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We derive general rogue wave solutions of arbitrary orders in the Boussinesq equation by the bilinear Kadomtsev–
Petviashvili (KP) reduction method. These rogue solutions are given as Gram determinants with 2N − 2 free irreducible
real parameters, where N is the order of the rogue wave. Tuning these free parameters, rogue waves of various patterns
are obtained, many of which have not been seen before. Compared to rogue waves in other integrable equations, a new
feature of rogue waves in the Boussinesq equation is that the rogue wave of maximum amplitude at each order is
generally asymmetric in space. On the technical aspect, our contribution to the bilinear KP-reduction method for rogue
waves is a new judicious choice of differential operators in the procedure, which drastically simplifies the dimension
reduction calculation as well as the analytical expressions of rogue wave solutions.

1. Introduction

In 1871, Boussinesq introduced an equation which governs
the propagation of long surface waves on water of constant
depth1,2) (see also Ref. 3). After variable normalizations, this
equation can be written as

�tt � �xx � ð�2Þxx �
1

3
�xxxx ¼ 0: ð1Þ

Actually, the quantities η, x, and t can be further scaled
to produce any desired coefficients for the terms in this
equation. The present choice of coefficients is taken
following.4) This Boussinesq equation also arises in many
other physical contexts, such as continuum approximations of
certain Fermi–Pasta–Ulam chains,5–7) and ion sound waves in
a plasma.8,9) Remarkably, this equation is integrable. Indeed,
its multi-soliton solutions (by the bilinear method) and its
Lax pair were reported almost simultaneously by Hirota and
Zakharov in 19735,10) (see also Refs. 11–13). Additional
solutions, such as wave packets, breathers and homoclinic
structures, were reported in Ref. 14.

Rogue waves are spontaneous large nonlinear waves
which “come from nowhere and disappear with no trace”.15)

In other words, they arise from a constant (uniform)
background, run to high amplitudes, and then retreat back
to the same background. These waves are associated with
freak waves in the ocean and extreme events in optical
fibers.16–19) Thus, they have attracted a lot of attention in the
physics and nonlinear waves communities in recent years.
Analytical expressions of rogue waves have been derived in
a large number of integrable nonlinear wave equations,
such as the nonlinear Schrödinger (NLS) equation,20–29) the
derivative NLS equation,30,31) the three-wave interaction
equation,32) the Davey–Stewartson equations,33,34) and many
others.35–54) Rogue waves have also been observed in water
tanks55,56) and optical fibers.57–59)

In this paper, we consider rogue waves in the Boussinesq
equation (1). Since these waves arise from and retreat back to
a constant background, we let

�ðx; tÞ ! �0; x; t ! �1; ð2Þ
where �0 is a constant. For rogue waves to appear, the
background solution � ¼ �0 must be unstable to long-wave
perturbations.42) Simple calculations show that this so-called
baseband instability occurs when 1 þ 2�0 � 0. Under this

condition, after a variable shift of � ¼ �0 þ u and proper
scalings of x, t, and u, the Boussinesq equation (1) reduces to

utt þ uxx � ðu2Þxx �
1

3
uxxxx ¼ 0; ð3Þ

and boundary conditions (2) reduce to

uðx; tÞ ! 0; x; t ! �1: ð4Þ
Fundamental (first-order) rogue waves to the Boussinesq

equation (3) were derived in Refs. 60 and 61 by taking a
long-wave limit of the two-soliton solution, following a
similar procedure introduced in Ref. 62 where several
singular rational solutions for the Boussinesq equation (1)
were presented. Higher-order rogue waves to the Boussinesq
equation (3) were recently considered by Clarkson and
Dowie.4) By converting this equation into a bilinear one,
assuming certain polynomial forms for the bilinear solution,
equating powers of x; t in the bilinear equation and solving
the resulting algebraic equations for the polynomial coef-
ficients, the authors obtained second- to fifth-order rogue
waves with two free real parameters at each order.

Despite this progress, many important questions on rogue
waves of the Boussinesq equation are still open. One of the
most significant questions is that analytical expressions for
rogue waves of arbitrary orders are still unknown. A related
question is how many free real parameters exist in general
rogue waves of arbitrary orders. Recall that all higher-order
rogue waves reported in Ref. 4 contained the same number of
free real parameters (which is two). But from experience of
rogue waves in other integrable equations (such as the NLS
equation22,26,27)), one anticipates that the number of free
parameters should increase with the order of the rogue wave.
Thus, general rogue waves of high order in the Boussinesq
equation should contain more parameters than two, and those
solutions with more free parameters are still unclear. A third
open question is what is the maximum amplitude that can be
attained in rogue waves of a given order, and what is the
spatial-temporal profile of that rogue wave of maximum
amplitude. Since the Boussinesq equation is a physically and
mathematically interesting equation, these open questions on
its rogue waves clearly merit thorough investigation.

In this article, we derive general rogue waves of arbitrary
orders in the Boussinesq equation (3) under boundary
conditions (4). The technique we will use is the bilinear
Kadomtsev–Petviashvili (KP) reduction method.63) Although
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this technique has been applied to derive rogue waves in
several other integrable equations before (see Refs. 27, 33,
34, 43, 50–52, and 54), when it is applied to the Boussinesq
equation, the previous choices of differential operators within
this technique would cause considerable technical complica-
tions. Here, we propose a new judicious choice of those
differential operators, which will drastically simplify the
dimension reduction calculation as well as the analytical
expressions of rogue wave solutions. Our rogue solutions are
given as Gram determinants with 2N � 2 free irreducible real
parameters, where N is the order of the rogue wave. Thus,
rogue waves of higher orders do contain more free parame-
ters, and the rogue waves reported in Ref. 4 are special cases.
Tuning these free parameters, we obtain rogue waves of
various interesting patterns, many of which have not been
seen before. We also find that in the Boussinesq equation, the
rogue wave of maximum amplitude at each order is generally
asymmetric in space. This is a surprising feature which
contrasts rogue waves in other integrable equations.

2. General Rogue-wave Solutions

Our general rogue waves in the Boussinesq equation (3)
are given by the following two theorems.

Theorem 1. The Boussinesq equation (3) under boundary
conditions (4) admits rational nonsingular rogue-wave
solutions of the N-th order

uNðx; tÞ ¼ 2@2x ln �N; ð5Þ
where

�Nðx; tÞ ¼ det
1�i; j�N

ðm2i�1;2j�1Þ; ð6Þ
the matrix elements in �N are defined by

mi;j ¼
Xi
k¼0

Xj
l¼0

ak
ði � kÞ!

