parameters (except a sign of ε). Thus it is universal for all weak two-wave
interactions in the generalized NLS Equations (1) with arbitrary nonlinearities.
For positive and negative signs of ε, we will show this map has completely
different behaviors. This explains why fractal scatterings appear in ODEs (3)
only when ε > 0, but not when ε < 0. Details will be given in Sections 4 and 6.

To demonstrate the validity and accuracy of the above simple separatrix map
for describing fractal scatterings in the original PDEs (1), here we compare the
fractal scattering structures obtained from the PDEs (1), the ODEs (3), and the
map (13)–(14). In all our comparisons below and in later sections, we take the
cubic-quintic nonlinearity

N (|U |2) = |U |2 + δ|U |4 (15)

with δ = 0.0003 in the PDE (1) (comparisons with other forms of nonlinearities
are similar, see [26]). We take two types of initial conditions for the two
solitary waves in the PDE (1). One is that

β0,1 = β0,2 = 1, (16)

where the two waves initially have the same amplitudes. The other one is that

β0,1 = 1.0325, β0,2 = 0.9675, (17)

where the two waves initially have unequal amplitudes. In both cases, the other
parameters in the two initial solitary waves are the same as

x0,2 = −x0,1 = 5, V0,1 = V0,2 = 0, φ0,1 = 0. (18)

That is, the two waves initially have equal velocities and are separated by 10
spatial units. The initial phase of the first wave φ0,1 can always be set as zero
by phase invariance of the PDE (1), thus it does not constitute a restriction on
the initial conditions. For both types of initial conditions, �φ0(=φ0,2) is used
as the control parameter. Corresponding to both types of initial conditions, we
find from Equation (4) that ε = 0.001 in the ODEs (3).

For the first type of initial conditions (16), the corresponding initial conditions
of the ODEs are

ζ0 = −10, ζ̇0 = ψ̇0 = 0, (19)

and ψ0(=φ0,2) is the control parameter. For the map (13)–(14), the corresponding
initial conditions can be readily found to be
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q0 = m0 = −1

2
π1/3 tan ψ0 · ε−1/3 (20)

since S0 = −1 in view of the expression (11) for S. Here we have assumed
cos φ0 > 0 since we have shown before [28] that fractal scatterings arise only
in this case.

For the second type of initial conditions (17), the corresponding initial
conditions of the ODEs are

ζ0 = −10, ζ̇0 = 0, ψ̇0 = −0.01167. (21)

The corresponding initial conditions of the map are

m0 = T (ψ0)ε−1/3, q0 = −T (ψ0)S(ψ0)ε−1/3, (22)

where

T (ψ0) = −π1/3 sin ψ0

2 cos ψ0 + ψ̇2
0e−ζ0

, (23)

and S(ψ0) is defined in (11).
For each of the above two types of initial conditions, we have simulated

the PDE (1), the ODEs (3), and the map (13)–(14) for various values of the
control parameter �φ0, and obtained the corresponding exit velocities �V ∞
[in the case of the ODEs and the map, the exit velocities have been obtained
and properly rescaled through the formula (8) and relations (4), (12)]. In all
cases, we observed fractal scattering phenomena. For the first type of initial
conditions (16) (where the two waves initially have equal amplitudes), the
fractal structures from the PDE, ODE and the map are displayed in Figure 1.
Here the fractals are symmetric in �φ0, and they lie in a narrow interval near
the �φ0 = 0 point (only a segment of the parameter region is shown for
better visualization). We see that the three structures match very well both
qualitatively and quantitatively. For the second type of initial conditions (17)
(where the two waves initially have un-equal amplitudes), the fractal structures
from the PDE, ODE and the map are displayed in Figure 2. Here the fractals
lie in a wide interval of �φ0 ∈ [0, π ], and they do not possess any symmetry.
Again these structures match very well. These comparisons show that the
intricate fractal scatterings in the PDEs (1) and the ODEs (3) can be accurately
predicted by the simple map (13)–(14). These are the main results which have
been obtained before in [26–28].

To reach a complete understanding and characterization of these fractal
structures and their solution dynamics in weak wave interactions, the separatrix
map (13)–(14) needs to be carefully analyzed. This map exhibits a fractal
structure of its own in its initial-condition space (when sgn(ε) = 1) [27]. If this
fractal of the map is well understood, then through connections of variables
between the map and the PDEs/ODEs, the fractals in the PDEs/ODEs will be
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Figure 1. Comparisons of exit-velocity fractals from (a) PDE simulations, (b) ODE predictions,
and (c) map predictions for the equal-amplitude initial conditions (16). The marked segment
in (b) is amplified in Figure 10, where the solution dynamics in this segment is also shown.
Labels ψε(1), ψε(1, 1), . . . are locations of singularity peaks (of infinite height) in (c), which
correspond to intersections of the initial-value curve λε with the map’s singular curves γ (1),
γ (1, 1), . . . in Figure 6 (see Section 4.1 for details).

Figure 2. Comparisons of exit-velocity fractals from (a) PDE simulations, (b) ODE
predictions, and (c) map predictions for the unequal-amplitude initial conditions (17). For the
segment of structures marked in (b), its movement with varying values of ε is displayed in
Figure 9. Labels ψε

1, ψε
1(1), . . . are locations of singularity peaks in (c) which correspond to

intersections of the initial-value curve λε with the map’s singular curves γ 0, γ (1), . . . in
Figure 8 (see Section 4.2 for details).
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well characterized. In the following sections, we will analyze this map and use
this information to delineate weak-interaction dynamics in the PDEs/ODEs.

3. Analysis of the fractal in the separatrix map

The separatrix map (13)–(14) depends only on the sign of ε, which can be 1 or
−1. It turns out that this map has completely different dynamics for sgn(ε) =
1 and −1. When sgn(ε) = 1, this map is fractal-bearing, while when sgn(ε) =
−1, it is not [27]. This is consistent with the numerical observation of [26]
that fractal scatterings occur in the ODEs (3) only when ε > 0 but not when
ε < 0. In this section, we analyze the fractal in this map when sgn(ε) = 1.

For convenience, we rewrite the map (13)–(14) as(
qn+1

mn+1

)
= F

(
qn

mn

)
, (24)

where

F
(

q

m

)
=




q + 2m − 2sgn(q)

q2

m − sgn(q)

q2


 . (25)

It can be seen that F is differentiable when q 	= 0. The Jacobian of F is

JF =




1 + 4
sgn(q)

q3
2

2
sgn(q)

q3
1


 . (26)

The determinant of this Jacobian matrix is equal to one, thus the map
F is area-preserving and orientation-preserving. Chaos if it occurs will be
Hamiltonian chaos [29].

It is easy to see that Fn(−q, −m) = −Fn(q, m), thus Fn is antisymmetric
with respect to the origin. It can also be seen that F does not have any
(bounded) fixed points, but it has a lot of periodic orbits. For example, {(2−1/3,
2−1/3), (−2−1/3, − 2−1/3)} is a period-2 orbit, and {(1, 1), (1, 0), (−1, − 1),
(−1, 0)} is a period-4 orbit. One can easily verify that these two periodic
orbits are both unstable. All the other periodic orbits are unstable too as we
will see later in this section.

An important property of the map F is that it is reversible in R
2\�, where

R is the set of real numbers, and
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� = {(q, m) ∈ R
2 : q = 2m}.

Indeed, F−1 has an explicit formula when q 	= 2m:

F−1

(
q

m

)
=




q − 2m

m + sgn(q − 2m)

(q − 2m)2


 . (27)

In the later text, we will utilize two subsets of the (q, m) plane which we
define here:

�+ = {(q, m) ∈ R
2 : q − 2m > 0},

and

�− = {(q, m) ∈ R
2 : q − 2m < 0}.

