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This article addresses the question of general rogue-wave solutions in the nonlocal 
parity-time-symmetric nonlinear Schrödinger equation. By generalizing the previous 
bilinear method, large classes of rogue waves are derived as Gram determinants with 
Schur polynomial elements. It is shown that these rogue waves contain previously 
reported ones as special cases. More importantly, they contain many new rogue 
wave families. It is conjectured that the rogue waves derived in this article are all
rogue-wave solutions in the parity-time-symmetric nonlinear Schrödinger equation.
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1. Introduction

Rogue waves are rational solutions of nonlinear wave equations that “appear from nowhere and disappear 
with no trace” [4]. More specifically, they arise from a flat constant background, reach a transient high 
amplitude, and then disappear back into the same flat background. Such solutions were first reported for 
the nonlinear Schrödinger (NLS) equation by Peregrine in 1983 [43]. In recent years, such waves were linked 
to freak waves in the ocean [21,32] and extreme events in optics [46,49], and were observed in controlled 
experiments in water tanks [12,13] and optical fibers [11,23,33]. Motivated by these physical applications, 
rogue waves have been derived in a large number of integrable nonlinear wave equations such as the NLS 
equation [3,6,18–20,26,31,39], the derivative NLS equation [27,51], the three-wave interaction equation [9], 
the Davey–Stewartson equations [40,41], and many others [5,7,8,10,15–17,28,35–38,42,44,48,54]. Indeed, 
rogue waves are caused by baseband modulation instability of the constant background [10]. Thus, any 
integrable equation with baseband modulation instability is expected to admit rogue waves which can be 
derived by integrable techniques.
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A notable integrable equation that admits rogue waves is the nonlocal NLS equation

iut(x, t) = uxx(x, t) + 2u2(x, t)u∗(−x, t), (1)

which was introduced by Ablowitz and Musslimani in 2013 [1]. The nonlinearity in this equation is nonlocal 
and parity-time (PT ) symmetric [34], which differs from all previous integrable equations. A potential 
physical application of this equation has also been identified in the context of an unconventional system 
of magnetics [24]. Since its introduction, this nonlocal NLS equation has been heavily studied [2,22,25,30,
45,50,52,53]. In particular, its rogue waves were derived by Darboux transformation in [52], where three 
families of rogue waves with polynomial degrees N(N + 1), N(N − 1) + 1 and N2 were reported (N here 
is an arbitrary positive integer). Recalling that the local NLS equation admits only a single family of rogue 
waves with polynomial degrees N(N + 1) [6,39], it is then clear that the nonlocal NLS equation (1) admits 
a much wider variety of rogue waves. However, an important question which was not clarified in [52] is 
whether there exist additional families of rogue waves in the nonlocal equation (1). This question will be 
addressed in this article.

In this paper, we derive rogue waves in the nonlocal NLS equation (1) by the bilinear method. Compared 
to the previous bilinear method for rogue waves in the local NLS equation [39], a key difference in our 
current method is the realization that the bilinear equations for the nonlocal NLS equation admit a Gram-
determinant solution which has a more general structure than the one reported in [39]. This realization 
allows us to derive broader classes of rogue waves with any polynomial degree of the form [(N1 − N2)2 +
(N1 − N2) + (M1 − M2)2 + (M1 − M2)]/2, where N1, N2, M1 and M2 are arbitrary non-negative integers 
under the constraint of N1 + N2 = M1 + M2. For special choices of the (N1, N2, M1, M2) values, these 
rogue waves reproduce the previous three solution families reported in [52]. But they also contain many new 
rogue-wave families and are thus more general. Explicit expressions of our rogue waves are given as Gram 
determinants with Schur-polynomial matrix elements, and rogue waves from the new solution families are 
shown to feature distinctive patterns. In addition, we conjecture that the rogue waves derived in this article 
are all the rogue waves admitted by the nonlocal NLS equation (1).

