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Solitary waves in a general nonlinear lattice are discussed, employing as a
model the nonlinear Schrödinger equation with a spatially periodic nonlinear
coefficient. An asymptotic theory is developed for long solitary waves, which
span a large number of lattice periods. In this limit, the allowed positions of
solitary waves relative to the lattice, as well as their linear stability properties,
hinge upon a certain recurrence relation which contains information beyond
all orders of the usual two-scale perturbation expansion. It follows that only
two such positions are permissible, and of those two solitary waves, one is
linearly stable and the other unstable. For a cosine lattice, in particular, the two
possible solitary waves are centered at a maximum or minimum of the
lattice, with the former being stable, and the analytical predictions for the
associated linear stability eigenvalues are in excellent agreement with numerical
results. Furthermore, a countable set of multi-solitary-wave bound states are
constructed analytically. In spite of rather different physical settings, the
exponential asymptotics approach followed here is strikingly similar to that
taken in earlier studies of solitary wavepackets involving a periodic carrier
and a slowly varying envelope, which underscores the general value of this
procedure for treating multiscale solitary-wave problems.

1. Introduction

The nonlinear Schrödinger (NLS) equation is fundamental to wave propagation
in fluid flows, optics, Bose–Einstein condensation (BEC), and applied

Address for correspondence: Prof. J. Yang, Department of Mathematics and Statistics, University of
Vermont, Burlington, VT 05401, USA; e-mail: jyang@cems.uvm.edu

DOI: 10.1111/j.1467-9590.2011.00538.x 275
STUDIES IN APPLIED MATHEMATICS 128:275–299
C© 2011 by the Massachusetts Institute of Technology



276 G. Hwang et al.

mathematics [1–6]. When a linear periodic potential (so-called linear lattice) is
added, the resulting equation then models nonlinear beam transmission in an
optical medium with a periodic transverse variation in the linear refractive index,
and atom–atom interaction in Bose–Einstein condensates loaded in an optical
lattice [7–10]. Another interesting possibility, instead of a linear lattice, is to
allow the nonlinear coefficient of the NLS equation to vary periodically in space.
In optics, such a periodic nonlinear coefficient (also called nonlinear lattice)
would arise in the propagation of laser beams in a medium whose nonlinear
refractive index is modulated in the transverse direction. The same model
equation also applies to the study of Bose–Einstein condensates in a medium
with a spatially dependent scattering length. In optical and BEC experiments,
a linear lattice can be created by beam interference [8, 11]. A nonlinear lattice
in optics can be created by femtosecond-laser writing in fused silica [12],
and in BEC such a lattice can be created by an optical Feshbach-resonance
modulation of the scattering length [13–15]. Wave phenomena in linear lattices
have been extensively studied in the past decade (see [10] for a review). In this
paper, our interest centers on wave phenomena in nonlinear lattices.

Wave phenomena in symmetric nonlinear lattices have been investigated in
[16–18]. It was found that there exist solitary waves which are centered at a
local maximum or minimum of the nonlinear lattice. Short solitary waves were
found to be stable/unstable when centered at a local maximum/minimum of
the lattice [17, 18], but the stability analysis for long solitary waves, which
extend over a large number of lattice periods, was not conclusive [17]. Bound
states comprising several fundamental solitary waves have also been reported
numerically [16]. A comprehensive review on nonlinear lattices can be found in
[28]. In addition to these studies in nonlinear lattices, work has also been done
in the presence of both linear and nonlinear lattices [19–21] and in higher
dimensions [22].

In this paper, we make an analytical study of long solitary waves and their
linear stability properties in a general nonlinear lattice. Recognizing that the
coupling between a long solitary wave and the relatively short nonlinear lattice
is an exponentially small effect, beyond all orders of the usual multiple-scale
perturbation expansion in powers of the long-wave parameter, our analysis
makes use of an exponential asymptotics technique. We show that long solitary
waves can only be located at two positions in one period of the nonlinear
lattice, regardless of the number of local maxima and minima in it. If the lattice
is symmetric, the solitary-wave positions are simply the point of symmetry
and half a lattice-period away from it; but for a general asymmetric lattice,
these positions need to be determined by solving a certain recurrence relation
that contains information beyond all orders of the long-wave parameter. Linear
stability analysis of long solitary waves is also performed: it follows from the
same recurrence relation that one of the two solitary waves is linearly stable,
while the other is unstable. For cosine lattices, in particular, the solitary wave
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centered at the maximum/minimum of the lattice is linearly stable/unstable,
consistent with previous results [17, 18]. An analytical formula for the
linear-stability eigenvalues is also derived; as expected, these eigenvalues are
exponentially small in the long-wave parameter. The analytical predictions
for the stability eigenvalues are compared with direct numerical results and
excellent agreement is obtained. Lastly, we also show that an infinite number of
multi-solitary-wave stationary bound states exist in the nonlinear lattice, and
their analytical construction in terms of nonlocal solitary waves is presented.

The exponential asymptotics procedure adopted in this paper closely
resembles that used in recent studies [23, 24] of gap solitons in a linear
lattice (see also [25, 26] for the first application of this technique to solitary
wavepackets of the fifth-order KdV equation). The common thread in linear
and nonlinear lattices is that the solitary wave is much longer than the
period of the underlying lattice; hence, the coupling between these different
scales is expected to be exponentially small, which invites similar exponential
asymptotics treatment. As a result, the behavior of solitary waves in these
rather different physical settings is remarkably similar.

2. Preliminaries

We study the NLS equation with a nonlinear lattice

i�t + �zz + (1 + g(z/ε))|�|2� = 0, (1)

where g(z/ε) is a periodic function which describes the spatial variation of
the nonlinear Kerr coefficient, and the parameter ε > 0 controls the length
scale of this variation. Throughout this article, g(z/ε) will be referred to as the
nonlinear lattice. Equation (1) is a model for the spatial propagation of a laser
beam in a medium whose nonlinear refractive index is modulated periodically
in the transverse direction (in this context, t is the direction of propagation),
and for the dynamics of Bose–Einstein condensates whose scattering length
(the counterpart of the nonlinear coefficient in (1)) changes periodically over
space [4, 15]. Solitary-wave solutions in Equation (1) and their linear-stability
properties for even functions of g(z/ε) were investigated in [17, 18]. In the
long-wave limit (ε � 1), profiles of solitary waves that span many lattice
periods were determined by a multiscale perturbation analysis [17], but their
stability was not ascertained.