3.1. Singular curves of the map and their identifications

The limit behaviors limn→∞ Fn(q0, m0) are important as they correspond to
the outcomes of weak interactions. Indeed, from m∞ = lim n→∞ mn and the
scaling relations (12), we can obtain the exit velocities |ζ̇∞| from Equation (8).
For almost all initial points (q0, m0), m∞ exists and is finite (while q∞ =
±∞). Thus orbits of almost all initial points eventually escape to q∞ = ∞
or −∞ along the horizontal (constant-m) direction. However there are two
special sets of initial points which are different. One set is the initial points
which make qn = 0 for some n ≥ 0, i.e.

S = {
(q0, m0) ∈ R

2 : qn = 0, n = 0, 1, 2, . . .
}
. (28)

For these points, iterations cannot continue for (qn+1, mn+1) since qn = 0, thus
we call them singular points, and S the singular set. On these points, we
formally let mn+1 = ∞, and consequently m∞ = ∞ as well. For singular initial
points, the exit velocities of weak interactions are infinite [see Equation (8)],
thus they correspond to peaks (of infinite height) in Figure 1(c). The other set
is the initial points (q0, m0) which are periodic or quasi-periodic. On these
points, mn oscillates forever, hence m∞ does not exist. These points correspond
to spatially-localized and temporally oscillating bound states in the PDEs (1).
In this case, we set m∞ = 0, which gives zero separation velocities |ζ̇∞| from
Equation (8) (recall that H < 0 for fractal scatterings [28]). This way, m∞ can
be defined everywhere in the initial-value plane (q0, m0). Numerically, we have
computed |m∞| over this plane (iterating 500 steps instead of infinite steps), and
the result is plotted in Figure 3 (here color levels correspond to |m∞| values).
This graph is a fractal, as can be easily verified by repeated zooms into it.
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Figure 3. Values of |m∞| in the initial-value space (q0, m0) for the map (13)–(14) with
sgn(ε) = 1. Colors represent value levels of |m∞|.

In Figure 3, singular points form an infinite number of smooth curves.
Each of these singular curves lies in the middle of a red stripe (of varying
thickness), and all these singular curves form the backbone of the map’s
fractal in Figure 3. These singular curves are directly related to the singularity
peaks (of infinite height) in the map’s exit-velocity fractals in Figures 1(c) and
2(c). This is because on a singular curve, m∞ = ∞, thus the corresponding
exit velocity is also infinite [see Equation (8)]. In view of this, these singular
curves correspond to the singularity peaks in the ODEs exit-velocity fractals
and counterpart structures in the PDEs exit-velocity fractals. These singularity
peaks (or their counterparts) in turn form the backbones of the map’s, ODEs
and PDEs exit-velocity fractals in Figures 1 and 2. Thus if we can clearly
characterize the singular curves of the map, then a good understanding of
the fractals in the ODEs and PDEs will be reached. In the remaining of this
section, we focus on these singular curves. We will determine where they are
located, how to identify them, what dynamics they represent, and what their
asymptotics are at large or small values of q0.

About these singular curves, each one is characterized by a unique finite
binary sequence a = sgn(q0, q1, . . . , qn). Singular points on the same curve
have the same binary sequence, while different singular curves have different
sequences. Let us denote the singular curve with a binary sequence
a = (a0, a1, . . . , an) as γ (a). Then
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Figure 4. Plots of singular curves γ (a0), γ (a0, a1), γ (a0, a1, a2), γ (a0, a1, a2, a3), and γ (a0,
a1, a2, a3, a4) for all binary numbers of a0, . . . , a4. The dashed lines in the right plane are
γ (1), γ (1, 1), γ (1, 1, 1), γ (1, 1, 1, 1) and γ (1, 1, 1, 1, 1) respectively from left to right. The
accumulation curve γ (1, 1, 1, . . .) is also shown (as dotted lines). Lines in the left half plane
are similar. The box region will be magnified in Figure 5.

γ (a) = {
(q0, m0) ∈ R

2 : qn+1 = 0, sgn(q0, q1, . . . , qn) = a
}
. (29)

Here we allow a to be empty, in which case we get the simplest singular curve

γ0 = {(q0, m0) : q0 = 0}, (30)

which is the vertical axis. When n = 0 (where q1 = 0), we see from the map
(25) that

γ (1) = {
(q0, m0) : m0 = −q0/2 + 1/q2

0 , q0 > 0
}
, (31)

γ (−1) = {
(q0, m0) : m0 = −q0/2 − 1/q2

0 , q0 < 0
}
. (32)

These two curves are plotted in Figure 4. They are located in the middle of the
thickest red stripes in the right and left half planes of Figure 3.

Now we determine the relations between singular curves with different
binary sequences. From our definitions, we see that if (q0, m0) ∈ γ (a0, a),
then F(q0, m0) ∈ γ (a), where a is any finite binary sequence and a0 = ±1. In
addition, if a0 = 1, i.e., q0 > 0, then q1 − 2m1 > 0 in view of Equation (14),
thus F(q0, m0) ∈ �+. Similarly if a0 = −1, then F(q0, m0) ∈ �−. As a result,
we have

F(γ (1, a)) = γ (a)
⋂

�+, (33)



Separatrix Map Analysis for Fractal Scatterings 461

F(γ (−1, a)) = γ (a)
⋂

�−. (34)

Or written differently, we have

γ (1, a) = F−1
(
γ (a)

⋂
�+)

, (35)

γ (−1, a) = F−1
(
γ (a)

⋂
�−)

. (36)

These relations tell us that each singular curve γ (a) has two pre-image singular
curves γ (1, a) and γ (−1, a) under the map F . In particular, γ (1) and γ (−1)
are the two pre-image singular curves of γ 0.

Thus from the basic singular curve γ 0 given in Equation (30), two singular
curves γ (1) and γ (−1) in Equations (31)–(32) are obtained. We can successively
construct γ (a) for any finite binary sequence a by repeatedly applying the
inverse map F−1 on γ 0. The first few of these singular curves are plotted in
Figure 4. It is easy to see from the map (25) that for any binary sequence
a, γ (a) and γ (−a) are antisymmetric to each other about the origin, i.e.

γ (−a) = −γ (a), (37)

thus we only consider curves on the right half plane with a = (1, a1, . . . , an)
below. From Figure 4, we see that γ (1), γ (1, 1), γ (1, 1, 1), . . . , form the primary
cascading sequence from the left to the right. This sequence accumulates to
the limit curve γ (1, 1, 1, 1, . . .) which is plotted as a dotted line in Figure 4
and can be seen in Figure 3. This primary sequence of singular curves defines
the overall geometry of the map’s fractal in Figure 3. On the left side of each
primary curve, there is a secondary structure whose infinite curves are very
close to each other and thus visually show as one “thick curve” in Figure 4.
Each secondary structure lies near its corresponding primary curve. To probe
these secondary structures, we zoom into the box region of Figure 4, which
contains a segment of the secondary structure for the primary curve γ (1). The
result is shown in Figure 5. From this zoomed-in graph, we see that among
numerous curves in this secondary structure, there is a secondary sequence
of curves γ (1, −1), γ (1, −1, −1), γ (1, −1, −1, −1), . . . which cascades to
the left. This secondary curve sequence defines the overall geometry of this
secondary structure. Near each curve in this secondary sequence (and on its
right-hand side), there is a higher-order structure which can be probed by
repeated zooms. Every time one zooms into a higher-order structure, the
cascading direction of its higher-order sequence is reversed, and the side of the
higher-order sequence relative to its associated curve (either left or right) is
also reversed. The binary sequences for these higher-order sequence curves are
{(a, 1), (a, 1, 1), (a, 1, 1, 1), . . . } when the sequence cascades to the right and
lies on the right side of γ (a), and {(a, −1), (a, −1, −1), (a, −1, −1, −1), . . .}
when the sequence cascades to the left and lies on the left side of γ (a). Here a
is the binary sequence for the associated curve of this higher-order sequence.



462 Y. Zhu et al.

Figure 5. Amplification of the box region in Figure 4. The dash-doted lines are γ (1, −1), γ (1,
−1, −1), γ (1, −1, −1, −1) and γ (1, −1, −1, −1, −1) respectively from right to left.
Accumulation curves γ (1, −1, −1, −1, . . .) and γ (1, −1, 1, 1, 1, . . .) are also shown.