2. General rogue wave solutions

Without loss of generality, we consider rogue waves in the nonlocal NLS equation (1) which approach 
unit-amplitude background at large x and t,

u(x, t) → e−2it, x, t → ±∞. (2)

Before presenting rogue wave solutions in Eq. (1), we first introduce elementary Schur polynomials Sk(x)
which are defined via the generating function,

∞∑
k=0

Sk(x)λk = exp

⎛⎝ ∞∑
j=1

xjλ
j

⎞⎠ , (3)

where x = (x1, x2, . . .). Specifically, we have

S0(x) = 1, S1(x) = x1, S2(x) = 1
2x

2
1 + x2, . . . , Sk(x) =

∑
l1+2l2+···+mlm=k

⎛⎝ m∏
j=1

x
lj
j

lj !

⎞⎠ . (4)

Now we present rogue waves in terms of these Schur polynomials.
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Theorem 1. The PT -symmetric nonlinear Schrödinger equation (1) under boundary conditions (2) admits 
the following rational rogue-wave solutions

u(x, t) = e−2itσ1

σ0
, (5)

where

σn =

∣∣∣∣∣ Γ
(n)
1,1 Γ(n)

1,2

Γ(n)
2,1 Γ(n)

2,2

∣∣∣∣∣ , (6)

Γ(n)
i,j are Ni ×Mj matrices defined by

Γ(n)
i,j =

(
m

(n)
2k−i, 2l−j

)
1≤k≤Ni, 1≤l≤Mj

, (7)

N1, N2, M1 and M2 are arbitrary non-negative integers with the constraint of N1 + N2 = M1 + M2, the 
matrix elements in Γ(n)

i,j are defined by

m
(n)
i,j =

min(i,j)∑
ν=0

Φ(n)
i,ν Ψ(n)

j,ν , (8)

with

Φ(n)
i,ν = 1

2ν
i−ν∑
k=0

akSi−ν−k(x+(n) + νs), Ψ(n)
j,ν = 1

2ν
j−ν∑
l=0

blSj−ν−l(x−(n) + νs), (9)

vectors x±(n) =
(
x±

1 (n), x±
2 , x

±
3 , . . .

)
and s = (s1, s2, . . .) are defined by

x±
1 (n) = x∓ 2it± n− 1

2 , x±
k = x∓ 2kit

k! − rk, (k > 1), (10)

∞∑
k=1

rkλ
k = ln

(
cosh λ

2

)
,

∞∑
k=1

skλ
k = ln

(
2
λ

tanh λ

2

)
, (11)

ak, bl are complex constants which are given as

a0 = b0 = 1, a2 = a4 = · · · = aeven = 0, b2 = b4 = · · · = beven = 0, (12)

�(a2k−1) = 1
2(2k − 1)! −

k−1∑
j=1

�(a2j−1)
(2k − 2j)! +

k−1∑
i=1

k−i∑
j=1

a2i−1a
∗
2j−1

2(2k − 2i− 2j + 1)! , k = 1, 2, . . . , (13)

�(b2k−1) = 1
2(2k − 1)! −

k−1∑
j=1

�(b2j−1)
(2k − 2j)! +

k−1∑
i=1

k−i∑
j=1

b2i−1b
∗
2j−1

2(2k − 2i− 2j + 1)! , k = 1, 2, . . . , (14)

and �(a2k−1), �(b2k−1) (k = 1, 2, . . .) are free parameters. Here, � and � represent the real and imaginary 
parts of a complex number, and the asterisk ∗ represents complex conjugation.

The degrees of polynomials σn(x, t) in Theorem 1 and their leading terms are given by the following 
theorem.
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Table 1
Number of irreducible free real parameters in rogue waves of Theorem 1.

M2 ≤ M1 M2 > M1

N2 ≤ N1 N1 − N2 + M1 − M2 − 1 N1 − N2 + M2 − M1 − 2
N2 > N1 N2 − N1 + M1 − M2 − 2 N2 − N1 + M2 − M1 − 3

Theorem 2. The degrees of polynomials σn(x, t) in both x and t for rogue waves in Theorem 1 are

deg(σn) = 1
2
[
(N1 −N2)2 + (N1 −N2) + (M1 −M2)2 + (M1 −M2)

]
. (15)

In addition, the leading (highest-power) terms in σn(x, t) are

σn = c0(x− 2it)(N1−N2)(N1−N2+1)/2(x + 2it)(M1−M2)(M1−M2+1)/2 + (lower degree terms), (16)

where c0 is a [N1, N2,M1,M2]-dependent but n-independent constant.