In this article, we analytically study long solitary waves (0 < ε � 1) and
their stability properties for general forms of the nonlinear lattice g(z/ε).
Specifically, denoting z/ε = x, g(x) is assumed to be periodic with period d,

g(x + d) = g(x) (2)
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for all real values of x. Also, without loss of generality, g(x) is taken to have
zero x-average:

〈g〉 ≡ 1

d

∫ d

0
g(x) dx = 0. (3)

Solitary-wave solutions of Equation (1) are sought in the form

�(z, t) = ψ(z)eiμt , (4)

where μ > 0 is the propagation constant, and the real-valued function ψ(z)
solves the ordinary differential equation

ψzz + (1 + g(z/ε))ψ3 − μψ = 0, (5)

under the boundary condition of ψ → 0 as |z| → ∞.
Here, we will fix μ = O(1), and determine the solitary wave ψ(z) as well as

its linear stability for 0 < ε � 1. In this regime, the nonlinear lattice g(z/ε) is
rapidly varying and the wave profile ψ(z), whose width is O(1) for μ = O(1),
spans many lattice sites. As ε → 0, g(z/ε) features extremely rapid oscillations
with zero mean and the effect of the nonlinear lattice on the solitary wave ψ(z)
can be dropped; thus, in this limit, ψ(z) is expected to approach the familiar
solitary-wave solution of the lattice-free NLS equation

ψ(z) → a sech
z − z0

β
, (6)

where

a =
√

2μ, β = 1/
√

μ, (7)

and z0 denotes the location of the peak of the solitary wave ψ(z). When 0 
=
ε � 1, the nonlinear lattice g(z/ε) will have a weak but nonnegligible effect, and
solitary waves bifurcate out from the limiting wave (6); this bifurcation will be
the main focus of our investigation. It will be shown that such a bifurcation is
possible only when z0 takes two special values relative to the nonlinear lattice,
resulting in two solitary-waves, out of which one is stable and the other unstable.

It is worth mentioning that a different but equivalent analysis is to introduce
scaled variables

ψ̂ = εψ, x = z/ε, μ̂ = ε2μ, (8)

so that Equation (5) transforms into

ψ̂xx + (1 + g(x))ψ̂3 − μ̂ψ̂ = 0. (9)

Thus, fixing μ = O(1) and varying ε � 1 in our treatment above corresponds
to fixing the lattice g(x) and varying μ̂ � 1 in Equation (9). In this alternative
treatment, the nonlinear lattice g(x) is no longer rapidly varying, but for
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μ̂ � 1, solitary waves ψ̂(x) of Equation (9) that bifurcate out from the edge
μ̂0 = 0 of the continuous spectrum (whose linear eigenmode is a constant)
have low amplitude and are long compared to the lattice period. This type of
solitary-wave bifurcation is akin to that studied in [23] with a linear lattice. In
both treatments, however, the solitary wave is of long extent and spans many
lattice sites, hence the fundamental feature of the problem remains the same.

3. Multiscale perturbation solution

We begin by reviewing the multiple-scale procedure followed in [17] for
solving Equation (5). The solution ψ to this equation contains two scales,
reflected in the “slow” variable z and “fast” variable x = z/ε. Introducing
explicitly these variables by writing ψ = ψ(x, z), Equation (5) then becomes(

∂2
z + 2

ε
∂x∂z + 1

ε2
∂2

x

)
ψ + (1 + g(x))ψ3 − μψ = 0. (10)

Now we expand ψ(x, z) into the two-scale perturbation series,

ψ(x, z) = ψ0(x, z) + εψ1(x, z) + ε2ψ2(x, z) + · · · . (11)

Substituting this expansion into Equation (10) and from various orders of ε,
we get the following hierarchy of equations,

−∂2
x ψ0 = 0, (12a)

−∂2
x ψ1 = 2∂x∂zψ0, (12b)

−∂2
x ψ2 = ∂2

z ψ0 + 2∂x∂zψ1 + (1 + g(x))ψ3
0 − μψ0, (12c)

−∂2
x ψ3 = ∂2

z ψ1 + 2∂x∂zψ2 + 3(1 + g(x))ψ2
0 ψ1 − μψ1, (12d)

−∂2
x ψ4 = ∂2

z ψ2 + 2∂x∂zψ3 + 3(1 + g(x))ψ2
0 ψ2 + 3(1 + g(x))ψ0ψ

2
1 − μψ2.

(12e)

From Equation (12a) and the requirement that ψ0 be bounded, we get

ψ0 = ψ̃0(z). (13)

Substituting this equation into (12b) and requiring ψ1 to be bounded, we get

ψ1 = ψ̃1(z). (14)
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Equations (12c)–(12e) are forced linear equations and can be written in the
unified form

−∂2
x ψn = Qn(x, z), (15)

where Qn depends on ψ j with j < n. The x-dependence of Qn derives from the
nonlinear lattice g(x) which is d-periodic. Thus Qn is d-periodic in x and can
be expanded into a Fourier series,

Qn(x, z) =
∞∑

m=−∞
qm(z) e2π imx/d . (16)

We require solutions ψn to be also d-periodic in x. The necessary and sufficient
condition for the existence of such a solution is that the constant Fourier mode
q0 in (16) vanish,

q0 = 〈Qn〉 = 0. (17)

Here 〈·〉 is the average with respect to x as defined in (3). Then the solution ψn

to Equation (15) is

ψn = −∂−2
x Qn(x, z) + ψ̃n(z), (18)

where

∂−2
x Qn =

∑
m 
=0

(
2π im

d

)−2

qm(z) e2π imx/d, (19)

and ψ̃n is a function of z which is determined by the solvability condition (17)
for the equation governing ψn+2 (see below).

Next we determine ψ̃0(z) and ψ̃1(z). Specifically, to obtain ψ̃0(z), we return
to Equation (12c). Substituting (14) into (12c) and recalling that g(x) has zero
average (see (3)), the solvability condition of this equation gives

∂2
z ψ̃0 + ψ̃3

0 − μψ̃0 = 0, (20)

whose solution is

ψ̃0 = A(z) ≡ a sech
z − z0

β
, (21)

where a and β are defined in (7), and z0 is a constant. This result agrees with
(6), as anticipated earlier.

