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Abstract
General rogue waves in the focusing and defocusing Ablowitz–Ladik equations
are derived by the bilinear method. In the focusing case, it is shown that rogue
waves are always bounded. In addition, fundamental rogue waves reach peak
amplitudes which are at least three times that of the constant background, and
higher-order rogue waves can exhibit patterns such as triads and circular arrays
with different individual peaks. In the defocusing case, it is shown that rogue
waves also exist. In addition, these waves can blow up to infinity in finite time.
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1. Introduction

Rogue waves are large and spontaneous nonlinear waves which ‘come from nowhere and
disappear with no trace’ [1]. These waves have drawn a lot of attention in the nonlinear wave
community recently since they are linked to damaging freak waves in the ocean and transient
high-intensity optical waves in fibers [2, 3]. Explicit expressions of rogue waves have been
derived for a large number of nonlinear integrable systems. Examples include the nonlinear
Schrödinger (NLS) equation, [4–13], the derivative NLS equation [14, 15], the three-wave
interaction equation [16], the Davey–Stewartson (DS) equations [17, 18], and many others
[19–27]. Experimental observations of rogue waves have also been reported in optical fibers
and water tanks [28–30].

Almost all rogue-wave solutions reported so far are for continuous wave equations.
Discrete wave equations, on the other hand, are also important since they can model various
physical systems such as wave dynamics in optical lattices. Then an interesting question
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is rogue-wave behaviors in discrete systems [31]. For the focusing Ablowitz–Ladik (AL)
equation and discrete Hirota equation, non-traveling fundamental rogue waves and special
second-order rogue waves were derived in [19, 32–34]. It was shown that these rogue waves
can reach higher peak amplitudes compared to their continuous counterparts.

In this paper, we derive general arbitrary-order rogue waves in the focusing and defocusing
AL equations by the bilinear method. These solutions are presented through determinants, and
they contain 2N + 1 non-reducible free real parameters, where N is the order of rogue waves
(this number of free parameters is more than that in rogue-wave solutions derived before). In the
focusing case, we show that rogue waves are always bounded. In addition, fundamental rogue
waves reach peak amplitudes which are at least three times that of the constant background,
and higher-order rogue waves can exhibit patterns such as triangular and circular arrays with
different individual peaks. In the defocusing case, we show that rogue waves still appear, which
is surprising. In this case, we find that rogue waves of every order can blow up to infinity in
finite time, even though non-blowup rogue waves also exist.

2. General rogue-wave solutions

The AL equation has two types, the focusing and defocusing ones. The focusing AL equation
can be written as [35, 36]

i
d

dt
un = (1 + |un|2)(un+1 + un−1), (1)

and the defocusing AL equation is

i
d

dt
un = (1 − |un|2)(un+1 + un−1). (2)

Regarding rogue waves in these AL equations, we have the following theorems.

Theorem 1. General Nth order rogue waves in the AL equations (1), (2) are given by

un(t) = ρ√
1 − ρ2

gn

fn
ei(θn−ωt), (3)

where ρ and θ are free real constants, ω = 2 cos θ/(1 − ρ2),

fn = τn(0), gn = τn(1)/(1 + ρ)2N,

τn(k) = det
1�i, j�N

(m(n)

2i−1,2 j−1(k))

∣∣∣∣
p=q=1+ρ

,

m(n)
i j (k) = AiBjm

(n)(k),

m(n)(k) = 1

pq − 1 + ρ2
(pq)n

(
1 − ρ2 − q

1 − 1/p

)k

e
i
(

1
pq − 1

1−ρ2

)
(qeiθ −pe−iθ )t

,

Ai =
i∑

ν=0

aν

(i − ν)!
[(p − 1)∂p]i−ν,

Bj =
j∑

μ=0

āμ

( j − μ)!
[(q − 1)∂q] j−μ,
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aν are complex constants, overbar ¯ represents complex conjugation, and

a0 = 1, a2 = a4 = · · · = aeven = 0. (4)

When |ρ| < 1, these rogue waves satisfy the focusing AL equation (1); and when |ρ| > 1, they
satisfy the defocusing AL equation (2).

The above expression (3) for rogue waves involves differential operators Ai and Bj. A
more explicit and purely algebraic expression for these rogue waves (without the use of such
differential operators) is presented in the following theorem.

Theorem 2. General Nth order rogue waves (3) for AL equations can be rewritten as

un(t) = (−1)N ρ√
1 − ρ2

σn(1, 0)

σn(0, 0)
ei(θn−ωt), (5)

where ρ, θ and ω are the same as those in theorem 1,

σn(k, l) = det
1�i, j�N

(
m̃(n)

2i−1,2 j−1(k, l)
)

, (6)

m̃(n)
i j (k, l) =

min(i, j)∑
ν=0

(
1 − ρ

1 + ρ

)ν

	
(n)
iν (k, l)
(n)

jν (k, l),

	
(n)
iν (k, l) = 1

2ν

i−ν∑
α=0

aαSi−ν−α(x + νs),



(n)
jν (k, l) = 1

2ν

j−ν∑
β=0

āβS j−ν−β (y + νs),

aα are complex constants, Sν (x) are elementary Schur polynomials defined by
∞∑

ν=0

Sν (x)λν = exp

( ∞∑
ν=1

xνλ
ν

)
,

x = (x1, x2, . . .), y = (y1, y2, . . .) and s = (s1, s2, . . .) are defined by

xν = (n + k)rν (ρ) + lrν (1/ρ) − rν (1) + ρx/ν! + (1 − ρ2)(ν + 1)rν+1(ρ)y − kδν1,

yν = (n + l)rν (ρ) + krν (1/ρ) − rν (1) + ρy/ν! + (1 − ρ2)(ν + 1)rν+1(ρ)x − lδν1,

∞∑
ν=1

rν (ρ)λν = ln
1 + ρeλ

1 + ρ
,

∞∑
ν=1

sνλ
ν = ln

(
2

λ
tanh

λ

2

)
, (7)

δν1 denotes the Kronecker delta and x = ite−iθ /(1−ρ2), y = −iteiθ /(1−ρ2). The determinant
σn(k, l) can also be expressed as

σn(k, l) =
1∑

ν1=0

3∑
ν2=ν1+1

· · ·
2N−1∑

νN=νN−1+1

(
1 − ρ

1 + ρ

)ν1+ν2+···+νN

× det
1�i, j�N

(
	

(n)

2i−1,ν j
(k, l)

)
det

1�i, j�N

(



(n)

2i−1,ν j
(k, l)

)
, (8)

where we have defined 	
(n)
iν (k, l) = 


(n)
iν (k, l) = 0 for i < ν.

Regarding boundary conditions of these rogue waves at large times, we have the following
theorem.
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Theorem 3. As t → ±∞, solutions un(t) in theorems 1 and 2 approach a constant background,

un(t) → (−1)N ρ√
1 − ρ2

ei(θn−ωt) (9)

uniformly for all n as long as cos θ �= 0.
This theorem confirms that solutions un(t) in theorems 1 and 2 are indeed rogue waves,

i.e., they rise from a constant background and then retreat back to this same background.

Regarding regularity (boundedness) of these rogue waves, we have the following theorem.

