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a b s t r a c t

Linear stability of both sign-definite (positive) and sign-indefinite solitary waves near pitchfork
bifurcations is analyzed for the generalized nonlinear Schrödinger equations with arbitrary forms of
nonlinearity and external potentials in arbitrary spatial dimensions. Bifurcations of linear-stability
eigenvalues associated with pitchfork bifurcations are analytically calculated. Based on these eigenvalue-
bifurcation formulae, linear stability of solitary waves near pitchfork bifurcations is then determined.
It is shown that the base solution branch switches stability at the bifurcation point. In addition, the
two bifurcated solution branches and the base branch have the opposite (same) stability when their
power slopes have the same (opposite) sign. Furthermore, the stability of these solution branches can be
determined almost exclusively from their power diagram (especially for positive solitary waves). These
stability results are also compared with the Hamiltonian–Krein index theory, and they are shown to be
consistent with each other. Lastly, various numerical examples are presented, and the numerical results
confirm the analytical predictions both qualitatively and quantitatively.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Bifurcation of solitary waves is an important phenomenon
in nonlinear wave equations. One type of bifurcation is the so-
called pitchfork bifurcation, where a base branch of solitary
waves exists on both sides of the bifurcation point, but two
additional solution branches bifurcate out to only one side of
the bifurcation point. The most common pitchfork bifurcation
of solitary waves is the symmetry-breaking bifurcation, where
solitary waves on the base branch have certain symmetry, but
solitary waves on the bifurcated branches lose that symmetry
and become asymmetric. This symmetry-breaking bifurcation
occurs frequently in various nonlinear wave models originating
from diverse physical disciplines (such as nonlinear optics and
Bose–Einstein condensates). For instance, this bifurcation has
been reported in the nonlinear Schrödinger (NLS) equations with
external potentials [1–11]. Physically these NLS equations govern
nonlinear light propagation in refractive-index-modulated optical
media [12,13] and atomic interaction inBose–Einstein condensates
loaded in magnetic or optical traps (in the latter community
these equations are called the Gross–Pitaevskii equations [14]).
This symmetry-breaking bifurcation has also been reported in the
linearly-coupled NLS equations which govern light transmission
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in dual-core couplers [15,16]. Analytical studies of symmetry-
breaking bifurcations have also been made, mostly for the NLS
equations with special types of nonlinearities and potentials
(see [1,4,6,8,9,11] for instance). In [1] the authors considered a
one-dimensional NLS equation with focusing cubic nonlinearity
and a Dirac-type symmetric double-well potential, and showed
the presence of symmetry breaking bifurcation as well as the
exchange of dynamical stability from the symmetric branch
to the asymmetric branch at the bifurcation point. In [4] the
authors considered a class of multi-dimensional NLS equations
with focusing cubic nonlinearity and symmetric potentials, and
showed that symmetry-breaking bifurcation occurs when the
power (also called the squared norm in mathematics and particle
numbers in Bose–Einstein condensation) of the symmetric solitary
waves increases above a certain threshold, provided that the
first two eigenvalues of the linear potential are sufficiently close
to each other (such as in double-well potentials with large
separation between the two wells). In addition, the authors
showed that above this power threshold, the symmetric states
become unstable, and a pair of orbitally stable asymmetric states
appear. In [6], the author considered a class of multi-dimensional
NLS equations with defocusing power nonlinearity and symmetric
double-well potentials in the semiclassical limit, and showed
that symmetry-breaking bifurcations occur for antisymmetric
solitary waves. In [8], the authors considered a class of one-
dimensional NLS equations with focusing power nonlinearity
and a symmetric potential, and showed that symmetry-breaking
bifurcation occurs for positive symmetric solitary waves if the
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potential satisfies certain requirements. In addition, they showed
that the symmetric branch changes stability at the bifurcation
point, and the asymmetric branches can be orbitally stable or
unstable under different conditions. In [9], the authors considered
the same class of equations as in [8] and obtained normal forms
for these symmetry-breaking bifurcations. In [11], this author
considered the general class of NLS equations with arbitrary forms
of nonlinearities andpotentials in arbitrary spatial dimensions, and
derived the general analytical conditions for pitchfork bifurcations
as well as the power formulae for solitary-wave branches near the
pitchfork bifurcation point.

In this paper, we consider the general nonlinear Schrödinger
equations with arbitrary forms of nonlinearity and potentials in
arbitrary spatial dimensions (as in [11]). These equations include
the Gross–Pitaevskii equations in Bose–Einstein condensates
with attractive or repulsive atomic interactions and nonlinear
light-transmission equations in linear potentials or nonlinear
lattices with power or non-power nonlinearities as special cases
[12–14,17]. For this large class of equations, we determine the
linear stability of both sign-definite (positive) and sign-indefinite
solitary waves near pitchfork bifurcations. Our strategy is to
explicitly calculate the bifurcation of linear-stability eigenvalues
from the origin, which always takes place whenever a pitchfork
bifurcation occurs (see Theorem 3 in Section 3). It turns out that
this eigenvalue bifurcation from the origin is intimately related
to the power slopes of solution branches at the bifurcation point.
This finding enables us to determine the linear stability of solution
branches from the shape of the power diagram.

Based on this eigenvalue bifurcation from the origin and
assuming no other instabilities interfere, linear stability of solitary
waves near pitchfork bifurcations is then obtained (see Theorem 4
in Section 3). We show that the base solution branch always
switches stability at the bifurcation point. In addition, the
bifurcated solution branches and the base branch have opposite
(same) stability when their power slopes have the same (opposite)
sign. Furthermore, the stability of these solution branches can
be determined almost exclusively from their power diagram
(especially for positive solitary waves, see Theorem 5). These
stability results are also compared with the Hamiltonian–Krein
index theory, and they are shown to be consistent with each other.
Lastly, we present various numerical examples which contain
double-well or periodic potentials and focusing or defocusing
nonlinearities of Kerr (cubic) or non-Kerr types. These numerical
results confirm the analytical predictions both qualitatively and
quantitatively.

One unusual feature on the linear stability of these pitchfork
bifurcations is that the base and bifurcated solution branches
(on the same side of the bifurcation point) can be both stable
or both unstable, which contrasts such bifurcations in finite-
dimensional dynamical systems where the base and bifurcated
branches generally have opposite stability [18].

Compared with the earlier analytical results on stability of
pitchfork bifurcations (such as in [1,4,6,8]), our stability results
have the following three distinctive features. First, our results
apply to the general NLS equations with no restriction on
the nonlinearity, potential or spatial dimensions. Second, we
established a direct link between linear stability and the shape of
the power diagram. Third, we derived explicit analytical formulae
for linear-stability eigenvalues of solitary waves, which can be
useful when quantitative prediction of linear instability is needed.

2. Preliminaries

We consider the generalized nonlinear Schrödinger (GNLS)
equations with arbitrary forms of nonlinearity and external
potentials in arbitrary spatial dimensions. These equations can be
written as

iUt + ∇
2U + F(|U|

2, x)U = 0, (2.1)

where ∇
2

= ∂2/∂x21 + ∂2/∂x22 + · · · + ∂2/∂x2N is the Laplacian
in the N-dimensional space x = (x1, x2, . . . , xN), and F(·, ·)
is a general real-valued function which includes nonlinearity as
well as external potentials. These GNLS equations include the
Gross–Pitaevskii equations in Bose–Einstein condensates [14] and
nonlinear light-transmission equations in linear potentials and
nonlinear lattices [12,13,17,19] as special cases. Notice that these
equations are conservative and Hamiltonian.

For a large class of nonlinearities and potentials, this equation
admits stationary solitary waves

U(x, t) = eiµtu(x), (2.2)

where u(x) is a real and localized function in the square-integrable
functional space which satisfies the equation

∇
2u − µu + F(u2, x)u = 0, (2.3)

and µ is a real-valued propagation constant. Examples of such
solitary waves can be found in numerous books and articles (see
[12,13] for instance). In these solitary waves,µ is a free parameter,
and u(x) depends continuously on µ. Under certain conditions,
these solitary waves undergo bifurcations at special values of µ.
Three major types of bifurcations have been classified [11]. Of
these bifurcations, stability of solitary waves near saddle–node
bifurcations has been analyzed in [20,21]. It was shown that no
stability switching takes place at a saddle–node bifurcation, which
dispels a pervasive misconception that such stability switching
should occur. In this paper, we study the stability of solitary waves
near pitchfork bifurcations.

A pitchfork bifurcation in Eq. (2.1) is where on one side of the
bifurcation point µ = µ0, there is a single solitary wave branch
u0(x;µ); but on the other side of µ0, three distinct solitary-wave
branches appear. One of them is a smooth continuation of the
u0(x;µ) branch, but the other two branches u±(x;µ) are new and
they bifurcate out at µ = µ0. In this paper, the u0(x;µ) branch
will be called the base branch, and the u±(x;µ) branches will be
called the bifurcated branches.

To present conditions for pitchfork bifurcations, we introduce
the linearization operator of Eq. (2.3),

L1 = ∇
2
− µ+ ∂u[F(u2, x)u], (2.4)

which is a linear Schrödinger operator. We also introduce the
standard inner product of functions,

⟨f , g⟩ =


∞

−∞

f ∗(x)g(x)dx,

where the superscript ‘∗’ represents complex conjugation. In
addition, we define the power of a solitary wave u(x;µ) as

P(µ) = ⟨u, u⟩ =


∞

−∞

u2(x;µ)dx,

and denote the power functions of the base and bifurcated solution
branches as

P0(µ) ≡ ⟨u0(x;µ), u0(x;µ)⟩,
P±(µ) ≡ ⟨u±(x;µ), u±(x;µ)⟩.

If a bifurcation occurs atµ = µ0, by denoting the corresponding
solitary wave and the L1 operator as

u0(x) ≡ u(x;µ0), L10 ≡ L1|µ=µ0, u=u0 ,

then L10 should have a discrete zero eigenvalue. This is a nec-
essary condition for all bifurcations, not just for pitchfork bifur-
cations. In [11], the following sufficient conditions for pitchfork
bifurcations were derived.
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Theorem 1. Assume that zero is a simple discrete eigenvalue of L10.
Denote the real eigenfunction of this zero eigenvalue as ψ(x), and
denote

G(u; x) ≡ F(u2
; x)u, Gk(x) ≡ ∂kuG|u=u0 , k = 2, 3. (2.5)

Then if

⟨u0, ψ⟩ = ⟨G2, ψ
3
⟩ = 0, (2.6)

R ≡ ⟨1 − G2L−1
10 u0, ψ

2
⟩ ≠ 0, (2.7)

and

S ≡ ⟨G3, ψ
4
⟩ − 3⟨G2ψ

2, L−1
10 (G2ψ

2)⟩ ≠ 0, (2.8)

a pitchfork bifurcation occurs at µ = µ0. The new solitary waves
u±(x;µ) bifurcate to the right (left) side of µ = µ0 if the constants
R and S have the same (opposite) sign.

Note. The above theorem was derived under the assumption
that the function F(u2

; x) is infinitely differentiable with respect
to u (this assumption was implicitly made but not explicitly
stated in [11]). Under this assumption, the base solution branch
u0(x;µ) is infinitely differentiable with respect to µ, and the
bifurcated solution branches u±(x;µ) are infinitely differentiable
with respect to

√
µ− µ0, due to the power series of these

solutions obtained in [11].

In [11], slopes of power functions for the base and bifurcated
solitary-wave branches at the pitchfork bifurcation pointwere also
derived.

Theorem 2. Suppose the conditions in Theorem 1 hold and a pitch-
fork bifurcation occurs at µ = µ0. Then power slopes of the base
and bifurcated solitary-wave branches at the bifurcation point are
given as

P ′

0(µ0) = 2⟨u0, L−1
10 u0⟩, (2.9)

and

P ′

+
(µ0) = P ′

−
(µ0) = P ′

0(µ0)+
6R2

S
. (2.10)

Here (and in later text) the prime represents the derivative.

In this article, we consider pitchfork bifurcations in the GNLS
equations (2.1) where the bifurcation conditions in Theorem 1
hold.