To determine the solution ψ̃1(z), we consider Equation (12d). Using the
above expression for ψ̃0 and the zero average of g(x), the solvability condition
for (12d) gives

(d2/dz2 − μ + 3A2)ψ̃1 = 0, (22)
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whose solution is

ψ̃1 = ζ A′(z), (23)

where ζ is a constant. It is clear that ψ̃1 simply shifts the location of the center
of the leading-order term, ψ̃0 = A(z), in the perturbation expansion (11). To
remove the ambiguity in the position of ψ̃0, we require that ψ̃1 be orthogonal
to ψ̃0, hence ζ = 0, and

ψ̃1(z) = 0. (24)

Now we determine the solution ψ2 to Equation (12c). Utilizing solutions
ψ0 and ψ1 in Equations (21) and (24), ψ2 can be written as

ψ2(x, z) = − [
∂−2

x g(x)
]

A3(z) + ψ̃2(z). (25)

When this solution is inserted into Equation (12e), the solvability condition of
this equation gives

(d2/dz2 − μ + 3A2)ψ̃2 = −3αA5, (26)

where

α ≡ 〈(
∂−1

x g
)2〉

> 0. (27)

The bounded solution ψ̃2 to this equation is

ψ̃2(z) = α(A3 − 2a2 A). (28)

Combining (13), (14), (24), (25), and (28), the perturbation series solution for
the solitary wave ψ(x, z) of Equation (5) takes the form

ψ(x, z) = A(z) + ε2
{ − [

∂−2
x g(x)

]
A3(z) + α

[
A3(z) − 2a2 A(z)

]} + O(ε3),
(29)

where A(z) is given by (21).
Notice that the location z0 of the peak of the function A(z) in Equation (29) is

arbitrary at this stage, since Equation (20) which determines A(z) is translation
invariant. However, the original Equation (5) for the solitary wave is not
translation invariant due to the presence of the nonlinear lattice g(x), and it
is unlikely that the solitary wave can be arbitrarily located relative to this
nonlinear lattice. Indeed, a very similar situation arises in a linear lattice [6,
23, 27], and there it was shown that solitary waves can only be located at
two positions relative to the lattice. In the present problem, the result turns
out to be similar: only two values of z0 are permissible for truly localized
solitary waves in a nonlinear lattice, as will be established in the next section
by utilizing exponential asymptotics.
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Before ending this section, it should be pointed out that truly localized
solitary waves ψ(z) of Equation (5) must satisfy∫ ∞

−∞
g′(z/ε)ψ4(z) dz = 0. (30)

This constraint can be obtained by multiplying Equation (5) with ψ ′(z) and then
integrating from −∞ to ∞. An analogous constraint was noted in [27] for the
linear lattice problem, and it was pointed out that, if the lattice is symmetric,
this constraint predicts only two possible locations for truly localized solitary
waves—one at the point of symmetry and the other half a period away from
it [6, 27]. However, for general asymmetric linear lattices, it does not seem
feasible to determine the locations of solitary waves based on this constraint
alone [23]. Similarly, in the problem at hand, if the nonlinear lattice g(z/ε) is
symmetric, the constraint (30) can also predict the two locations of true solitary
waves; if the lattice is asymmetric, however, this approach would again fail.
The reason is that, when the perturbation series solution (29) is substituted
into the constraint (30), all terms in the series make contributions of the same
order of magnitude to the integral in (30). Hence, it does not seem possible
to solve for z0 without having obtained all terms in the perturbation series
(29). The same difficulty also appears in the linear lattice problem [6, 23] and
suggests the need for a perturbation theory beyond all orders. This task is
taken up below by employing an exponential-asymptotics procedure in the
wavenumber domain [23, 25].

4. Growing tails of exponentially small amplitude

In this section, we determine the location of the solitary wave ψ(z) by the
exponential asymptotics method. Our approach closely resembles that for gap
solitons in a linear lattice [23], thus only the key ideas and steps will be given.
For further details, we refer the reader to [23] (see also [25]).

The ensuing analysis is based on the fact that, if ψ(z) given by (29) is
required to decay upstream (z � −1), then this solution of Equation (5) will
contain a growing tail downstream (z � 1) for generic values of the position
z0 of the solitary wave core. Specifically, if the upstream asymptotics of ψ(z),
as given by the leading-order term in the perturbation expansion (29), is

ψ ∼ 2a e(z−z0)/β, z → −∞ , (31)

then the downstream asymptotics of the solution will be

ψ ∼ 2a e−(z−z0)/β + H e(z−z0)/β, z � 1 , (32)

where H(ε, z0) is the growing-tail amplitude. As we will show later, H vanishes
only at two special values of z0 (relative to the nonlinear lattice), thus only two
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truly localized solitary waves exist. The tail amplitude H(ε, z0) turns out to be
exponentially small in ε, thus this growing tail can not be captured by the
perturbation series (29) and has to be obtained by carrying this expansion in
powers of ε beyond all orders.

Following the exponential asymptotics procedure in the wavenumber domain
[23], we introduce the Fourier transform of ψ(x, z) with respect to the slow
variable z,

ψ̂(x, K ) = 1

2π

∫ ∞

−∞
ψ(x, z) e−i K z dz. (33)

Substituting the perturbation series solution (29) for ψ(x, z) into this Fourier
transform, we find that

ψ̂(x, K ) =
√

2

2
e−i K z0sech

(π

2
βK

)
×

{
1 + ε2a2

[
1

2
(1 + β2K 2)ν(x) − 2α

]
+ · · ·

}
,

(34)

where ν(x) = α − ∂−2
x g(x). This expansion in the wavenumber domain is

disordered when K = O(1/ε), suggesting that ψ̂ has pole singularities at K =
O(1/ε). The residues of these singularities are exponentially small due to the
exponentially small value of the sech function in (34) at K = O(1/ε). As we
will show later, these singularities of exponentially small residue contribute
exponentially small but growing tails in the physical solution ψ(x, z). Thus, the
main goal is to determine the locations and residues of pole singularities in ψ̂ .