ð�1Þla�l
ð j � lÞ! ½ fðpÞ@p�

i�k½ fðqÞ@q� j�l

� 1

p þ q
e
1
2
ðpþqÞx�1

4
ðp2�q2Þit

� �����
p¼�1; q¼�1

; ð7Þ

with

fðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 4

p
3

; fðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4

p
3

; ð8Þ

the asterisk “�” represents complex conjugation, and ak are
free complex constants.

The matrix elements in the above theorem are expressed in
terms of derivatives with respect to dummy parameters p and
q. Purely algebraic expressions for these matrix elements can
also be obtained through elementary Schur polynomials. For
this purpose, we first introduce elementary Schur polyno-
mials SkðxÞ which are defined via the generating function,X1

k¼0
SkðxÞ�k ¼ exp

X1
j¼1

xj�
j

 !
; ð9Þ

where x ¼ ðx1; x2; . . .Þ. Specifically, we have

S0ðxÞ ¼ 1; S1ðxÞ ¼ x1;

S2ðxÞ ¼ 1

2
x21 þ x2; . . . ; SkðxÞ ¼

X
l1þ2l2þ���þmlm¼k

Ym
j¼1

x
lj
j

lj!

 !
:

ð10Þ

In terms of these Schur polynomials, the matrix element mi;j

in Eq. (7) can be rewritten as follows.

Theorem 2. The matrix element mi;j in Eq. (7) can be
replaced by the purely algebraic expression

mi;j ¼
Xminði; jÞ

�¼0
�i��j�; ð11Þ

where

�i� ¼ i

2
ffiffiffi
3

p
� ��Xi��

k¼0
akSi���kðxþ þ �sÞ; ð12Þ

�j� ¼ i

2
ffiffiffi
3

p
� ��Xj��

l¼0
ð�1Þla�l Sj���lðx� þ �sÞ; ð13Þ

and vectors x� ¼ ðx�1 ; x�2 ; . . .Þ, r ¼ ðr1; r2; . . .Þ, s ¼
ðs1; s2; . . .Þ are defined by

x�k ¼ e2i�=3 þ ð�1Þke�2i�=3
2 � 3k � k! ½x � ð�2Þk�1it� þ rk; ð14Þ

X1
k¼1

rk�
k ¼ �ln 1

2
� cosh

�

3
þ 2i�

3

� �� �
; ð15Þ

X1
k¼1

sk�
k ¼ ln

2i
ffiffiffi
3

p

�
tanh

�

6
tanh

�

6
þ 2i�

3

� �� �
: ð16Þ

The first few ðrk; skÞ values are
r1 ¼ i

2
ffiffiffi
3

p ; r2 ¼ � 5

72
; r3 ¼ � i

54
ffiffiffi
3

p ;

s1 ¼ 2i

3
ffiffiffi
3

p ; s2 ¼ � 5

108
; s3 ¼ � 5i

243
ffiffiffi
3

p : ð17Þ

Remark 1. The two expressions (7) and (11) for the matrix
element mi;j in Theorems 1 and 2 differ by a factor of �e�x=2
[see Eq. (90) later]. But they yield the same Boussinesq
solution uNðx; tÞ in view of Eq. (5).

Remark 2. Even though the matrix elements in these
theorems contain complex numbers, we will show that the
determinant (6) and the resulting solution uðx; tÞ are real (see
Sect. 4.3).

Remark 3. The rogue waves in Theorem 1 contain 2N
free complex parameters a0; a1; . . . ; a2N�1, but these free
parameters are reducible. First, we can set a0 ¼ 1 without
loss of generality. Second, through a determinant manipu-
lation similar to that in Ref. 27, we can set

a2 ¼ a4 ¼ a6 ¼ � � � ¼ aeven ¼ 0 ð18Þ
without loss of generality. These a0 and aeven values will be
taken throughout the rest of this article. Thirdly, with a
shifting of x and t, we can also normalize a1 ¼ 0 (as was
done in Ref. 27). Thus, the N-th order rogue waves in the
Boussinesq equation contain N � 1 free irreducible complex
parameters, or 2N � 2 free irreducible real parameters. This
number is the same as that for rogue waves in the NLS
equation.27) Recalling that the second- and higher-order
Boussinesq rogue waves reported in Ref. 4 contain only two
free real parameters, this means that those solutions are special
cases of ours in the above theorems. As an example, our third-
order rogue waves for the Boussinesq equation contain 4 free
irreducible real parameters, which doubles the number of free
real parameters in third-order rogue waves of Ref. 4.
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Remark 4. Using the algebraic expressions of matrix
elements in Theorem 2, we can show that when a1; a3; . . . ;
aodd are all purely imaginary (and a0; a2; . . . ; aeven are taken
as in Remark 3), then the rogue solution (5) is symmetric in
time, i.e.,

uðx; tÞ ¼ uðx;�tÞ: ð19Þ
The reason is that, if t ! �t, then xþk ! x�k . In addition, if all
aodd are purely imaginary and all aeven purely real, then
a�k ¼ ð�1Þkak. In this case, we see from Eqs. (11)–(13) that
mijðx;�tÞ ¼ mjiðx; tÞ, and thus uðx; tÞ ¼ uðx;�tÞ.
3. Analysis of General Rogue Waves

In this section, we analyze the dynamics of Boussinesq
rogue waves. The matrix element mij in �N will be calculated
from the algebraic expression (11) of Theorem 2 since it is
simpler.

3.1 First- and second-order rogue waves
Setting N ¼ 1 and a1 ¼ 0, we get the first-order rogue

wave

u1ðx; tÞ ¼ 2@2x lnðx̂2 þ t2 þ 1Þ ¼ 4ð1 � x̂2 þ t2Þ
1 þ x̂2 þ t2

; ð20Þ

where x̂ ¼ x þ 1. This solution matches the one derived
earlier in Refs. 4, 60, and 61, and it does not contain any
irreducible free parameters.