Theorem 4. General rogue-wave solutions to the focusing AL equation (1) (with |ρ| < 1) in
theorems 1 and 2 are non-singular for all times.

Proofs of these theorems will be presented in section 4.

Remark 1. In these rogue-wave solutions, ρ controls the background amplitude, and θ is the
phase gradient across the lattice. Obviously, the value of θ can be restricted to −π < θ � π .
Since the AL equations are invariant with respect to a time shift, we can normalize the
imaginary part of a1 to be zero through a time shift. Then non-reducible free parameters
in these Nth order rogue waves are ρ, θ, Re(a1) and a3, a5, . . . a2N−1, totaling 2N + 1 real
parameters. The parameter Re(a1) is equivalent to a shift n → n − n0 in the solution, with
n0 being a real parameter. With this n-shift, we can set a1 = 0. In this case, n0 becomes a
free parameter in the solution instead of Re(a1). Without loss of generality, one may restrict
−1/2 < n0 � 1/2 through a shift of the lattice index n.

Remark 2. The number of irreducible free parameters in these rogue waves of the AL
equations is three more than the corresponding number 2N − 2 in the NLS equation [12].
The reason is that the NLS equation has three additional invariances which are lacking in the
AL equations: the spatial-translation invariance, the Galilean-transformation invariance, and
the scaling invariance. These three invariances reduce the number of free parameters in rogue
waves of the NLS equation by three, thus it is three less than that in the AL equations. More
will be said on this issue in the next section.

Remark 3. It was pointed out in [13] that the coefficients sν in equation (7) are related to
Bernoulli numbers Bν as

sν = −2ν − 2

ν!ν
Bν, (ν � 2), s1 = 0,

where the Bernoulli numbers Bν are defined by
∞∑

ν=0

Bν

ν!
λν = λ

eλ − 1
.

3. Dynamics of rogue waves

In this section, we examine dynamics of rogue waves in AL equations.

3.1. Fundamental rogue waves

Fundamental rogue waves are obtained by setting N = 1 in equation (3) or (5). After simple
algebra, these rogue waves are

un(t) = − ρ√
1 − ρ2

ei(θn−ωt)

[
1 + 2iρ2ωt + (1 + ρ)(a1 − ā1) − 1

ρ2(1 + ρ)2|R|2 + 1
4 (1 − ρ2)

]
,
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where

R = 1

1 + ρ

[
n + i

(
e−iθ

1 + ρ
− eiθ

1 − ρ

)
t

]
+ ā1 − 1/2

ρ
.

After shifts of t, n, and utilizing phase and time-shift invariances of the AL equations, the
above fundamental rogue waves can be rewritten as

un(t) = ρ√
1 − ρ2

ei(θn−ωt)

[
1 + 2iρ2ωt − 1

ρ2(n + ωt tan θ − n0)2 + ρ4ω2t2 + 1
4 (1 − ρ2)

]
, (10)

where ρ, θ and n0 are free real parameters. In view of remark 1, we restrict

−π < θ � π, −1/2 < n0 � 1/2

in this subsection. From the explicit expression (10), we see that |un| depends on n only through
the combination of ρn, thus ρ controls the spatial width of this rogue wave (smaller ρ yields
broader waves). Of course, ρ also controls the background amplitude of this rogue wave. This
background amplitude is

r = |ρ|√
|1 − ρ2|

, (11)

as is easily seen from equation (10).
Now we compare this fundamental rogue wave (10) with that reported in [19]. There are

two main differences between them. One is that our solution contains one more free parameter
θ (the phase gradient), whose role will be explained in the later text. The other difference is
that our solution yields rogue waves for both focusing and defocusing AL equations, while
that in [19] only yields rogue waves for the focusing AL equation.

It is noted that the solution (10) approaches a constant background when t → ±∞ as
long as ω �= 0, i.e., θ �= ±π/2. If θ = ±π/2, then this solution becomes

un(t) = ρ√
1 − ρ2

e±inπ/2

⎡⎢⎣1 − 1

ρ2
(

n ± 2
1−ρ2 t − n0

)2
+ 1

4 (1 − ρ2)

⎤⎥⎦ ,

which is a soliton moving on a constant background rather than a rogue wave. For consideration
of rogue waves, we will require θ �= ±π/2 in the rest of this article.

Dynamics of this rogue wave (10) differs significantly for the focusing and defocusing
AL equations (corresponding to |ρ| < 1 and |ρ| > 1 respectively). Thus we will discuss these
two cases separately below.

3.1.1. Focusing case. In this case, |ρ| < 1, and equation (10) is the fundamental rogue wave
of the focusing AL equation (1). Since |ρ| < 1, the background amplitude (11) of this rogue
wave can be arbitrary, i.e., 0 < r < ∞. In addition, the denominator in equation (10) is never
zero, thus this wave is bounded for all time and lattice sites. It is also seen from equation (10)
that θ can be viewed as a velocity parameter of this rogue wave, with the velocity being
−ω tan θ , i.e., 2 sin θ/(ρ2 − 1). Thus rogue waves with θ = 0, π can be called non-traveling,
and those with other θ values called traveling.

Let us first consider non-traveling rogue waves with θ = 0 (the θ = π case is very similar).
At this θ value, ω = ω0 ≡ 2/(1 − ρ2), and the fundamental rogue wave (10) reduces to

un(t) = ρ√
1 − ρ2

e−iω0t

[
1 + 2iρ2ω0t − 1

ρ2(n − n0)2 + ρ4ω2
0t2 + 1

4 (1 − ρ2)

]
. (12)
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Figure 1. Non-traveling fundamental rogue waves (12) in the focusing Ablowitz–Ladik
equation. Top row: on-site waves (n0 = 0); bottom row: inter-site waves (n0 = 1/2);
left column: broad waves (ρ = 0.2); right column: narrow waves (ρ = 0.8).

This rogue wave is equivalent to that reported in [19]. The peak amplitude of this rogue wave
is reached at t = 0 and the lattice site n which is closest to the shift parameter n0. The highest
peak amplitude occurs when n0 = 0 (or any integer value of n0). In this case, the highest peak
amplitude is

umax = |ρ|√
1 − ρ2

3 + ρ2

1 − ρ2
. (13)

In terms of the background amplitude r defined in equation (11), this highest peak amplitude is

umax = r(3 + 4r2). (14)

This peak amplitude is at least three times the background amplitude r, and can be much
higher when the background is high. This amplitude is reached at a single lattice site n = 0,
and can be called on-site rogue waves.

The lowest peak amplitude of this rogue wave occurs when n0 = 1/2. In this case, the peak
amplitude is 3r, which is exactly three times the background. This peak amplitude is reached
at two adjacent lattice sites n = 0 and n = 1 simultaneously and can be called inter-site rogue
waves.

These non-traveling fundamental rogue waves (12) are illustrated in figure 1. The upper
row shows two on-site rogue waves (with n0 = 0), and the lower row shows two inter-site
rogue waves (with n0 = 1/2). On the left column, ρ = 0.2, which is small. On the right
column, ρ = 0.8. We can see from this figure that on-site rogue waves can run much higher
than inter-site ones, especially when ρ is not small (see right column). When ρ is small, rogue
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Figure 2. Traveling fundamental rogue waves (10) in the focusing Ablowitz–Ladik
equation with ρ = 0.8 and n0 = 0. Left: θ = −1.2; right: θ = −0.2.

waves are broad (see left column). In this case, the difference between on-site and inter-site
waves is less pronounced.