The main goal of this paper is to determine the linear stability
of solitary waves near these pitchfork bifurcations. To study this
linear stability, we perturb the solitary waves as [13, p. 176]

U(x, t) = eiµt

u(x)+ [v(x)+ w(x)]eλt

+ [v∗(x)− w∗(x)]eλ
∗t

, (2.11)

where v,w ≪ 1 are normal-mode perturbations, and λ is the
mode’s eigenvalue. Inserting this perturbed solution into (2.1) and
linearizing, we obtain the following linear eigenvalue problem
LΦ = −iλΦ, (2.12)
where

L =


0 L0
L1 0


, Φ =


v
w


, (2.13)

L0 = ∇
2
− µ+ F(u2, x), (2.14)

and L1 is as defined in Eq. (2.4). Both L0 and L1 are linear Schrödinger
operators and are Hermitian. In the later text, operator L will be
called the linear-stability operator. The eigenvalue problem (2.12)
can also be written as
L0w = −iλv, L1v = −iλw. (2.15)
If this linear-stability eigenvalue problem admits eigenvalues λ
whose real parts are positive, then the corresponding normal-
mode perturbation in Eq. (2.11) exponentially grows, hence the
solitary wave u(x) is linearly unstable. Otherwise it is linearly
stable. Notice that eigenvalues of this linear-stability problem
always appear in quadruples (λ,−λ, λ∗,−λ∗)when λ is complex,
or in pairs (λ,−λ)when λ is real or purely imaginary.

Using the L0 operator, the solitary wave equation (2.3) can be
written as

L0u = 0. (2.16)

Differentiating this equation with respect to µ, we find that

L1uµ = u, (2.17)

where uµ ≡ ∂u/∂µ. These two relations will be useful in later
analysis. Due to (2.16), the linear-stability eigenvalue problem
(2.15) admits a zero eigenmode for every solitary wave u(x;µ):

λ = 0, v = 0, w = u. (2.18)

This zero eigenmode is related to the phase invariance of the GNLS
equations (2.1), which says that if U(x, t) is a solution of (2.1), so
is U(x, t)eiθ for any real phase constant θ .

The GNLS equations (2.1) may be viewed as an infinite-
dimensional dynamical system, with solitary waves (2.2) being
its fixed points. In this view, it is tempting to deduce the
stability of pitchfork bifurcations in the GNLS equations (2.1)
from those in finite-dimensional dynamical systems. In finite-
dimensional dynamical systems, it has been shown that at a
pitchfork bifurcation point, the base fixed-point branch changes
its stability. In addition, the two bifurcated fixed-point branches
have the opposite stability of the base fixed-point branch (on the
same side of the bifurcation point) [18]. However, these stability
results were derived under the assumption that zero is a simple
eigenvalue of the Jacobian (linearization) matrix of the system
at the bifurcation point (see Ref. [18, Theorem 3.4.1, Hypothesis
SN1]). For the GNLS equations (2.1), the counterpart of the Jacobian
matrix is the linear-stability operator L defined in Eq. (2.13),
but zero is not a simple eigenvalue of L at the bifurcation point
(see Eq. (3.5) below). This means that we cannot apply the above
stability results from finite-dimensional dynamical systems to
pitchfork bifurcations in the GNLS equations (2.1). Insteadwe have
to analyze this stability for Eq. (2.1) separately. As we will see,
stability for pitchfork bifurcations in Eq. (2.1) shows novel features
which do not exist in finite-dimensional dynamical systems. It
is relevant to mention that the same phenomenon occurs for
saddle–node bifurcations as well, where it was shown in [20,21]
that no stability switching occurs in the GNLS equations (2.1) even
though such stability switching generally takes place in finite-
dimensional dynamical systems [18].

3. Main results

Our stability analysis starts with the basic fact that, at a
pitchfork bifurcation point µ = µ0, L10 has a discrete zero
eigenvalue (see earlier text). With the eigenfunction of this zero
eigenvalue denoted as ψ(x) (see Theorem 1), we have

L10ψ = 0. (3.1)

Thus at the bifurcation point µ = µ0, in addition to the phase-
invariance-induced zero eigenmode (2.18), the linear-stability
eigenvalue problem (2.15) also admits a bifurcation-induced zero
eigenmode,

λ = 0, v = ψ, w = 0. (3.2)

Away from the bifurcation point (µ ≠ µ0), while the phase-related
zero eigenvalue (2.18) remains at the origin, the bifurcation-
induced zero eigenvalue (3.2) bifurcates out since zero is not an
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eigenvalue in L1 any more (see Lemma 1 in Section 4). Thus our
approach is to analytically calculate how this bifurcation-induced
zero eigenvalue moves out of the origin when µ moves away
from µ0. We will show that this zero eigenvalue only bifurcates
out along the real or imaginary axis as a ±λ pair. Bifurcation
along the real axis creates instability, while bifurcation along
the imaginary axis does not create instability. Thus, based on
which direction this zero eigenvalue bifurcates and assuming no
other instabilities interfere, linear-stability behaviors of solitary
waves near the bifurcation point will be analytically obtained. An
important feature of this zero-eigenvalue bifurcation is that the
bifurcated eigenvalues are intimately related to the power slopes
of solution branches at the bifurcation point. This opens the door
for us to determine linear stability from the shape of the power
diagram. In the special case of positive solitary waves, we will
show that there are indeed no other instabilities interfering near
a pitchfork bifurcation, and linear stability of these waves can be
read off directly from the power diagram.

For later analysis, we introduce two additional notations,

L00 ≡ L0|µ=µ0, u=u0 , L0 ≡ Lµ=µ0,u=u0 . (3.3)

In view of Eq. (2.16), we have

L00u0 = 0, (3.4)

thus zero is a discrete eigenvalue of L00. From Eqs. (2.18) and (3.2),
we have

L0


0
u0


= L0


ψ
0


= 0, (3.5)

so zero is also a (multifold) discrete eigenvalue of L0.
On the bifurcation of the zero eigenvalue in the linear-stability

operator L when µ ≠ µ0, we have the following main results.

Theorem 3. Assume that zero is a simple discrete eigenvalue of L00
and L10. Near a pitchfork bifurcation point µ = µ0 in Theorem 1, if

⟨ψ, L−1
00 ψ⟩ ≠ 0, P ′

0(µ0) ≠ 0, P ′

±
(µ0) ≠ 0, (3.6)

then a single pair of non-zero eigenvalues±λ inL bifurcate out along
the real or imaginary axis from the origin when µ ≠ µ0;

(a) on the base solution branch u0(x;µ), the bifurcated eigenvalues
λ0 are given asymptotically by

(λ0)2 → α(µ− µ0), µ → µ0, (3.7)

where the real constant α is

α =
R

⟨ψ, L−1
00 ψ⟩

≠ 0; (3.8)

(b) on the two bifurcated solution branches u±(x;µ), the bifurcated
eigenvalues λ± are given asymptotically by

(λ±)2 → β(µ− µ0), µ → µ0, (3.9)

where the real constant β is

β = −2α
P ′

±
(µ0)

P ′

0(µ0)
≠ 0. (3.10)

Remark 1. The present problem does not involve multi-scale
wave coupling. This allows us to calculate eigenvalue bifurcations
from the origin inLwhen 0 < |µ−µ0| ≪ 1 by perturbation series
expansions (without worrying about effects beyond all orders of
the perturbation expansion [13,22–26]).

Remark 2. In this theorem, the assumption of zero being a simple
discrete eigenvalue of L00 and L10 is satisfied in all one-dimensional
bifurcations and many higher-dimensional bifurcations.
A direct consequence of Theorem 3 is the following Theorem 4
which summarizes the qualitative linear-stability properties of
solitary waves near a pitchfork bifurcation point.

Theorem 4. Suppose at a pitchfork bifurcation point µ = µ0, the
solitary wave u0(x) is linearly stable (i.e., all its eigenvalues are
either zero or purely imaginary); and when µ moves away from
µ0, no complex eigenvalues bifurcate out from non-zero points on
the imaginary axis. Then under the same conditions of Theorem 3,
the base solution branch u0(x;µ) undergoes stability switching at
the bifurcation point (with the right (left) side being unstable if the
constant α in (3.8) is positive (negative)). Near the bifurcation point,
the two bifurcated solution branches u±(x;µ) and the base solution
branch (on the same side of the bifurcation point) have opposite
(same) linear stability when their power slopes P ′

0(µ0) and P ′
±
(µ0)

have the same (opposite) sign.

Based on this theorem, there are eight possible types of pitch-
fork bifurcations in the GNLS equations (2.1), and their schematic
solution-bifurcation diagrams (with stability information indi-
cated) are displayed in Fig. 1. Here the four types in the upper
(lower) row are when the bifurcation occurs forµ > µ0 (µ < µ0).
The bifurcations in Fig. 1(a), (e) and (b), (f) are qualitatively the
same as the supercritical and subcritical pitchfork bifurcations in
finite-dimensional dynamical systems [18]. In these cases, the bi-
furcated solution branches and the base solution branch (on the
same side of the bifurcation point) have opposite stability. The bi-
furcations in Fig. 1(c), (d), (g) and (h), however, are different. In
these cases, the bifurcated solution branches and the base branch
(on the same side of the bifurcation point) have the same stabil-
ity (all stable or all unstable), which seems to have no counterpart
in the finite-dimensional dynamical-system theory [18]. Note that
the bifurcation in Fig. 1(c) has been reported in [8], but the bifur-
cations in Fig. 1(d), (g) and (h) have not been discovered before to
the author’s best knowledge.

Remark 3. In Theorem 4, the sign of α plays a critical role for the
stability outcome. This sign can be determined as follows. From
formula (3.8), we see that the sign of α is determined by the signs
of R and ⟨ψ, L−1

00 ψ⟩. The sign of R can be read off from the shape of
the power diagram. Specifically, we know from formula (2.10) that
P ′

±
(µ0) − P ′

0(µ0) and S have the same sign. We also know from
Theorem 1 that the side ofµ = µ0 to which the bifurcation occurs
(left or right) determines the sign of the product RS (negative or
positive). Thus using the sign of P ′

±
(µ0) − P ′

0(µ0) and the side of
bifurcation from the power diagram, we can obtain the sign of R.
The sign of α is then obtained accordingly. Specifically, the sign of
α can be determined as follows.

(i) If the bifurcation occurs for µ > µ0, then the sign of α is
equal to the sign of ⟨ψ, L−1

00 ψ⟩multiplying the sign of P ′
±
(µ0)−

P ′

0(µ0);
(ii) If the bifurcation occurs for µ < µ0, then the sign of α

is opposite of the sign of ⟨ψ, L−1
00 ψ⟩ multiplying the sign of

P ′
±
(µ0)− P ′

0(µ0).

After the sign of α is obtained, stability of all the solution
branches can then be read off from the power diagram by
Theorem 4. For instance, when ⟨ψ, L−1

00 ψ⟩ < 0 and the bifurcation
occurs for µ > µ0, schematic power-stability diagrams of all
six possible bifurcation scenarios are displayed in Fig. 2. This list
of power-stability diagrams is compiled according to the signs of
P ′

0(µ0), P ′
±
(µ0), and P ′

±
(µ0) − P ′

0(µ0). If ⟨ψ, L−1
00 ψ⟩ < 0 and

the bifurcation occurs for µ < µ0, schematic power-stability
diagrams of all six possible bifurcation scenarios are displayed
in Fig. 3. If ⟨ψ, L−1

00 ψ⟩ > 0, these power diagrams remain the
same, but the stability of all their solution branches is flipped
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Fig. 1. (Color online) Schematic solution-bifurcation diagrams (with stability information indicated) for the eight types of pitchfork bifurcations in the GNLS equations (2.1).
Plotted in this figure are deviations u(x0;µ) − u0(x0) versus µ at a representative x0 position. Solid blue and dashed red lines represent stable and unstable branches
respectively.
Fig. 2. (Color online) Six possible scenarios of the power-stability diagram for pitchfork bifurcations in the GNLS equations (2.1) when ⟨ψ, L−1
00 ψ⟩ < 0 and the bifurcation

occurs for µ > µ0 . Solid blue and dashed red lines indicate stable and unstable branches respectively. Since the two bifurcated solution branches u±(x;µ) have the same
power slope at the bifurcation point (see Theorem 2), their power curves are shown by a single line in this schematic figure. If ⟨ψ, L−1

00 ψ⟩ > 0, then the stability of every
power branch is flipped.
(with ‘‘stable’’ changed to ‘‘unstable’’ and vise versa). These power-
stability diagrams are useful for us to quickly predict linear stability
from the power diagram.