For second-order rogue waves, we set N ¼ 2,

a1 ¼ 0; a3 ¼ g3 þ ih3

72
ffiffiffi
3

p ; ð21Þ

where g3 and h3 are free real constants. Then, the
corresponding rogue waves in Eq. (5) become

u2ðx; tÞ ¼ 2@2x ln �2; ð22Þ
where

�2ðx; tÞ ¼ x6 þ t6 þ 3x4t2 þ 3x2t4 þ 14x5 þ 14xt4

þ 28x3t2 þ 90x4 þ 128x2t2 þ 22t4

þ 324x3 þ 316xt2 þ 648x2 þ 360t2 þ 648x þ 324

þ 2h3ðx3 � 3xt2 þ 7x2 � 7t2 þ 16x þ 8Þ
þ 2g3tðt2 � 3x2 � 14x � 18Þ þ h23 þ g23: ð23Þ

This solution contains two irreducible free real parameters g3
and h3. Recall that the second-order rogue waves derived in
Ref. 4 also contain two free real parameters. It turns out that
the second-order rogue waves in Ref. 4 and our solution (22)
above are equivalent. Indeed, our function �2 in (23) can be
rewritten as

�2ðx; tÞ ¼ �ðsÞ2 ðx̂; tÞ þ 2�t 3x̂2 � t2 þ 5

3

� �

þ 2�x̂ x̂2 � 3t2 � 1

3

� �
þ �2 þ �2; ð24Þ

where x̂ ¼ x þ 7
3
, � ¼ �g3, � ¼ h3 � 106

27
, and

�ðsÞ2 ðx; tÞ ¼ x6 þ 3t2 þ 25

3

� �
x4 þ 3t4 þ 30t2 � 125

9

� �
x2

þ t6 þ 17

3
t4 þ 475

9
t2 þ 625

9
ð25Þ

is a second-order ðx; tÞ-symmetric rogue wave in the
Boussinesq equation.4) The above form of �2ðx; tÞ matches
the generalized second-order rogue waves derived in Ref. 4
(except for a space shift).

3.2 The third-order rogue waves
To get general third-order rogue waves, we set N ¼ 3 and

a1 ¼ 0. The corresponding rogue waves (5) contain two
irreducible free complex parameters a3 and a5, or four
irreducible free real parameters. This number of irreducible
free parameters doubles that in the third-order rogue waves of
Ref. 4. To show explicitly how our third-order rogue waves
of four free real parameters generalize the previous ones of
two free real parameters in Ref. 4, we can rewrite our �3ðx; tÞ
as the one in Ref. 4 plus additional terms with two more free
real parameters. For this purpose, we set

a3 ¼
	 þ i

�

 þ 1700

27

�
720

ffiffiffi
3

p ;

a5 ¼
8	 � � þ i

�
� � 7
 � 322

9

�
12960

ffiffiffi
3

p ; ð26Þ

where α, β, γ, and ζ are free real parameters. Then, our
function �3ðx; tÞ can be rewritten as

�3ðx; tÞ ¼ �ð1Þ3 ðx̂; tÞ þ �ð2Þ3 ðx̂; tÞ; ð27Þ
where x̂ ¼ x þ 11

3
, �ð1Þ3 ðx; tÞ is the two-parameter third-order

solution from Ref. 4, i.e.,

�ð1Þ3 ðx; tÞ ¼ F3ðx; tÞ þ 2�tP2ðx; tÞ þ 2�xQ2ðx; tÞ
þ ð�2 þ �2ÞF1ðx; tÞ;

with F1; F3; P2; Q2 being polynomials given in Ref. 4, and
�ð2Þ3 ðx; tÞ contains terms involving the other two free real
parameters γ and ζ as

�ð2Þ3 ðx; tÞ ¼ 	R10ðx; t; �; �Þ þ 
R01ðx; t; �; �Þ
þ 	2R20ðx; t; �; �Þ þ 	
R11ðx; t; �; �Þ
þ 
2R02ðx; t; �; �Þ þ 	3R30ðx; tÞ þ 	2
R21ðx; tÞ

þ 	
2R12ðx; tÞ þ 
3R03ðx; tÞ þ 1

400
ð	2 þ 
2Þ2;

with Rij being polynomial functions of x and t, and their
dependence on α and β (if any) both linear. Explicit
expressions of Rij are omitted here for brevity. This �ð2Þ3

term with two more free real parameters is our general-
ization of the previous two-parameter third-order solution
in Ref. 4.

Since our function �3ðx; tÞ contains two more free
parameters, it leads to many new solutions. For example,
two triangular patterns with different orientations as well as
two mixed patterns, together with their corresponding a3 and
a5 values, are displayed in Fig. 1. When compared to the
third-order rogue patterns reported in Ref. 4, we see that the
present wave patterns are quite different. It is noted that some
of these patterns, such as the triangular ones in the upper row
of Fig. 1, look quite similar to those in the local NLS
equation.27) But the mixed patterns in the lower row of Fig. 1
have not been seen in the NLS equation.
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3.3 Rogue waves of maximum amplitude
Next, we explore the maximum amplitude that can be

reached by rogue waves of each order. For the NLS equation,
this question has been addressed.21,23,27,29) But for the
Boussinesq equation, this question is still open.

For the first-order rogue wave (20), since it has no
irreducible free parameters, its maximum amplitude can be
easily seen as 4, which is attained at x̂ ¼ t ¼ 0. Shifting the
location of this maximum amplitude to the origin ðx; tÞ ¼
ð0; 0Þ, which is equivalent to choosing a1 ¼ �i=ð2 ffiffiffi

3
p Þ in the

rogue waves of Theorems 1 and 2, this first-order rogue wave
of maximum amplitude is plotted in Fig. 2(a). Notice that this
solution is symmetric in both x and t.

For second-order rogue waves, we find that their maximum
amplitude is 5.5. If we require this maximum amplitude to be
located at the origin x ¼ t ¼ 0 (which means that we cannot
normalize a1 to be zero), then there are two such rogue waves

uð1Þðx; tÞ and uð2Þðx; tÞ with this maximum amplitude, and
their corresponding ða1; a3Þ values are

a1 ¼ i
9 � 7

ffiffiffi
3

p

18
; a3 ¼ i

72 � 47
ffiffiffi
3

p

324
; ð28Þ

and

a1 ¼ �i 9 þ 7
ffiffiffi
3

p

18
; a3 ¼ �i 72 þ 47

ffiffiffi
3

p

324
: ð29Þ

The profile of the first rogue wave uð1Þðx; tÞ is plotted in
Fig. 2(b), and the second wave is related to the first one by
uð2Þðx; tÞ ¼ uð1Þð�x; tÞ. Notice that these second-order rogue
waves of maximum amplitude are symmetric in t, but
asymmetric in x. This contrasts the first-order rogue wave,
which is symmetric in both x and t [see Fig. 2(a)].

For third-order rogue waves, their maximum amplitude
attained at the origin becomes approximately 6.784. Two

Fig. 2. (Color online) Profiles of the first- to fourth-order rogue waves of maximum amplitude in the Boussinesq equation. The parameter values for these
rogue waves are given in the text.