Remark 1. In Theorem 1, �(a2k−1) and �(b2k−1) are given by recursive relations (13)–(14), and the free 
parameters in rogue waves (5) are

�(a1),�(a3),�(a5), . . . , �(b1),�(b3),�(b5), . . . ,

where the index k for ak does not exceed max(2N1 − 1, 2N2 − 2), and the index k for bk does not exceed 
max(2M1 − 1, 2M2 − 2). In Appendix A, we will show that when N2 < N1, parameters �(a2(N1−N2)+1), 
�(a2(N1−N2)+3), . . . drop out (i.e., they do not affect σn’s determinant values); when N2 = N1 or N2 = N1+1, 
all �(a1), �(a3), . . . drop out; and when N2 > N1+1, parameters �(a2(N2−N1)−1), �(a2(N2−N1)+1), . . . drop 
out. Likewise, when M2 < M1, parameters �(b2(M1−M2)+1), �(b2(M1−M2)+3), . . . drop out; when M2 = M1
or M2 = M1 + 1, all �(b1), �(b3), . . . drop out; and when M2 > M1 + 1, parameters �(b2(M2−M1)−1), 
�(b2(M2−M1)+1), . . . drop out. Furthermore, since the nonlocal NLS equation (1) is time-translation invari-
ant, by a shift of the t axis, we can remove one more real parameter. Thus, the number of irreducible free 
real parameters in the rogue-wave solutions of Theorem 1 is given in Table 1.

Remark 2. Compared to the σn function in Ref. [39] for rogue waves in the local NLS equation, the present 
σn function in Eq. (6) has a more general matrix structure. Indeed, the σn function in Ref. [39] only 
corresponds to the subblock Γ(n)

1,1 in our current σn function (6). This more general matrix structure (6) for 
σn is one of our key realizations, and it leads to a much wider variety of rogue waves in the nonlocal NLS 
equation than in its local counterpart (see Theorem 2 and Sec. 3 below).

Remark 3. Theorem 2 shows that the degrees of polynomials in rogue waves of the nonlocal NLS equation 
are much richer than those in the local NLS equation. Indeed, when N1 = M1 = N and N2 = M2 = 0, the 
above formula gives a polynomial degree of N(N + 1), which reproduces the polynomial degree of rogue 
waves in the local NLS equation [6,39]. But other choices of the (N1, N2, M1, M2) values would give rogue 
waves with polynomial degrees beyond N(N + 1). The above polynomial-degree formulas are also much 
broader than those in the three types of rogue waves reported for the nonlocal NLS equation in [52], which 
we will elaborate in Sec. 3.

Remark 4. Theorem 2 also shows that when N2 = N1 or N2 = N1 + 1, and M2 = M1 or M2 = M1 + 1, 
deg(σn) = 0. In these cases, σn is a constant, and thus the solution u(x, t) in Eq. (5) is a plane wave solution, 
not a true rogue wave.

Proofs of these two theorems will be given in Sec. 4.
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3. Analysis of rogue waves

Rogue waves in Theorem 1 contain a wide variety of solutions in the nonlocal NLS equation (1). In 
particular, they contain the three families of rogue waves previously reported in [52] as special cases. In 
addition, they contain new rogue-wave families which have not been reported before.

3.1. Previous rogue waves as special cases of current solutions

In this subsection, we show that rogue waves in Theorem 1 contain the three families of rogue waves 
previously derived in [52] by Darboux transformation. Since the present rogue waves and those in [52] are 
derived by different methods and expressed in different ways, a direct proof of this statement is cumbersome. 
Thus, we will argue differently below.