One might notice that the power diagrams of pitchfork
bifurcations in Figs. 2 and 3 split out to two rather than three
branches at the bifurcation point, which is different from the
solution-bifurcation diagrams in Fig. 1. The reason is that the two
bifurcated solution branches u±(x;µ) have the same power slope
at the bifurcation point (see Theorem 2), thus their power curves
are drawnas the same line in these schematic power diagrams [11].

The above results (i.e., Theorems 1–4) are valid for all real-
valued solitary waves u(x;µ) in the GNLS equations (2.1),
including both sign-definite (positive) and sign-indefinite (sign-
changing) solitary waves. If the solitary waves are positive, then
our stability results can be made stronger and more explicit.
For positive solitary waves in Eq. (2.1), it is known that all
eigenvalues in the linear-stability operatorL are either purely real
or purely imaginary (see Ref. [13, Theorem 5.2]). In addition, linear
stability of the solitary wave u0(x) at the bifurcation point can
be determined by the generalized Vakhitov–Kolokolov stability
criterion (Ref. [13, Theorem 5.2]). Furthermore, zero is the largest
eigenvalue of L0 and is simple [27], and ⟨ψ, L−1

00 ψ⟩ < 0 since
operator L00 is semi-negative definite. Using this information,
together with Theorem 4 and Remark 3, we can obtain the
following stronger and more explicit theorem for the linear
stability of positive solitary waves near a pitchfork bifurcation
point. This theorem derives linear stability of these solitary waves
almost exclusively from their power diagram.

Theorem 5. Suppose solitary waves in the GNLS equations (2.1) are
positive near a pitchfork bifurcation point µ = µ0. If P ′

0(µ0) < 0 or
L10 hasmore than one positive discrete eigenvalue, then solitarywaves
on both the base and bifurcated branches (near the bifurcation point)
are linearly unstable. If P ′

0(µ0) > 0, P ′
±
(µ0) ≠ 0, and L10 has only
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Fig. 3. (Color online) Six possible scenarios of the power-stability diagram for pitchfork bifurcations in the GNLS equations (2.1) when ⟨ψ, L−1
00 ψ⟩ < 0 and the bifurcation

occurs for µ < µ0 . Solid blue and dashed red lines indicate stable and unstable branches respectively. If ⟨ψ, L−1
00 ψ⟩ > 0, then stability of every power branch is flipped.
one positive discrete eigenvalue and a simple discrete zero eigenvalue,
then

(1) when the bifurcation occurs for µ > µ0 and P ′
±
(µ0) < P ′

0(µ0),
the base solution branch u0(x;µ) is linearly stable for µ < µ0
and unstable for µ > µ0, whereas the bifurcated branches are
linearly stable if P ′

±
(µ0) > 0 and unstable if P ′

±
(µ0) < 0;

(2) when the bifurcation occurs for µ > µ0 and P ′
±
(µ0) > P ′

0(µ0),
the base solution branch is linearly unstable for µ < µ0 and
stable for µ > µ0, whereas the bifurcated branches are always
linearly unstable;

(3) when the bifurcation occurs for µ < µ0 and P ′
±
(µ0) < P ′

0(µ0),
the base solution branch is linearly unstable for µ < µ0 and
stable for µ > µ0, whereas the bifurcated branches are linearly
stable if P ′

±
(µ0) > 0 and unstable if P ′

±
(µ0) < 0;

(4) when the bifurcation occurs for µ < µ0 and P ′
±
(µ0) > P ′

0(µ0),
the base solution branch is linearly stable for µ < µ0 and
unstable for µ > µ0, whereas the bifurcated branches are always
linearly unstable.

In terms of solution-bifurcation diagrams, case (1) in this
theorem belongs to pitchfork bifurcations of type (a) or (c) in Fig. 1,
case (2) belongs to pitchfork bifurcations of type (b) in Fig. 1, case
(3) belongs to pitchfork bifurcations of type (e) or (g) in Fig. 1, and
case (4) belongs to pitchfork bifurcations of type (f) in Fig. 1. Thus
for positive solitary waves in the GNLS equations (2.1), pitchfork
bifurcations of type (d, h) in Fig. 1 cannot occur.

In terms of power-bifurcation diagrams, case (1) belongs to
pitchfork bifurcations of type (b, c) in Fig. 2, case (2) belongs to
pitchfork bifurcations of type (a) in Fig. 2, case (3) belongs to
pitchfork bifurcations of type (b, c) in Fig. 3, and case (4) belongs to
pitchfork bifurcations of type (a) in Fig. 3.

Remark 4. For positive solitary waves, pitchfork bifurcation
cannot occur when L10 does not have any positive discrete
eigenvalues (i.e., when zero is the largest discrete eigenvalue
of L10). The reason is that for any linear Schrödinger operator,
the eigenfunction of its largest eigenvalue is always positive
(sign-definite) [27]. Thus for this largest zero eigenvalue of L10,
its eigenfunction ψ is positive. Since u0(x) is also positive,
then ⟨u0, ψ⟩ ≠ 0, which violates the conditions of pitchfork
bifurcations in Theorem 1. Thus this case is not mentioned in
Theorem 5.
4. Connection with the Hamiltonian–Krein index theory

In recent years, a Hamiltonian–Krein index theory was devel-
oped for the qualitative study of linear stability of nonlinear waves
in Hamiltonian systems [28–32]. Our linear-stability eigenvalue
problem (2.12) can be rewritten as

0 1
−1 0

 
−L1 0
0 −L0

 Φ = λΦ, (4.1)

where Φ = [v,−iw]
T , and the superscript ‘T ’ represents the

transpose of a vector. Denoting p(A) as the number of positive
eigenvalues in an operator A and denoting p(α) = 1 if a constant
α > 0 and p(α) = 0 if α < 0, then applying that index theory to
this eigenvalue problem, we quickly get the following theorem.

Theorem 6. Near a pitchfork bifurcation point µ = µ0 in Theorem 1,
assume that the continuous spectra of L0 and L1 are negative and
bounded away from zero. In addition, assume that L0 and L1 have
a finite number of positive discrete eigenvalues (counting algebraic
multiplicity). Then under the same assumptions and conditions
in Theorem 3, the following Hamiltonian–Krein index formulae hold,

kr + 2kc + 2ki = p(B1)+ p(B0), (4.2)
kr ≥ |p(B1)− p(B0)|. (4.3)

Here kr is the number of positive real eigenvalues in (4.1), kc is the
number of quadruplets of eigenvalues in (4.1) with nonzero real and
imaginary parts, and ki is the number of pairs of purely imaginary
eigenvalues in (4.1) with negative Krein signature, counting their
algebraic multiplicities. Operators B1 and B0 are defined as

B1 = L1|ker(L0)⊥ , B0 = L0|ker(L1)⊥ ,

and p(B1), p(B0) are given by the formulae

p(B1) = p(L1)−


p(P ′(µ)), µ ≠ µ0,
p(P ′

0(µ0)), µ = µ0,
(4.4)

and

p(B0) = p(L0)−


0, µ ≠ µ0,

p(⟨ψ, L−1
00 ψ⟩), µ = µ0.

(4.5)

Remark 5. Obviously p(B1) and p(B0)must be nonnegative.
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Remark 6. In the index theory, the quantity subtracted on the
right side of Eq. (4.4) is originally p(⟨u, L−1

1 u⟩). When µ ≠ µ0, we
see from Eq. (2.17) that L−1

1 u = uµ, thus p(⟨u, L−1
1 u⟩) = p(P ′(µ)).

When µ = µ0, we see from Eq. (2.9) that p(⟨u0, L−1
10 u0⟩) =

p(P ′

0(µ0)). Thus we obtain the more explicit formula (4.4).

Remark 7. According to the assumption in Theorem 3, zero is a
simple discrete eigenvalue of L10 with eigenfunctionψ at µ = µ0,
thus p(⟨ψ, L−1

00 ψ⟩) needs to be subtracted in the formula (4.5).
When µ ≠ µ0, under the conditions of pitchfork bifurcations in
Theorem 1, this zero eigenvalue in L1 bifurcates out (see Lemma 1
below), thus the kernel of L1 is empty, which means that B0 = L0
and p(B0) = p(L0).

Remark 8. One of the main assumptions in Theorem 6 is that the
continuous spectra of L0 and L1 are negative and the number of
their positive eigenvalues is finite. This means that Theorem 6
does not apply to gap solitons in the GNLS equations (2.1), which
exist inside a gap between two continuous-spectrum bands. Our
Theorems 3 and 4, however, apply to all solitons including gap
solitons.

In order to use Theorem 6, we need to know p(L0) and p(L1).
A way to get p(L0) is the following. Under the assumption in
Theorem 3, zero is a simple discrete eigenvalue of L00. Since this
zero eigenvalue persists in L0 when µ ≠ µ0 (see (2.16)), we find
that

p(L0) = p(L00), |µ− µ0| ≪ 1.

To get p(L00), we notice that for the stability analysis of pitchfork
bifurcations to be meaningful, the solitary wave u0(x) at the bifur-
cation point µ = µ0 should be linearly stable (see assumptions in
Theorem 4). Then in view of Eq. (4.3), it should be minimally true
that p(B1) = p(B0) atµ = µ0. Using the formulae (4.4)–(4.5), we
then get

p(L00) = p(L10)− p(P ′

0(µ0))+ p(⟨ψ, L−1
00 ψ⟩).

Since P ′

0(µ0) ≠ 0 due to conditions (3.6), and since P ′

0(µ) is a con-
tinuous function of µ, we see that p(P ′

0(µ)) = p(P ′

0(µ0)) near the
pitchfork bifurcation point. Thus when |µ− µ0| ≪ 1,

p(L0) = p(L10)− p(P ′

0(µ))+ p(⟨ψ, L−1
00 ψ⟩). (4.6)

To get p(L1), we need to know in which direction the simple zero
eigenvalue of L10 bifurcates out when µ ≠ µ0. The answer to this
question is given by the following lemma.

Lemma 1. SupposeΛ0(µ) andΛ±(µ) are discrete eigenvalues of L1
on the base and bifurcated solution branches u0(x;µ) and u±(x;µ),
withΛ0(µ0) = Λ±(µ0) = 0 at the bifurcation point µ = µ0. Then
under the conditions for pitchfork bifurcations in Theorem 1, we have

Λ′

0(µ0) = −
R

⟨ψ,ψ⟩
, (4.7)

and

Λ′

+
(µ0) = Λ′

−
(µ0) = −2Λ′

0(µ0). (4.8)

The proof of this lemma is given in the end of the next section.

Remark 9. This lemma shows that under the conditions of pitch-
fork bifurcations (where R ≠ 0, see Theorem 1), the zero eigen-
value in L1 always bifurcates out on both the base and bifurcated
solution branches when µ ≠ µ0, because Λ′

0(µ0) and Λ′
±
(µ0)

are nonzero. In addition, these eigenvalue bifurcations on the base
and bifurcated branches are always along opposite directions since
Λ′

0(µ0) and Λ′
±
(µ0) have opposite signs. Furthermore, directions
of these eigenvalue bifurcations are uniquely determined by the
sign of R. Recall from Theorem 1 and Eq. (2.10) that the sign of R is
uniquely determined by the sign of P ′

±
(µ0)− P ′

0(µ0) and to which
side ofµ = µ0 the bifurcation occurs (see also Remark 3). Thus di-
rections of eigenvalue bifurcations in L1 are uniquely determined
by the shape of the power diagram. This fact, together with the in-
dex formulae (4.2)–(4.3), clearly signals that the shape of the power
diagram plays a decisive role in the stability outcome, which was
the main theme of the previous section.