Now we consider traveling rogue waves (10) with θ �= 0, π . These rogue waves have not
been reported before [19]. Two such solutions, with ρ = 0.8, n0 = 0 and θ = −1.2,−0.2
are displayed in figure 2. In the left figure, we see a rogue wave rising from the constant
background, traversing across the lattice, and then disappearing into the background again.
In the right figure, the traversing motion of the rogue wave is less visible, because this rogue
wave rises to its peak amplitude and retreats back to the constant background more quickly.

When ρ → 0, fundamental rogue waves (10) become very broad. In this case, the AL
equation (1) reduces to the NLS equation, and rogue waves (10) approach the fundamental
rogue waves of the NLS equation. In this limit, the parameter θ is the counterpart of the moving
velocity of NLS rogue waves. The NLS equation admits Galilean invariance, thus any traveling
rogue wave can be derived from a non-traveling one through Galilean transformation. However,
the AL equation is not Galilean invariant. Because of that, θ is a non-reducible parameter in
rogue waves of the AL equation.

3.1.2. Defocusing case. Now we consider the defocusing case, where |ρ| > 1, and solution
(10) satisfies the defocusing AL equation (2). In this case, solution (10) still approaches the
constant background as t → ±∞, and rises to higher amplitude in the intermediate times,
thus is also a rogue wave. The existence of rogue waves in the defocusing AL equation is
surprising. Notice that the background amplitude r of these rogue waves is always larger than
1 since |ρ| > 1 (see equation (11)). Indeed, we can show that in the defocusing AL equation,
rogue waves with background amplitudes less than 1 cannot exist since such backgrounds are
modulationally stable (see next subsection).

Rogue waves in the defocusing AL equation exhibit new features that have no counterparts
in the focusing AL equation. Since |ρ| > 1, the denominator in equation (10) may become
zero, thus this rogue wave may blow up to infinity in finite time. To illustrate, let us take θ = 0.
Then from the explicit expression (12), we see that this rogue wave will explode to infinity if

|n0| <
1

2r
, (15)

where r is the background amplitude in equation (11). When n0 = 1/2, this rogue wave will
be a regular rogue wave and never blow up since r > 1. An example is shown in figure 3 (left)
with ρ = 2. This is an inter-site rogue wave, resembling that in figure 1 (lower right panel) of
the focusing AL equation. However, if n0 = 0, then the rogue wave (12) will always blow up.
An example is shown in figure 3 (right) with ρ = 2. We see that this rogue wave blows up to
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Figure 3. Fundamental rogue waves (10) in the defocusing Ablowitz–Ladik equation
with θ = 0 and ρ = 2. Left: n0 = 1/2; right: n0 = 0.

infinity at the lattice site n = 0 and times t = ±3
√

3/16. At other n0 values of 0 < |n0| < 1/2,
this rogue wave will blow up for background values determined by the condition (15). The
n0-range for wave blowup shrinks as the background amplitude increases.

One may recall that exploding rogue waves have been reported for the DS II equation
before [18]. However, blowup in the DS II equation appears only for second- and higher-order
rogue waves, but the blowup here occurs even for fundamental rogue waves (with N = 1).

These exploding rogue waves in the defocusing AL equation might also remind the readers
of singular rational solutions in the defocusing NLS equation [37, 38]. However, these two
types of solutions are fundamentally different for at least two reasons: (a) singular rational
solutions of the defocusing NLS equation are singular for all times, but exploding rogue waves
of the defocusing AL equation develop singularity only at a certain specific time; (b) exploding
rogue waves of the defocusing AL equation have no continuous limit in the defocusing NLS
equation, because this continuous limit occurs when ρ → 0 (see the end of section 3.1.1), but
all rogue waves (3) of the defocusing AL equation have |ρ| > 1.

Before concluding this subsection, we would like to mention that for the defocusing AL
equation truncated to only three lattice sites with fixed boundary conditions, a blowup solution
was reported in [39].

3.1.3. Connection with modulation instability. Why do rogue waves with background
amplitudes higher than 1 exist in the defocusing AL equation? The reason is that such
backgrounds are modulationally unstable. This modulation instability is analyzed below.

The defocusing AL equation (2) admits a constant-background solution

un(t) = r e−2i(1−r2 )t, (16)

where r is the background amplitude. To study the modulation instability of this constant-
background solution, we perturb this solution by normal modes

un(t) = e−2i(1−r2 )t (r + f eλt+iβn + ḡeλ̄t−iβn), (17)

where λ and β are the growth rate and wavenumber of the perturbation, and f , g � 1.
Substituting this perturbed solution in equation (2) and neglecting terms of higher order in f
and g, we obtain the following equation for the growth rate λ,

λ2 = 4(r2 − 1)(1 − cos β)[(r2 + 1) + (r2 − 1) cos β]. (18)

This formula shows that when the background amplitude r > 1, λ2 is positive for all
wavenumbers β with cos β �= 1, thus this constant background is modulationally unstable.

8
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As a consequence, rogue waves with background amplitudes higher than 1 can exist in the
defocusing AL equation (2).

For lower background amplitudes 0 < r < 1, however, the formula (18) shows that λ2

is never positive for any wavenumber β, thus backgrounds lower than 1 are modulationally
stable in the defocusing AL equation. Consequently rogue waves with such lower backgrounds
cannot exist.

This modulation stability analysis can also be performed for the focusing AL equation (1).
In this case, the constant-background solution is

un(t) = re−2i(1+r2 )t .

Perturbing this solution by normal modes similar to (17) and following similar procedures, we
can obtain the following equation for the growth rate λ,

λ2 = 4(r2 + 1)(1 − cos β)[(r2 − 1) + (r2 + 1) cos β].

This formula shows that, for any background amplitude r, λ2 is positive for wavenumbers β

with cos β > (1− r2)/(1+ r2); thus all constant backgrounds in the focusing AL equation are
modulationally unstable. This explains why rogue waves with arbitrary constant backgrounds
exist in the focusing AL equation (1).

3.2. Second-order rogue waves

Now we consider second-order rogue waves in the AL equations. These second-order rogue
waves can be obtained from formula (3) or (5) by taking

N = 2, a1 = a2 = 0,

and shifting n to n − n0, with n0, θ , ρ and a3 being free parameters. For simplicity, we take
θ = 0 in our discussions below.

3.2.1. Focusing case. In this case, |ρ| < 1. For ρ = 1/2, four second-order rogue waves are
displayed in figure 4 (the n0 and a3 parameters are specified in the captions). We see that these
second-order rogue waves are all bounded (no blowup). In addition, they can exhibit either
a single dominant hump (see panel (a)), or three humps (see panels (b)–(d)), depending on
parameters. These behaviors are analogous to second-order rogue waves of the NLS equation
[6–13]. However, differences between AL and NLS rogue waves are also apparent. The main
difference is that the three humps of the AL rogue waves generally have different heights, while
those of the NLS rogue waves generally have the same height. The reason for this difference
is that, in the AL rogue waves, some of these three humps are on-site and the others inter-site.
On-site humps have higher heights than inter-site ones (see the previous subsection).