First, we take [N1, N2,M1,M2] = [N, 0, N, 0] in Theorem 1. In this case, the resulting rogue waves have 
a polynomial degree of N(N + 1) (see Theorem 2), which matches type-I rogue waves in [52]. In addition, 
the number of irreducible free real parameters in these rogue waves is 2N − 1 (see Remark 1), which also 
matches that number in type-I rogue waves in [52] (see Remark 1 in that article). Furthermore, when N = 1, 
the explicit expression of rogue waves in Theorem 1 is

u(x, t) = e−2it
(

1 + 4(4it̂− 1)
16t̂2 + 4(x + ix0)2 + 1

)
, (17)

where t̂ = t − [�(a1) −�(b1)] /4, x0 = [�(a1) + �(b1)] /2, and �(a1), �(b1) are free real parameters. This 
solution matches the type-I rogue waves with N = 1 in [52] [see Eq. (79) there]. When N = 2, we have 
compared the explicit expressions of the present solution with the type-I rogue waves with N = 2 in [52]
and found them equivalent as well under the parameter mappings of

s0 → �(a1), r0 → �(b1), s1 → 1
6
(
−4(�(a1))3 + �(a1) + 12�(a3)

)
,

r1 → 1
6
(
−4(�(b1))3 + �(b1) + 12�(b3)

)
,

where (s0, r0, s1, r1) are parameters in type-I rogue waves of [52]. From these, we can conclude that rogue 
waves in Theorem 1 with parameter choices of N1 = M1 and N2 = M2 = 0 reproduce the type-I rogue 
waves in [52].

Second, we take [N1, N2,M1,M2] = [N, 0, N − 1, 1] in Theorem 1. In this case, the resulting rogue waves 
have a polynomial degree of N(N−1) +1, and their number of irreducible free real parameters is zero when 
N = 1 and 2N − 3 when N > 1. These numbers match those of type-II rogue waves in [52]. In addition, 
when N = 1, the rogue wave of Theorem 1 can be simplified as

u1(x, t) = e−2it
(

1 + 1
x− 2it̂

)
, (18)

where t̂ = t −�(a1)/2. This solution matches the type-II rogue wave with N = 1 in [52] [see Eq. (80) there]. 
When N = 2, the rogue wave of Theorem 1 can be simplified as

u(x, t) = e−2it

(
1 +

3
(
2x− 4it̂ + 1

)2
4
(
x− 2it̂

)3 − 3
(
x− 6it̂ + iβ

)
)
, (19)

where t̂ = t − �(a1)/2, and β = 4 (�(a1))3 + 5�(a1) − 12�(a3). This solution matches the type-II rogue 
waves with N = 2 in [52] as well [see Eq. (82) there]. From these, we can conclude that rogue waves in 
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Theorem 1 with parameter choices of [N1, N2,M1,M2] = [N, 0, N − 1, 1] reproduce the type-II rogue waves 
in [52].

Thirdly, we take [N1, N2,M1,M2] = [N, 0, 0, N ] in Theorem 1. In this case, the resulting rogue waves 
have a polynomial degree of N2, and their number of irreducible free real parameters is 2N − 2. These 
numbers match those of type-III rogue waves in [52] (the number of free real parameters in type-III rogue 
waves was quoted as 2N in Remark 1 of [52], leading to 2N − 1 irreducible free real parameters after a time 
shift, which is incorrect). When N = 1, the rogue wave of Theorem 1 turns out to be the same as that in 
Eq. (18), which matches the type-III rogue wave with N = 1 in [52]. When N = 2, we have verified that 
the rogue wave from Theorem 1 is equivalent to the type-III rogue wave with N = 2 in [52] as well under 
the parameter mappings of

s0 → �(a1), r0 → �(b1), s1 → 1
6
(
−4(�(a1))3 + �(a1) + 12�(a3)

)
.

From these, we can conclude that rogue waves in Theorem 1 with parameter choices of [N1, N2,M1,M2] =
[N, 0, 0, N ] reproduce the type-III rogue waves in [52].