Based on the above pattern, we can identify any singular curve with an
arbitrary binary sequence. For instance, to identify the curve with a binary
sequence a = (1, 1, −1, −1, −1, 1, −1), we first go to the curve γ (1) (see
Figure 4), find its associated primary sequence (which lies on its right-hand
side), and pick out the first member of that sequence (not counting γ (1) itself).
The picked curve is then γ (1, 1), see Figure 4. Next, we go to the secondary
curve sequence of γ (1, 1) (which lies on its left) and pick out the third
member of that sequence, which is γ (1, 1, −1, −1, −1). Next we go to the
higher-order sequence of γ (1, 1, −1, −1, −1) (which lies on its right) and
pick out the first member of that sequence, which is γ (1, 1, −1, −1, −1, 1).
Lastly we go to the higher-order sequence of γ (1, 1, −1, −1, −1, 1) (which
lies on its left) and pick out the first member of that sequence, which will be
the singular curve γ (1, 1, −1, −1, −1, 1, −1) that we are looking for.

We have noted earlier in this section that the map F has a lot of periodic
orbits. Then an interesting question is where these periodic orbits are located
in the map’s fractal in Figure 3, and how these orbits are related to the above
singular curves. Clearly every periodic point cannot lie on a singular curve
γ (a) with a finite binary sequence a in view of the definition (29) of γ (a).
However a periodic point can be viewed as being on a singular curve with an
infinite binary sequence a whose digits are the signs of q of the successive
iteration points which repeat with the same period as the periodic point (here a
singular curve with an infinite binary sequence can be defined as the limit of
the singular curve with a finite binary sequence). Using this viewpoint, we can
understand where periodic points should be located in the map’s fractal. For
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instance, in the period-two orbit {(2−1/3, 2−1/3), (−2−1/3, − 2−1/3)}, the first
point (2−1/3, 2−1/3) lies on the singular curve with the binary sequence a = (1,
−1, 1, −1, . . .), while the second point (−2−1/3, − 2−1/3) lies on the singular
curve with the binary sequence a = (−1, 1, −1, 1, . . .). For another instance,
in the period-four orbit {(1, 1), (1, 0), (−1, −1), (−1, 0)}, the point (1, 1) lies
on the singular curve with a binary sequence (1, 1, −1, −1, 1, 1, −1, −1, . . .),
and the point (1, 0) lies on the singular curve with a binary sequence (1, −1,
−1, 1, 1, −1, −1, 1, . . .), etc. The singular curves with these infinite binary
sequences can be identified by the same scheme as we detailed above, thus we
can ascertain where these periodic points are located in the map’s fractal.
Obviously these infinite binary sequences of periodic points are infinitely close
to their finite truncations, and points on the singular curves with truncated finite
binary sequences have very different trajectories from those of the periodic
points. Thus the periodic points of the map F are all unstable.

From the above singular-curve identification scheme, we see that all the
singular curves on the right half of the (q0, m0) plane lie between two special
accumulation curves, γ (1, 1, 1, 1, . . .) and γ (1, −1, −1, −1, −1, . . .) (see
Figures 4 and 5). So does the fractal of the map on the right half plane as well
(see Figure 3). In the whole plane, the map’s fractal lies between the two
accumulation curves γ (1, 1, 1, . . .) and γ (−1, −1, −1, . . .).

Similar to the above tracking and identification of singular curves, we can
also track how regions in the (q, m) plane move under the map F . This is
helpful for us to see how the orbit of an initial point moves in the (q, m) plane.
Let us denote the regions above γ (1, 1, 1, . . .) and below γ (−1, −1, −1, . . .)
as D0, and the region between γ (1, −1, −1, −1, . . .) and γ (−1, 1, 1, 1, . . .) as
D1. Then we find that

F−1(D0) = D0 ∪ D1. (38)

Other regions such as F−1(D1) can be obtained with the help of singular
curves whose pre-images under the inverse map F−1 have been detailed above
(notice that the singular curve γ 0 lies in the middle of the region D1). Details
will not be pursued in this paper.

3.2. Asymptotic behaviors of singular curves

Next we determine the asymptotic behaviors of singular curves as q0 → 0 and
±∞. These asymptotic behaviors will be needed for our derivation of scaling
laws of the exit-velocity fractals in the ODEs and PDEs as ε → 0 under the
unequal-amplitude initial conditions (17), see Section 4.2. However they will
not be needed for scaling laws of fractals with equal-amplitude initial conditions
(16), see Section 4.1. Since γ (a) and γ (−a) are antisymmetric to each other,
we only consider curves on the right half plane with a = (1, a1, . . . , an)
below.
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The asymptotic behaviors of singular curves γ (1, a1, . . . , an) as q0 → 0+

and +∞ can be obtained from γ (1) in Equation (31) and the recursion relations
(35)–(36), and we get the following results:

1. For any singular curve γ (1, a), if (q0, m0) ∈ γ (1, a), then

m0 = q−2
0 + Ca + · · · , q0 → 0+, (39)

where (2Ca, Ca) is the intersection point between γ (a) and �.
2. If (q0, m0) ∈ γ (1, a1, . . . , an) with a1 = · · · = an = 1 (i.e., on a primary

singular curve), then

m0 = − 1

2(n + 1)
q0 + Dnq−2

0 + . . . , q0 → +∞, (40)

where

Dn = 1 + n + 1

n
Dn−1, D0 = 1. (41)

3. If (q0, m0) ∈ γ (1, a1, . . . , an, −1, â) where a1 = · · · = an = 1 and â
is an arbitrary finite binary sequence, i.e., when (q0, m0) lies in the
secondary structure of a primary curve γ (1, a1, . . . , an), then

m0 = − 1

2(n + 1)
q0 − 1√

2(n + 1)
q−1/2

0

+ (n + 1)Câ√
2

q−3/2
0 + · · · , q0 → +∞. (42)

where (2Câ, Câ) is the intersection point between γ (â) and �.

Notice from (40) and (42) that for any binary subsequence
â, γ (1, a1, . . . , an, −1, â) tends to γ (1, a1, . . . , an) as q0 → +∞, i.e., the
distance between them goes to zero at large q0 values. This explains why we
could (and should) treat singular curves γ (1, a, −1, â) with arbitrary binary
subsequences â as the secondary structures associated with the primary curve
γ (1, a) earlier in this section.

To prove the first asymptotic result (39), let

(q0, m0) = F−1(q1, m1) =
(

q1 − 2m1, m1 + sgn(q1 − 2m1)

(q1 − 2m1)2

)
. (43)

Then using (14), we get

m0 = q1

2
− q0

2
+ sgn(q0)

q2
0

. (44)

For (q0, m0) ∈ γ (1, a), in view of the recursion relation (35), we see that
(q1, m1) ∈ γ (a)

⋂
�+. When q0 → 0+, (43) shows that q1 − 2m1 → 0+.

Thus (q1, m1) approaches the intersection point between γ (a) and �, i.e.,
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q1 → 2Ca and m1 → Ca . Substituting these asymptotic results into (44), (39)
is then obtained.

The second and third asymptotic relations (40) and (42) can be proved by
the induction method and by utilizing the recursion relation (35). These proofs
are elementary and will be omitted.

4. Scaling properties of fractals in the ODEs and PDEs

We have known that fractal structures in the ODEs (3) and PDEs (1) are
completely determined by the map’s fractal, together with the initial-value
connections (4) and variable scalings (12) between the map and the ODEs/PDEs.
Utilizing the knowledge we have gained on the map’s fractal in the previous
section, we can now obtain a deep understanding on the fractals in the ODEs
and the PDEs. This will be demonstrated in this section. For definiteness, we
will use the two types of initial conditions (16) and (17) as examples. In both
cases, as the initial phase difference ψ0 changes, the corresponding initial
condition of the map forms a parameterized curve in the (q0, m0) plane. This
curve, denoted as λε, intersects the map’s |m∞| fractal in Figure 3, and this
intersection then completely determines the exit-velocity fractals of the ODEs
and PDEs shown in Figures 1 and 2.