Second-order rogue waves in the focusing AL equation have been reported before [19].
Those rogue waves contain only two free real parameters (the counterparts of ρ and n0 in
this article), thus they are a special class of second-order rogue waves. Due to the lack of the
complex free parameter a3, those second-order rogue waves in [19] cannot exhibit three-hump
structures such as figures 4(b)–(d).

For each given |ρ| < 1, we have also explored the rogue wave with the highest peak
amplitude among all second-order rogue waves with free n0 and a3 values. We find that the
highest possible peak amplitude is

|u|max = r(5 + 20r2 + 16r4), (19)
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Figure 4. Second-order rogue waves in the focusing Ablowitz–Ladik equation for
ρ = 1/2 and θ = 0. (a) n0 = −3/2, a3 = −1/54; (b) n0 = −3/2, a3 = 5/3; (c)
n0 = −3/2, a3 = 5i/3; (d) n0 = 0, a3 = 5i/3.

where r = |ρ|/
√

|1 − ρ2| is the background amplitude (see equation (11)). Interestingly, this
highest-amplitude formula is identical to that reported in [19] even though the second-order
rogue waves obtained in that work were special.

In this rogue wave with the highest peak amplitude (19), the corresponding n0 and a3

values are

n0, max = −1 + ρ

2ρ
, a3, max = 1

12

ρ − 1

(ρ + 1)2
, (20)

and this peak amplitude occurs at

nmax = 0, tmax = 0. (21)

For ρ = 1/2, n0, max = −3/2, and a3, max = −1/54. The corresponding rogue wave is as
displayed in figure 4(a). This rogue wave reaches peak amplitude 121/(9

√
3), which is about

13 times higher than the background amplitude 1/
√

3.

3.2.2. Defocusing case. Next we consider second-order rogue waves in the defocusing AL
equation, where |ρ| > 1. For ρ = 1.2, four of these rogue waves are displayed in figure 5.
We see that these second-order rogue waves can be bounded for certain parameter values (see
panels (a), (b)). However, for many other parameter values, they blow up in finite time (see
panels (c), (d)). This existence of both bounded and exploding second-order rogue waves is
similar to that in fundamental rogue waves of the defocusing AL equation (see figure 3).

10
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Figure 5. Second-order rogue waves in the defocusing Ablowitz–Ladik equation for
ρ = 1.2 and θ = 0. Top row: bounded rogue waves; bottom row: exploding rogue
waves. The solution parameters are (a) a3 = 0, n0 = −0.38; (b) a3 = 5/6, n0 = 0; (c)
a3 = 0, n0 = 0; (d) a3 = 4/3, n0 = 0.

3.3. Higher-order rogue waves

Dynamics of third and higher order rogue waves in the AL equations can be studied in a similar
way by using the general formula (3) or (5). For instance, we consider third-order rogue waves
in the focusing AL equation by taking

N = 3, θ = 0, ρ = 1/2, a1 = a2 = a4 = n0 = 0,

with a3 and a5 as free parameters. For four choices of (a3, a5) values, the corresponding rogue
waves are displayed in figure 6. It is seen that this rogue wave can exhibit a single high peak,
or six lower peaks, depending on the (a3, a5) values. Notice that the six peaks in figure 6
form triangular or circular patterns, analogous to the NLS equation [10–12]. However, the six
peaks here have uneven amplitudes, unlike the NLS equation where the six peaks have almost
identical amplitudes.

4. Derivation of rogue-wave solutions

In this section, we derive general rogue-wave solutions and prove their boundary and regularity
properties in theorems 1–4.

We first establish a few lemmas. In lemma 1 we introduce the so-called Grammian
solutions to certain bilinear differential-difference equations, which are relevant to our study.
By assuming that the matrix elements obey appropriate dispersion relations, we can show that
the determinant (which we call τ function) satisfies these bilinear equations. If we choose

11
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Figure 6. Third-order rogue waves in the focusing Ablowitz–Ladik equation for
ρ = 1/2, θ = 0 and n0 = 0. (a) a3 = a5 = 0; (b) a3 = 2, a5 = 0; (c) a3 = 2i, a5 = 0;
(d) a3 = 0, a5 = 2.

suitable matrix elements, this τ function gives polynomial solutions, which is explained in
lemma 2. The next crucial step is to apply reduction to these polynomial solutions. This
reduction is achieved in lemma 3. Then by constraining parameters in the matrix elements, the
τ function satisfies certain reality and conjugacy conditions, hence its bilinear equations reduce
to the AL equations through a variable transformation. Rogue waves in the AL equations then
are expressed through this τ function.

Lemma 1. Let m(n)
i j , ϕ

(n)
i and ψ

(n)
j be functions of continuous independent variables x, y and

discrete ones k, l, satisfying the following differential and difference (dispersion) relations,

∂xm(n)
i j (k, l) = ϕ

(n)
i (k, l)ψ(n−1)

j (k, l),

∂ym(n)
i j (k, l) = ϕ

(n−1)
i (k, l)ψ(n)

j (k, l),

m(n+1)
i j (k, l) = (1 − ρ2)m(n)

i j (k, l) + ϕ
(n)
i (k, l)ψ(n)

j (k, l),

m(n)
i j (k + 1, l) = (1 − ρ2)m(n)

i j (k, l) − ϕ
(n−1)
i (k + 1, l)ψ(n)

j (k, l),

m(n)
i j (k, l + 1) = (1 − ρ2)m(n)

i j (k, l) − ϕ
(n)
i (k, l)ψ(n−1)

j (k, l + 1),

∂xϕ
(n)
i (k, l) = ϕ

(n+1)
i (k, l),

∂yϕ
(n)
i (k, l) = −(1 − ρ2)ϕ

(n−1)
i (k, l),

ϕ
(n)
i (k − 1, l) = ϕ

(n)
i (k, l) − ϕ

(n−1)
i (k, l),

ϕ
(n)
i (k, l + 1) = (1 − ρ2)ϕ

(n)
i (k, l) − ϕ

(n+1)
i (k, l),

12
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(∂x + 1)ψ
(n)
j (k, l) = −ψ

(n−1)
j (k + 1, l),

(∂y − 1)ψ
(n)
j (k, l) = ψ

(n+1)
j (k, l − 1),

ψ
(n)
j (k + 1, l) = (1 − ρ2)ψ

(n)
j (k, l) − ψ

(n+1)
j (k, l),

ψ
(n)
j (k, l − 1) = ψ

(n)
j (k, l) − ψ

(n−1)
j (k, l). (22)

Then the determinant

τn(k, l) = det
1�i, j�N

(
m(n)

i j (k, l)
)

satisfies the bilinear equations

(Dx + 1)τn(k − 1, l) · τn(k, l) = τn+1(k − 1, l)τn−1(k, l),

(Dy − 1)τn(k, l + 1) · τn(k, l) = −τn−1(k, l + 1)τn+1(k, l),

τn+1(k − 1, l)τn−1(k, l + 1) − (1 − ρ2)τn(k − 1, l)τn(k, l + 1)

= ρ2τn(k − 1, l + 1)τn(k, l). (23)

Here D is Hirota’s bilinear differential operator defined by

P(Dx, Dy)F(x, y) · G(x, y) = P(∂x − ∂x′ , ∂y − ∂y′ )F(x, y)G(x′, y′)|x′=x,y′=y,

and P is a polynomial of Dx and Dy.

