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Nonlinear dynamics of wave packets in two-dimensional parity-time-symmetric optical lattices near the phase tran-
sition point are analytically studied. A fourth-order equation is derived for the envelope of these wave packets. A
pyramid diffraction pattern is demonstrated in both the linear and nonlinear regimes. Blow-up is also possible in the
nonlinear regime for both focusing and defocusing nonlinearities. © 2013 Optical Society of America
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Parity-time (PT )-symmetric wave systems have the un-
intuitive property that their linear spectrum can be com-
pletely real even though they contain gain and loss [1].
In spatial optics, PT -symmetric systems can be realized
by employing symmetric index guiding and an antisym-
metric gain/loss profile [2–5]. In temporal optics, PT -
symmetric systems can be obtained as well [6–8]. So
far, a number of phenomena in optical PT systems have
been reported, including phase transition, nonreciprocal
Bloch oscillation, unidirectional propagation, distinct
pattern of diffraction, formation of solitons and breath-
ers, wave blow-up, and so on [4–14].
In this Letter, we analytically study nonlinear dynamics

of wave packets in two-dimensional PT -symmetric opti-
cal lattices near the phase transition point (where diffrac-
tion surfaces of Bloch bands cross like the intersection of
four planes). Near these intersections we show that the
evolution of wave packets is governed by a fourth-order
equation. Based on this envelope equation, we predict a
pyramid (i.e., expanding square) diffraction pattern in
both linear and nonlinear regimes. Furthermore, in the
nonlinear regime, blow-up can occur for both focusing
and defocusing nonlinearities. These predictions are
verified in the full equation as well.
The model for nonlinear propagation of light beams in

PT -symmetric optical lattices is taken as

iΨz �∇2Ψ� V�x; y�Ψ� σjΨj2Ψ � 0; (1)

where z is the propagation direction, �x; y� is the trans-
verse plane,∇2 � ∂2x � ∂2y, and σ � �1 is the sign of non-
linearity. The PT -symmetric potential V�x; y� is taken as
V�x; y� � ~V�x� � ~V�y�, where

~V�x� � V2
0�cos�2x� � iW 0 sin�2x��; (2)

V2
0 is the potential depth, and W0 is the relative gain/loss

strength.
We begin by considering the linear diffraction relation

of Eq. (1) at the phase transition point W0 � 1 [9,13].
In this case, the linear Eq. (1) can be solved exactly
[13]. The diffraction relation is μ � �kx � 2m1�2�
�ky � 2m2�2, where �kx; ky� are Bloch wavenumbers in
the first Brillouin zone −1 ≤ kx, ky ≤ 1, and �m1;m2�
are any pair of nonnegative integers. The most complex

degeneracies occur at points kx � 0, �1 and ky � 0, �1,
where the diffraction surface intersects itself four-fold as
illustrated in Fig. 1. If a carrier Bloch wave is chosen at
one of these degeneracies, then the envelope of the re-
sulting wave packet exhibits novel behavior, which we
elucidate below.

The linear Eq. (1) for Ψ � ϕ�x; y�e−iμz reduces to an
eigenvalue problem Lϕ � −μϕ, where L � L�x� � L�y�,
Lx ≡ ∂2x � ~V0x, and ~V0�x� is the PT lattice [Eq. (2)] at
the phase transition point W 0 � 1. At the four-fold inter-
section points, the eigenvalues are μ � n2

1 � n2
2, where

�n1; n2� are any pair of positive integers. The operator
L�x� (L�y�) has eigenvalues n2

1 (n2
2) with geometric multi-

plicity 1 and algebraic multiplicity 2 [14]. Let ϕe1�x�
(ϕe2�y�) be the eigenfunction and ϕg1�x� (ϕg2�y�) the as-
sociated generalized eigenfunction. Then,

ϕe1�x� � ~In1
�V0eix�; ϕe2�y� � ~In2

�V0eiy�; (3)

where ~In�V0eix� is the modified Bessel function In�V0eix�
normalized to have a unit peak amplitude, and

Fig. 1. (Upper left) Diffraction relation near intersection point
�kx; ky; μ� � �1; 1; 2�, marked by red dot. (Upper right) Linear
diffraction of initial Gaussian envelope at phase transition in
envelope Eq. (11). (Lower row) Linear diffraction of initial
Gaussian wave packet at phase transition in full Eq. (1).
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�L�x� � n2
1�ϕg1 � ϕe1 , �L�y� � n2