4.1. The case of equal-amplitude initial conditions

In this subsection, we consider the first type of initial conditions (16) where
the two solitary waves initially have equal amplitudes. In this case, the
corresponding curve of the map’s initial points in the (q0, m0) plane can be
seen from (20) as

λε =
{

(q0, m0) : q0 = m0 = − π1/3

2ε1/3
tan ψ0, ψ0 ∈ (−π/2, π/2)

}
. (45)

The reason for the restriction ψ0∈(−π/2, π/2) is that fractal scatterings can
only arise in the ψ0 intervals where H < 0 [28]. In the present case, H < 0
corresponds to the interval ψ0∈(−π/2, π/2). This parameterized curve λε is a
straight line with slope one in the (q0, m0) plane, see Figure 6.

The map’s |m∞| fractal in the initial-condition plane (q0, m0) (see the
previous section) is very instrumental for the understanding of exit-velocity
fractals in the PDEs and ODEs. First of all, from the map’s |m∞| fractal,
together with the initial-value curve (45), the formula (8) and various scalings,
we can easily construct the map’s exit-velocity fractal in Figure 1(c). This
exit-velocity fractal of the map can be readily understood. For instance, let
us denote the ψ0 value at the intersection of λε with a singular curve γ (a)
as ψε(a). At each ψε(a), the map’s exit-velocity graph has a singularity
peak of infinite height. To illustrate, a few simple ψε(a) values are marked
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Figure 6. Curve λε of the map’s initial points (45) which corresponds to the equal-amplitude
initial conditions (16). Some singular curves are also shown. The dashed curves are the same
as those in Figure 4, and the solid curves are γ (1, −1) and γ (−1, 1).

in Figure 1(c). Using this connection, the map’s exit-velocity graph can be
completely understood from the map’s |m∞| fractal. Then the exit-velocity
fractals in the ODEs and PDEs can be similarly understood. To be specific, we
find that the primary window sequence in the exit-velocity fractals of Figure 1,
which cascades to the left with the first member being the widest window, are
associated with the primary sequence of singular curves {γ (1), γ (1, 1), . . .}
(at the intersection with the set λε). The dense secondary structure on the
right-hand side of each primary window in the exit-velocity fractals of Figure
1 corresponds to the secondary structure of each primary-sequence curve in
the map’s |m∞| fractal. In particular, the value ψε (1, −1), which is marked in
Figure 1(c), corresponds to the secondary singular curve γ (1, −1) below the
primary curve γ (1) in Figure 5. If we zoom into each secondary structure
of a primary window in the exit-velocity fractals of Figure 1, we will see
secondary window sequences which cascade to the right, i.e., the cascading
direction of secondary window sequences is reversed from that of the primary
window sequence. The reason for this is that in the map’s |m∞| fractal (see
Figure 4), the cascading direction of secondary sequences of singular curves is
reversed from that of the primary sequence as we have explained before. The
exit-velocity fractals of the PDE, the ODE and the map in Figure 1 can be
zoomed further, and all their microscopic structures can be inferred from the
map’s singular curves in Figure 4, or from the map’s |m∞| fractal in Figure 3
in general. One may notice that singularity peaks in the exit-velocity graphs
appear only for the map and the ODEs, but not for the PDEs (see Figure 1).
Near such singularity peaks, the two solitary waves collide and coalesce, which
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makes our reduced ODE model (3) invalid. This explains the difference in
those regions of the exit-velocity graphs between the ODEs and the PDEs.

From the map, we can obtain another important piece of information on the
PDE/ODEs fractal as the initial solitary-wave separation �ξ 0 (i.e., ζ 0) varies.
In the present equal-amplitude initial conditions (16) and (18), if �ξ 0 takes
other (large) values, we can easily see from (45) that the values of q0 =
m0 are independent of �ξ 0. This means that the exit-velocity fractal of the
map [see Figure 1(c)] will remain the same for different initial solitary-wave
separations, which in turn implies the same for the exit-velocity fractals in
the PDE/ODEs. This is a surprising fact, and it has been confirmed by our
direct PDE/ODE simulations. It is noted that this fact does not hold for the
unequal-amplitude initial conditions (17) because (q0, m0) in such cases will
depend on �ξ 0, see (22).

In addition to the above qualitative understanding of the exit-velocity
fractals in the PDEs and ODEs, we can further obtain the scaling properties of
these fractals, i.e., we can determine quantitatively how the fractal structures
in the PDEs and ODEs change as the parameter ε varies. For this purpose, we
notice that the map’s |m∞| fractal at the intersection with λε on the right half
plane lies between two accumulation points, (qa , qa) = (0.741, 0.741) and
(qb, qb) = (1.271, 1.271) on γ (1, −1, −1, −1, . . .) and γ (1, 1, 1, 1, . . .)
respectively (see Figure 6). In view of the initial-condition connection (45),
the corresponding ψ0 values of these two accumulation points are

ψL = −atan
(
2qbπ

−1/3ε1/3
)
, ψR = −atan

(
2qaπ

−1/3ε1/3
)
. (46)

These ψ L and ψ R values are the left and right boundaries of the map’s
exit-velocity fractal on the negative �φ0 axis [see Figure 1(c)], and they
are the map’s predictions for the fractal regions in the PDEs/ODEs. These
formulae show that ψ L ,R → 0 as ε → 0+, which means that the whole
fractal region shrinks to ψ0 = 0 as ε → 0+. Notice that when ε = 0, the
ODE solution ζ (τ ) under the equal-amplitude initial conditions (19) develops
finite-time singularity at ψ0 = 0, where Re(C0) = 0, Im(F0) = 0 (see
Section 2). Thus when ε → 0+, the fractal region shrinks to the ψ0 point
which develops finite-time singularity in the integrable ODEs (see also [26]).
Formulae (46) further show that this shrinking is at the rate of ε1/3. To confirm
this analytical prediction, we directly computed the exit-velocity fractals of the
ODEs under the equal-amplitude initial conditions (19) as ε takes on smaller
and smaller values of 0.1, 0.01, 0.001 and 0.0001, and the results are displayed
in Figure 7. We see that as ε → 0+, the ODEs fractal region indeed approaches
ψ0 = 0 [see Figure 7(1–4)]. In addition, the fractal region’s left and right
boundaries ψ L and ψ R indeed shrink in proportion to ε1/3. Furthermore, the
constants of proportion match the analytical values in Equation (46) as well
[see Figure 7 (5)]. Similar agreement has also been found for PDE fractals,
see [27].
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Figure 7. Left: Change of fractal structures in the ODEs (3) as ε → 0+ under the
equal-amplitude initial condition (19). The ε values are (1) 0.1; (2) 0.01; (3) 0.001 and (4)
0.0001, respectively. Labels ψ L and ψ R represent the left and right boundaries of the fractal
region. Right: tan (ψ L ) (blue) and tan (ψ R) (red) versus ε1/3. The circles are data from the
ODE simulations, and the straight lines are the analytical formulae (46) from the map.

The comparison in Figure 7 (5) indicates that for the present equal-amplitude
initial conditions, the map’s predictions are asymptotically accurate as ε → 0+.
This is not surprising, as the fractal region here lies near ψ0 = 0 when |ε| 
 1.
In this case, we can easily see from the definitions (6) and (7) that E0 
 1,
M0 
 1 and M0/E0 
 1 for the present initial conditions when ψ0 lies
inside the fractal region. Thus the assumptions for the derivation of the map
(9)–(10) are satisfied, and consequently the map’s predictions are asymptotically
accurate. For unequal-amplitude initial conditions (21), however, the assumption
M0/E0 
 1 will not be met in general, thus the map’s predictions will not be
asymptotically accurate (even though they are still qualitatively accurate), see
the next section for details.