Proof. By using the dispersion relations (22), we can show that the derivatives and shifts of
the τ function are expressed by the bordered determinants as follows,

∂xτn(k, l) =
∣∣∣∣∣ m(n)

i j (k, l) ϕ
(n)
i (k, l)

−ψ
(n−1)
j (k, l) 0

∣∣∣∣∣ ,
∂yτn(k, l) =

∣∣∣∣∣ m(n)
i j (k, l) ϕ

(n−1)
i (k, l)

−ψ
(n)
j (k, l) 0

∣∣∣∣∣ ,
τn+1(k, l) = (1 − ρ2)N−1

∣∣∣∣∣ m(n)
i j (k, l) ϕ

(n)
i (k, l)

−ψ
(n)
j (k, l) 1 − ρ2

∣∣∣∣∣ ,
τn−1(k, l) = 1

(1 − ρ2)N

∣∣∣∣∣ m(n)
i j (k, l) ϕ

(n−1)
i (k, l)

ψ
(n−1)
j (k, l) 1

∣∣∣∣∣ ,
τn(k − 1, l) = 1

(1 − ρ2)N

∣∣∣∣∣ m(n)
i j (k, l) ϕ

(n−1)
i (k, l)

−ψ
(n)
j (k − 1, l) 1

∣∣∣∣∣ ,
τn(k, l + 1) = (1 − ρ2)N−1

∣∣∣∣∣ m(n)
i j (k, l) ϕ

(n)
i (k, l)

ψ
(n−1)
j (k, l + 1) 1 − ρ2

∣∣∣∣∣ ,
(∂x + 1)τn(k − 1, l) = 1

(1 − ρ2)N

∣∣∣∣∣∣∣
m(n)

i j (k, l) ϕ
(n−1)
i (k, l) ϕ

(n)
i (k, l)

−ψ
(n)
j (k − 1, l) 1 1

−ψ
(n−1)
j (k, l) −1 0

∣∣∣∣∣∣∣ ,
(∂y − 1)τn(k, l + 1) = (1 − ρ2)N−1

∣∣∣∣∣∣∣
m(n)

i j (k, l) ϕ
(n)
i (k, l) ϕ

(n−1)
i (k, l)

ψ
(n−1)
j (k, l + 1) 1 − ρ2 1
−ψ

(n)
j (k, l) 1 − ρ2 0

∣∣∣∣∣∣∣ ,
τn+1(k − 1, l) =

∣∣∣∣∣ m(n)
i j (k, l) ϕ

(n)
i (k, l)

−ψ
(n)
j (k − 1, l) 1

∣∣∣∣∣ ,
13
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τn−1(k, l + 1) =
∣∣∣∣∣ m(n)

i j (k, l) ϕ
(n−1)
i (k, l)

ψ
(n−1)
j (k, l + 1) 1

∣∣∣∣∣ ,
τn(k − 1, l + 1) = 1

ρ2

∣∣∣∣∣∣∣
m(n)

i j (k, l) ϕ
(n)
i (k, l) ϕ

(n−1)
i (k, l)

−ψ
(n)
j (k − 1, l) 1 1

ψ
(n−1)
j (k, l + 1) 1 − ρ2 1

∣∣∣∣∣∣∣ .
By using the Jacobi formula of determinants, we obtain the identities,

[(∂x + 1)τn(k − 1, l)]τn(k, l) = τn(k − 1, l)∂xτn(k, l) + τn+1(k − 1, l)τn−1(k, l),

[(∂y − 1)τn(k, l + 1)]τn(k, l) = τn(k, l + 1)∂yτn(k, l) − τn−1(k, l + 1)τn+1(k, l),

ρ2τn(k − 1, l + 1)τn(k, l) = τn+1(k − 1, l)τn−1(k, l + 1) − (1 − ρ2)τn(k − 1, l)τn(k, l + 1),

which completes the proof of bilinear equations (23). �

The above lemma is quite powerful for constructing various types of solutions to bilinear
equations (23), since the matrix elements can be any functions satisfying the dispersion
relations (22). For example, a class of polynomial solutions can be obtained from it by the
choice of matrix elements (see next lemma).

Lemma 2. We define matrix elements m(n)
i j by

m(n)
i j (k, l) = AiBjm

(n)(k, l),

where

m(n)(k, l) = 1

pq − 1 + ρ2
(pq)n

(
1 − ρ2 − q

1 − 1/p

)k (
1 − ρ2 − p

1 − 1/q

)l

eξ+η,

ξ = px − 1 − ρ2

p
y, η = −1 − ρ2

q
x + qy,

Ai and Bj are differential operators with respect to p and q respectively, defined as

Ai =
i∑

ν=0

aν

(i − ν)!
[(p − 1)∂p]i−ν, (24)

Bj =
j∑

μ=0

bμ

( j − μ)!
[(q − 1)∂q] j−μ, (25)

and aν , bμ are constants. Then for any sequences of indices I1, I2, . . ., IN and J1, J2, . . ., JN,
the determinant,

τn(k, l) = det
1�i, j�N

(
m(n)

Ii,Jj
(k, l)

)
satisfies the bilinear equations (23).

Proof. It is easy to see that the above m(n)(k, l) and

ϕ(n)(k, l) = pn(1 − 1/p)−k(1 − ρ2 − p)leξ ,

ψ(n)(k, l) = qn(1 − ρ2 − q)k(1 − 1/q)−leη

14
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satisfy the following differential and difference relations,

∂xm(n)(k, l) = ϕ(n)(k, l)ψ(n−1)(k, l),

∂ym(n)(k, l) = ϕ(n−1)(k, l)ψ(n)(k, l),

m(n+1)(k, l) = (1 − ρ2)m(n)(k, l) + ϕ(n)(k, l)ψ(n)(k, l),

m(n)(k + 1, l) = (1 − ρ2)m(n)(k, l) − ϕ(n−1)(k + 1, l)ψ(n)(k, l),

m(n)(k, l + 1) = (1 − ρ2)m(n)(k, l) − ϕ(n)(k, l)ψ(n−1)(k, l + 1),

∂xϕ
(n)(k, l) = ϕ(n+1)(k, l),

∂yϕ
(n)(k, l) = −(1 − ρ2)ϕ(n−1)(k, l),

ϕ(n)(k − 1, l) = ϕ(n)(k, l) − ϕ(n−1)(k, l),

ϕ(n)(k, l + 1) = (1 − ρ2)ϕ(n)(k, l) − ϕ(n+1)(k, l),

(∂x + 1)ψ(n)(k, l) = −ψ(n−1)(k + 1, l),

(∂y − 1)ψ(n)(k, l) = ψ(n+1)(k, l − 1),

ψ(n)(k + 1, l) = (1 − ρ2)ψ(n)(k, l) − ψ(n+1)(k, l),

ψ(n)(k, l − 1) = ψ(n)(k, l) − ψ(n−1)(k, l).