2�ϕg2 � ϕe2 . Since L �
L�x� � L�y�, we see that L has two eigenfunctions

ϕ01�x; y� � ϕe1�x�ϕe2�y�; (4a)

ϕ02�x; y� � ϕe1�x�ϕg2�y� − ϕg1�x�ϕe2�y�: (4b)

In addition, the first eigenfunction ϕ01 has two gener-
alized eigenfunctions

ϕ11�x; y� � �ϕe1�x�ϕg2�y� � ϕg1�x�ϕe2�y��∕2; (5a)

ϕ21�x; y� � ϕg1�x�ϕg2�y�∕2; (5b)

where �L� μ�ϕ11 � ϕ01, and �L� μ�ϕ21 � ϕ11.
We now study the nonlinear dynamics of wave packets

near these intersections. For simplicity, we will conduct
the analysis at the lowest intersection point, μ � 2. The
perturbation expansion for the wave packet near this
point is

Ψ � ε
3
2ψe−iμt; ψ � ψ0 � εψ1 �…; (6)

where ψ0 � A�X; Y; Z�ϕ01�x; y� is the leading order wave
packet for the Bloch mode ϕ01 at the intersection point
�kx; ky; μ� � �1; 1; 2�, �X; Y; Z� � �εx; εy; εz� are slow spa-
tial variables, and 0 < ε ≪ 1. Near the phase transition
point, W0 can be expressed as W0 � 1 − ηϵ2∕V2

0, where
η measures the deviation from phase transition. After
introducing the slow variables into Eq. (1), the new
equation for ψ is

�L� μ�ψ � −iεψZ − 2ε�ψxX � ψyY � − ε2�∂2X � ∂2Y �ψ
� iηε2�sin�2x� � sin�2y��ψ − ε3σjψ j2ψ : (7)

We proceed by inserting expansion Eq. (6) into Eq. (7)
and solving for ψn at each order. Each ψn satisfies a
linear inhomogeneous equation, with the homogeneous
operator being L� μ. In order for it to be solvable, the
Fredholm conditions need to be satisfied, i.e., the inho-
mogeneous term must be orthogonal to the kernels ϕ01�

and ϕ02� of the adjoint operator L� � μ. Here, � stands for
complex conjugation.
At O�ε� the solvability conditions for ψ1 are automati-

cally satisfied, and thus we can solve ψ1 as

ψ1 � −iAZϕ
11 − 2AXϕ

a − 2AYϕ
b � Bϕ02; (8)

where B�X; Y; Z� is the envelope of the second eigen-
function ϕ02, �L� μ�ϕa � ϕ01

x , �L� μ�ϕb � ϕ01
y , and ϕa,

ϕb are assumed to be orthogonal to ϕ01 and ϕ02.
Now we proceed to the ψ2 equation at O�ε2�. The or-

thogonality condition with ϕ01� is automatically satisfied,
and the orthogonality condition with ϕ02� gives

iBZ � AZX − AZY � 2AXX − 2AYY ; (9)

which defines the connection between envelopes A and
B of the two eigenmodes at the Bloch surface intersec-
tion. Under this relation, the ψ2 equation can be solved.

Finally we proceed to the ψ3 equation at O�ε3�. The
orthogonality condition with ϕ01� gives

∂3ZA − 8�∂2X � ∂2Y �∂ZA − 8�∂2X − ∂2Y ��∂X − ∂Y �A
� 8�∂2X − ∂2Y ��iB� � α∂ZA� i ~σjAj2A � 0; (10)

where

α � 2V2
0η; ~σ � −iσ

R
2π
0

R
2π
0 jϕ01j2ϕ01ϕ21dxdy

R
2π
0

R
2π
0 ϕ01ϕ21dxdy

:

This equation, combined with Eq. (9), yields a single
fourth-order envelope equation for A as

∂4ZA − 8�∂2X � ∂2Y �∂2ZA� 16�∂2X − ∂2Y �2A
� α∂2ZA� i ~σ∂Z�jAj2A� � 0: (11)

It remains to relate the initial conditions for ψ with
those for envelope Eq. (11). By collecting the ψ0, ψ1
and ψ2 solutions from the above analysis and projecting
the resulting perturbation series solution in Eq. (6) onto
the eigenfunctions and generalized eigenfunctions, we
find the dominant terms of Ψ are given by

Ψ ≈ ε
3
2�Aϕ01 � ϵBϕ02 � ϵCϕ11 � ϵ2Dϕ21�; (12)

where

C � −i�AZ � 2AX � 2AY �; (13)

D � −AZZ − 2AZX − 2AZY −
α

2
A� 4iBX − 4iBY : (14)

Thus, from the initial envelope functions A, B, C, D
of the eigenfunctions and generalized eigenfunctions in
Ψ, we can obtain initial conditions for A, AZ , AZZ and
AZZZ from Eqs. (10), (13), and (14).