To this end, we replace the disordered expansion (34) by a uniformly valid
expression,

ψ̂ = e−i K z0 sech
(π

2
βK

)
U (x, κ), (35)

where εK = κ . We then take the Fourier transform of Equation (10) with
respect to z,

ψ̂xx + 2iκψ̂x − κ2ψ̂ + ε2(1 + g(x))ψ̂3 − ε2μ ψ̂ = 0, (36)

and upon substituting Equation (35) into (36), we obtain the following equation
for U

Uxx + 2iκUx − κ2U − ε2μU

+ (1 + g(x)) cosh
πβκ

2ε

∫ ∞

−∞
dλ

U (x, κ − λ)

cosh π(κ−λ)β
2ε

×
∫ ∞

−∞
dρ

U (x, λ − ρ)U (x, ρ)

cosh π(λ−ρ)β
2ε

cosh πρβ

2ε

= 0.

(37)
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4.1. The recurrence equation

In the limit ε → 0 and for κ away from singularities of U(x, κ), the main
contribution to the double integral in Equation (37) comes from 0 < λ < κ

when κ > 0 and from κ < λ < 0 when κ < 0. The integral Equation (37) then
simplifies to [23, 25]

Uxx+ 2iκUx − κ2U + 4(1 + g(x))
∫ κ

0
dλU (x, κ − λ)

×
∫ λ

0
dρU (x, λ − ρ)U (x, ρ) = 0.

(38)

The solution to this simplified integral equation can be posed as a power series
in κ ,

U (x, κ) =
√

2

2

∞∑
n=0

Un(x)κn. (39)

Substituting this power series into (38), we obtain the following recurrence
equation for Un,

d2Un+2

dx2
= Un − 2i

dUn+1

dx

− 2(1 + g(x))
n∑

m=0

Un−m
(n − m)!

(n + 2)!

m∑
r=0

UrUm−rr !(m − r )!.
(40)

To be consistent with (34), we set

U0 = 1, U1 = 0, (41)

which serve as the initial conditions for the recurrence iteration (40). Note
that this recurrence system does not involve μ and ε; it only depends on the
functional form of the periodic lattice g(x).

4.2. Behavior near singularities

When κ is near the singularities of U(x, κ), the reduced integral Equation (38)
does not apply. We now examine the behavior of U(x, κ) near its singularities,
based on the original integral Equation (37).

These singularities occur at κ ≈ κ0, where the linear part of Equation (37)
is satisfied, i.e.,

Uxx + 2iκ0Ux − κ2
0 U = 0. (42)

The bounded solution to this linear equation is U ∼ e−iκ0x . Since U is expected
to be d-periodic in x in view of (35), therefore, κ0 = ±2π /d. Singularities near
κ0 = ±4π /d, ±6π /d, . . . are also possible, but they are subdominant and will
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not be considered. To avoid ambiguity, we denote

κ0 = 2π/d, (43)

and examine singularities at κ ≈ ±κ0.
In order to determine the behavior of the solution U near the singularity

κ ≈ κ0, we first introduce the “inner” wavenumber

ξ = κ − κ0

ε
, (44)

that is, κ = κ0 + εξ with ξ = O(1). Guided by the analysis in [23, 25], we expand

U = e−iκ0x

ε4
(�0(ξ ) + ε2 f (x, ξ ) + · · ·). (45)

The reason for the leading-order term in this expansion being O(ε−4) will be
explained later (see Equation (52)).

Now we examine the integral Equation (37) near the singularity κ ≈ κ0. The
dominant contributions to the double integral in (37) come from the following
regions: (i) λ ∼ 0 and ρ ∼ 0, (ii) λ ∼ κ with ρ ∼ 0 and with ρ ∼ κ . Taking
into account the leading-order term near κ ∼ κ0 in (45) and the leading-order
term near κ ∼ 0 in (39), we can calculate these dominant contributions, and
Equation (37) near κ ∼ κ0 yields

Ũxx + 2iεξŨx − ε2ξ 2Ũ − ε2μŨ + 3(1 + g(x))

ε2

×
∫ ∞

−∞
ωeπβω/2 csch

πβω

2
�0(ξ − ω)dω = 0,

(46)

where U = e−iκ0xŨ . Substituting the expansion (45) into (46), the terms of
O(ε−4) and O(ε−3) are automatically balanced. At O(ε−2) we have

∂2
x f = ξ 2�0(ξ ) + μ�0(ξ ) − 3(1 + g(x))

×
∫ ∞

−∞
ωeπβω/2 csch

πβω

2
�0(ξ − ω)dω

(47)

and the solvability condition requires that the x-average of the right-hand side
of Equation (47) equals to zero:

(μ + ξ 2)�0(ξ ) − 3
∫ ∞

−∞
ωeπβω/2 csch

πωβ

2
�0(ξ − ω) dω = 0. (48)

Recalling that β = 1/
√

μ, this integral equation is identical to that encountered
earlier in our analysis of gap solitons in a linear lattice [23]. Hence, its solution
is [23, 25]

�0(ξ ) = 6β4

1 + β2ξ 2

∫
L±

1

sin2s
φ(s)e−sβξ ds, (49)
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where

φ(s) = C

(
2

sin s
+ cos2s

sin s
− 3s cos s

sin2s

)
, (50)

the contours L± extend from 0 to ±i∞ for Im(ξ ) < 0 and Im(ξ ) > 0,
respectively, and C is a complex constant which will be determined later. Note
that the function �0(ξ ) given by (49) is analytic everywhere in the complex
plane C, save for two simple poles at ξ = ±i/β. Also, �0(ξ ) satisfies the
integral Equation (48) only in the complex ξ -plane outside the strip −1/β <

Im(ξ ) < 1/β, as was explained in [23].
The behavior of the function �0(ξ ) near its singularities ξ = ±i/β is

�0(ξ ) → − Cβ4

1 + β2ξ 2

(
ξ → ∓ i

β

)
, (51)

and its large-ξ asymptotics is [23, 25]

�0(ξ ) → 12C

5

1

ξ 4
(ξ → ∞). (52)