Thus

m(n)
i j (k, l) = AiBjm

(n)(k, l), ϕ
(n)
i (k, l) = Aiϕ

(n)(k, l), ψ
(n)
j (k, l) = Bjψ

(n)(k, l)

satisfy the dispersion relations (22). Consequently the determinant τn(k, l) satisfies the bilinear
equations (23). This completes the proof. �

We note that the above τn(k, l) is not just a polynomial in (x, y, k, l, n) but a polynomial
times the exponential of a linear function, because the elements m(n)

i j (k, l) have the form of
(i + j)-th degree polynomial of (x, y, k, l, n) times (pq)n[(1 −ρ2 − q)/(1 − 1/p)]k[(1 −ρ2 −
p)/(1−1/q)]leξ+η. The bilinear equations (23) are invariant when multiplying an exponential
factor of a linear function in (x, y, k, l, n) to τn(k, l). Thus through this gauge invariance, the
solutions in lemma 2 are equivalent to polynomial solutions. In this class of polynomials, there
is a subclass of solutions which satisfy a certain reduction condition, which is described in the
following lemma.

Lemma 3. The determinant

τn(k, l) = det
1�i, j�N

(
m(n)

2i−1,2 j−1(k, l)
)∣∣∣∣

p=q=1+ρ

, (26)

where m(n)
i j (k, l) is defined in lemma 2, satisfies the reduction condition

τn(k + 1, l + 1) = (1 + ρ)4Nτn(k, l). (27)

Proof. We have

m(n)(k + 1, l + 1) = 1 − ρ2 − q

1 − 1/p

1 − ρ2 − p

1 − 1/q
m(n)(k, l)

=
(

p + ρ2 + ρ2

p − 1

)(
q + ρ2 + ρ2

q − 1

)
m(n)(k, l).

From the general Leibniz rule for high-order derivatives of a product function, we get the
operator identity

[(p − 1)∂p]ν
(

p − 1 + 1 + ρ2 + ρ2

p − 1

)
=

ν∑
κ=0

(
ν

κ

) (
p − 1 + δκ0(1 + ρ2) + (−1)κ

ρ2

p − 1

)
[(p − 1)∂p]ν−κ .

15
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Using this identity, we get

Ai

(
p + ρ2 + ρ2

p − 1

)
=

i∑
ν=0

i−ν∑
κ=0

aν

κ!(i − ν − κ)!

×
(

p − 1 + δκ0(1 + ρ2) + (−1)κ
ρ2

p − 1

)
[(p − 1)∂p]i−ν−κ

=
i∑

κ=0

1

κ!

(
p − 1 + δκ0(1 + ρ2) + (−1)κ

ρ2

p − 1

)

×
i−κ∑
ν=0

aν

(i − ν − κ)!
[(p − 1)∂p]i−ν−κ

=
i∑

κ=0

1

κ!

(
p − 1 + δκ0(1 + ρ2) + (−1)κ

ρ2

p − 1

)
Ai−κ ,

and similarly

Bj

(
q + ρ2 + ρ2

q − 1

)
=

j∑
λ=0

1

λ!

(
q − 1 + δλ0(1 + ρ2) + (−1)λ

ρ2

q − 1

)
Bj−λ.

Thus the matrix elements satisfy the relation

m(n)
i j (k + 1, l + 1) = AiBj

(
p + ρ2 + ρ2

p − 1

) (
q + ρ2 + ρ2

q − 1

)
m(n)(k, l)

=
i∑

κ=0

1

κ!

(
p − 1 + δκ0(1 + ρ2) + (−1)κ

ρ2

p − 1

)

×
j∑

λ=0

1

λ!

(
q − 1 + δλ0(1 + ρ2) + (−1)λ

ρ2

q − 1

)
m(n)

i−κ, j−λ(k, l).

Substituting p = 1 + ρ and q = 1 + ρ, we obtain the contiguity relation

m(n)
i j (k + 1, l + 1)

∣∣∣
p=q=1+ρ

=
i∑

κ=0
κ:even

2ρ + δκ0(1 + ρ2)

κ!

j∑
λ=0

λ:even

2ρ + δλ0(1 + ρ2)

λ!
m(n)

i−κ, j−λ(k, l)
∣∣∣

p=q=1+ρ
,

from which the following matrix relation is derived:⎛⎜⎜⎜⎜⎝
m(n)

11 (k + 1, l + 1) m(n)

13 (k + 1, l + 1) · · · m(n)

1,2N−1(k + 1, l + 1)

m(n)

31 (k + 1, l + 1) m(n)

33 (k + 1, l + 1) · · · m(n)

3,2N−1(k + 1, l + 1)

...
...

. . .
...

m(n)

2N−1,1(k + 1, l + 1) m(n)

2N−1,3(k + 1, l + 1) · · · m(n)

2N−1,2N−1(k + 1, l + 1)

⎞⎟⎟⎟⎟⎠
p=q=1+ρ

=

⎛⎜⎜⎜⎜⎜⎜⎝

(1 + ρ)2 0 · · · 0
2ρ

2!
(1 + ρ)2 · · · 0

...
...

. . .
...

2ρ

(2N − 2)!

2ρ

(2N − 4)!
· · · (1 + ρ)2

⎞⎟⎟⎟⎟⎟⎟⎠
16
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×

⎛⎜⎜⎜⎜⎝
m(n)

11 (k, l) m(n)

13 (k, l) · · · m(n)

1,2N−1(k, l)
m(n)

31 (k, l) m(n)

33 (k, l) · · · m(n)

3,2N−1(k, l)
...

...
. . .

...
m(n)

2N−1,1(k, l) m(n)

2N−1,3(k, l) · · · m(n)

2N−1,2N−1(k, l)

⎞⎟⎟⎟⎟⎠
p=q=1+ρ

×

⎛⎜⎜⎜⎜⎜⎜⎝
(1 + ρ)2 2ρ

2!
· · · 2ρ

(2N − 2)!

0 (1 + ρ)2 · · · 2ρ

(2N − 4)!
...

...
. . .

...
0 0 · · · (1 + ρ)2

⎞⎟⎟⎟⎟⎟⎟⎠ .

By taking determinant of both sides, the reduction condition (27) is proved. �

Proof of theorem 1. Since the τ function (26) in lemma 3 satisfies both the bilinear
equations (23) and the reduction condition (27), it satisfies all the following bilinear equations,

(Dx + 1)τn(k, l) · τn(k + 1, l) = τn+1(k, l)τn−1(k + 1, l),

(Dx + 1)τn(k, l + 1) · τn(k, l) = τn+1(k, l + 1)τn−1(k, l),

(Dy − 1)τn(k, l + 1) · τn(k, l) = −τn−1(k, l + 1)τn+1(k, l),

(Dy − 1)τn(k, l) · τn(k + 1, l) = −τn−1(k, l)τn+1(k + 1, l),

τn+1(k, l)τn−1(k, l) − (1 − ρ2)τn(k, l)τn(k, l) = ρ2

(1 + ρ)4N
τn(k + 1, l)τn(k, l + 1).