Using the formula (4.6) and defining the total Hamiltonian–
Krein index

KT ≡ kr + 2kc + 2ki, (4.9)

the index formula (4.2) for the base solution branch and µ ≠ µ0
then reduces to

K 0
T = p(L01)+ p(L10)− 2p(P ′

0(µ))+ p(⟨ψ, L−1
00 ψ⟩). (4.10)

Here the superscript ‘0’ in K 0
T and L01 indicates that these quantities

are for the base-solution branch. For the bifurcated solution
branches, this index formula for µ ≠ µ0 reduces to

K±

T = p(L±

1 )+ p(L10)− p(P ′

0(µ))− p(P ′

±
(µ))

+ p(⟨ψ, L−1
00 ψ⟩). (4.11)

Here the superscript ‘±’ in K±

T and L±

1 indicates that these
quantities are for the bifurcated solution branches. These formulae,
together with Lemma 1 (which provides information on p(L01) and
p(L±

1 )), then allow us to calculate the Hamiltonian–Krein index.
Below we show that, if the assumptions of Theorem 6 are met,

then the above index theory can reproduce the qualitative stability
results obtained in the previous section (except Theorem 3).
Re-derivation of Theorem 4 will be explained in detail, but re-
derivation of Theorem 5 will be omitted for brevity.

First we consider the base solution branch. On the two sides of
µ = µ0 of this branch, p(L01) differs by one in view of Lemma 1,
while the other indices on the right hand side of Eq. (4.10) do not
change (when µ is near µ0). Thus the total Hamiltonian–Krein
index K 0

T is odd on one side of µ = µ0 and even on the other
side of µ = µ0. On the side of odd K 0

T , there is at least one
real positive eigenvalue due to the definition (4.9), thus the base
solitary wave is unstable. Under the assumptions of Theorem 4
where the solitary wave u0(x) is stable at the bifurcation point
and no complex eigenvalues appear when µ ≠ µ0, we see that
there is a single positive eigenvalue on the side of odd K 0

T and no
unstable eigenvalues on the side of even K 0

T , thus stability switches
at µ = µ0 on the base branch, in agreement with Theorem 4.

Now we consider the bifurcated branches. The index p(L±

1 ) on
these branches and p(L01) on the base branch differ by one in viewof
Lemma 1. Thus if P ′

0(µ) and P ′
±
(µ) have the same sign, then due to

formulae (4.10) and (4.11), one ofK 0
T andK±

T would be even and the
other one odd. Thus under the assumptions of Theorem 4, the base
and bifurcated branches would have opposite linear stability. On
the other hand, if P ′

0(µ) and P ′
±
(µ) have the opposite sign, then K 0

T
and K±

T would be both even or both odd. Under the assumptions of
Theorem 4, the base and bifurcated branches would have the same
linear stability. Again, these results agree with Theorem 4.

More specific stability results in Theorem4 (based on the sign of
α) can also be reproduced by the index theory. Since these specific
stability results are summarized in Figs. 2 and 3 for ⟨ψ, L−1

00 ψ⟩ < 0
(stability of every branchwould flip when ⟨ψ, L−1

00 ψ⟩ > 0), wewill
rederive some of these specific stability results in these figures as
examples below.
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(1) Consider Fig. 2(a). In this case, ⟨ψ, L−1
00 ψ⟩ < 0, the bifurcation

occurs forµ > µ0, and P ′
±
(µ) > P ′

0(µ) > 0. From Theorems 1
and 2, we see that S > 0 and RS > 0, thus R > 0. Lemma 1
then shows that p(L01) for µ < µ0 is one more than that for
µ ≥ µ0. Suppose

p(L01) =


k + 1, µ < µ0,
k, µ ≥ µ0,

(4.12)

where k is some nonnegative integer. Then in view of Lemma1,

p(L±

1 ) = k + 1, µ > µ0. (4.13)

Thus from formulae (4.10) and (4.11), we get

K 0
T =


2k − 1, µ < µ0,
2k − 2, µ > µ0,

and

K±

T = 2k − 1, µ > µ0.

This means that k ≥ 1. In addition, the base branch for
µ < µ0 and the bifurcated branches have at least one positive
eigenvalue, but the base branch for µ > µ0 could be stable.
Under the assumptions of Theorem 4, the base branch for µ <
µ0 and the bifurcated branches are then linearly unstable and
the base branch for µ ≥ µ0 is stable, in agreement with the
stability result in Fig. 2(a).

(2) Consider Fig. 2(d). In this case, ⟨ψ, L−1
00 ψ⟩ < 0, the bifurcation

occurs for µ > µ0, P ′

0(µ) < 0, and P ′
±
(µ) > 0. From Theo-

rems 1 and 2, we get R > 0. Then according to Lemma 1, p(L01)
and p(L±

1 ) are as given in (4.12) and (4.13). Thus we get from
formulae (4.10) and (4.11) that

K 0
T =


2k + 1, µ < µ0,
2k, µ > µ0,

and

K±

T = 2k, µ > µ0.

This means that the base branch for µ < µ0 has at least one
positive eigenvalue. Under the assumptions of Theorem 4, the
base branch for µ < µ0 is then linearly unstable, and the base
branch for µ ≥ µ0 as well as the bifurcated branches is stable,
in agreement with the stability result in Fig. 2(d).

(3) Consider Fig. 3(c). In this case, ⟨ψ, L−1
00 ψ⟩ < 0, the bifurcation

occurs for µ < µ0, P ′

0(µ) > 0, and P ′
±
(µ) < 0. From Theo-

rems 1 and 2, we see that S < 0 and RS < 0, thus R > 0. Then
according to Lemma 1, p(L01) and p(L±

1 ) are as given in (4.12)
and (4.13). Thus we get from formulae (4.10) and (4.11) that

K 0
T =


2k − 1, µ < µ0,
2k − 2, µ > µ0,

and

K±

T = 2k − 1, µ < µ0.

This means that k ≥ 1. In addition, the base branch forµ < µ0
and the bifurcated branches have at least one positive eigen-
value, but the base branch for µ > µ0 could be stable. Under
the assumptions of Theorem4, the base branch forµ < µ0 and
the bifurcated branches are then linearly unstable and the base
branch forµ ≥ µ0 is stable, in agreement with the stability re-
sult in Fig. 3(c).

(4) Consider Fig. 3(d). In this case, ⟨ψ, L−1
00 ψ⟩ < 0, the bifurcation

occurs for µ < µ0, P ′

0(µ) < 0, and P ′
±
(µ) > 0. From Theo-

rems 1 and 2, we see that S > 0 and RS < 0, thus R < 0. Then
according to Lemma 1, p(L01) and p(L±

1 ) become

p(L01) =


k, µ ≤ µ0,
k + 1, µ > µ0,
and

p(L±

1 ) = k + 1, µ < µ0,

where k is some nonnegative integer. Thus we get from formu-
lae (4.10) and (4.11) that

K 0
T =


2k, µ < µ0,
2k + 1, µ > µ0,

and

K±

T = 2k, µ < µ0.

This means that the base branch for µ > µ0 has at least one
positive eigenvalue. Under the assumptions of Theorem 4, the
base branch for µ > µ0 is then linearly unstable, and the base
branch for µ ≤ µ0 as well as the bifurcated branches is stable,
in agreement with the stability result in Fig. 3(d).

When ⟨ψ, L−1
00 ψ⟩ > 0, the total Hamiltonian–Krein indices

KT for the power diagrams in Figs. 2 and 3 are simply those of
⟨ψ, L−1

00 ψ⟩ < 0 plus one (see formulae (4.10) and (4.11)). Thus
under the assumptions of Theorem4, linear stability of all branches
in Figs. 2 and 3 is flipped, in agreement with the results in the
previous section.

It is important to notice that in order for a solution branch
to be stable when ⟨ψ, L−1

00 ψ⟩ > 0, the total Hamiltonian–Krein
index KT for ⟨ψ, L−1

00 ψ⟩ < 0 needs to be odd, hence KT ≥ 2 for
⟨ψ, L−1

00 ψ⟩ > 0. This means that
if ⟨ψ, L−1

00 ψ⟩ > 0, every stable solitary wave must possess
imaginary eigenvalues of negative Krein signature.

The index theory can also yield other useful information. For
instance, from Eq. (4.4) and Remark 5, we have that

if p(L10) = 0, then P ′

0(µ0) < 0.
That is, if the largest eigenvalue of L1 crosses zero at µ = µ0, then
the slope of the base branch’s power curve at µ = µ0 must be
negative.

It should be cautioned, however, that all these results from the
index theory were derived under the spectral assumptions that
the continuous spectra of L0 and L1 are negative and the number
of their positive eigenvalues is finite. These assumptions are not
needed for Theorems 4 and 5.

5. Proofs of the main results

Proof of Theorem 3. The basic idea of the proof is that we first
show the algebraicmultiplicity of the zero eigenvalue in the linear-
stability operator L is four at the bifurcation point µ = µ0 and
drops to two away from it, thus a pair of eigenvalues bifurcate
out from the origin when µ ≠ µ0. This pair of eigenvalues must
bifurcate along the real or imaginary axis since eigenvalues of L
would appear as quadruples if this bifurcation were not along
these two axes. Then we calculate this pair of eigenvalues near
the bifurcation point µ = µ0 by perturbation methods. We show
that the perturbation series for these bifurcated eigenvalues can
be constructed to all orders, with the leading-order terms given by
Eqs. (3.7) and (3.9) for solitary waves on the base and bifurcated
branches respectively.

At the pitchfork bifurcation pointµ = µ0 in Theorem1, (0, u0)
T

and (ψ, 0)T are eigenfunctions of the zero eigenvalue in L0 in
view of Eq. (3.5). Under the assumption in Theorem 3, L0 does
not admit any additional eigenfunctions at the zero eigenvalue,
thus the geometric multiplicity of this zero eigenvalue is two. Next
we determine the algebraic multiplicity of this zero eigenvalue by
examining its generalized eigenfunctions.

First, evaluating the relation (2.17) along the base solution
branch u0(x;µ) at µ = µ0, we get

L10u0
µ0 = u0,
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where u0
µ0 is equal to u0

µ evaluated at µ = µ0. Thus,

L0


u0
µ0
0


=


0
u0


,

which means that (u0
µ0, 0)

T is a generalized eigenfunction of
the zero eigenvalue. The next-order generalized eigenfunction
(f2, g2)T satisfies the equation

L0


f2
g2


=


u0
µ0
0


,

so the equation for g2 is

L00g2 = u0
µ0. (5.1)

Since u0 is a homogeneous solution of this equation, L00 is self-
adjoint, and ⟨u0, u0

µ0⟩ = P ′

0(µ0)/2 ≠ 0 by conditions (3.6), accord-
ing to the Fredholm alternative theorem, Eq. (5.1) does not admit
localized solutions for g2, thus there are no additional generalized
eigenfunctions for (0, u0)

T .
Next, we consider generalized eigenfunctions of L0 for (ψ, 0)T .

The lowest-order generalized eigenfunction (f1, g1) satisfies the
equation

L0


f1
g1


=


ψ
0


.

According to the assumption in Theorem 3, the kernel of L00 con-
tains a single localized function u0, and ⟨u0, ψ⟩ = 0 in view of the
conditions for pitchfork bifurcations in Theorem 1. Thus from the
Fredholmalternative theorem, there exists a real localized function
L−1
00 ψ . Consequently,

L0


0

L−1
00 ψ


=


ψ
0


,

i.e., (0, L−1
00 ψ)

T is a generalized eigenfunction ofL0. The next-order
generalized eigenfunction (f2, g2)T for (ψ, 0)T satisfies the equa-
tion

L0


f2
g2


=


0

L−1
00 ψ


,

so the equation for f2 is

L10f2 = L−1
00 ψ. (5.2)

Since ψ is a homogeneous solution of this equation and ⟨ψ,
L−1
00 ψ⟩ ≠ 0 by conditions (3.6), Eq. (5.2) does not admit any lo-
calized solutions by the Fredholm alternative theorem. Thus there
are no additional generalized eigenfunctions for (ψ, 0)T .