This fourth-order algebraic decay rate of �0(ξ ) at large ξ implies the order
ε−4 in Equation (45). From Equation (51), we then obtain the behavior of
ψ̂(x, K ) near K = κ0/ε ∓ i/β as

ψ̂ ∼ β3C

ε3
e−πβκ0/2εe∓z0/β

e−iκ0(x+x0)

K − κ0
ε

± i
β

(
K → κ0

ε
∓ i

β

)
. (53)

From the symmetry of the Fourier transform for real functions, ψ̂ is also
singular at K = −κ0/ε ∓ i/β, and

ψ̂ ∼ −β3C∗

ε3
e−πβκ0/2εe∓z0/β

eiκ0(x+x0)

K + κ0
ε

± i
β

(
K → −κ0

ε
∓ i

β

)
. (54)

4.3. The growing tail and locations of solitary waves

We now take the inverse Fourier transform of ψ̂(x, K ) to calculate the growing
tails in ψ(x, z) due to the pole singularities (53)–(54). The inverse Fourier
transform is

ψ(x, z) =
∫
C
ψ̂(x, K )ei K zdK , (55)

where the contour C is taken along the line �(K) = −1/β and to pass below
the poles at K = ±κ0/ε − i/β (the reason for this choice of the contour is
explained in [23]). Also, the contour C passes above the pole of sech(πβK/2)
at K = −i/β, to be consistent with the desired upstream behavior of ψ in (31).
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Indeed, for z � −1, the dominant contribution to the inverse Fourier
transform (55) comes from the pole of sech(πβK/2) at K = −i/β and one
obtains the upstream solution (31). On the other hand, for z � 1, both the
singularities (53)–(54) at K = ±κ0/ε − i/β and the singularity of sech(πβK/2)
at K = i/β contribute, and one obtains the downstream solution behavior as

ψ ∼ 2ae−(z−z0)/β + 4πβ3Ĉ

ε4
e−πβκ0/2ε sin(κ0x0 − θ )e(z−z0)/β (z � 1),

(56)

where Ĉ > 0 and θ are the amplitude and phase of the complex constant C,

C = Ĉeiθ . (57)

Equation (56) is one of the key results in this paper. It shows that a growing
tail of exponentially small amplitude appears far downstream in the solution
ψ(x, z), except when

sin(κ0x0 − θ ) = 0, (58)

i.e.,

x0 = θ/κ0 , (θ + π )/κ0, (59)

Thus, exactly two solitary waves, located at these values of x0, are obtained in
the nonlinear lattice Equation (5).

4.4. Determination of the constant C

It remains to determine the complex constant C. This constant cannot be
obtained from the local analysis around the singularities κ ∼ ±κ0, but it can be
computed by solving the recurrence relation (40). For this purpose, we derive
the asymptotics of the recurrence functions Un for large n, which depends on
C. The derivation is based on the idea that the “inner” solution (45) of U(x, κ)
near the singularities, when ξ → ∞, must match the “outer” solution (39) of
U(x, κ) away from the singularities. First, from the inner expansion (45) and
the asymptotics (52), we see that

U (x, κ) ∼ 12C

5

1

(κ − κ0)4
e−iκ0x (ε � |κ − κ0| � 1), (60)

or

U ∼ 12Ĉ

5

1

(κ − κ0)4
[cos(κ0x − θ ) − i sin(κ0x − θ )] (ε � |κ − κ0| � 1).

(61)
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From the symmetry relation U(x, κ) = U∗(x, −κ∗) for real functions ψ(x, z),
we also have

U ∼ 12Ĉ

5

1

(κ + κ0)4
[cos(κ0x − θ ) + i sin(κ0x − θ )] (ε � |κ + κ0| � 1).

(62)

These two asymptotic expressions can be combined and re-written as

U ∼ 192κ4
0 Ĉ

5
(
κ2 − κ2

0

)4

[
cos(κ0x − θ ) − i

κ

κ0
sin(κ0x − θ )

]
(ε � |κ ± κ0| � 1).

(63)

This expression is consistent with (61)–(62) near the singularities. More
importantly, it has the property that, when expanded into power series of κ , the
coefficients of all even powers of κ are purely real and the coefficients of all
odd powers of κ are purely imaginary, as required by the outer solution (39),
with Un given by the recurrence relation (40) under the initial conditions (41).

Expanding (63) into power series of κ and requiring this expansion to be
consistent with the outer solution (39), we obtain the asymptotic behavior of
Un for n � 1 as

U2m ∼ D
m3

κ2m
0

cos(κ0x − θ ) , U2m+1 ∼ −i D
m3

κ2m+1
0

sin(κ0x − θ ) , (64)

where the coefficient D is related to Ĉ by

Ĉ = 5
√

2

64
κ4

0 D . (65)

Thus, by solving the recurrence relation (40) and from its large-n asymptotics,
we can obtain D and θ , and hence the complex constant C. Since the recurrence
Equation (40) depends only on the lattice function g(x), the constant C also
depends only on the lattice g(x) and not on μ, ε.

5. Linear stability problem

In this section, we determine the linear stability of the two solitary waves
whose locations are given by Equation (59). We will show that the solitary
wave located at x0 = θ /κ0 is linearly stable, while that located at (θ + π )/κ0 is
linearly unstable, and the unstable eigenvalue is exponentially small in ε. This
calculation follows the approach used in [23, 26] for the stability analysis of
solitary wavepackets of the fifth-order KdV equation and gap solitons of the
NLS equation with a linear lattice.

Let ψ s(z) be a solitary wave of Equation (5), whose leading-order term
ψ0 = A(z) in (21) is centered at z0 = z0s, where z0s = εx0s, and x0s is one of
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the two positions given in Equation (59). Consider the perturbed solution

�(z, t) = e−iμt
{
ψs(z) + [v(z) + w(z)]eλt + [v∗(z) − w∗(z)]eλ∗t

}
, (66)

where v, w � 1 are normal-mode perturbations. Substituting this perturbed
solution into Equation (1) and neglecting nonlinear terms in (v, w), we obtain
the linear-stability eigenvalue problem [6]

L0L1v = −λ2v. (67)

where

L0 = d2

dz2
+ (1 + g(x))ψ2

s − μ, L1 = d2

dz2
+ 3(1 + g(x))ψ2

s − μ. (68)

If there exist eigenvalues λ with positive real parts, then the solitary wave is
linearly unstable. Otherwise it is linearly stable.