We now substitute x = ict/(1 − ρ2) and y = −idt/(1 − ρ2), where c and d are complex
constants. Then the time derivative becomes i(1 − ρ2)∂t = −c∂x + d∂y, and we obtain

[i(1 − ρ2)Dt + c + d]τn(k + 1, l) · τn(k, l)

= cτn−1(k + 1, l)τn+1(k, l) + dτn+1(k + 1, l)τn−1(k, l),

[−i(1 − ρ2)Dt + c + d]τn(k, l + 1) · τn(k, l)

= cτn+1(k, l + 1)τn−1(k, l) + dτn−1(k, l + 1)τn+1(k, l),

τn+1(k, l)τn−1(k, l) − (1 − ρ2)τn(k, l)τn(k, l) = ρ2

(1 + ρ)4N
τn(k + 1, l)τn(k, l + 1).

The determinant solution (26) is now written as

τn(k, l) = det
1�i, j�N

(
A2i−1B2 j−1m(n)(k, l)

)∣∣∣∣
p=q=1+ρ

,

where operators Ai, Bj are defined in equations (24)–(25), and

m(n)(k, l) = 1

pq − 1 + ρ2
(pq)n

(
1 − ρ2 − q

1 − 1/p

)k (
1 − ρ2 − p

1 − 1/q

)l

e
i
(

1
pq − 1

1−ρ2

)
(qd−pc)t

.

By taking bμ = āμ and d = c̄, the conjugacy condition

τn(l, k) = τn(k, l)

is then satisfied. We now define

fn = τn(0, 0), gn = τn(1, 0)/(1 + ρ)2N, (28)

then fn is real, τn(0, 1)/(1 + ρ)2N = ḡn, and the above bilinear equations yield

[i(1 − ρ2)Dt + c + c̄]gn · fn = cgn−1 fn+1 + c̄gn+1 fn−1,

fn+1 fn−1 − (1 − ρ2) fn fn = ρ2gnḡn.
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Finally we set c = e−iθ , where θ is a real constant. Then through the variable transformation,

un = ρ√
1 − ρ2

gn

fn
ei(θn−ωt),

where ω = (eiθ + e−iθ )/(1 − ρ2) = 2 cos θ/(1 − ρ2), the above bilinear equations are
transformed to

i
d

dt
un = (1 + σ |un|2)(un+1 + un−1),

where σ = sgn(1 − ρ2). Thus when |ρ| < 1, the transformed equation is the focusing AL
equation (1), while when |ρ| > 1, the transformed equation is the defocusing AL equation (2).
Then rogue-wave solutions (3) for the focusing and defocusing AL equations are established
(it is easy to see that functions fn, gn defined in equation (28) are identical to those given in
theorem 1). The selection of parameters (4) can be proved in the same way as that for rogue
waves of the NLS equation in [12] and is thus not repeated here. �

Proof of theorem 2. By the reparametrization p = 1+ρP and q = 1+ρQ, the matrix element
m(n)

i j (k, l) = AiBjm(n)(k, l) in lemma 2 is given by

m(n)(k, l) = (−1)k+lρk+l−1

P + Q + ρ(1 + PQ)
(1 + ρP)n+k(1 + ρQ)n+l

(
1 + Q/ρ

P

)k (
1 + P/ρ

Q

)l

eξ+η,

ξ + η =
(

1 + ρP − 1 − ρ2

1 + ρQ

)
x +

(
1 + ρQ − 1 − ρ2

1 + ρP

)
y,

and

Ai =
i∑

ν=0

aν

(i − ν)!
(P∂P)i−ν, Bj =

j∑
μ=0

bμ

( j − μ)!
(Q∂Q) j−μ.

Let us consider the following generator G of differential operators (P∂P)α(Q∂Q)β ,

G =
∞∑

α=0

∞∑
β=0

κα

α!

λβ

β!
(P∂P)α(Q∂Q)β = exp(κP∂P + λQ∂Q).

Recalling the identity

GF(P, Q) = F(ekP, elQ)

for any function F , applying G to the above m(n) and taking P = Q = 1 (i.e. p = q = 1 + ρ),
we have

Gm(n)(k, l)
∣∣
P=Q=1

= (−1)k+lρk+l−1

eκ + eλ + ρ(1 + eκ+λ)
(1 + ρeκ )n+k(1 + ρeλ)n+l

(
1 + eλ/ρ

eκ

)k (
1 + eκ/ρ

eλ

)l

eξ̃+η̃

= (−1)k+l (1 + ρ)2(n+k+l)−1/2ρ

1 − 1−ρ

1+ρ
1−eκ

1+eκ
1−eλ

1+eλ

exp

[
(n + k) ln

1 + ρeκ

1 + ρ
+ (n + l) ln

1 + ρeλ

1 + ρ

+ k ln
1 + eλ/ρ

1 + 1/ρ
+ l ln

1 + eκ/ρ

1 + 1/ρ
− kκ − lλ − ln

1 + eκ

2
− ln

1 + eλ

2
+ ξ̃ + η̃

]
, (29)
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where

ξ̃ + η̃ =
(

1 + ρ eκ − 1 − ρ2

1 + ρeλ

)
x +

(
1 + ρ eλ − 1 − ρ2

1 + ρeκ

)
y.

Differentiating the first expansion in (7) with respect to λ, we get

ρeλ

1 + ρeλ
= ρ

1 + ρ
+

∞∑
ν=1

(ν + 1)rν+1(ρ)λν,

thus ξ̃ + η̃ can be written as

ξ̃ + η̃ = 2ρ(x + y) +
(

ρ(eκ − 1) + (1 − ρ2)

∞∑
ν=1

(ν + 1)rν+1(ρ)λν

)
x

+
(

ρ(eλ − 1) + (1 − ρ2)

∞∑
ν=1

(ν + 1)rν+1(ρ)κν

)
y.

Moreover since we have the formal expansion[
1 − 1 − ρ

1 + ρ

1 − eκ

1 + eκ

1 − eλ

1 + eλ

]−1

=
∞∑

μ=0

[
1 − ρ

1 + ρ

κλ

4
exp

(
ln

(
2

κ
tanh

κ

2

)
+ ln

(
2

λ
tanh

λ

2

))]μ

,

equation (29) can be rewritten as

(−1)k+l2ρ e−2ρ(x+y)

(1 + ρ)2(n+k+l)−1
Gm(n)(k, l)

∣∣
P=Q=1

=
∞∑

μ=0

(
1 − ρ

1 + ρ

κλ

4

)μ

exp

( ∞∑
ν=1

(xν + μsν )κ
ν +

∞∑
ν=1

(yν + μsν )λ
ν

)

=
∞∑

μ=0

(
1 − ρ

1 + ρ

κλ

4

)μ ∞∑
α=0

Sα(x + μs)κα

∞∑
β=0

Sβ (y + μs)λβ,

where xν and yν are as defined in theorem 2. By taking the coefficient of καλβ , we obtain

(−1)k+l2ρe−2ρ(x+y)

(1 + ρ)2(n+k+l)−1

(P∂P)α

α!