The above analysis shows that L0 has two eigenfunctions and
two generalized eigenfunctions at the zero eigenvalue, thus the al-
gebraic multiplicity of the zero eigenvalue inL0 (at the bifurcation
point) is four.

When 0 < |µ−µ0| ≪ 1, on any solitary-wave branch u0(x;µ)
or u±(x;µ), Eq. (2.16) still holds. Thus due to assumptions in The-
orem 3, zero is still a simple eigenvalue of L0. Using perturbation
analysis, we can also show that, under the conditions of pitchfork
bifurcations in Theorem 1 and assumptions in Theorem 3, zero is
not an eigenvalue of L1 anymore (see Lemma 1 in Section 4). From
these facts, we see that when 0 < |µ− µ0| ≪ 1, zero is an eigen-
value of L with geometric multiplicity one, and its eigenfunction
is (0, u)T . Regarding the algebraic multiplicity of this zero eigen-
value inL, we recall that forµ ≠ µ0, Eq. (2.17) still holds. Thus it is
easy to see that (uµ, 0)T is a generalized eigenfunction of this zero
eigenvalue. Due to conditions (3.6) in Theorem 3 and smoothness
of the power functions (see the note below Theorem 1), we see
that P ′

0(µ) ≠ 0 and P ′
±
(µ) ≠ 0 when 0 < |µ− µ0| ≪ 1. Then by

similar analysis as above, we can show that the zero eigenvalue in
L does not admit any additional generalized eigenfunctions. Thus
when 0 < |µ − µ0| ≪ 1, the algebraic multiplicity of this zero
eigenvalue in L is two.

Since the algebraic multiplicity of the zero eigenvalue in L is
four at µ = µ0 and drops to two when µ ≠ µ0, this means
that when µmoves away from µ0, a pair of linear-stability eigen-
values must bifurcate out from the origin. Notice that the two
multiplicities of the zero eigenvalue associated with the phase-
invariance mode (2.18) persist when µ ≠ µ0 (see above), it is
then clear that the two non-zero eigenvalues must bifurcate out
from thebifurcation-induced zero eigenmode (3.2). Since eigenval-
ues of the linear-stability operator L always appear in quadruples
(when they are complex) or in pairs (when they are real or purely
imaginary) (see discussions below Eq. (2.15)), this bifurcated pair
of eigenvalues thenmust be real or purely imaginary and be oppo-
site of each other as a ±λ pair.

Next, we calculate this pair of bifurcated eigenvalues on the
solution branches u0(x;µ) and u±(x;µ). Since at the bifurcation
point the zero eigenvalue of L0 is not embedded inside L0’s con-
tinuous spectrum, this allows us to calculate this eigenvalue bifur-
cation by the perturbation methods (see Remark 1). Justification
on the use of perturbation series for eigenvalue calculations can be
found in [33].

(a) Eigenvalue bifurcation along the base solution branch
We first calculate this eigenvalue bifurcation along the base so-

lution branch u0(x;µ). These solitary waves near the bifurcation
point µ = µ0 have the following perturbation series expansion

u0(x;µ) =

∞
k=0

(µ− µ0)
kuk(x), (5.3)

where u1, u2, . . . are all real functions [11]. As a consequence,
operators L0 and L1 on this base solution branch can be expanded as

L00 =

∞
k=0

(µ− µ0)
kL0k, L01 =

∞
k=0

(µ− µ0)
kL1k. (5.4)

The linear-stability eigenmodes (v,w, λ) bifurcated from the zero
eigenmode (3.2) have the following perturbation series expan-
sions:

v0(x;µ) =

∞
k=0

(µ− µ0)
kvk(x), (5.5)

w0(x;µ) = λ0(µ− µ0)
1/2

∞
k=0

(µ− µ0)
kwk(x), (5.6)

λ0(µ) = iλ0(µ− µ0)
1/2


1 +

∞
k=1

(µ− µ0)
kλk


. (5.7)

Below we construct these perturbation series solutions to all or-
ders, and show that the leading-order expressions for the bifur-
cated eigenvalues λ0(µ) are given by the formula (3.7).

We start by substituting the above perturbation expansions into
the linear-stability eigenvalue problem (2.15). From these equa-
tions at various orders ofµ−µ0, we get a sequence of linear equa-
tions for (vk, wk):

L10v0 = 0, (5.8)
L00w0 = v0, (5.9)

L10v1 = λ20w0 − L11v0, (5.10)

L00w1 = v1 + λ1v0 − L01w0, (5.11)

L10v2 = λ20(w1 + λ1w0)− (L11v1 + L12v0), (5.12)
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L00w2 = v2 + λ1v1 + λ2v0 − (L01w1 + L02w0), (5.13)
· · · · · · · · ·

L10vn+1 = λ20


wn +

n
k=1

λkwn−k


−

n+1
k=1

L1kvn+1−k, (5.14)

L00wn+1 = vn+1 +

n+1
k=1

λkvn+1−k −

n+1
k=1

L0kwn+1−k, (5.15)

· · · · · · · · · .

All these equations are inhomogeneous except the first equation
for v0. From the assumption in Theorem 3, the vn equations have a
single homogeneous solution ψ , and the wn equations have a sin-
gle homogeneous solution u0. Since operators L00 and L10 in these
equations are self-adjoint, the Fredholm alternative theorem says
that the inhomogeneous equations above are solvable if and only
if their right hand sides are orthogonal to their homogeneous solu-
tion. These orthogonality conditions, together with a scaling of the
eigenfunction (v,w), will determine the eigenvalue coefficients λn
as well as functions (vn, wn) for all n ≥ 0, as will be demonstrated
below.

First we consider the v0 Eq. (5.8). In view of the assumption in
Theorem 3, the only solution to this equation (after eigenfunction
scaling) is

v0 = ψ. (5.16)

For the w0 Eq. (5.9), due to the condition of ⟨u0, ψ⟩ = 0 for pitch-
fork bifurcations in Theorem 1, the Fredholm condition is satisfied,
thus this equation admits a real localized solution L−1

00 ψ , and its
general solution is

w0 = L−1
00 ψ + c0u0, (5.17)

where c0 is a constant to be determined from the solvability con-
dition of thew1 equation later.

For the v1 Eq. (5.10), it is solvable if and only if its right hand side
is orthogonal toψ . Utilizing the v0 andw0 solutions derived above,
this orthogonality condition yields the formula for the eigenvalue
coefficient λ0 as

λ20 =
⟨ψ, L11ψ⟩

⟨ψ, L−1
00 ψ⟩

. (5.18)

According to our conditions (3.6), the denominator in the above
formula is non-zero, thus λ20 is well defined and is real. Later in this
proof, we will derive a more explicit expression for λ20 and show
that it is non-zero aswell (see Eq. (5.29)). The above Eq. (5.18) gives
two real or purely imaginary λ0 values as a ‘±’ pair.

With the eigenvalue coefficient λ0 given in (5.18), the orthog-
onality condition of the v1 Eq. (5.10) is satisfied, thus the general
solution for v1 is

v1 =v1 + λ20c0L
−1
10 u0 + d1ψ, (5.19)

where v1 is a real and localized particular solution to the v1
Eq. (5.10) but without the c0 term inw0 on its right hand side (see
(5.17)). This c0 term induces its ownparticular solution in v1, which
is the middle term in (5.19). In this term, L−1

10 u0 is a real localized
function which exists since u0 is orthogonal to the function ψ in
the kernel of L10. The last term in (5.19) is the homogeneous solu-
tion, where d1 is a free real constant. Since this homogeneous term
in v1 can be lumped to the v0 term as v0 = [1 + d1(µ − µ0)]ψ
and then eliminated by a scaling of the eigenfunction (v,w), we
will set d1 = 0. A similar treatment will be applied to all higher vn
solutions.

Now we consider the w1 Eq. (5.11). Its solvability condition is
that its right hand side be orthogonal to the homogeneous solution
u0. Noticing that v0 is orthogonal to u0 and L01 is a real function, this
solvability condition then reduces to

⟨u0, v1⟩ − ⟨L01u0, w0⟩ = 0. (5.20)

To simplify this condition, we recall the relation L0u0(x;µ) = 0.
By inserting the expansions (5.3) and (5.4) for L0 and u0(x;µ) into
this relation and collecting terms of O(µ− µ0), we get

L01u0 = −L00u1. (5.21)

When this relation and the solutions of w0 and v1 are substituted
into the solvability condition (5.20) and after simple algebra, this
solvability condition then reduces to

c0λ20⟨u0, L−1
10 u0⟩ = −⟨u0,v1⟩ − ⟨u1, ψ⟩. (5.22)

From Eq. (2.9) and conditions (3.6), ⟨u0, L−1
10 u0⟩ ≠ 0. In addition,

we will see from Eq. (5.29) later that λ20 ≠ 0 as well. Thus the solv-
ability condition (5.22) yields a unique real value for c0 as

c0 = −
⟨u0,v1⟩ + ⟨u1, ψ⟩

λ20⟨u0, L−1
10 u0⟩

.

Consequently, the w0 and v1 solutions are now fully determined
and are both real. In addition, with this c0 value, the w1 Eq. (5.11)
is solvable, and its solution is

w1 = w1 + λ1L−1
00 ψ + c1u0, (5.23)

where w1 is a real and localized particular solution to the w1
Eq. (5.11) but without the λ1 term on its right hand side, and c1
is a constant. The eigenvalue coefficient λ1 and the constant c1 will
be determined from the solvability conditions of the v2 and w2
Eqs. (5.12)–(5.13).

Next we use the method of induction to show that all higher-
order terms in the perturbation series expansions (5.5)–(5.7) of
(v,w, λ) can be successively determined and are all real-valued.
Suppose the v0, v1, . . . , vn andw0, w1, . . . , wn−1 solutions as well
as λ1, λ2, . . . , λn−1 have been fully obtained and are all real. In ad-
dition, suppose the vn solution is of the form

vn =vn + λ20cn−1L−1
10 u0, (5.24)

wherevn is a real and localized function, and cn−1 is a real constant.
Furthermore, suppose thewn solution is of the form

wn = wn + λnL−1
00 ψ + cnu0, (5.25)

wherewn is a known real and localized function but the coefficients
λn and cn are not known yet. These assumptions are satisfied when
n = 1 (see above).We now show if they hold for n then theywould
still hold for n + 1 as well.

To determine λn, we use the solvability condition of the vn+1
Eq. (5.14). Inserting (5.25) into this solvability condition and utiliz-
ing (5.17), we readily find that

λn =


ψ,

n+1
k=1

L1kvn+1−k


− λ20


ψ,wn +

n−1
k=1
λkwn−k


2λ20⟨ψ, L

−1
00 ψ⟩

,

which is real. For this λn value, the vn+1 Eq. (5.14) is solvable, and
its solution is of the form

vn+1 =vn+1 + λ20cnL
−1
10 u0,

wherevn+1 is a real and localized particular solution to the vn+1
equation but without the cn term in wn on its right hand side (see
(5.25)). Notice that this vn+1 solution is of the same form as vn in
(5.24) but with the index n changed to n + 1.

To determine the constant cn in the abovewn and vn+1 solutions,
we use the solvability condition of thewn+1 Eq. (5.15),which is that
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its right hand side be orthogonal to the homogeneous solution u0.
Inserting the abovewn and vn+1 solutions into this solvability con-
dition and utilizing the relation (5.21), we find that this solvability
condition yields the cn value as

cn =
1

λ20⟨u0, L−1
10 u0⟩


u0, L01wn +

n+1
k=2

L0kwn+1−k



−


u0,vn+1 +

n
k=1

λkvn+1−k


− λn⟨u1, ψ⟩


,

which is a real constant. With this cn value, the wn and vn+1 solu-
tions are now fully determined and are both real. In addition, the
wn+1 Eq. (5.15) is now solvable, and its general solution is

wn+1 = wn+1 + λn+1L−1
00 ψ + cn+1u0,

where wn+1 is a real and localized particular solution to the wn+1
Eq. (5.15) butwithout the λn+1 term on its right hand side, and cn+1
is a constant. Thiswn+1 solution is of the same form aswn in (5.25)
butwith the index n changed to n+1. This completes the induction
process.