Fig. 1. (Color online) Third-order rogue waves in the Boussinesq equation. Free parameters in these solutions are chosen as (a) a3 ¼ 1, a5 ¼ 0; (b) a3 ¼ i,
a5 ¼ 0; (c) a3 ¼ i=2, a5 ¼ i=2; and (d) a3 ¼ �i=2, a5 ¼ i=2.
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rogue waves feature this maximum amplitude, and they are
related to each other by switching x to −x. The first wave has
parameter values

a1 	 �0:1163i; a3 	 �0:0238i; a5 	 �0:0002i; ð30Þ
and its profile is plotted in Fig. 2(c). The second wave has
parameter values

a1 	 �2:001i; a3 	 �2:584i; a5 	 �3:937i: ð31Þ
For fourth-order rogue waves, their maximum amplitude

attained at the origin is approximately 7.944. Again, two
rogue waves feature this maximum amplitude. The first one,
with parameter values

a1 	 �0:0799i; a3 	 �0:0213i;
a5 	 0:0001i; a7 	 �0:0001i; ð32Þ

is plotted in Fig. 2(d), and the second one has parameter
values

a1 	 �1:080i; a3 	 �0:348i;
a5 	 �0:133i; a7 	 �0:051i: ð33Þ

For fifth- and sixth-order rogue waves, their maximum
amplitudes are approximately 9.017 and 10.025 respectively.
Profiles and parameter values for these rogue waves of
maximum amplitude are omitted.

All rogue waves of maximum amplitude from the second
order up are asymmetric in x and symmetric in t. At each
order, two such waves exist which are mirror images of each
other around x ¼ 0.

The above results are briefly summarized in Table I.
It should be noted that at each order, there does exist a

rogue wave which is symmetric in both x and t. Such
symmetric solutions up to order six have been derived and
plotted in Ref. 4. They are special solutions of our general
rogue waves (5) as well. For instance, the first-order
symmetric rogue wave is obtained from our formula (5)
when we choose a1 ¼ �i=ð2 ffiffiffi

3
p Þ; the second-order one is

obtained when we choose a1 ¼ �7i=ð6 ffiffiffi
3

p Þ and a3 ¼ �31i=
ð216 ffiffiffi

3
p Þ; the third-order one is obtained when we choose

a1 ¼ �11i=ð6 ffiffiffi
3

p Þ, a3 ¼ �409i=ð648 ffiffiffi
3

p Þ and a5 ¼ �1619i=
ð6480 ffiffiffi

3
p Þ; and for the fourth-order, the parameters are

a1 ¼ �5i=ð2 ffiffiffi
3

p Þ, a3 ¼ �359i=ð216 ffiffiffi
3

p Þ, a5 ¼ �5041i=
ð3888 ffiffiffi

3
p Þ, and a7 ¼ �29937263i=ð29393280 ffiffiffi

3
p Þ; and so

on.
However, except for order one, this symmetric rogue wave

does not attain the maximum amplitude of that order. For
instance, the peak amplitudes of symmetric rogue waves
from the second to sixth orders are approximately 4.846,
6.545, 6.956, 8.648, and 8.757 respectively. These peak
values of symmetric rogue waves are also listed in Table I.
Compared to the maximum amplitudes in that table, it is clear
that these peak amplitudes of symmetric rogue waves are
lower than the maximum amplitudes of x-asymmetric rogue
waves (except for order one).

The fact that rogue waves of maximum amplitude in the
Boussinesq equation are generally asymmetric rather than
symmetric in space is very counterintuitive, considering that
the Boussinesq equation itself is symmetric in space. This
asymmetry also contrasts the NLS equation, where the
maximum-amplitude rogue waves are always symmetric in
space.21,23,27,29) These asymmetric wave patterns, as shown in

Figs. 2(b)–2(d), are very novel and have not been seen in
rogue waves of other integrable equations (to the authors’
best knowledge).

4. Derivation of Rogue-wave Solutions

In this section, we derive the general rogue-wave solutions
given in Theorems 1 and 2. This derivation uses the bilinear
KP-reduction method in the soliton theory. This method is
based on Hirota’s bilinear form of an integrable equation,63)

and the observation that this bilinear equation is often a
member of the KP hierarchy64) (possibly after certain
reductions such as the dimension reduction). Thus, solutions
of the KP hierarchy, under restrictions due to those
reductions, will provide solutions to the original integrable
system. This technique often gives elegant determinant-type
solutions. In addition, it produces solutions to higher-
dimensional integrable equations more easily than to lower-
dimensional ones, which is remarkable. This bilinear KP-
reduction technique has been applied to derive rogue waves
in several other integrable equations before (see Refs. 27, 33,
34, 43, 50–52, and 54). Since rogue waves are rational
solutions, the way to derive such rational terms in this
bilinear KP method is to define matrix elements as certain
differential operators (with respect to parameters) acting on
an exponential term. When this technique is applied to the
Boussinesq equation, however, the previous choices of such
differential operators would cause considerable technical
difficulties for the dimension reduction (see Refs. 50 and
51 for examples). To overcome those difficulties, we will
introduce a new and general way to choose these differential
operators. As we will see, this new treatment will streamline
the dimension reduction calculation and simplify the
analytical expressions of rogue wave solutions.

The outline of our derivation is as follows.
First, we make the standard variable transformation

uðx; tÞ ¼ 2@2x ln �ðx; tÞ; ð34Þ
where �ðx; tÞ is a real variable. Under this transformation, the
Boussinesq equation (3) is converted into the bilinear form4)

ðD4
x � 3D2

x � 3D2
t Þ� � � ¼ 0; ð35Þ

where D is Hirota’s bilinear differential operator defined by
PðDx;Dy; Dt; . . .ÞFðx; y; t; . . .Þ �Gðx; y; t; . . .Þ


 Pð@x � @x0 ; @y � @y0 ; @t � @t0 ; . . .Þ
� Fðx; y; t; . . .ÞGðx0; y0; t0; . . .Þjx0¼x;y0¼y;t0¼t;...;

and P is a polynomial of Dx;Dy; Dt; . . . .
In order to derive solutions to the bilinear equation (35),

we consider a higher-dimensional bilinear equation

Table I. Maximum amplitudes of rogue waves at each order N and their x-
symmetry.