The envelope Eq. (11) reveals important physical
features of the envelope dynamics, and its solutions
strongly agree with those in Eq. (1), as we will elaborate
below. For demonstration purposes, we take the initial
conditions

A � A0e−�X
2�Y 2�; AZ � AZZ � 0;

∂3ZA � −i ~σjAj2A; (15)

in the envelope equation, or the equivalent initial con-
ditions based on Eq. (12) for simulations of Eq. (1).
For the constants we take V2

0 � 6, ϵ � 0.1, and η � 0
or 1 (at or below phase transition, respectively). Then
we find α � 12η, and ~σ ≈ 7.3σ.

In the linear equation at the phase transition point, i.e.,
σ � ~σ � 0, Eq. (11) has the general solution

A � A1�X − 2Z; Y − 2Z� � A2�X − 2Z; Y � 2Z�
� A3�X � 2Z; Y − 2Z� � A4�X � 2Z; Y � 2Z� (16)
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for arbitrary An functions (these An functions can be
readily related to the initial conditions of A, AZ , AZZ
and AZZZ). In general, this solution corresponds to an ex-
panding square wave front propagating with speeds �2
in both X and Y directions, which we term pyramid dif-
fraction. For the initial condition in Eq. (15), this pattern
is illustrated in Fig. 1 for both the envelope and full equa-
tions. Using the explicit formula of An for this initial con-
dition, the fine structure in this diffraction pattern (such
as the formation of dark lines) can also be explained.
In the linear equation but below the phase transition

point (α � 12, ~σ � 0), the pyramid diffraction is qualita-
tively similar to that in Fig. 1, with wave fronts expanding
roughly like a square. But the wave fronts are no longer
flat. In addition, the core develops an “x” shape. An ex-
ample is shown in Fig. 2, where diffractions in both the
envelope and full equations are displayed.
In the presence of nonlinearity ( ~σ ≈ 7.3σ) and below

phase transition, the wave packet diffracts away if its ini-
tial amplitude is below a certain threshold value. This
nonlinear diffraction is also pyramid-like, closely resem-
bling the linear pyramid diffraction in Fig. 2. An example
is displayed in Fig. 3 (upper left panel). However, if the
initial amplitude is above this threshold, the envelope sol-
ution blows up to infinity in a finite distance. For exam-
ple, with the initial condition in Eq. (15), the envelope
solution in Eq. (11) blows up when A0 > 3.2. These
blowup solutions are displayed in Fig. 3 (upper middle
and right panels). Remarkably, this blowup is indepen-
dent of the sign of the nonlinearity, a fact which is clear
from the envelope Eq. (11), since a sign change in ~σ can
be accounted for by taking the complex conjugate of this
equation. In Eq. (1), we have confirmed that similar
growth occurs for both signs of the nonlinearity as well
(see Fig. 3, lower row). In both cases, solutions rise to
very high amplitudes as the envelope equation predicts.
This insensitivity of the envelope dynamics to the sign of
nonlinearity strongly contrasts the one-dimensional case
[14] and is surprising.

In summary, we have analyzed nonlinear dynamics of
wave packets in two-dimensional PT -symmetric lattices
near the phase transition point. In the linear regime, pyra-
mid diffraction is demonstrated. In the nonlinear regime,
wave blowup is obtained for both focusing and defocus-
ing nonlinearities.
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Fig. 2. Pyramid diffraction of a Gaussian wavepacket in the
linear equation below phase transition. (Upper row) Diffraction
in the envelope Eq. (11). (Lower row) Diffraction in full Eq. (1).

Fig. 3. Nonlinear dynamics of wave packets below phase tran-
sition. (Upper row) Envelope solutions in Eq. (11) at Z ≈ 2 for
three values of A0 in (15). (Lower row) Solutions of Eq. (1) for
the initial wavepacket with A0 � 6 (left) at later distances under
focusing (middle) and defocusing (right) nonlinearities.
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