It is noted that in the above construction of the bifurcated eigen-
modes, while λ0 has two solutions λ0± (with λ0+ = −λ0−) in
view of Eq. (5.18), the higher coefficients λ1, λ2, . . . as well as all
(vn, wn) functions in the expansions (5.5)–(5.7) depend on λ20 only
and are thus the same for both values of λ0±. It is then clear that
the above construction yields two eigenmodes (v0

±
, w0

±
, λ0

±
)which

correspond to the two choices of the λ0 values, and these two
eigenmodes are related as

λ0
+

= −λ0
−
, v0

+
= v0

−
, w0

+
= −w0

−
.

In addition, v0
±
is always real, and w0

±
, λ0

±
are either real or purely

imaginary. The asymptotic formula for the eigenvalues λ0
±
is

(λ0)2 → −λ20(µ− µ0), µ → µ0, (5.26)

where λ20 is given in (5.18).
Finally, we simplify the λ20 formula (5.18) and show that −λ20 is

equal to α as given in Eq. (3.8). To do so, we expand operator L1 in
(2.4) around µ = µ0. Recalling the notatons (2.5), we readily find
L11 in the expansion (5.4) of L1 as

L11 = G2u1 − 1, (5.27)

where u1 is the O(µ− µ0) term in u0(x;µ)’s expansion (5.3). The
expression for u1 has been obtained in Ref. [11] as

u1 = L−1
10 u0 + b1ψ, (5.28)

where b1 is a real constant. Inserting the above two expressions
into (5.18) and recalling the condition of ⟨G2, ψ

3
⟩ = 0 for pitch-

fork bifurcations in Theorem 1 as well as the definition of constant
R in Eq. (2.7), we get a more explicit formula for λ20 as

λ20 = −
R

⟨ψ, L−1
00 ψ⟩

. (5.29)

In view of the conditions for pitchfork bifurcations in Theorem 1,
we see that λ20 ≠ 0 as was mentioned before. Inserting this λ20 for-
mula into (5.26), the final asymptotic expression (3.7) for the bifur-
cated eigenvalues λ0(µ) is then derived, with the constant α given
by Eq. (3.8).

(b) Eigenvalue bifurcation along the bifurcated solution branches
Now we calculate eigenvalue bifurcations along the bifurcated

solution branches u±(x;µ). For convenience, we assume that the
bifurcation occurs for µ > µ0 (when RS > 0, see Theorem 1). The
other case of the bifurcation occurring forµ < µ0 can be similarly
treated with trivial modifications, and both cases yield the same
eigenvalue formula given in Eq. (3.9).

The bifurcated solitarywaves near the bifurcation pointµ = µ0
have the following perturbation series expansion [11]

u±(x;µ) =

∞
k=0

(µ− µ0)
k/2uk(x). (5.30)

Since these solutions are assumed to exist on the right side of
µ = µ0, all functions u1, u2, . . . in this expansion are real-valued.
Operators L0 and L1 on these bifurcated solution branches are ex-
panded as

L±

0 =

∞
k=0

(µ− µ0)
k/2L0k, L±

1 =

∞
k=0

(µ− µ0)
k/2L1k, (5.31)

and all terms in these expansions are real-valued too. Note that
quantities uk, L0k, L1k, k = 1, 2, . . . in these expansions are dif-
ferent from those in previous expansions (5.3)–(5.4). The linear-
stability eigenmodes (v,w, λ) bifurcated from the zero eigenmode
(3.2) now have the perturbation series expansions

v±(x;µ) =

∞
k=0

(µ− µ0)
k/2vk(x), (5.32)

w±(x;µ) = λ0

∞
k=0

(µ− µ0)
k/2wk(x), (5.33)

λ±(µ) = iλ0(µ− µ0)
1/2


1 +

∞
k=1

(µ− µ0)
k/2λk


. (5.34)

Below we construct these perturbation series solutions to all or-
ders.

Before this construction, we first derive a few relations on func-
tions u0, u1, u2 and u3 in (5.30), which will be needed in later cal-
culations. By inserting expansions (5.30) and (5.31) into Eqs. (2.16)
and (2.17) and at suitable orders, we get the following relations

L01u0 = −L00u1, (5.35)
L02u0 = −L01u1 − L00u2, (5.36)
L11u1 = 2(u0 − L10u2), (5.37)
L12u1 = 2u1 − 2L11u2 − 3L10u3. (5.38)

In addition,

u1 = b1ψ, (5.39)

where b1 = ±
√
6R/S which is non-zero [11]. Notice that b1 is also

real-valued here since RS > 0 by our earlier assumption.
We now substitute the perturbation expansions (5.32)–(5.34)

into the linear-stability eigenvalue problem (2.15). From various
orders of (µ − µ0)

1/2, we get a sequence of linear equations for
(vk, wk) as

L10v0 = 0, (5.40)
L00w0 = 0, (5.41)

L10v1 = λ20w0 − L11v0, (5.42)

L00w1 = v0 − L01w0, (5.43)

L10v2 = λ20(w1 + λ1w0)− (L11v1 + L12v0), (5.44)

L00w2 = v1 + λ1v0 − (L01w1 + L02w0), (5.45)
· · · · · · · · ·

L10vn+1 = λ20


wn +

n
k=1

λkwn−k


−

n+1
k=1

L1kvn+1−k, (5.46)
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L00wn+1 = vn +

n
k=1

λkvn−k −

n+1
k=1

L0kwn+1−k, (5.47)

· · · · · · · · · .

In view of the assumption in Theorem 3, the solution to the v0
Eq. (5.40), after eigenfunction rescaling, can be taken as

v0 = u1, (5.48)

where u1 is given in (5.39). The solution to thew0 Eq. (5.41) is

w0 = c0u0, (5.49)

where c0 is a constant to be determined. When these (v0, w0) so-
lutions are inserted into the (v1, w1) Eqs. (5.42)–(5.43) and rela-
tions (5.35), (5.37) utilized, we find that the solvability conditions
of the (v1, w1) equations are automatically satisfied due to the con-
dition of ⟨u0, ψ⟩ = 0 for pitchfork bifurcations in Theorem1. These
(v1, w1) equations admit localized solutions of the form

v1 = 2(u2 − L−1
10 u0)+ c0λ20L

−1
10 u0, (5.50)

and

w1 = L−1
00 u1 + c0u1 + c1u0, (5.51)

where L−1
10 u0 and L−1

00 u1 are localized real functions and c1 is an-
other constant. It is noted that the homogeneous solution (in pro-
portion to u1) to the v1 equation is not included in the above v1
solution since this term can be lumped into the v0 term and then
eliminated by a rescaling of the eigenfunction (v,w)—the same
treatment we have applied previously in case (a) (see Eq. (5.19)).

Now we consider the (v2, w2) Eqs. (5.44)–(5.45). Inserting the
above (v0, v1, w0, w1) solutions into the right hand side of the v2
equation, utilizing the relations (5.35)–(5.38) and after simple al-
gebra, the solvability condition of this v2 equation, which requires
that its right hand side be orthogonal to the homogeneous solution
u1, yields

λ20 = (2 − c0λ20)
⟨u1, u1⟩ + 2⟨u0, u2⟩ − 2⟨u0, L−1

10 u0⟩

⟨u1, L−1
00 u1⟩

. (5.52)

It is noted that u1 is proportional toψ and is nonzero, see Eq. (5.39).
Thus due to the conditions (3.6), the denominator in the above
equation is nonzero, i.e., ⟨u1, L−1

00 u1⟩ ≠ 0. From the expansion
(5.30) of the solutions u±(x;µ) and the condition ⟨u0, ψ⟩ = 0,
we see that the expansion for the power function P±(µ) is

P±(µ) = ⟨u0, u0⟩ + P ′

±
(µ0)(µ− µ0)+ O[(µ− µ0)

3/2
],

where

P ′

±
(µ0) = ⟨u1, u1⟩ + 2⟨u0, u2⟩ (5.53)

is the power slope at the bifurcation pointµ = µ0. From Eq. (2.10)
in Theorem 2, we also know that

P ′

+
(µ0) = P ′

−
(µ0) = 2⟨u0, L−1

10 u0⟩ +
6R2

S
. (5.54)

Using these relations as well as Eq. (5.39), the solvability condition
(5.52) of the v2 equation reduces to

λ20 = (2 − c0λ20)
R

⟨ψ, L−1
00 ψ⟩

. (5.55)

From the conditions for pitchfork bifurcations in Theorem1, R ≠ 0,
thus λ20 ≠ 0.

Carrying similar calculations to the w2 Eq. (5.45) and recall-
ing the formula (2.9), the solvability condition of this w2 equation
yields

2 − c0λ20 =
2P ′

±
(µ0)

P ′

0(µ0)
. (5.56)
When this equation is inserted into (5.55), an expression for λ20 is
then obtained as

λ20 =
2P ′

±
(µ0)

P ′

0(µ0)

R

⟨ψ, L−1
00 ψ⟩

, (5.57)

which is real and nonzero. Inserting this λ20 formula into (5.56), the
constant c0 can be obtained and is also real.

When λ0 and c0 are given by Eqs. (5.56)–(5.57), the solvability
conditions of the (v2, w2) Eqs. (5.44)–(5.45) are satisfied. Utilizing
the relation (5.35), the (v2, w2) solutions are of the form

v2 =v2 + λ20(c1 + λ1c0)L−1
10 u0,

and

w2 = w2 + λ1L−1
00 u1 + c1u1 + c2u0,

where v2 and w2 are localized functions which satisfy Eqs.
(5.44)–(5.45) but without the c1 and λ1 terms on their right hand
sides, and c2 is another constant. These constants λ1, c1 and c2
will be determined from the solvability conditions of the higher
(vn, wn) equations.

Using the method of induction and after straightforward al-
gebra, we can show that the perturbation series solution (5.32)–
(5.34) for the eigenmode (v,w, λ) can be determined to all orders.
In addition, the (vn, wn) terms for n ≥ 2 are of the form

vn =vn + λ20(cn−1 + λn−1c0)L−1
10 u0, n ≥ 2,

and

wn = wn + λn−1L−1
00 u1 + cn−1u1 + cnu0, n ≥ 2,

wherevn andwn are certain localized functions, and λn−1, cn−1, cn
are constants. Since this induction calculation is analogous to that
for case (a) in the earlier text, the details are omitted here.

In the above construction of the bifurcated eigenmodes, since
λ0 has two solutions from Eq. (5.57), two eigenmodes are then ob-
tained. The eigenvalues of these twomodes are either real or purely
imaginary and are opposite of each other. From the perturbation
expansion of these eigenvalues in Eq. (5.34) as well as Eq. (5.57),
we see that the asymptotic formula for these eigenvalues near the
bifurcation point is

(λ±)2 → −
2P ′

±
(µ0)

P ′

0(µ0)

R

⟨ψ, L−1
00 ψ⟩

(µ− µ0), µ → µ0,

which is the sameas the formula (3.9) in Theorem3. This completes
the proof of Theorem 3. �

Proof of Theorem 4. From the assumptions in Theorem 4, the
solitary wave u0(x) at the bifurcation point µ = µ0 is linearly sta-
ble; and when 0 < |µ − µ0| ≪ 1, the only instability-inducing
eigenvalue bifurcation is from the origin. In Theorem 3, we have
shown that from the origin, a single pair of eigenvalues ±λ in L
bifurcate out along the real or imaginary axis. Thus the linear sta-
bility of these solitary waves near µ = µ0 is determined entirely
by whether this pair of eigenvalues are real or purely imaginary.
On the base solitary wave branch u0(x;µ), this pair of eigenvalues
are given asymptotically by Eq. (3.7). Thus if α > 0, these eigen-
values are real when µ > µ0 and imaginary when µ < µ0, hence
the solitary waves are linearly unstable whenµ > µ0 and linearly
stable when µ < µ0. If α < 0, the situation is just the opposite.
In both cases, stability switches at the bifurcation point. On the bi-
furcated solitary branches u±(x;µ), the bifurcated eigenvalues are
given asymptotically by Eq. (3.9). The formula (3.10) for the con-
stant β shows that when the two power slopes P ′

0(µ0) and P ′
±
(µ0)

have the same sign,β andαwould have the opposite sign,meaning
that eigenvalues for the u±(x;µ) and u0(x;µ) branches bifurcate
along perpendicular directions from the origin, hence these solu-
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tion branches have opposite linear stability. On the other hand, if
the two power slopes P ′

0(µ0) and P ′
±
(µ0) have the opposite sign, β

and α would have the same sign, hence the u±(x;µ) and u0(x;µ)
branches would have the same linear stability. This completes the
proof of Theorem 4. �

Proof of Theorem 5. First of all, due to Remark 4, L10 has one
or more positive discrete eigenvalues. If L10 has more than
one positive discrete eigenvalue, then the positive solitary wave
u0(x) at the bifurcation point µ = µ0 is linearly unstable
by the generalized Vakhitov–Kolokolov stability criterion (see
[13, Theorem 5.2, p. 176]). If L10 has only one positive discrete
eigenvalue and P ′

0(µ0) < 0, since ⟨u0, ψ⟩ = 0 by the condi-
tions of pitchfork bifurcations in Theorem 1, the positive solitary
wave u0(x) is then linearly unstable by the generalized Vakhi-
tov–Kolokolov stability criterion (see [13, Theorem 5.2]). When
u0(x) is linearly unstable, solitary waves near the bifurcation point
µ = µ0 are clearly also linearly unstable.