N
Maximum
amplitude

x-symmetry
Amplitude of

symmetric wave

1 4 symmetric 4
2 5.5 asymmetric 4.846
3 6.784 asymmetric 6.545
4 7.944 asymmetric 6.956
5 9.017 asymmetric 8.648
6 10.025 asymmetric 8.757
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ðD4
x1
� 4Dx1Dx3 þ 3D2

x2
Þ� � � ¼ 0; ð36Þ

which is the bilinear form of the KP equation.63,64) We first
construct a wide class of algebraic solutions for this higher-
dimensional bilinear equation in the form of Gram determi-
nants. Then, we restrict these solutions so that they satisfy the
dimension-reduction condition

ð@x3 � 3@x1Þ� ¼ C�; ð37Þ
where C is some constant (the reason for our choice of the
coefficient 3 in front of @x1 will be explained later). Under
this condition, the higher-dimensional bilinear equation (36)
reduces to

ðD4
x1
� 12D2

x1
þ 3D2

x2
Þ� � � ¼ 0: ð38Þ

Finally, we define

x1 ¼ 1

2
x; x2 ¼ � 1

4
it; ð39Þ

and impose the reality condition

�� ¼ �: ð40Þ
Then, the bilinear equation (38) becomes the bilinear
equation (35) of the Boussinesq equation, and σ (with
x3 ¼ 0) becomes its algebraic (rogue wave) solution.

Next, we follow the above outline to derive general rogue-
wave solutions to the Boussinesq equation (3).

4.1 Gram solutions for the higher-dimensional bilinear
system

First, we derive algebraic solutions to the higher-dimen-
sional bilinear equation (36). From Lemma 1 of Ref. 44,
we learn that if functions mðnÞ

i; j , ’
ðnÞ
i , and  ðnÞ

j of variables
ðx1; x2; x3Þ satisfy the following differential and difference
relations
@x1m

ðnÞ
i; j ¼ ’ðnÞ

i  ðnÞ
j ;

@x2m
ðnÞ
i; j ¼ ’ðnþ1Þ

i  ðnÞ
j þ ’ðnÞ

i  ðn�1Þ
j ;

@x3m
ðnÞ
i; j ¼ ’ðnþ2Þ

i  ðnÞ
j þ ’ðnþ1Þ

i  ðn�1Þ
j þ ’ðnÞ

i  ðn�2Þ
j ;

mðnþ1Þ
i; j ¼ mðnÞ

i; j þ ’ðnÞ
i  ðnþ1Þ

j ;

@xk’
ðnÞ
i ¼ ’ðnþkÞ

i ; @xk 
ðnÞ
j ¼ � ðn�kÞ

j ; ðk ¼ 1; 2; 3Þ;

9>>>>>>>>>=
>>>>>>>>>;

ð41Þ

then the determinant

�n ¼ det
1�i; j�N

ðmðnÞ
i; j Þ ð42Þ

satisfies the bilinear equation (36), i.e.,

ðD4
x1
� 4Dx1Dx3 þ 3D2

x2
Þ�n � �n ¼ 0: ð43Þ

Next, we introduce functions mðnÞ, ’ðnÞ, and  ðnÞ as

mðnÞ ¼ 1

p þ q
� p

q

� �n
e�þ�; ’ðnÞ ¼ pne�;  ðnÞ ¼ ð�qÞ�ne�;

ð44Þ
where

� ¼ px1 þ p2x2 þ p3x3; � ¼ qx1 � q2x2 þ q3x3: ð45Þ
It is easy to check that these functions satisfy the differential
and difference relations

@x1m
ðnÞ ¼ ’ðnÞ ðnÞ;

@x2m
ðnÞ ¼ ’ðnþ1Þ ðnÞ þ ’ðnÞ ðn�1Þ;

@x3m
ðnÞ ¼ ’ðnþ2Þ ðnÞ þ ’ðnþ1Þ ðn�1Þ þ ’ðnÞ ðn�2Þ;

mðnþ1Þ ¼ mðnÞ þ ’ðnÞ ðnþ1Þ;

@xk’
ðnÞ ¼ ’ðnþkÞ; @xk 

ðnÞ ¼ � ðn�kÞ; ðk ¼ 1; 2; 3Þ:
Therefore, by defining

mðnÞ
ij ¼ AiBjm

ðnÞ; ’ðnÞ
i ¼ Ai’

ðnÞ;  ðnÞ
j ¼ Bj 

ðnÞ; ð46Þ
where Ai and Bj are differential operators with respect to p
and q respectively as

Ai ¼
Xi
k¼0

ak
ði � kÞ! ½ f1ðpÞ@p�

i�k

Bj ¼
Xj
l¼0

bl
ð j � lÞ! ½ f2ðqÞ@q�

j�l

9>>>>>=
>>>>>;
; ð47Þ

f1ðpÞ and f2ðqÞ are arbitrary functions of p and q, and ak; bk are
arbitrary complex constants, we would see that thesemðnÞ

ij , ’
ðnÞ
i

and  ðnÞ
j obey the differential and difference relations (41)

since the operators Ai and Bj commute with differentials @xk .
Then, Lemma 1 of Ref. 44 tells us that for an arbitrary se-
quence of indices ði1; i2; . . . ; iN; j1; j2; . . . ; jNÞ, the determinant

�n ¼ det
1��;�N

ðmðnÞ
i�; j

Þ ð48Þ
satisfies the higher-dimensional bilinear equation (43).

The above solutions (48) are a very broad class of algebraic
solutions to the bilinear equation (43) which contain a huge
amount of freedom. For instance, parameters p and q are
totally arbitrary, so are the functions f1ðpÞ and f2ðqÞ, complex
constants ak and bk, as well as sequences of indices
ði1; i2; . . . ; iN; j1; j2; . . . ; jNÞ. Only a small portion of such
solutions can satisfy the dimension reduction condition (37)
and the reality condition (40), which then make them
algebraic solutions to the bilinear equation (35) of the
Boussinesq equation (3) under variable connections (39).

Next, we will restrict solutions (48) so that they meet the
dimension reduction condition (37) and the reality condition
(40).

4.2 Dimensional reduction through the W–p treatment
We first consider the dimensional reduction (37) for the

bilinear equation (43), which will introduce restrictions on
parameters p and q, functions f1ðpÞ and f2ðqÞ, as well as
sequences of indices ði1; i2; . . . ; iN; j1; j2; . . . ; jNÞ. We will
also explain the choice of the coefficient 3 in front of @x1 in
that reduction (37).

Dimension reduction is a crucial step in the bilinear KP-
reduction procedure. In the past, the functions f1ðpÞ and
f2ðqÞ in this procedure were always chosen to be linear
functions.27,33,34,43,50–52,54) In many cases, such choices were
appropriate. However, for a coupled NLS-Boussinesq system
and the Yajima–Oikawa system studied in Refs. 50 and 51,
dimension reduction under such choices became cumbersome
and complicated. Indeed, the authors were forced to introduce
two additional indices in the coefficients of the differential
operators and matrix elements, and those coefficients had to
be obtained from nontrivial recurrence relations. For the
present Boussinesq equation (3), choices of linear functions
for f1ðpÞ and f2ðqÞ would encounter a similar difficulty as in
Refs. 50 and 51.
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In this article, we will choose functions f1ðpÞ and f2ðqÞ
differently. We will show that under our judicious choices of
f1ðpÞ and f2ðqÞ, dimension reduction will simplify dramati-
cally. As a result, recurrence relations for coefficients in the
solution will be eliminated, and the solution expressions of
rogue waves will become more clean and concise.