When ε � 1, the discrete eigenvalue λ is small. To calculate this eigenvalue,
we expand v into powers of λ,

v = v0 + λ2v1 + λ4v2 + · · · . (69)

Substituting this expansion into Equation (67), at O(1), we have

L0L1v0 = 0. (70)

Recall that

L0ψ(x, z; x0) = 0, (71)

where ψ(x, z; x0) is the nonlocal solution to Equation (5) whose leading term
ψ0 = A(z) in (21) is centered at z = εx0. Taking the derivative of this equation
with respect to x0 and then setting x0 = x0s, we get

L1
∂ψ

∂x0

∣∣∣∣
x0=x0s

= 0. (72)

Hence the solution to Equation (70) is

v0 = ∂ψ

∂x0

∣∣∣∣
x0=x0s

. (73)

Notice from Equation (56) that

v0 ∼ 2εa

β
e−(z−z0s )/β + 4κ0πβ3Ĉ

ε4
e−πβκ0/2ε cos(κ0x0s − θ )e(z−z0s )/β, z � 1,

(74)

thus v0 contains a growing tail and is nonlocal. Since the discrete eigenfunction
v must be localized, this growing tail in v0 must be canceled by another
growing tail in λ2v1.



290 G. Hwang et al.

The equation for v1 is found from Equation (67) at O(λ2) as

L0L1v1 = −v0. (75)

Letting L1v1 = w0, we first solve

L0w0 = −v0. (76)

Since the growing tail in v0 is exponentially small, its contribution to a
likewise exponentially small growing tail in v1 (through Equation (75)) can be
ignored, because the localized (algebraically small) terms in v0 will turn out to
create a relatively larger (i.e., algebraically small) growing tail in v1. Thus, in
the calculation of w0, it suffices to take v0 as (73), with ψ given by the
perturbation series (29). The corresponding solution w0 can be expanded into
a perturbation series

w0 = εB(z) + ε3ŵ0(x, z) + · · · . (77)

Inserting this expansion into (76), at O(ε) we obtain

−∂2
x ŵ0 = B ′′(z) − μB(z) + (1 + g(x))A2(z)B(z) − A′(z) . (78)

The solvability condition of this equation yields the governing equation for
B(z) as

d2 B

dz2
− μB + A2 B = A′(z), (79)

hence

B(z) = 1

2
(z − z0s)A(z) . (80)

Now we solve for v1 from L1v1 = w0. This solution can be expanded as

v1 = εF(z) + ε3v̂1(x, z) + · · · . (81)

Substituting this expansion into L1v1 = w0, at O(ε) we get

−∂2
x v̂1 = F ′′(z) − μF(z) + 3(1 + g(x))A2(z)F(z) − 1

2
(z − z0s)A(z).

(82)

The solvability condition of this equation gives

d2 F

dz2
− μF + 3A2 F = 1

2
(z − z0s)A. (83)

Note that the homogeneous solution A′(z) of (83) is not orthogonal to the
inhomogeneous term, hence the solution F(z) to Equation (83) is nonlocal. For
our purpose, we seek a solution F(z) so that F(z) → 0 as z → −∞ and
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F(z) → F0e(z−z0s )/β for z � 1, where F0 is a constant. To determine F0, we
multiply Equation (83) by A′(z) and then integrate from −∞ to z � 1,∫ z

−∞
A′(z̃)

[
F ′′(z̃) − μF(z̃) + 3A2(z̃)F(z̃)

]
dz̃ = 1

2

∫ z

−∞
(z̃ − z0s)A(z̃)A′(z̃) dz̃ .

(84)

Employing integration by parts on the left-hand side and using the large-z
asymptotics of F(z) above, we can obtain the left integral in terms of F0. The
right integral approaches a constant as z → +∞, which can be readily obtained
using the functional form (21) of A(z). After these calculations, Equation (84)
yields F0 = aβ3/8. Hence, the corresponding large-z asymptotics of v1 is

v1 ∼ aβ3

8
ε e(z−z0s )/β (z � 1) . (85)

Inserting this growing tail of v1 and the growing tail of v0 in (74) into the
expansion (69) of v and utilizing the relation (65), the eigenvalue formula is
then found to be

λ2 = −5

2
κ5

0πβD · e−πβκ0/2ε

ε5
cos(κ0x0s − θ ) , (86)

where D and θ are obtained by solving the recurrence Equation (40). Note
that this eigenvalue is exponentially small in ε. In addition, since D > 0, the
solitary wave located at x0s = θ /κ0 is linearly stable, and the one located at
x0s = (θ + π )/κ0 is linearly unstable.

We remark in passing that the eigenvalue λ given by formula (86) is two
orders larger (in ε) than the eigenvalues found in earlier studies for solitary
wavepackets of the fifth-order KdV equation [26] and Bloch-wavepacket
solitons of the NLS equation with a linear lattice [23]. However, this does not
imply that the linear instability (for one of the two solitons) in the present
nonlinear lattice problem is stronger than those in the fifth-order KdV equation
and the NLS equation with a linear lattice. The reason is that the small parameter
ε in [23, 26] measures the wave peak amplitude, while in the present analysis ε

is a long-wave parameter. Indeed, the peak amplitude of solitary waves in our
analysis is O(1) rather than O(ε) (see Equation (6)). In the end of Section 2,
we mentioned an alternative treatment where, through rescaling, the solitary
wave becomes long and also features low amplitude of O(ε). This equivalent
analysis is the proper counterpart of those in [23, 26]. After the rescaling (8),
in fact, the stability eigenvalue is of the same order in ε as in [23, 26].