4.2. The case of unequal-amplitude initial conditions

Now we consider the second case of unequal-amplitude initial conditions (17).
In this case, the corresponding curve of the map’s initial values in the (q0, m0)
plane can be seen from (22) as

λε = {
(q0, m0) : q0 = −T (ψ0)S(ψ0)ε−1/3, m0 = T (ψ0)ε−1/3, ψ0 ∈ [0, 2π ]

}
,

(47)
where T (ψ0) is defined in (23), S(ψ0) given by (11), and the other involved
parameters specified in (21). Here H < 0 in the entire interval of ψ0 ∈ [0,
2π ], thus no restriction on ψ0 is needed [28]. These curves at two ε values
ε1 = 0.01 and ε2 = 0.005 are displayed in Figure 8. Each λε is a closed curve,
and it intersects a singular curve γ (a) twice. Let us denote the ψ0 values at the
two intersections as ψε

1(a) and ψε
2(a), with ψε

1(a) < ψε
2(a). These ψε

1,2 (a)
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Figure 8. Curves of the map’s initial points (47) corresponding to the unequal-amplitude
initial conditions (21) at two ε values: ε1 = 0.01 (blue) and ε2 = 0.005 (red). Some singular
curves are also shown by the same notations as in Figure 6.

values are the singularity peaks of infinite height in the exit-velocity fractal of
the map [see Figure 2(c)]. On the singular curve γ 0, the intersection points
would be denoted as ψε

1 and ψε
2. As ε → 0+, these intersections are such that

q0 → + ∞ in the right half plane and q0 → 0− in the left half plane. This
behavior can be readily understood by examining the intersections of λε with
the horizontal and vertical axes. The intersections with the horizontal axis are
such that m0 = 0. In view of (47) as well as the expression (23) for T (ψ0), we
see that these intersections occur when T (ψ0) = 0, i.e., when ψ0 = 0 and π ,
regardless of the ε values. Note that under the present initial conditions,

qA ≡ − lim
ψ0→0

T (ψ0)S(ψ0) = 0.962, qB ≡ − lim
ψ0→π

T (ψ0)S(ψ0) = 0.641,

(48)
thus these two intersections on the horizontal axis are (qAε−1/3, 0) and (qBε−1/3,
0), which move to (+∞, 0) as ε → 0+. Similarly, the intersections of λε with
the vertical axis occur when S(ψ0) = 0, i.e., when ψA = 1.988 and ψB = 2.871,
regardless of the ε values. Then the two intersection points on the vertical axis
are [0, T (ψA)ε−1/3] and [0, T (ψB)ε−1/3], which approach (0, −∞) as ε → 0+.

With the help of the map’s singular curves as well as the initial-condition
curve λε in Figure 8, we can now understand the map’s exit-velocity fractal in
Figure 2(c), and hence the PDE/ODEs’ exit-velocity fractals in Figure 2(a, b).
For these initial conditions, ε = 0.001 (see Section 2), and the initial-value
curve λε goes outside the box of Figure 8 (thus not displayed). Instead, we will
use the curve λε2 in Figure 8 (with ε2 = 0.005) as a qualitative guide. The curve
λε in the first quadrant [above the accumulation curve γ (1, 1, . . .)] corresponds
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roughly to ψ0 ∈ (π , 2π ). This segment of λε does not intersect with any
singular curves, thus its corresponding exit-velocity graph would be smooth (in
Figure 2, this segment of the graph is not shown). The right intersection point
of λε with γ (1, 1, . . .) is where ψε

1(1, 1, . . .) ≈ 0. This intersection corresponds
to the left edge of the map’s exit-velocity fractal in Figure 2(c). From this
intersection point down (leftward), λε passes through the primary sequence
of singular curves (in the reverse order), which corresponds to the primary
sequence of singularity peaks starting from �φ0 ≈ 0 rightward (in the reverse
order) in Figure 2(c). The singularity peaks ψε

1(1) and ψε
1(1, 1) in this primary

sequence are marked in Figure 2(c), which correspond to lower intersections
of λε with primary singular curves γ (1) and γ (1, 1). At the lower intersection
of λε with the vertical axis, ψε

1 = ψA = 1.988, which is labeled in Figure
2(c). From this lower vertical intersection point leftward, λε passes through a
thick band of singular curves, which corresponds to the structures right after
the peak of ψε

1 in Figure 2(c) (these structures are not well resolved and
only a few vertical points are visible). After this thick band, λε turns around
(upward) and passes through another thick band of singular curves in the left
half plane, which corresponds to the structures between the label “(c)” and the
first major peak to its right in Figure 2(c) (again these structures are not well
resolved). The curve λε crosses the vertical axis again (upper intersection) at
ψε

2 = ψB = 2.871, which is labeled in Figure 2(c). From this upper vertical
intersection rightward, λε passes through the primary sequence of singular
curves again (in forward order), which corresponds to the primary sequence of
singularity peaks from ψε

2 rightward and ending at ψε
2(1, 1, . . .) ≈ π in Figure

2(c). From this correspondence between the initial-value curve λε and the
map’s exit-velocity fractal in Figure 2(c), a good and clear understanding of the
exit-velocity fractals in the PDEs/ODEs [see Figure 2(a, b)] is then reached.

From the previous section, we know that when q0 → +∞, the map’s
secondary singular curves below each primary singular curve approach this
primary curve. In addition, it is easy to see that all singular curves in the left
half plane approach γ 0 (the vertical axis) when q0 → 0−. Then in view of the
small-ε asymptotics of curve λε described above, we see that as ε → 0+,
the intersections of λε with the map’s singular curves approach the primary
sequence {γ 0, γ (1), γ (1, 1), γ (1, 1, 1), . . .}. As a result, when ε → 0+,
the exit-velocity fractals in the PDEs/ODEs will converge to certain discrete
ψ0 values whose corresponding (q0, m0) points fall on the above primary
sequence. As was explained in [28], such discrete ψ0 values are precisely
the initial-condition points whose ζ -orbit in the integrable ODE system (3)
develops finite-time singularities (this fact will be re-established again later in
this section).

In addition to the above qualitative descriptions of the PDE/ODEs fractals
(see Figure 2), we can further determine how these fractal structures change
quantitatively as ε → 0+. For instance, we can determine how the singularity
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peaks in the ODEs’ exit-velocity fractal of Figure 2(b) move as ε varies [the
PDEs fractal does not have singularity peaks but only counterpart structures,
see Figure 2(a)]. This can be done because we know how the curve λε moves
with ε [see Equation (47) and Figure 8]. In addition, its intersections with
singular curves of the map have either q0 → + ∞ (in the right half plane) or
q0 → 0− (in the left half plane), where the asymptotics of singular curves
have been derived in the previous section. Thus when the (q0, m0) relation
of the curve λε in (47) is inserted into the asymptotic equations of singular
curves and all variables are expressed in terms of the control parameter ψ0,
quantitative changes of singularity peaks in the ODEs’ exit-velocity fractals
will be obtained. After simple algebra, we get the following asymptotic results
in the limit of ε → 0+:

ψε
1 = ψA, ψε

2 = ψB, (49)

ψε
k (1, a) = ψ0

k (1, a) + Ak(a)ε + · · · , (50)

ψε
k (1, a, −1, â) = ψ0

k (1, a) + Gk(a)ε1/2 + Hk(a, â)ε5/6 + · · · , (51)

ψε
k (−1, â) = ψ0

k + Pkε
1/2 + Qk(â)ε5/6 + · · · . (52)

where a = (a1, . . . , an), a1 = · · · = an = 1, â is an arbitrary finite binary
sequence, Ak , Gk , H k , Qk are constants whose values depend on the binary
sequences behind them, Pk are â-independent constants, and k = 1, 2. If n = 0,
then a is empty (which is allowed). Equation (49) indicates that the singularity
points ψε

k in the ODEs’ fractal [see Figure 2(b)] are ε-independent. Actually
these ψε

k points in the ODEs/PDEs do depend weakly on ε, but this weak
ε-dependence cannot be captured by our map since it is beyond the asymptotic
validity of the map. Equation (50) describes how a primary singularity point
approaches its integrable counterpart as ε → 0+, and this convergence is at the
uniform rate of O(ε). Relations (51) and (52) describe how the secondary
structure of a primary singularity point approaches the integrable counterpart
of this singularity point, and this convergence is at the uniform rate of O(ε1/2).
The length of the secondary structure, on the other hand, shrinks at the rate
of O(ε5/6). By substituting the (q0, m0) relation of (47) into the asymptotic
Equations (40) of primary curves and taking the limit of ε → 0, we see that