We start from a general dimension reduction condition

ð@x3 þ �@x1 Þ�n ¼ C�n; ð49Þ
where α and C are constants to be determined. In order to
calculate the left side of the above equation, we notice from
the definitions (44) and (46) of mðnÞ and mðnÞ

i; j that

ð@x3 þ �@x1 ÞmðnÞ
i; j ¼ AiBj½Q1ðpÞ þQ2ðqÞ�mðnÞ; ð50Þ

where

Q1ðpÞ ¼ p3 þ �p; Q2ðqÞ ¼ q3 þ �q: ð51Þ
To proceed, we introduce new variables W1 and W2 through

Q1ðpÞ ¼ W1ðpÞ þ 1

W1ðpÞ ;

Q2ðqÞ ¼ W2ðqÞ þ 1

W2ðqÞ : ð52Þ

In terms of these new variables, our new choices of func-
tions f1ðpÞ and f2ðqÞ in the differential operators Ai and Bj

are

f1ðpÞ ¼ W1ðpÞ
W0

1ðpÞ
; f2ðqÞ ¼ W2ðqÞ

W0
2ðqÞ

: ð53Þ

More explicit expressions for f1ðpÞ and f2ðqÞ will be provided
later after the value of α is ascertained [see Eq. (71)]. The
motivation behind this choice of f1ðpÞ is that, under this
choice,

f1ðpÞ@p ¼ W1ðpÞ
W0

1ðpÞ
@p ¼ W1ðpÞ@W1ðpÞ: ð54Þ

Thus,

AiQ1ðpÞmðnÞ ¼
Xi
k¼0

ak
ði � kÞ! ðW1@W1

Þi�k
" #

W1 þ 1

W1

� �
mðnÞ:

ð55Þ
One can recognize that the operators on the right side of this
equation are the same as those in Ref. 27, except for a
notation of W1 instead of p. Using results of Ref. 27, we
immediately get

AiQ1ðpÞmðnÞ ¼
Xi
k¼0

1

k!
W1ðpÞ þ ð�1Þk 1

W1ðpÞ
� �

Ai�kmðnÞ:

ð56Þ
For exactly the same reasons, we also have

BjQ2ðqÞmðnÞ ¼
Xj
l¼0

1

l!
W2ðqÞ þ ð�1Þl 1

W2ðqÞ
� �

Bj�lmðnÞ: ð57Þ

Substituting these two equations into (50), we then get

ð@x3 þ �@x1ÞmðnÞ
i; j ¼

Xi
k¼0

1

k!
W1ðpÞ þ ð�1Þk 1

W1ðpÞ
� �

mðnÞ
i�k; j

þ
Xj
l¼0

1

l!
W2ðqÞ þ ð�1Þl 1

W2ðqÞ
� �

mðnÞ
i; j�l:

ð58Þ

Now, it is time to select values of p, q, and α so that the
above equation can be further simplified (the selected values
of p and q will be denoted as p0 and q0). Since treatments for
p0 and q0 values are the same, we will consider p0 only.
Motivated by Ref. 27, we require W1ðp0Þ ¼ 1, so that the
odd-k terms in the above summation drop out. ThisW1ðp0Þ ¼
1 condition leads to Q1ðp0Þ ¼ 2 in view of Eq. (52). Dif-
ferentiating the first equation in (52) with respect to p, we get

W0
1ðpÞ ¼

Q0
1ðpÞ

1 �W�2
1 ðpÞ : ð59Þ

At the selected p0 value where W1ðp0Þ ¼ 1, W0
1ðp0Þ needs to

be well defined in view of the definition of f1ðpÞ in Eq. (53).
Then, the above equation requires Q0

1ðp0Þ ¼ 0. Thus, the two
conditions for the p0 and α values are

Q1ðp0Þ ¼ 2; Q0
1ðp0Þ ¼ 0: ð60Þ

Inserting the Q1ðpÞ function from (51) into these two
constraints, we get

p30 þ �p0 ¼ 2; 3p20 þ � ¼ 0; ð61Þ
whose solutions are

p0 ¼ �1; � ¼ �3: ð62Þ
This explains the coefficient 3 we have chosen in the
dimension reduction condition (37). The same consideration
for q0 leads to q0 ¼ �1.

Under the above choices of p, q, and α values, Eq. (58)
further simplifies to

ð@x3 � 3@x1ÞmðnÞ
i; j jp¼�1; q¼�1

¼ 2
Xi
k¼0;
k:even

1

k!
mðnÞ
i�k; jjp¼�1; q¼�1

þ 2
Xj
l¼0;
l:even

1

l!
mðnÞ
i; j�ljp¼�1; q¼�1: ð63Þ

This is an important relation which shows that, at the selected
ðp; qÞ values, ð@x3 � 3@x1 ÞmðnÞ

i; j is a linear combination of mðnÞ
i; j

and other mðnÞ
�̂; |̂ terms of lower row and column indices with

jumps of 2. Due to this relation, if we choose indices
ði1; i2; . . . ; iN; j1; j2; . . . ; jNÞ in the determinant (48) as

�n ¼ det
1�i; j�N

ðmðnÞ
2i�1;2j�1Þ; ð64Þ

then the same calculation as in Ref. 27 would show that this
�n function satisfies the dimension reduction condition

ð@x3 � 3@x1 Þ�n ¼ 4N�n: ð65Þ
We note by passing that another index choice of

�n ¼ det
1�i; j�N

ðmðnÞ
2i�2;2j�2Þ ð66Þ

would also satisfy the dimension reduction condition (65).
But as we have shown in a different but similar context,54)

this other index choice would lead to solutions which are
equivalent to those from (64).

When the dimension reduction condition (65) is substi-
tuted into the higher-dimensional bilinear equation (43) and
setting n ¼ 0 and x3 ¼ 0, we get

ðD4
x1
� 12D2

x1
þ 3D2

x2
Þ�0 � �0 ¼ 0: ð67Þ
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Thus, the third dimension x3 has been eliminated, and
dimension reduction has been completed.