3.2. New families of rogue waves

Rogue waves in Theorem 1 contain not only those which have been reported before, but also many new 
solutions. These new solutions are reflected in two ways. One is that rogue waves in Theorem 1 admit new 
polynomial degrees beyond those reported in [52]. For instance, the current rogue waves admit polynomial 
degrees such as 10 and 11, which are not possible in rogue waves reported in [52]. The other is that, even 
for the same polynomial degrees as those contained in [52], Theorem 1 could admit rogue waves which are 
different from those in [52]. In this subsection, we discuss and illustrate such new solutions.

First, we consider rogue waves in Theorem 1 which feature new polynomial degrees. As examples, we 
consider two choices of [N1, N2,M1,M2] = [4, 0, 2, 2] and [4, 0, 1, 3]. For these choices, the polynomial degrees 
of rogue waves can be derived from Theorem 2 as 10 and 11 respectively. It is easy to see that these 
polynomial degrees are not possible in previous rogue waves reported in [52], whose degrees are only of 
types N(N + 1), N(N − 1) + 1 and N2; thus they are new rogue wave solutions in the nonlocal NLS 
equation (1). The degree-10 rogue waves contain four free real parameters �(a1), �(a3), �(a5) and �(a7), 
and the degree-11 rogue waves contain five free real parameters �(a1), �(a3), �(a5), �(a7) and �(b1) (both 
without parameter reduction by time shifting). To illustrate, two of such solutions (one for each degree) are 
displayed in Fig. 1. It is seen that these rogue waves exhibit 10 and 11 singular (blowup) points in the (x, t)
plane respectively, and these singularities form new patterns which have not been seen before.

Next, we show that Theorem 1 admits rogue waves which are new solutions even though their polynomial 
degrees are not new. As an example, we consider the parameter choice of [N1, N2,M1,M2] = [0, 4, 2, 2], 
which gives rogue waves with a polynomial degree of 6. This polynomial degree is attainable from type-
I rogue waves in [52] with N = 2 (which is equivalent to rogue waves in Theorem 1 with the choice of 
[N1, N2,M1,M2] = [N, 0, N, 0], see the previous subsection). Thus, this polynomial degree is not new. But 
we will show that these rogue waves do not belong to type-I rogue waves in [52] and are thus true new 
solutions.

For this choice of [N1, N2,M1,M2] values, the corresponding rogue waves contain three free real parame-
ters �(a1), �(a3) and �(a5). After a shift of time, �(a1) can be further removed. Thus, we can set �(a1) = 0
without loss of generality. Then, denoting ζ = x − 2it, the solution expression of these rogue waves can be 
found from Theorem 1 as

u(x, t) = e−2itσ1
, (20)
σ0
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Fig. 1. (a) A degree-10 rogue wave with parameters �(a1) = �(a3) = 0, �(a5) = 1000 and �(a7) = −250. (b) A degree-11 rogue 
wave with parameters �(a1) = �(b1) = �(a3) = 0, �(a5) = 1000 and �(a7) = −250.

Fig. 2. Three new rogue waves with polynomial degree six, which are obtained from Theorem 1 under [N1, N2,M1,M2] = [0, 4, 2, 2]. 
Free parameters in these solutions are chosen as (a) �(a1) = 0, �(a3) = 60, �(a5) = 0; (b) �(a1) = �(a3) = 0, �(a5) = 600; (c) 
�(a1) = 0, �(a3) = 35, �(a5) = 800.

where

σ0 = 4ζ6 − 15ζ3(3ζ − 2x) − 60i�(a3)ζ3 + 180i�(a5)ζ + 180 [t−�(a3)]2 , (21)

σ1 = σ0 + 24ζ5 + 60ζ4 + 30ζ2(3x− 2ζ) − 180i [�(a3)ζ(ζ + 1) − tζ −�(a5)] . (22)

For three choices of �(a3) and �(a5) values, the corresponding rogue waves are displayed in Fig. 2. It is 
seen that these solutions feature six singularities in the (x, t) plane, and these singularities form interesting 
patterns such as a triangle in panel (a), a pentagon in panel (b), and an intermediate state in panel (c). 
None of these patterns has been reported before.