Next we consider the case when L10 has only one positive dis-
crete eigenvalue, P ′

0(µ0) > 0, and P ′
±
(µ0) ≠ 0. In this case, since

⟨u0, ψ⟩ = 0, u0(x) at the bifurcation point is linearly stable by the
generalized Vakhitov–Kolokolov stability criterion (Ref. [13, Theo-
rem 5.2]). In addition, since the solitary waves near the bifurcation
point are positive, all eigenvalues inL are real or purely imaginary
(Ref. [13, Theorem5.2]), thus no complex eigenvalues can bifurcate
out when µ ≠ µ0. So the assumptions in Theorem 4 are satisfied.
Since u0(x) is positive, zero is then the largest eigenvalue of L00
and is simple [27], and ⟨ψ, L−1

00 ψ⟩ < 0 as L00 is semi-negative def-
inite and ψ ≠ 0. In addition, zero is a simple eigenvalue of L10,
P ′

0(µ0) ≠ 0 and P ′
±
(µ0) ≠ 0 by our assumptions above. Thus the

conditions of Theorem 4 are also met. Hence Theorem 4 can be ap-
plied. Using this theorem, together with Remark 3 and the fact of
⟨ψ, L−1

00 ψ⟩ < 0, we can then prove the results in the four cases of
Theorem 5 as below.

(1) When the bifurcation occurs forµ > µ0 and P ′
±
(µ0) < P ′

0(µ0),
α is positive by Remark 3. Then by Theorem4, the base solution
branch u0(x;µ) is stable for µ < µ0 and unstable for µ > µ0.
Regarding the bifurcated branches, they and the unstable base
branch (on the right side of µ = µ0) have the opposite (same)
stability when P ′

0(µ0) and P ′
±
(µ0) have the same (opposite)

sign. Since P ′

0(µ0) > 0, these bifurcated branches are then sta-
ble when P ′

±
(µ0) > 0 and unstable when P ′

±
(µ0) < 0.

(2) When the bifurcation occurs forµ > µ0 and P ′
±
(µ0) > P ′

0(µ0)
> 0, α is negative by Remark 3. Thus the base solution branch
is unstable for µ < µ0 and stable for µ > µ0. Since P ′

±
(µ0)

and P ′

0(µ0) are nowboth positive, the bifurcated branches then
have the opposite stability of the stable base branch (on the
right side of µ = µ0) and are thus always unstable.

(3) When the bifurcation occurs forµ < µ0 and P ′
±
(µ0) < P ′

0(µ0),
α is negative by Remark 3. Then by Theorem 4, the base solu-
tion branch is unstable for µ < µ0 and stable for µ > µ0. The
bifurcated branches (with µ < µ0) are stable (opposite of the
unstable base branch) if P ′

±
(µ0) > 0 and unstable (same as the

unstable base branch) if P ′
±
(µ0) < 0.

(4) When the bifurcation occurs for µ < µ0 and P ′
±
(µ0) >

P ′

0(µ0) > 0, α is positive by Remark 3; hence by Theorem 4,
the base solution branch is stable for µ < µ0 and unstable for
µ > µ0. Since both P ′

±
(µ0) and P ′

0(µ0) are now positive, the
bifurcated branches are always unstable (opposite of the sta-
ble base branch on the left side ofµ = µ0). This completes the
proof of Theorem 5. �

Proof of Lemma 1. First we study eigenvalue bifurcation in oper-
ator L01 along the base branch u0(x;µ). This eigenvalue problem is

L01Ψ = Λ0Ψ , (5.58)
where Λ0(µ) is the eigenvalue of L01. When µ = µ0, Λ0(µ0) = 0,
and Ψ (x;µ0) = ψ . To determineΛ0(µ) for |µ−µ0| ≪ 1, we use
the perturbation method. The perturbation expansion for operator
L01 has been given in Eq. (5.4). Perturbation expansions for Ψ and
Λ0 are

Ψ (x;µ) = ψ + (µ− µ0)Ψ1 + (µ− µ0)
2Ψ2 + · · · ,

Λ0(µ) = c1(µ− µ0)+ c2(µ− µ0)
2
+ · · · .

Substituting these expansions into (5.58), the O(1) equation is
automatically satisfied. At O(µ− µ0), we get

L10Ψ1 = c1ψ − L11ψ.

The Fredholm solvability condition of this equation is that its right
hand side be orthogonal to the homogeneous solution ψ . This
condition yields

c1 =
⟨ψ, L11ψ⟩

⟨ψ,ψ⟩
.

Utilizing Eqs. (5.27) and (5.28), we can simplify c1 as

c1 = −
R

⟨ψ,ψ⟩
.

Hence formula (4.7) in Lemma 1 is proved.
Next we study eigenvalue bifurcation in operator L±

1 along the
bifurcated branches u±(x;µ). This eigenvalue problem is

L±

1 Ψ = Λ±Ψ , (5.59)

where Λ±(µ) is the eigenvalue of L±

1 , and Λ±(µ0) = 0. When
|µ − µ0| ≪ 1, the perturbation expansion for operator L±

1 has
been given in Eq. (5.31). Perturbation expansions forΨ andΛ± are

Ψ (x;µ) = Ψ0 + (µ− µ0)
1/2Ψ1 + (µ− µ0)Ψ2 + · · · ,

Λ±(µ) = d1(µ− µ0)
1/2

+ d2(µ− µ0)+ · · · .

Substituting these expansions into (5.59), the O(1) equation is

L10Ψ0 = 0.

For convenience, we take the Ψ0 solution as

Ψ0 = u1, (5.60)

where u1 is the second term in the perturbation expansion (5.30)
of the bifurcated solutions u±(x;µ), and its expression is given in
Eq. (5.39).

At O((µ− µ0)
1/2), Eq. (5.59) gives

L10Ψ1 = d1u1 − L11u1, (5.61)

whose solvability condition yields

d1 =
⟨u1, L11u1⟩

⟨u1, u1⟩
.

Inserting Eqs. (5.37) and (5.39) into the above expression and
recalling that L10 is self-adjoint and has ψ in its kernel, we readily
see that

d1 = 0.

Then substituting (5.37) into (5.61), we get

Ψ1 = 2u2 − 2L−1
10 u0. (5.62)

At O(µ− µ0), Eq. (5.59) gives

L10Ψ2 = d2u1 − L12u1 − L11Ψ1 (5.63)

whose solvability condition yields

d2 =
⟨u1, L12u1⟩ + ⟨L11u1,Ψ1⟩

⟨u1, u1⟩
.
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Inserting Eqs. (5.37), (5.38) and (5.62) into the above equation and
after simple algebra, we get

d2 = 2
⟨u1, u1⟩ + 2⟨u0, u2⟩ − 2⟨u0, L−1

10 u0⟩

⟨u1, u1⟩
.

Finally, utilizing Eqs. (5.39), (5.53) and (5.54), we get

d2 =
2R

⟨ψ,ψ⟩
,

thus formula (4.8) in Lemma 1 is proved. �

6. Numerical examples

In this section, we use a few numerical examples to illustrate
and confirm the above analytical stability results. These examples
contain both positive and sign-indefinite solitary waves in double-
well and periodic potentials under focusing and defocusing
nonlinearities in one and higher spatial dimensions.

Example 1. Our first example is the one-dimensional GNLS equa-
tion (2.1) with a symmetric double-well potential and cubic-
quintic nonlinearity,

iUt + Uxx − V (x)U + |U|
2U − 0.25|U|

4U = 0, (6.1)

where the symmetric double-well potential V (x) is taken as

V (x) = −2.8

sech2(x + 1.5)+ sech2(x − 1.5)


(6.2)

and is shown in Fig. 4(a). Pitchfork bifurcations of positive solitary
waves in this equation have been reported in [11], and the power
diagram for these bifurcations is displayed in Fig. 4(b). This power
diagram shows that twopitchfork bifurcations occur at points ‘A, B’
of the power diagram. At positions ‘c, d, e’, profiles of solitarywaves
are shown in Fig. 4(c), (d) and (e) respectively. It is seen that soli-
tarywaves at positions ‘c, d’ are symmetric, while solitary waves at
position ‘e’ are asymmetric. Thus symmetry-breaking bifurcations
occur at both ‘A, B’ points. In particular, the c–d power branch is
the symmetric (base) branch, and the e-branch is the asymmetric
(bifurcated) branch.

Since solitary waves in this example are positive, Theorem 5
applies. It is known that for both pitchfork bifurcations at points
‘A, B’, L10 has a single positive discrete eigenvalue [11]. In addition,
the power diagram in Fig. 4(b) shows that at both ‘A, B’ points,
0 < P ′

±
(µ0) < P ′

0(µ0). Thus Theorem 5 (case 1) predicts that
near the bifurcation point ‘A’, the stability information would be as
shown in Fig. 2(b). Theorem 5 (case 3) also predicts that near the
bifurcation point ‘B’, the stability information would be as shown
in Fig. 3(b).

Numericallywe have found that these analytical predictions are
entirely correct. Specifically, we have found numerically that the
segment of the symmetric branch between points ‘A, B’ is linearly
unstable, and the other segments/branches of the power diagram
are all linearly stable. This stability information is indicated by the
solid blue and dashed red lines in Fig. 4(b) for stable and unstable
solutions respectively. We can see that near the bifurcation points
‘A, B’, these power-stability diagrams agree with Figs. 2(b) and
3(b) predicted by Theorem 5. To corroborate these stability results,
the linear-stability spectra for solitary waves at locations ‘c,
d, e’ of the power diagram are numerically computed by the
Fourier collocation method [13], and the results are displayed in
Fig. 4(f), (g) and (h). It is seen that the spectrum at ‘d’ contains a
positive eigenvalue, hence its symmetric solitary wave is linearly
unstable. The spectra at ‘c, e’, on the other hand, lie entirely on
the imaginary axis, thus those solitary waves are linearly stable.
These numerical stability results agree completely with the above
analytical predictions.

The reader may notice that the asymmetric ‘e’-branch in
Fig. 4(b) contains two additional saddle–node (fold) bifurcations.
As was explained in [20,21], there is no stability switching at
saddle–node bifurcations in the GNLS equations (2.1), thus it is
not surprising that the entire asymmetric ‘e’-branch in Fig. 4(b) is
linearly stable despite these saddle–node bifurcations.