During the above dimension reduction, the α value
in (49) has been ascertained [see (62)]. Thus, we can
now derive more explicit expressions for functions f1ðpÞ
and f2ðqÞ as defined in Eq. (53). From Eq. (52), we
have

W1ðpÞ � 1

W1ðpÞ
� �2

¼ Q2
1ðpÞ � 4: ð68Þ

Differentiating the first equation in (52) with respect to p, we
get

W0
1ðpÞ

W1ðpÞ W1ðpÞ � 1

W1ðpÞ
� �

¼ Q0
1ðpÞ: ð69Þ

Utilizing these two equations and the definition of f1ðpÞ in
(53), we get

f1ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

1ðpÞ � 4
p

Q0
1ðpÞ

: ð70Þ

In view of the definition of Q1ðpÞ in (51) and the α value in
(49), the above f1ðpÞ formula can be further simplified.
Following the same calculation, the f2ðqÞ function can also be
derived. The final results are

f1ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 4

p
3

; f2ðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4

p
3

: ð71Þ

4.3 The reality condition
In the bilinear equation (67), when the ðx1; x2Þ variables

are linked to ðx; tÞ through (39), i.e., x1 ¼ x=2 and x2 ¼
�it=4, then this bilinear equation becomes (35) of the
Boussinesq equation with � ¼ �0. The only remaining
condition is the reality condition (40), i.e.,

��0 ¼ �0: ð72Þ
Notice that when p ¼ q ¼ �1, f1ðpÞ and f2ðqÞ are purely
imaginary in view of Eq. (71). Hence,

ð½ f1ðpÞ@p�kÞ� ¼ ð�1Þk½ f1ðpÞ@p�k;
ð½ f2ðqÞ@q�lÞ� ¼ ð�1Þl½ f2ðqÞ@q�l: ð73Þ

Thus, if we constrain parameters ak and bk by

bk ¼ ð�1Þka�k ; ð74Þ
then since x1 ¼ x=2 is real and x2 ¼ �it=4 is imaginary, we
can easily show that

½mð0Þ
i; j �� ¼ ð�1Þiþjmð0Þ

j;i ; ð75Þ
and therefore the reality condition (72) holds. The resulting
function � ¼ �0 then becomes �N as given in Theorem 1,
which is a solution to the Boussinesq equation through the
connection (5).

It is easy to see that the matrix element mi;j in Eq. (7) is a
polynomial function of x and t multiplied by an exponential
factor e�x. Thus, �N from Eq. (6) is a polynomial function of
x and t multiplied by e�Nx. When this �N is substituted into

Eq. (5), the exponential factor e�Nx drops out. Hence, uNðx; tÞ
is a rational solution.

Regarding the regularity of solution uN in Theorem 1,
notice from Eqs. (6) and (75) that �Nðx; tÞ is the determinant
of a Hermitian matrix M ¼ mat1�i; j�Nðm2i�1;2j�1Þ. Then,
using techniques similar to that in Ref. 27, we can show that
the matrix M is positive definite, so that �Nðx; tÞ > 0, which
proves that the solution uNðx; tÞ is nonsingular.

Summarizing the above results, Theorem 1 is then proved,
except for the boundary conditions (4), which will be
discussed in the end of the next subsection.

4.4 Algebraic representation of rogue waves
Finally, we derive purely algebraic expressions of rogue

waves and prove Theorem 2. These algebraic expressions are
useful for multiple purposes. For instance, they can produce
explicit formulae of rogue waves much more quickly than the
expressions in Theorem 1 where repeated differentiations
have to be performed. For another instance, these algebraic
expressions allow us to derive highest-power polynomial
terms of rogue waves,27,53,54) which can be used to analyti-
cally prove the boundary conditions (4) of these solutions.

The basic idea of this derivation is the same as that in
Ref. 27, except that we will work with variables W1ðpÞ and
W2ðqÞ instead of p and q. Introducing the generator G of the
differential operators ð f1ðpÞ@pÞkð f2ðqÞ@qÞl as

G ¼
X1
k¼0

X1
l¼0

�k

k!

�l

l!
½ f1ðpÞ@p�k½ f2ðqÞ@q�l; ð76Þ

and utilizing Eq. (54), we get

G ¼
X1
k¼0

X1
l¼0

�k

k!

�l

l!
½@lnW1

�k½@lnW2
�l

¼ expð�@lnW1
þ �@lnW2

Þ: ð77Þ
Thus, for any function FðW1;W2Þ, we have27)

GFðW1;W2Þ ¼ Fðe�W1; e
�W2Þ: ð78Þ

Next, we will apply this generator on the function mð0Þ.
After dimension reduction (x3 ¼ 0) and variable relations
(39), this mð0Þ reduces from (44) to

mð0Þ ¼ 1

p þ q
e
1
2
ðpþqÞx�1

4
ðp2�q2Þit: ð79Þ

To utilize Eq. (78), we need to express p and q in this mð0Þ as
functions of W1 and W2. Equations (51) and (52) tell us that

p3 � 3p ¼ W1 þ 1

W1

; q3 � 3q ¼ W2 þ 1

W2

: ð80Þ

These equations for p and q can be solved and there are three
roots. Due to our earlier conditions that W1 ¼ W2 ¼ 1 when
p ¼ q ¼ �1, the suitable roots for p and q are

pðW1Þ ¼ c1W1=3
1 þ c2W�1=3

1 ;

qðW2Þ ¼ c1W1=3
2 þ c2W�1=3

2 ; ð81Þ
where c1 ¼ expð2i�=3Þ and c2 ¼ c�1.

Now, we apply Eq. (78) on mð0Þ and get

Gmð0Þ ¼ 1

pðe�W1Þ þ qðe�W2Þ exp
1

2
½pðe�W1Þ þ qðe�W2Þ�x � 1

4
½p2ðe�W1Þ � q2ðe�W2Þ�it

� �
: ð82Þ

At p ¼ q ¼ �1, W1 ¼ W2 ¼ 1. Thus,
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1

mð0Þ Gmð0Þjp¼q¼�1 ¼
ð�2Þ

pðe�Þ þ qðe�Þ exp
1

2
½pðe�Þ þ qðe�Þ þ 2�x � 1

4
½p2ðe�Þ � q2ðe�Þ�it

� �
: ð83Þ

We need to expand the right side of this equation into double Taylor series in κ and λ. To expand the fraction in front of the
exponential term, we notice that for any functions fð�Þ and gð�Þ,

�2
fð�Þ þ gð�Þ ¼

�2½ fð0Þ þ gð0Þ�
½ fð�Þ þ gð0Þ�½gð�Þ þ fð0Þ�

1

1 � fð�Þ � fð0Þ
fð�Þ þ gð0Þ

gð�Þ � gð0Þ
gð�Þ þ fð0Þ

¼ exp �ln ½ fð�Þ þ gð0Þ�½gð�Þ þ fð0Þ�
�2½ fð0Þ þ gð0Þ�

� �X1
�¼0

fð�Þ � fð0Þ
fð�Þ þ gð0Þ

gð�Þ � gð0Þ
gð�Þ þ fð0Þ

� ��
: ð84Þ

Thus, substituting

fð�Þ ¼ pðe�Þ ¼ c1e
�=3 þ c2e

��=3; gð�Þ ¼ qðe�Þ ¼ c1e
�=3 þ c2e

��=3 ð85Þ
into the above equation, we get

exp �ln ½ fð�Þ þ gð0Þ�½gð�Þ þ fð0Þ�
�2½ fð0Þ þ gð0Þ�

� �

¼ exp �ln 1

2
� cosh

�

3
þ 2i�

3

� �� �
� ln

1

2
� cosh

�

3
þ 2i�

3

� �� �� �

¼ exp
X1
k¼1

rkð�k þ �kÞ
 !