6. Numerical results

In this section, we present numerical results for solitary-wave profiles and their
linear-stability eigenvalues, and make a comparison with the above analytical
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results. The numerical algorithms for these computations can be found in [6].
In our computations, we take μ = 1 and the nonlinear periodic lattice to be

g(x) = g0 cos x, (87)

with g0 = 1. In this case, d = 2π and κ0 = 2π /d = 1. The numerical procedure
for solving the recurrence relation (40) is similar to that in [23]. Our computation
confirms that Un for n � 1 indeed approaches the asymptotic form (64) with

D = 0.1638 , θ = 0. (88)

Thus our theory predicts that the two solitary waves are located at x0 = 0
(maximum of g(x)) and x0 = π (minimum of g(x)), or equivalently z0 =
0 and z0 = επ , respectively. To borrow the terminology of gap solitons in
linear lattices, we call the solitary wave located at the lattice-maximum z0 = 0
“on-site,” and the other one located at the lattice-minimum z0 = επ “off-site.”
Numerically, we have computed these two solitary waves (for each value of ε),
and found them to be indeed located at the two z0 positions. To demonstrate,
these solitary waves for ε = 0.5 and 0.15 are displayed in Figure 1. Notice that
the on-site solitary waves have a single hump, while the off-site ones have
double humps. In addition, when ε is small, both on-site and off-site solitary
waves have approximately a sech profile, in agreement with the perturbation
series solution (29).

Next we numerically determine the linear stability of these solitary waves
and make a comparison with our analytical results. The whole linear-stability
spectra for the on-site and off-site solitary waves in Figure 1(b,d) at ε = 0.15
are shown in Figure 2(a,b). The spectrum in Figure 2(a) lies entirely on the
imaginary axis, indicating that this on-site solitary wave is linearly stable. In
this spectrum, a pair of purely imaginary discrete eigenvalues can be seen.
These are the counterparts of our analytical imaginary eigenvalues given by
Equation (86) with x0s = θ /κ0 = 0. The spectrum in Figure 2(b) contains a
real positive eigenvalue, indicating that the underlying off-site solitary wave is
linearly unstable, in agreement with our analytical prediction. In particular,
this positive eigenvalue is the counterpart of our analytical positive eigenvalue
given by Equation (86) with x0s = (θ + π )/κ0 = π .

Now we quantitatively compare the numerical linear-stability eigenvalues
with the analytical formula (86). For this purpose, we have numerically obtained
the discrete eigenvalues (as those in Figure 2(a,b)) for on-site and off-site
solitary waves at various values of ε, and the results are shown in Figure 2(c,d)
by dotted lines. The analytical eigenvalues from the formulae (86) for the
on-site and off-site cases are also plotted as solid lines, and excellent agreement
can be seen for both cases. This verifies that the analytical formula (86) is
asymptotically accurate.

Finally, we numerically examine how these solitary waves evolve nonlinearly
under weak perturbations. For this purpose, we again consider the on-site and
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Figure 1. Profiles of on-site and off-site solitary waves in the nonlinear lattice Equation (5)
at two values of ε = 0.5 and 0.15 (with μ = 1). Upper row: on-site solutions; lower row:
off-site solutions; left column: ε = 0.5; right column: ε = 0.15. The vertical stripes mark
locations of high nonlinear-lattice values.

off-site solitary waves in Figure 1(b,d) at ε = 0.15. We perturb these waves
initially by a small phase gradient as

�(z, 0) = ψ(z)eiγ z, (89)

where ψ(z) is the solitary wave and γ = 0.01. This phase-gradient perturbation
gives the solitary wave a small initial “push.” Evolutions of the on-site and
off-site solitary waves under this perturbation are obtained by simulating
Equation (1) with the above initial condition (89), and the results are displayed
in Figure 3. It is seen that the on-site solitary wave is not affected by this
perturbation and stays at its initial on-site position (see Figure 3(a)), consistent
with the linear stability of this on-site solitary wave established in Figure 2(a).
On the other hand, under the same perturbation, the off-site solitary wave
moves from its initial off-site position to a nearby on-site position and then
oscillates around it (see Figure 3(b)). When t → ∞, the oscillation eventually
dies out, and the solution evolves into a stationary on-site solitary wave. This
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Figure 2. (a,b) Stability spectra for the on-site and off-site solitary waves in Figure 1(b,d),
respectively (ε = 0.15); (c,d) comparison between numerical and analytical discrete eigenvalues
of on-site and off-site solitary waves at various values of ε; dotted lines: numerical values; solid
lines: analytical values from formulae (86). The arrows mark locations of the value of ε in (a,b).

nonlinear evolution scenario is consistent with the linear instability of this
off-site solitary wave, as shown in Figure 2(b).

7. Bound states

In addition to the two fundamental solitary waves obtained earlier, the
nonlinear-lattice Equation (5) also admits higher-order solitary waves, or bound
states [16]. These can be analytically constructed by matching the tails of
more than one of the nonlocal solitary waves discussed in Section 4. A similar
construction has been detailed in [24] for bound states of the NLS equation
with a linear sinusoidal periodic potential (see also [25]). Here we shall sketch
the analysis for bound states involving two nonlocal solitary waves in a
nonlinear lattice.

For simplicity, we assume the symmetric cosine nonlinear lattice (87), with
given depth g0. In this case, κ0 = 1 and θ = 0. Then we consider two nonlocal
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Figure 3. Nonlinear evolutions of the on-site (a) and off-site (b) solitary waves in Figure 1(b,d)
under phase-gradient perturbations (89). Red bars represent locations of high nonlinear-lattice
values.

solitary waves of (see Section 4), ψ+(z) and ψ−(z), whose main “sech” humps
are centered at z+

0 = εx+
0 and z−

0 = −εx−
0 , respectively, with z±

0 > 0, and
z+

0 + z−
0 � 1 (large separation). In addition, let ψ±(z) → 0 as z → ±∞, so

that the right-hand tail of ψ−(z) and the left-hand tail of ψ+(z) are nonlocal.
According to (56), the right-hand tail of ψ−(z) is given by

ψ−(z) ∼ 2ae−(z+z−
0 )/β − 4πβ3Ĉ

ε4
e−πβ/2ε sin x−

0 e(z+z−
0 )/β (z � −z−

0 ).
(90)

For symmetric lattice functions g(x), Equation (5) is invariant with respect to
reflection in z (z → −z). In addition, if ψ(z) is a solution to (5), so is −ψ(z).
Thus the left-hand tail of ψ+(z) can be obtained from (56) after reflection in z as

ψ+(z) ∼ ±2ae(z−z+
0 )/β ∓ 4πβ3Ĉ

ε4
e−πβ/2ε sin x+

0 e−(z−z+
0 )/β (z � z+

0 ).
(91)