Example 2. Our second example is the one-dimensional GNLS
equation (2.1) with self-focusing cubic nonlinearity and a periodic
potential,

iUt + Uxx − V (x)U + |U|
2U = 0, (6.3)

where the periodic potential V (x) is

V (x) = 6 sin2 x. (6.4)

This equation admits infinite families of multi-hump solitary
waves (2.2)which all exhibit pitchfork bifurcations [10]. The power
curve for one such family of sign-indefinite solitary waves in
the semi-infinite bandgap is shown in Fig. 5(a). The first Bloch
band of this periodic potential is µ ∈ [−2.2667,−2.0632],
which is located to the left side of this power diagram. This
power diagram contains three branches which are connected with
each other. At the intersection point ‘A’ between the lower and
middle branches, a pitchfork bifurcation occurs. This pitchfork
bifurcation is better seen in Fig. 5(b), which shows an amplification
of the power diagram in Fig. 5(a) around this intersection point.
Solitary waves on the lower power branch are anti-symmetric (see
Fig. 5(c)), whereas solitary waves on the middle power branch are
asymmetric (see Fig. 5(d)), hence a symmetry-breaking bifurcation
occurs at point ‘A’.

At this bifurcation point ‘A’, we have checked numerically that
⟨ψ, L−1

00 ψ⟩ < 0. We have also checked that the solitary wave
at point ‘A’ is linearly stable, and near this bifurcation point no
complex eigenvalues appear. Thus the power diagram in Fig. 5(b)
predicts that the stability information near this bifurcation point
would be as given in Fig. 2(a).

Numericallywe have found that these analytical predictions are
again all correct. Specifically, we have determined the stability of
these solitary waves through computation of their linear-stability
spectra, and the stability results are indicated on the power
diagram in Fig. 5(a) and (b),where the stable andunstable branches
are marked as solid blue and dashed red lines respectively. We see
that these stability results are in full agreement with the analytical
predictions in Fig. 2(a). To corroborate these stability results, the
full linear-stability spectra for solitary waves at locations ‘c, d’ of
Fig. 5(a) are displayed in Fig. 5(e) and (f). These spectra confirm
that the anti-symmetric solitary wave (Fig. 5(c)) at location ‘c’
of the lower power branch is indeed linearly stable, whereas the
asymmetric solitary wave (Fig. 5(d)) at location ‘d’ of the middle
branch is indeed linearly unstable. The unstable eigenvalue at
location ‘d’ is real positive, and it bifurcates out from the pitchfork
bifurcation point ‘A’, in agreement with our theory.

Example 3. Our third example is the seventh-power GNLS equa-
tion with a symmetric double-well potential,

iUt + Uxx − V (x)U + |U|
6U = 0, (6.5)

where the double-well potential V (x) is

V (x) = −3 sech2(x + 1)− 3 sech2(x − 1), (6.6)

which is shown in Fig. 6(b). This equation admits a family of
positive solitary waves whose power diagram is displayed in
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Fig. 4. (Color online) Pitchfork bifurcations of solitary waves and their linear-stability behaviors in Example 1. (a) The potential (6.2); (b) the power-stability diagram (solid
blue and dashed red indicate stable and unstable solutions respectively); (c), (d) and (e) profiles of solitary waves at positions of the same letters in (b); the two asymmetric
solitary waves in (e) are mirror images of each other with respect to x; (f), (g) and (h) linear-stability spectra of the solitary waves in (c), (d) and (e) respectively.
Fig. 6(a). This power diagram shows that a pitchfork bifurcation
occurs at the point ‘A’. On the upper b-c1 branch, solitary waves are
symmetric (see Fig. 6(b) and (c)), whereas on the lower c2 branch,
solitary waves are asymmetric (see Fig. 6(c)).

At the pitchfork bifurcation point ‘A’, we have checked that L10
has a single positive discrete eigenvalue. Thus from the power
diagram in Fig. 6(a), Theorem 5 (case 1) predicts that the stability
information near this bifurcation point is as given in Fig. 2(c).
This analytical prediction fully agrees with the numerical stability
results in Fig. 6(a) (where the stable and unstable solutions
are indicated). These stability results are further corroborated in
Fig. 6(d), (e) and (f), where linear-stability spectra for solitary
waves at locations ‘b, c1, c2’ are displayed.

In this example, after the pitchfork bifurcation occurs (i.e., on
the right side of ‘A’), both the symmetric and asymmetric solution
branches are linearly unstable. A similar bifurcation was reported
numerically in [8] for the eleventh-power nonlinearity but was not
found for the present seventh-power nonlinearity. This seventh
power nonlinearity is below the nonlinearity threshold 4+

√
13 ≈

7.6056 for this type of pitchfork bifurcation in the semi-classical
limit (i.e., large well-separation limit) [6,8]. This bifurcation can
still occur for the seventh-power nonlinearity in Eq. (6.5) because
the separation between the two potential wells in (6.6) is not large.
Example 4. Our last example is the two-dimensional GNLS equa-
tion with self-defocusing cubic nonlinearity and a symmetric
double-well potential,

iUt + Uxx + Uyy − V (x, y)U − |U|
2U = 0, (6.7)

where the double-well potential V (x, y) is

V (x, y) = −6

e−[(x+1.5)2+y2]

+ e−[(x−1.5)2+y2]

, (6.8)

which is shown in Fig. 7(a). This equation admits a family of sign-
indefinite solitary waves (2.2) whose power diagram is given in
Fig. 7(b). It is seen that a pitchfork bifurcation occurs at the point
‘A’. At positions ‘d, e, f’ of the power diagram, profiles of the soli-
tary waves are displayed in Fig. 7(d), (e) and (f). Solitary waves at
‘d, e’ are anti-symmetric in x and symmetric in y, whereas the soli-
tary wave at ‘f’ is asymmetric in x and symmetric in y. Thus this
pitchfork bifurcation is also a symmetry-breaking bifurcation.

At this bifurcation point, we have checked numerically that
⟨ψ, L−1

00 ψ⟩ > 0. In addition, the solitary wave at point ‘A’ is linearly
stable, and the solitary waves nearby do not possess complex
eigenvalues. Thus the power diagram in Fig. 7(b) predicts that the
stability information is as given in Fig. 3(e) but with the stability of
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Fig. 5. (Color online) Pitchfork bifurcations of solitarywaves and their linear-stability behaviors in Example 2. (a) The power-stability diagram (solid blue for stable solutions
and dashed red for unstable ones); (b) amplification of the power-stability diagram in (a) near the pitchfork bifurcation point ‘A’; (c), (d) profiles of solitary waves at locations
‘c, d’ of the power diagram in (a); (e), (f) linear-stability spectra for solitary waves in (c), (d) respectively.
Fig. 6. (Color online) Pitchfork bifurcations of solitary waves and their linear-stability behaviors in Example 3. (a) The power-stability diagram (solid blue is stable and
dashed red unstable); (b) profiles of the potential V (x) (dashed) and the solitary wave (solid) at location ‘b’ of the power diagram; (c) solitary wave profiles at locations ‘c1 ’
(solid) and ‘c2 ’ (dashed) of the power diagram; (e), (f) and (g) linear-stability spectra for solitary waves at locations ‘b, c1 , c2 ’ respectively.
each branch flipped (because ⟨ψ, L−1
00 ψ⟩ > 0 here). This prediction

agrees with our numerical stability results shown in Fig. 7(b). The
numerical-stability results are further illustrated in Fig. 7(g), (h)
and (i), where the stability spectra for solitary waves in Fig. 7(d),
(e) and (f) are displayed. These spectra corroborate the numerical-
stability results in the power diagram of Fig. 7(b) and support our
analytical predictions.

In the previous examples, our comparison between analytical
and numerical stability results was qualitative. Here for this
Example 4, we will also make a quantitative comparison on
unstable eigenvalues in order to completely verify our eigenvalue
formulae in Theorem 3. Specifically, we notice that the anti-
symmetric solution branch in Fig. 7(b) is unstable on the left
side of ‘A’, and this instability is induced by a positive eigenvalue
which is predicted analytically by the formula (3.7) in Theorem 3.
Numerically we have determined this unstable eigenvalue λ0 for
various values of µ by the highly-accurate Newton-conjugate-
gradientmethod [13], and these numerical eigenvalues are plotted
in Fig. 7(c) as blue squares. Further examination of this numerical
data shows that as µ → µ0, where µ0 ≈ 1.9072149 is
the propagation-constant value at the bifurcation point ‘A’, the
numerical eigenvalue λ0 behaves as

(λ0)2num → αnum(µ− µ0), µ → µ0, (6.9)
where the numerical coefficient is
αnum ≈ −0.3788744.
In the analytical eigenvalue formula (3.7), the coefficient α from
formula (3.8) is found to be
αanal ≈ −0.3788744.
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Fig. 7. (Color online) Pitchfork bifurcations of solitary waves and their linear-stability behaviors in Example 4. (a) The two-dimensional double-well potential (6.8); (b) the
power-stability diagram (solid blue is stable and dashed red unstable); (c) the unstable eigenvalue λ0 versus µ on the anti-symmetric solution branch of (b) (blue squares:
numerical values; red solid line: analytical prediction from formula (3.7)); (d), (e) and (f) profiles of solitary waves at locations ‘d, e, f’ of the power diagram in (b); (g), (h)
and (i) stability spectra for solitary waves in (d), (e) and (f) respectively.
We see that the numerical eigenvalue formula (6.9) and the
analytical formula (3.7) are in complete quantitative agreement.

On the bifurcated asymmetric solution branch in Fig. 7(b),
the solitary waves possess a pair of purely imaginary discrete
eigenvalueswhich are predicted analytically by the formula (3.9) in
Theorem3.Wehave quantitatively compared the numerical values
of those imaginary eigenvalues against the analytical formula (3.9)
and found complete agreement as well. Thus both eigenvalue
formulae (3.7) and (3.9) in Theorem 3 are numerically verified.

7. Summary and discussion

In this article, linear stability of both sign-definite (positive)
and sign-indefinite solitary waves near pitchfork bifurcations has
been analyzed for the generalized nonlinear Schrödinger equations
(2.1) with arbitrary forms of nonlinearity and external potentials
in arbitrary spatial dimensions. Bifurcations of linear-stability
eigenvalues associatedwith these pitchfork bifurcations have been
analytically calculated, and their expressions are given by the
formulae (3.7) and (3.9) in Theorem 3. An important feature of
these eigenvalue formulae is that they are intimately related to the
power slopes of solution branches at the bifurcation point. Based
on these eigenvalue formulae, linear stability of solitarywaves near
pitchfork bifurcations is then determined (see Theorem 4).

In this article, we have shown that for pitchfork bifurcations
in the GNLS equations (2.1), the base solution branch u0(x;µ)
always switches stability at the bifurcation point. In addition,
the bifurcated solution branches u±(x;µ) and the base branch
have opposite (same) stability when their power slopes P ′

0(µ0)
and P ′

±
(µ0) have the same (opposite) sign. Furthermore, if the

sign of ⟨ψ, L−1
00 ψ⟩ is known, then the stability of solitary waves

near the bifurcation point can be read off directly from the
power diagram (see Figs. 2 and 3). This determination of stability
from the power diagram applies particularly to positive solitary
waves, where ⟨ψ, L−1

00 ψ⟩ is known to be always negative (see
Theorem 5). These stability results are also compared with the
Hamiltonian–Krein index theory (see Section 4), and it is shown
that the qualitative stability results can also be derived by the
index theory (under more restrictive conditions). Lastly, a number
of numerical examples of pitchfork bifurcations in Eq. (2.1) have
been presented. These examples include double-well or periodic
potentials, and focusing or defocusing nonlinearities of Kerr
(cubic) or non-Kerr types. The numerical results fully support the
analytical predictions both qualitatively and quantitatively.

One unusual feature of these pitchfork bifurcations in the
GNLS equations is that the base and bifurcated solution branches
(on the same side of the bifurcation point) can be both stable
or both unstable, which contrasts such bifurcations in finite-
dimensional dynamical systems where the base and bifurcated
branches generally have opposite stability [18].

It is noted that the linear-stability analysis for pitchfork
bifurcations in this article is related to normal forms for these



J. Yang / Physica D 244 (2013) 50–67 67
bifurcations [9,34], just like linear stability of fixed points is related
to normal forms in finite-dimensional dynamical systems [18].
Thus one can rederive the linear-stability results in this article by
normal-form calculations.
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