; ð86Þ

where rk are coefficients of the Taylor expansion given by (15) in Theorem 2. In addition, we get

X1
�¼0

fð�Þ � fð0Þ
fð�Þ þ gð0Þ

gð�Þ � gð0Þ
gð�Þ þ fð0Þ

� ��

¼
X1
�¼0

� ��

12

� ��
exp � ln

2i
ffiffiffi
3

p

�
tanh

�

6
tanh

�

6
þ 2i�

3

� �� �
þ � ln

2i
ffiffiffi
3

p

�
tanh

�

6
tanh

�

6
þ 2i�

3

� �� �� �

¼
X1
�¼0

� ��

12

� ��
exp �

X1
k¼1

skð�k þ �kÞ
 !

; ð87Þ

where sk are defined by (16) in Theorem 2. Regarding the exponential term in Eq. (83), when functions pð�Þ and qð�Þ in
Eq. (81) are inserted, we get

exp
1

2
½pðe�Þ þ qðe�Þ þ 2�x � 1

4
½p2ðe�Þ � q2ðe�Þ�it

� �

¼ exp
1

2
ðc1e�=3 þ c2e

��=3 þ c1e
�=3 þ c2e

��=3 þ 2Þx � 1

4
ðc2e2�=3 þ c1e

�2�=3 � c2e
2�=3 � c1e

�2�=3Þit
� �

¼ exp
X1
k¼1

�k

k!

c1 þ ð�1Þkc2
2 � 3k ½x þ ð�2Þk�1it� þ

X1
k¼1

�k

k!

c1 þ ð�1Þkc2
2 � 3k ½x � ð�2Þk�1it�

 !
: ð88Þ

Combining all these results, Eq. (83) reduces to

1

mð0Þ Gmð0Þjp¼q¼�1 ¼
X1
�¼0

� ��

12

� ��
exp

X1
k¼1

ðxþk þ �skÞ�k þ
X1
k¼1

ðx�k þ �skÞ�k
 !

;

where x�k are given by (14) in Theorem 2. Then, taking the coefficients of �k�l on both sides, we find

1

mð0Þ
1

k!l!
½ f1ðpÞ@p�k½ f2ðqÞ@q�lmð0Þjp¼�1; q¼�1 ¼

Xminðk;lÞ

�¼0
� ��

12

� ��
Sk��ðxþ þ �sÞSl��ðx� þ �sÞ: ð89Þ

From this result, we get

1

mð0Þ AiBjm
ð0Þjp¼�1; q¼�1 ¼

Xminði; jÞ

�¼0
�i��j�; ð90Þ

where �i� and �j� are defined in Eqs. (12) and (13) of
Theorem 2.

Since mð0Þjp¼q¼�1 is equal to �e�x=2, the above equation
shows that the two expressions (7) and (11) for the matrix
element mi;j in Theorems 1 and 2 differ by this exponential

factor. But this factor clearly does not affect the Boussinesq
solution (5). Theorem 2 is then proved.

In the end, we show the boundary conditions (4) of these
rogue waves. For this purpose, we first rewrite the
determinant (6) of �ðx; tÞ with Schur-polynomial matrix
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elements in Theorem 2 into a 3N � 3N determinant, as was
done for the NLS equation in Ref. 27. Using this larger
determinant, one can directly obtain the leading-order terms
in the polynomial function �ðx; tÞ as
�ðx; tÞ ¼ cNðx2 þ t2ÞNðNþ1Þ=2 þ lower-degree terms; ð91Þ

where cN is a N-dependent constant. From this result, one can
see quickly that the solution uðx; tÞ in Eq. (5) satisfies the
boundary conditions (4).

5. Conclusion and Discussion

In this article, we have derived rogue wave solutions in the
Boussinesq equation (3) through the bilinear KP-reduction
method, and these solutions are given explicitly as Gram
determinants with matrix elements in terms of Schur
polynomials. Our solutions contain more free parameters
than those reported before,4) and they exhibit new interesting
wave patterns. We have also shown that the rogue wave of
maximum amplitude at each order is generally asymmetric in
space, which is quite unusual in integrable equations.

Technically, our main contribution to the bilinear KP-
reduction method for rogue waves is a new judicious choice
of differential operators for matrix elements (the W–p
treatment). Compared to the previous choices, this W–p
treatment drastically simplifies the dimension reduction
calculation as well as the analytical expressions of rogue
wave solutions.

Can this W–p treatment be applied to other integrable
equations, such as the NLS-Boussinesq equation and the
Yajima–Oikawa system considered in Refs. 50 and 51? The
answer is a definite yes, maybe with minor modifications
possibly. For instance, for the Yajima–Oikawa system, we
can slightly modify our definitions of the W1ðpÞ and W2ðqÞ
functions as Qk ¼ �k½Wk þW�1

k �, where Q1ðpÞ and Q2ðqÞ
are certain functions arising from the dimension reduction of
the Yajima–Oikawa system, and �1; �2 are certain constants.
For these W1ðpÞ and W2ðqÞ functions, the differential
operators (47) with f1ðpÞ and f2ðqÞ defined in (53) will again
simplify the dimension reduction calculation and produce
rogue wave expressions similar to those in this article.
Comparatively, the rogue wave expressions derived in
Refs. 50 and 51 with old choices of differential operators
had to involve additional indices in the coefficients of the
differential operators and matrix elements, and those
coefficients had to be obtained by complicated recurrence
relations. This W–p treatment can also be applied to the NLS
equation. In this special case, we would get f1ðpÞ ¼ p and
f2ðqÞ ¼ q, which reproduces the old differential operators
used in Ref. 27. Thus, this W–p treatment is a general and
useful technique to streamline the bilinear derivation of rogue
waves in integrable systems when the dimension reduction is
needed.
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