S
(
ψ0

k (1, a)
) = 2(n + 1), S

(
ψ0

k

) = 0, k = 1, 2. (53)

In addition, at these ψ0
k and ψ0

k(1, a) values, it is easy to check that Re(C0) 	=
0, thus solutions of the integrable ODEs develop finite-time singularities in
ζ (τ ) (see Section 2 and [28]). Thus relations (51) and (52), together with
Equation (46) and the discussions below it, quantitatively prove that when
ε → 0+, the fractal regions in the nonintegrable ODEs shrink to the ψ0
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Figure 9. Left: Segments of the ODEs fractal structures near the lower intersection between
λε and the primary singular curve γ (1) under unequal-amplitude initial conditions (21) [this
segment for ε = 0.001 was marked in the whole fractal structure of Figure 2(b)]. The ε values
are (1) 0.002; (2) 0.001 and (3) 0.0005. Right: (a) ψε(1) − ψ0(1) versus ε; (b) ψε

L (1) −
ψ0(1) (blue) and ψε

R(1) − ψ0(1) (red) versus ε1/2; (c) ψε
R(1) − ψε

L (1) versus ε5/6.

points which develop finite-time singularities in the integrable ODEs, as was
originally observed numerically in [26].

Now we compare the above analytical ε-scaling laws for the exit-velocity
fractals in the PDEs/ODEs with direct numerical simulation results. Comparisons
with only ODE simulations will be performed, as PDE simulations at very small
ε values are very expensive and time consuming. For the ease of comparison,
we take a small segment of the exit-velocity fractal in the ODEs as marked in
Figure 2(b), which corresponds to the segment on the initial-value curve λε

containing the lower intersection with γ (1) and its secondary structure. Then we
monitor how this segment of the fractal moves as ε varies by directly simulating
the ODEs (3). At three ε values of 0.002, 0.001 and 0.0005, these segments of
the fractal structures in the ODEs are displayed in Figure 9 (1–3), respectively.
Here the vertical solid lines mark the singularity point ψ0(1) in the integrable
ODE system, the vertical dashed lines mark the singularity point ψε(1) in the
nonintegrable ODEs (with nonzero ε), and labels ψε

L ,R(1) mark the left and
right ends of the secondary structure. It is seen from these figures that as ε →
0+, both ψε(1) and the secondary structure approach the singularity point
ψ0(1) of the integrable ODEs (as predicted). To determine the convergence
rates, the graphs of ψε(1) − ψ0(1), ψε

L ,R (1) − ψ0(1) and ψε
R(1) − ψε

L (1) at
various values of ε are plotted in Figure 9(a, b, c) respectively. It is seen that
as ε → 0+, ψε(1) − ψ0(1) approaches a linear function in ε, confirming the
O(ε)-convergence of the primary singularity point ψε(1) toward the integrable
singularity point ψ0(1) [see formula (50)]. Quantities ψε

L ,R (1) − ψ0(1)
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approach a linear function in ε1/2, confirming the O(ε1/2)-convergence of the
secondary structure toward the integrable singularity point ψ0(1) [see formula
(51)]. In particular, it is seen that as ε → 0+, ψε

L (1) − ψ0(1) and ψε
R(1) −

ψ0(1) approach linear functions in ε1/2 with the same slope, confirming the
formula (51) that the coefficient Gk of ε1/2 is independent of the singular
curves inside the secondary structure. The quantity ψε

R(1) − ψε
L (1) approaches

a linear function in ε5/6, confirming the O(ε5/6) shrinking rate of the length of
the secondary structure [see (51)]. Thus our analytical predictions (50)–(52)
on the order of convergence of ODE fractals as ε → 0+ are confirmed.

Quantitatively, the coefficients in front of the order of convergence in
the analytical formulae (50)–(52) do not match numerical values though.
For instance, in Figure 9(a), the slope of ψε(1) − ψ0(1) with respect to ε

is found numerically to be −3.89, which differs from the analytical value
of A(1) = −5.12 in formula (50). This means that in the present case of
unequal-amplitude initial conditions (21), our analytical formulae (50)–(52) are
not asymptotically accurate when ε 
 1, which contrasts the equal-amplitude
initial-condition case in Section 4.1 (where our analytical predictions were
asymptotically accurate). The reason for this is that our map (9)–(10), or
(13)–(14), was derived asymptotically under the condition of Mn/En 
 1 [27,
28]. This condition was satisfied for the equal-amplitude initial conditions (16)
(see Section 4.1), but is not satisfied for the unequal-amplitude initial conditions
(21). Indeed, one can easily check that for ψ0 values in the fractal regions of
unequal-amplitude initial conditions (see Figures 2 and 9), M0/E0 does not
tend to zero as ε → 0, thus the map’s predictions become asymptotically
inaccurate as we have just observed. Qualitatively, the map’s predictions are
still correct as Figure 9 has demonstrated.

5. Dynamics of ODE and PDE solutions in the fractal structures

From the previous two sections, we have reached a clear and deep understanding
on the fractal graphs of exit velocities in the ODEs and PDEs (see Figures 1
and 2). In this section, we explain the solution dynamics of the ODEs and
PDEs on these fractals. Notice that these fractals consist of hills of various
widths. The “center” of each hill corresponds to a singular curve in the map’s
fractal, thus each hill can be identified by the binary sequence of that singular
curve. We will show that once the binary sequence of a hill is given, then the
solution dynamics of the ODEs and PDEs on that hill can be ascertained.
Throughout this section, sgn(ε) = 1, where fractal scatterings occur.

We first describe the ODE solution dynamics in the exit-velocity fractal. To
demonstrate, we pick the hill of binary sequence a = (1, −1, 1) in the ODEs
fractal for equal-amplitude initial conditions in Figure 1(b). The segment which
contains this hill is marked in that fractal. The amplification of this segment is
shown in the inset of Figure 10(a), where the widest hill is the one of this
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Figure 10. Dynamics of the ODE and PDE solutions on the hill of binary sequence a = (1,
−1, 1) in the exit-velocity fractals for equal-amplitude initial conditions (16). The inset in (a)
is an amplification of the segment marked in the ODE fractal of Figure 1(b), where the widest
hill is the one of binary sequence a = (1, −1, 1). Three locations ψa < ψb < ψ c on this hill
are marked by two triangles and a vertical dashed line, with the dashed line at ψb being the
singularity peak point. The ODE solutions at ψa , ψb and ψ c are plotted as dash-dotted lines
(blue), dashed lines (red) and solid lines (black) in (a, b), respectively. The PDE solutions at
points corresponding to ψa and ψ c in the PDE fractal of Figure 1(a) are shown in (c, d),
respectively (contour plots).