Here, the upper sign in (91) corresponds to the case where the main humps of
the two nonlocal waves have the same polarity (sign), while the lower sign
pertains to the case of opposite polarity. To obtain a solitary wave (bound
state) comprising these two nonlocal waves, we require that the right-hand tail
(90) of ψ−(z) and the left-hand tail (91) of ψ+(z) match smoothly in the
overlap region −z−

0 � z � z+
0 . This requirement gives

sin x−
0 = sin x+

0 = ∓ a

2πĈ

ε4

β3
eπβ/2ε e−ε(x+

0 +x−
0 )/β. (92)

These matching equations are identical to those in [24] after a scaling in
(x−

0 , x+
0 , ε, Ĉ), and their solutions can be taken directly from [24]. Specifically,

for fixed μ > 0, ε > 0 and given sign (polarity), these equations admit an
infinite number of solutions (x−

0 , x+
0 ). Each solution corresponds to a bound
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Figure 4. A family of bound states with same polarity in Equation (5) for the cosine
nonlinear potential (87) with g0 = 1 and ε = 0.15: (a) the power curve; (b,c,d) bound-state
profiles at points of the power branches marked by the same letters in (a).

state whose leading-order approximation is

ψ(z) ∼ a sech
z + z−

0

β
± a sech

z − z+
0

β
, (93)

and a continuous family of bound states is obtained when ε or μ varies. Each
bound-state family contains triple branches and, for fixed ε, these branches
disappear when μ falls below a certain threshold (or equivalently, for fixed
μ, these branches disappear when ε falls below a certain threshold). To
demonstrate, we take the cosine nonlinear potential (87) with g0 = 1 and
ε = 0.15. In this nonlinear lattice, a family of bound states comprising
two fundamental solitons of the same polarity is numerically obtained and
displayed in Figure 4. The power curve P(μ) of this family, defined as

P(μ) =
∫ ∞

−∞
ψ2(z; μ) dz, (94)

contains three branches. On the lower branch, the bound state comprises two
on-site fundamental solitons which are separated approximately by 8 lattice
sites. On the upper branch, the bound state comprises two off-site fundamental
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solitons which are separated approximately by 7 lattice sites. On the middle
branch, the bound state comprises an on-site and an off-site fundamental
soliton which are separated approximately by 7.5 lattice sites. These solution
branches exist only when μ > μc ≈ 0.7887; thus, they do not bifurcate from
infinitesimal linear waves at the edge μ = 0 of the continuous spectrum
of Equation (1). These numerical results are in good agreement with the
theoretical predictions based on the formulae (92)–(93).

8. Concluding remarks

In this article, we developed an asymptotic theory for long solitary waves
and their linear stability in a general nonlinear lattice. Based on exponential
asymptotics, we showed that long solitary waves can only be located at two
positions relative to the nonlinear lattice, regardless of the number of local
maxima and minima in the lattice. In general, these positions are determined by
a certain recurrence relation that includes information beyond all orders of the
usual multiple-scale perturbation expansion. From the same recurrence relation,
one may also deduce that, of these two solitary waves, one is linearly stable
and the other is unstable. If the lattice is symmetric, then the solitary-wave
positions are simply the point of symmetry and half a lattice-period away
from it. In particular, for the special cosine lattice, the solitary wave centered
at the maximum/minimum of the lattice is linearly stable/unstable. We also
derived an analytical formula for the linear-stability eigenvalues, which are
exponentially small with respect to the long-wave parameter (the ratio between
the lattice period and the width of the solitary wave). The predictions of this
analytical formula were compared against numerical results and excellent
agreement was observed. Finally, it was pointed out that an infinite number of
multi-solitary-wave bound states are possible in a nonlinear lattice, and their
analytical construction was presented.

The exponential asymptotics procedure used in this investigation closely
resembles that in [23, 24] for linear lattices and in [25, 26] for the fifth-order
KdV equation. In fact, the integral Equation (48), which plays a key role
in the analysis, actually arises in all these three different physical models.
This suggests that our asymptotic procedure in the wavenumber domain is a
possibly universal treatment of multiscale solitary-wave problems, and it is
likely to find applications in other physical settings as well.
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Nonlinear refractive index of fs-laser-written waveguides in fused silica, Opt. Express
14:2151–2157 (2006).

13. S. INOUYE, M. R. ANDREW, J. STENGER, H. J. MIESNER, D. M. STAMPER-KURN, and
W. KETTERLE, Observation of Feshbach resonances in a Bose–Einstein condensate, Nature
392:151–154 (1998).

14. M. THEIS, G. THALHAMMER, K. WINKLER, M. HELLWIG, G. RUFF, R. GRIMM, and
J. H. DENSCHLAG, Tuning the scattering length with an optically induced Feshbach
resonance, Phys. Rev. Lett. 93:123001 (2004).

15. R. YAMAZAKI, S. TAIE, S. SUGAWA, and Y. TAKAHASHI, Submicron spatial modulation of an
interatomic interaction in a Bose–Einstein condensate, Phys. Rev. Lett. 105:050405 (2010).

16. H. SAKAGUCHI and B. A. MALOMED, Matter-wave solitons in nonlinear optical lattices,
Phys. Rev. E 72:046610 (2005).

17. G. FIBICH, Y. SIVAN, and M. I. WEINSTEIN, Bound states of nonlinear Schrödinger
equations with a periodic nonlinear microstructure, Physica D 217:31–57 (2006).

18. A. S. RODRIGUES, P. G. KEVREKIDIS, M. A. PORTER, D. J. FRANTZESKAKIS, P. SCHMELCHER,
and A. R. BISHOP, Matter-wave solitons with a periodic, piecewise-constant scattering
length, Phys. Rev. A 78:013611 (2008).

19. M. A. PORTER, P. G. KEVREKIDIS, B. A. MALOMED, and D. J. FRANTZESKAKIS, Modulated
amplitude waves in collisionally inhomogeneous Bose–Einstein condensates, Physica D
229:104–115 (2007).



Solitary Waves and Their Linear Stability in Nonlinear Lattices 299

20. J. BELMONTE-BEITIA, V. M. PÉREZ-GARCÍA, V. VEKSLERCHIK, and P. J. TORRES, Lie
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