(Q∂Q)β

β!
m(n)(k, l)

∣∣∣∣
P=Q=1

=
min(α,β)∑

μ=0

1

4μ

(
1 − ρ

1 + ρ

)μ

Sα−μ(x + μs)Sβ−μ(y + μs).

Therefore the matrix element m(n)
i j (k, l) in lemma 2 with p = q = 1+ρ is explicitly expressed

in the polynomial form,

(−1)k+l2ρe−2ρ(x+y)

(1 + ρ)2(n+k+l)−1
m(n)

i j (k, l)

∣∣∣∣
p=q=1+ρ

=
i∑

α=0

j∑
β=0

min(i−α, j−β)∑
μ=0

aαbβ

4μ

(
1 − ρ

1 + ρ

)μ

Si−α−μ(x + μs)S j−β−μ(y + μs).

By taking x = ite−iθ /(1−ρ2), y = −iteiθ /(1−ρ2) and bβ = āβ , the matrix element m(n)
i j (k, l)

from the above equation is equal to m̃(n)
i j (k, l) in theorem 2, multiplied by a factor which is

(i, j)-independent and is inversely proportional to (−1)k(1 + ρ)2k. Recalling the definition of
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functions fn, gn in equation (28), gn/ fn in theorem 1 is then equal to (−1)Nσn(1, 0)/σn(0, 0),
thus the algebraic expression of rogue waves in equations (5)–(6) of theorem 2 is proved.

The alternative expression (8) for σn(k, l) in theorem 2 can be derived directly from the
original expression (6) through a similar determinant calculus in [12]. We rewrite the N × N
determinant σn(k, l) in (6) into a 3N×3N determinant form, then apply the Laplace expansion,
which leads to the expression (8) (see [12] for details). Thus, theorem 2 is proved. �

Proof of theorem 3. In the polynomial solution (8) in n and t, the leading term comes from
the one with ν1 = 0, ν2 = 1, . . ., νN = N − 1, i.e.,

[(1 − ρ)/(1 + ρ)]N(N−1)/2 det
1�i, j�N

(
	

(n)

2i−1, j−1(k, l)
)

det
1�i, j�N

(



(n)

2i−1, j−1(k, l)
)

.

Notice that the highest-degree terms in 	
(n)
iν (k, l) and 


(n)
jν (k, l) are a0xi−ν

1 /(i − ν)!2ν and
ā0y j−ν

1 /( j −ν)!2ν respectively. In addition, the leading term of n, t in the product x1y1 is given
by |r1(ρ)n + i(e−iθρ/(1 −ρ2)− eiθ 2r2(ρ))t|2 = r1(ρ)2|n + i(e−iθ /(1 −ρ)− eiθ /(1 +ρ))t|2.
Consequently the leading term of n, t in the polynomial σn(k, l) is proportional to∣∣∣∣n + i

(
e−iθ

1 − ρ
− eiθ

1 + ρ

)
t

∣∣∣∣N(N+1)

=
[(

n + 2t sin θ

1 − ρ2

)2

+
(

2tρ cos θ

1 − ρ2

)2
]N(N+1)/2

.

If cos θ �= 0, then this term is dominant as n2 + t2 goes to infinity in any direction on the
(n, t)-plane. The coefficient of this dominant term does not vanish and is independent of k and
l by direct calculation. Thus if cos θ �= 0, σn(1, 0)/σn(0, 0) approaches 1 when the space-time
point (n, t) goes to infinity, for example, when t goes to infinity (for each fixed n) or n goes
to infinity (for each fixed t). In addition, if cos θ �= 0, then σn(1, 0)/σn(0, 0) approaches
1 uniformly in n as |t| goes to infinity. Hence the boundary condition (9) in theorem 3 is proved.

�

Proof of theorem 4. From theorem 2, we see that 

(n)
iν (k, l) is the complex conjugate of

	
(n)
iν (l, k). Then from the expression of σn(k, l) in equation (8), we have

σn(0, 0) =
1∑

ν1=0

3∑
ν2=ν1+1

· · ·
2N−1∑

νN=νN−1+1

(
1 − ρ

1 + ρ

)ν1+ν2+···+νN
∣∣∣∣ det
1�i, j�N

(
	

(n)

2i−1,ν j
(0, 0)

)∣∣∣∣2

.

Clearly σn(0, 0) � 0 if −1 < ρ < 1. Furthermore the term for ν1 = 1, ν2 = 3, . . .,
νN = 2N − 1 is not zero because 	

(n)
ii (k, l) = a0/2i and 	

(n)
iν (k, l) = 0 (i < ν). Therefore

σn(0, 0) is strictly positive for −1 < ρ < 1. Consequently, rogue waves for the focusing AL
equation in theorems 1 and 2 are always non-singular, which completes the proof. �

Of course, this non-singularity of solutions does not hold for the defocusing AL equation
(where |ρ| > 1), as has been seen in section 3.

5. Summary

In this paper, general Nth order rogue waves in the focusing and defocusing Ablowitz–
Ladik (AL) equations were derived by the bilinear method. These solutions were given by
determinants, and they contain 2N + 1 non-reducible free real parameters (which is more
than that in rogue-wave solutions derived before). In the focusing case, we showed that rogue
waves are always bounded. In addition, they can reach much higher peak amplitudes than their
continuous counterparts in the nonlinear Schrödinger equation. Furthermore, higher-order
rogue waves can exhibit triangular and circular patterns with different individual peaks. In the
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defocusing case, we showed that rogue waves still appear, which is surprising. In this case,
we found that rogue waves of any order can blow up to infinity in finite time, even though
non-blowup rogue waves can also exist.

It is noted that solutions in the AL equations are closely related to those in the discrete
Hirota equation [19]

i
d

dt
vn = (1 ± |vn|2)[(a + ib)vn+1 + (a − ib)vn−1], (30)

where a and b are any real constants. When a = 0, this equation becomes the discrete
modified KdV equation; and when b = 0, it becomes the AL equations. Since we have
constructed rogue-wave solutions of the AL equations for arbitrary carrier wave frequency θ ,
it is straightforward to derive rogue-wave solutions in the discrete Hirota equation as well. By
writing a + ib = Rei� with real constants R and �, we see that

vn(t) = e−in�un(Rt)

is a solution of equation (30) when un(t) is a solution of the AL equation (1) or (2). Thus,
rogue-wave solutions for the discrete Hirota equation can be obtained directly from theorem 1
or 2. For example, from theorem 2 we get the following theorem. Here for simplifying the
expression, the sign (−1)N in theorem 2 is dropped and notations φ = θ − �, � = Rω are
used.

Theorem 5. General Nth order rogue waves for the discrete Hirota equation (30) are given
by

vn(t) = ρ√
1 − ρ2

σn(1, 0)

σn(0, 0)
ei(φn−�t),

where ρ, φ are free real constants, � = [(a + ib)eiφ + (a − ib)e−iφ]/(1 − ρ2), and σn(k, l) is
defined in theorem 2 with x and y replaced by it(a−ib)e−iφ/(1−ρ2) and −it(a+ib)eiφ/(1−ρ2)

respectively.
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