binary sequence a. To examine the dynamics of ODE solutions on this hill, we
pick three points on the hill with ψa < ψb < ψc, where the middle point ψb

is the singularity peak point, and the other two points are on the two sides of
this singularity point. These three points are marked in the inset of Figure
10(a). At these three points, the ODE solutions ζ (t) and ψ̇(t) are displayed in
Figure 10(a, b) respectively. Here the time t has been rescaled back to the
physical time for easy comparison with the PDE dynamics below. We see that
at the singularity peak point ψb, the ζ (t) solution oscillates three times, then
develops finite-time singularity at t c ≈ 408 and terminates there. Each local
minimum of ζ is a saddle approach [28] where the separation between the two
waves is the largest. Each local maximum of ζ is a “bounce” point where the
two waves are locally the closest and interact more strongly. The ψ̇(t) solution
is mostly flat, except that it exhibits spikes at the three bounce points whose
sign sequence is (−1, 1, −1), which is opposite of the binary sequence a. This
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ψ̇(t) solution also terminates at the finite-time singularity time t c. At the other
two points ψa and ψc on the two sides of the singularity peak ψb, the ODE
solutions do not develop finite-time singularities. From Figure 10(a, b), we see
that these solutions are almost indistinguishable from the singular solution of
ψb up to the singularity time t c. At t ≈ t c, the ζ (t) solutions in both cases
have a global maximum, where the two waves are the closest and interact most
strongly. This time was called the collision time in [26]. Beyond this time, the
ζ (t) solutions of ψa and ψc both go to −∞ with finite speed. The ψ̇ solutions
of ψa and ψc approach constants as t → ∞, but these asymptotic constants
have opposite signs: the asymptotic constant for ψa at the left side of the
singularity peak is positive, while that for ψc at the right side of the singularity
peak is negative. At other points on this hill, the ODE solution dynamics is
qualitatively similar to the ones above. From these examples, we can draw
general conclusions for the ODE dynamics on a hill of an arbitrary binary
sequence a = (a0, a1, a2, . . . , an) in the exit-velocity fractal. At the singularity
peak of the hill, the ζ (t) solution oscillates n + 1 times (i.e., the two waves
bounce with each other n + 1 times), and then approaches infinity at a finite
time t c and terminates. Here n + 1 is the length of the binary sequence a. The
−ψ̇ solution exhibits spikes at the n + 1 bounce points before the singularity
time t c, whose sign sequence is a. At other points of the hill, the ODE solutions
are almost indistinguishable from this singular solution up to the singularity
time t c. The time t c is approximately the collision time of all these ODE
solutions. Beyond this collision time, all ζ (t) solutions go to −∞, while all
the ψ̇(t) solutions approach constants which have the same sign on the same
side of the hill but opposite sign between the two sides.

From the above description of ODE dynamics on hills of exit-velocity
fractals, we see that the “physical” meaning of the binary sequence a of a hill
in the ODE solutions is that a gives the sign sequence of the −ψ̇(t) solution
at the bounce points before the collision time. In addition, the difference in
solution dynamics between the left and right sides of the hill is that the
asymptotic constants of their −ψ̇(t) solutions have opposite signs. These two
facts can be readily explained. First, from the definition (29), we know that
the binary sequence a is the signs of (q0, q1, . . . , qn), with qn+1 = 0. This
orbit of the map corresponds to the ODE solution at the singularity peak of
binary sequence a in the exit-velocity fractal. From Equations (9) and (12),
we see that qk has the sign of −�Mk , where �Mk = Mk+1 − Mk , and
Mk is the momentum value at the kth saddle approach. Hence a is also the
signs of (−�M0, − �M1, . . . , − �Mn). Furthermore, from Ref. [28] [see
Equations (34) and (5.6) in particular], sgn(−�Mk) is the sign of −ψ̇ at the
kth ζ -maximum (bounce point). Thus the binary sequence a is equal to the
sign sequence of −ψ̇ at the bounce points (before the singularity time or the
collision time). Regarding the signs of −ψ̇(∞) on the two sides of the hill, we
notice from the map (13)–(14) that in the map’s |m∞| fractal in Figures 3
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and 4, when (q0, m0) is on the left (right) side of the vertical axis γ 0 and in
its vicinity, q∞ is positive (negative). Using the recursive relations (35)–(36)
between singular curves and the orientation-preserving property of the inverse
map F−1, we see that for (q0, m0) lying on the left (right) side of every
singular curve (and in its vicinity), q∞ is positive (negative). Notice that like
bounce points above, the sign of q∞ is the same as that of −ψ̇(∞). In
addition, the two sides of a hill in the ODEs exit-velocity fractal correspond
to the two sides of the singular curve in the map’s |m∞| fractal. Thus the
values of −ψ̇(∞) on the two sides of a hill in the exit-velocity fractal have
opposite signs. The specific signs of −ψ̇(∞) on the two sides of the hill
depend on how these two sides of the hill correspond to the two sides of
the singular curve. If the left side of the hill corresponds to the left side of
the singular curve, which is the case for hills starting from ψε

2 rightward in
the unequal-initial-amplitude fractal of Figure 2(b), then −ψ̇(∞) would be
positive (negative) on the left (right) side of the hill. But if the left side of the
hill corresponds to the right side of the singular curve, which is the case for all
hills in the equal-initial-amplitude fractal of Figure 1(b) and the hills starting
from ψε

1 leftward in the unequal-initial-amplitude fractal of Figure 2(b), then
−ψ̇(∞) would be negative (positive) on the left (right) side of the hill.

The topic of higher interest to us is the interaction dynamics in the PDEs (1)
rather than in the ODEs (3). So next we describe the PDE solution dynamics in
the exit-velocity fractal. This PDE dynamics can be predicted from the ODE
dynamics above. To illustrate, we take two �φ0 values on the hill of binary
sequence a = (1, −1, 1) in the PDEs equal-initial-amplitude fractal of Figure
1(a), which correspond to the two ψ0 values of the ODEs on the two sides of
the singularity peak as marked in the inset of Figure 10(a). For these two �φ0

values, the PDE solutions are displayed in Figure 10(c, d). We see that before
the collision time t c ≈ 408, the two PDE solutions are almost identical with
each other. In this time period, the two waves bounce three times. At the
three bounce points, the left wave has higher, lower and higher amplitudes
sequentially (when compared to the right wave). At the collision time, the two
waves are the closest and interact most strongly. Afterwards, they separate
from each other and escape to infinity. The main difference between the two
PDE solutions is that, at the left �φ0 value, the exiting right wave has higher
amplitude, while at the right �φ0 value, it is just the opposite. These behaviors
are common for most of the points on this hill in the PDEs fractal. The only
exception is a small region in the middle of this hill which corresponds to the
singularity peak point and its immediate vicinity in the ODEs fractal [see inset
of Figure 10(a)]. In that region, the ζ solutions in the ODEs are either infinite
or very large at the singularity time or collision time, which implies that the
two waves collide and coalesce. When this happens, the reduced ODE model
(3) and its predictions become invalid. Indeed in the PDEs fractal, the central
part of every hill dips down, which contrasts with the ODEs fractal where the
central part of each hill rises up to a peak of infinite height.
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The PDE solutions in Figure 10(c, d) directly correspond to the ODE
solutions at the two sides of the singularity peak in Figure 10(a, b). In
particular, the sign sequence a = (1, −1, 1) of the ODEs −ψ̇(t) solution at the
three bounce points directly implies the “higher, lower, higher” amplitudes
of the left wave at the three bounce points in the PDE solution, and the
negative (positive) −ψ̇(∞) values at the left (right) side of the singularity
peak directly implies the lower (higher) amplitude of the exiting left wave in
the PDE solution. These connections can be readily explained. Let us recall
the relation �φt = �β as well as the fact that the propagation constant β is
directly related to the wave amplitude [b25]. Then the sign of −ψ̇ , which
is equal to the sign of −�β = β1 − β2, tells which of the two waves has
higher amplitude. For the cubic-quintic nonlinearity (15), the amplitude is an
increasing function of β, thus positive −ψ̇ means that the left wave has higher
amplitude, which explains the above connections.

Based on the above PDE examples and general ODE dynamics, we can draw
general conclusions for the PDE dynamics on a hill of an arbitrary binary
sequence a = (a0, a1, a2, . . . , an) in the exit-velocity fractal. For all points on
the hill, the PDE solutions are almost identical to each other up to the collision
times (whose values are almost the same for the entire hill). Before the collision
time, the two waves bounce n + 1 times. At each bounce point, the left wave
has higher (lower) amplitude if the corresponding digit in the binary sequence
a is 1 (−1). Thus the physical meaning of the binary sequence of a hill in the
exit-velocity fractal is that it gives the sequence of relative amplitudes between
the two waves at the bounce points before the collision time, with digit 1 (−1)
meaning the left wave is higher (lower). At the collision time, the two waves are
the closest and interact most strongly. For most of the points on the hill (except
a small section in the middle), the two waves separate from each other after
the collision time, and the exiting waves have opposite relative amplitudes on
the two sides of the hill. The specific relative amplitudes of the two waves are
determined by the sign of −ψ̇(∞) which has been given above. The left wave
will have higher (lower) amplitude if −ψ̇(∞) is positive (negative).

6. The map for negative ε and its predictions for the PDE/ODE system

In this section, we consider the ε < 0 case. For the cubic-quintic nonlinearity
(15), negative ε occurs when δ < 0 [26]. In this case, we will show below that
fractal scatterings cannot occur. The map (13)–(14) for negative ε differs from
that for positive ε by only a sign, but this makes a crucial difference. Now the
map is

F
(

q
m

)
=


q + 2m + 2sgn(q)

q2

m + sgn(q)

q2


 , (54)
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and

F−1

(
q
m

)
=


q − 2m

m − sgn(q − 2m)

(q − 2m)2


 . (55)

Notice that F and F−1 are still area-preserving and orientation-preserving, but
the singular-curve structure changes drastically. To see that, we start with the
singular curves γ (1) and γ (−1), which are now

γ (1) = {
(q0, m0) : m0 = −q0/2 − 1/q2

0 , q0 > 0
}
, (56)

γ (−1) = {
(q0, m0) : m0 = −q0/2 + 1/q2

0 , q0 < 0
}
. (57)

These two curves are shown in Figure 11. We see that these curves are in the
second and fourth quadrants. More importantly, they do not intersect with �.
Because of this, each of these two singular curves has only one pre-image curve
under the map of F−1. This contrasts with the ε > 0 case where each singular
curve has two pre-image curves. The pre-image curves of γ (1) and γ (−1),

γ (1, 1) = F−1(γ (1)), γ (−1, −1) = F−1(γ (−1)), (58)

are also shown in Figure 11. They do not intersect with � either, thus have
only one pre-image curve each as well. Repeating this process, then all the
singular curves one can get, in addition to the vertical axis γ 0, are only two
sequences

{γ (−1), γ (−1, −1), γ (−1, −1, −1), . . .}

and

{γ (1), γ (1, 1), γ (1, 1, 1), . . .},

which are shown in Figure 11. Obviously these two sequences cannot develop
fractals. If we draw the initial-value curves (45) and (47) in this same plane,
these curves will intersect with only a finite number of singular curves. An
example is shown in Figure 11, where the unequal-amplitude initial conditions
(21) and ε = −0.001 are taken. Thus the corresponding exit-velocity graph
in the ψ0 space will have a limited number of singularity peaks, which is
precisely what we observed in Figure 11(5)–(6) of Ref. [26].

Now we quantitatively compare the map’s predictions with the ODE results
for negative values of ε (comparison with the PDE results is expected to be
similar, see Figures 1 and 2). For this purpose, we take ε = −0.001 and the
unequal-amplitude initial conditions (21) for the ODEs (3). In the PDE (1)
with cubic-quintic nonlinearity (15), these ODE initial conditions correspond
to δ = −0.0003 and unequal-amplitude initial conditions (17) [26]. From the
direct simulations of these ODEs, the graph of exit-velocity |ζ̇ |∞ versus the
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Figure 11. Singular curves of the map (13)–(14) for negative ε, as well as the initial-value
curve λε for unequal-amplitude initial conditions (21) with ε = −0.001. Five of the
intersections of λε with singular curves are marked by letters ‘A, B, C, D, E’.

initial-phase difference ψ0 is shown in Figure 12(a). A finite number of
singularity peaks can be seen, and this graph does not have a fractal structure.
To obtain the map’s predictions, we use the initial-value curve (47) for this case
as shown in Figure 11. For each point on this initial-value curve, we iterate the
map (13)–(14) to infinity to obtain the exit velocity from Equation (8). The
results of the map’s predictions are shown in Figure 12(b). As can be seen, the
map’s prediction agrees with the ODE results very well. To better understand
these graphs, we label five representative singularity peaks by letters “A, B, C,
D, E” in Figure 12(b). Their corresponding points on the initial-value curve λε

of Figure 11 are also labeled by the same letters. This connection makes it
very easy to understand the exit-velocity graphs of Figure 12. In particular,
since λε has 10 intersections with singular curves in Figure 11, this explains
why the exit-velocity graphs in Figure 12 have 10 singularity peaks as well.
One can further predict the dynamics of the ODE solution at each ψ0 value in
the exit-velocity graph of Figure 12(a) in the same way as we did in the
previous section. For instance, if ψ0 is on a hill of binary sequence a = (−1,
−1, −1) in the exit-velocity fractal of Figure 12(a), then the ζ (t) solution will
oscillate three times before the collision time. The −ψ̇ solution will exhibit
spikes at the three bounce points whose sign sequence is a. After the collision
time, the ζ (t) solution will go to −∞, while the ψ̇(t) solution will approach a
constant whose sign depends on which side of the hill the ψ0 value is on. With
this knowledge on the ODE solution, we can then predict the dynamics of the
PDE solution, again in the same way as what we did in the previous section. If
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Figure 12. Comparison of the exit-velocity graphs from (a) ODE predictions, and (b) map
predictions for ε = −0.001. The initial conditions of the ODEs are (21) for unequal-amplitude
initial waves. Letters “A, B, . . .” are locations of some singularity peaks in (b), which correspond
to the intersections of λε with singular curves in Figure 11 (marked by the same letters).

the two waves initially have equal amplitude, where the initial conditions for
the ODEs are (19), then the initial-value curve λε in (45) will only intersect
one singular curve γ 0 (i.e., the vertical axis). In this case, the exit-velocity
graph of the ODE will have a unique singularity point at ψ0 = 0 and be
smooth elsewhere. The corresponding dynamics of ODE and PDE solutions
can be predicted in the same way as above. With these results, an intimate
knowledge is then obtained for the wave interactions in the ε < 0 case.

7. Conclusion and discussion

In this paper, we analyzed the separatrix map which governs weak interactions
of solitary waves in the generalized NLS equations. We showed that when
ε > 0, this map exhibits a fractal structure which we delineated by tracking
its singular curves. Then through this map’s fractal as well as connections
between the map and the ODEs/PDEs, we reached a very deep understanding
on the fractal structures as well as their interaction dynamics in the ODEs and
PDEs. In addition, we analytically determined how the ODE and PDE fractals
change as the parameter ε varies, and showed that these predictions agree well
with the numerical results. Furthermore, we proved a claim made earlier in
[26] that fractal structures in the ODEs/PDEs for ε > 0 bifurcate from the
singularity points in the integrable ODEs. When ε < 0, we showed that the
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separatrix map does not possess a fractal structure, hence fractal scatterings
cannot occur in the corresponding ODEs and PDEs.

Gathering all our results, we can now give a precise criterion for the
existence of fractal scatterings in weak interactions of solitary waves in the
generalized NLS equations. When |ε| 
 1, fractal scatterings will occur if and
only if the following two conditions are met:

1. ε > 0;
2. The map’s initial-condition curve λε [see (45) and (47) for instance],

under the restriction of H < 0, intersects the map’s fractal region (see
Figures 3, 6, and 8).

When this criterion is met (i.e., fractal scatterings occur), we can accurately
predict the fractal structure as well as the interaction dynamics in the
exit-velocity graph by simply drawing the initial-condition curve λε on the
map’s |m∞| fractal of Figure 3. Thus, by now we have provided a simple
answer to a complicated fractal-scattering problem in weak wave interactions.

The only discrepancy between the PDEs exit-velocity graph and our
ODE/map predictions is at the middle part of each hill, where the ODEs and
map’s graphs exhibit peaks of infinite height, but the PDEs graph dips down
instead (see Figures 1 and 2). In those parameter regions, the two waves come
together and interact strongly, which makes our reduced ODE model invalid.
We have performed preliminary numerical investigations of the PDEs at the
middle part of each hill in the exit-velocity graph, and found that the dips
in those regions are not smooth. Inside each dip, we found finer structures
which are also fractal-like! These fractal-like structures inside each dip are
apparently the product of strong wave interactions, thus should be related to
fractal scatterings in solitary wave collisions as reported in [11–14]. Detailed
investigations of finer structures inside dips of the PDEs exit-velocity graph lie
outside the scope of this paper, and will be left for future studies.
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