To show these degree-six rogue waves are new solutions, we compare them with degree-six rogue waves 
of type-I reported in [52]. Those rogue waves are

u(x, t) = e−2itσ1

σ0
, (23)

with the leading-order terms of σn given as

σn = 64(x2 + 4t2)3 + (lower degree terms). (24)

By comparing these leading-order terms of σn with those in Eqs. (21)–(22), we see that they are clearly 
very different. Thus, these two types of degree-six rogue waves cannot be equivalent to each other. Indeed, 
solution patterns in Fig. 2 for the present degree-six rogue waves in Eq. (20) are very different from those for 
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degree-six rogue waves of type-I as reported in [52]. Thus, there is no question that the present degree-six 
rogue waves (20) are new solutions to the nonlocal NLS equation (1).

Remark 5. We should point out that, while Theorem 1 gives a wide variety of rogue wave families 
characterized by their choices of [N1, N2,M1,M2] values, some of those solution families with different 
[N1, N2,M1,M2] values may be equivalent to each other. For example,

1. solutions with [N1, N2,M1,M2] =
[
Ñ1, Ñ2, M̃1, M̃2

]
and those with 

[
Ñ2, Ñ1 + 1, M̃2, M̃1 + 1

]
are equiv-

alent to each other;
2. as a special case of the above equivalency, solutions with [N1, N2,M1,M2] = [N, 0, N, 0] and those with 

[0, N + 1, 0, N + 1] are equivalent to each other;
3. as a corollary of the above equivalency, solutions with [N1, N2,M1,M2] = [N, K, N, K] are equivalent 

to those with [N −K, 0, N −K, 0] when N > K and equivalent to those with [0, K−N, 0, K−N ] when 
N < K.

These equivalencies will be proved in Appendix B. Note that two solutions are equivalent to each other not 
only when they can be made equal to each other, but also when they can be related as u(x, t) and u∗(−x, −t). 
The reason is that the nonlocal NLS equation (1) is PT -symmetric — thus if u(x, t) is a solution, so is 
u∗(−x, −t). A quick way to identify equivalent solutions with different [N1, N2,M1,M2] values is to compare 
their polynomial degrees and leading-order terms according to Theorem 2, and compare their numbers of 
irreducible free real parameters according to Table 1. If their polynomial degrees and numbers of free real 
parameters match each other, and their leading-order polynomial terms are the same or related as u(x, t)
and u∗(−x, −t), then it is almost certain that solutions with such different [N1, N2,M1,M2] values would 
be equivalent to each other.

4. Derivation of rogue waves

In this section, we derive the rogue wave solutions given in Theorem 1 and their polynomial degrees 
in Theorem 2. This derivation uses the bilinear method in the soliton theory [29]. This method has been 
applied for the derivation of rogue waves in the local NLS equation [39] and several other (1 + 1)- and 
(2 + 1)-dimensional integrable equations before [14,40–42,47,55]. Compared to earlier applications of this 
method on (1 + 1)-dimensional systems, a key new feature in our method is that the Gram determinants 
in our solutions have a structure which is more general. This is the reason why rogue waves in Theorem 1
feature a wider variety of solution families with richer polynomial degrees than those in the local NLS 
equation and other (1 + 1)-dimensional integrable equations [14,39,42,55].

First, via the variable transformation

u = e−2it g

f
, (25)

the PT -symmetric NLS equation (1) is transformed into the bilinear form,

(D2
x + 2)f · f = 2gḡ,

(D2
x − iDt)g · f = 0,

}
(26)

where the overbar ¯ on a function g(x, t) is defined as

ḡ(x, t) ≡ g∗(−x, t), (27)
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and f is a complex function satisfying the condition

f̄(x, t) = f(x, t). (28)

Here, D is Hirota’s bilinear differential operator defined by

P (Dx, Dy, Dt, . . .)F (x, y, t, . . .) ·G(x, y, t, . . .)

= P (∂x − ∂x′ , ∂y − ∂y′ , ∂t − ∂t′ , . . .)G(x′, y′, t′, . . .)|x′=x,y′=y,t′=t,...,

where P is a polynomial of Dx, Dy, Dt, . . . .
In order to derive solutions to the bilinear equations (26), we consider a (2 + 1)-dimensional bilinear 

system,

(DxDy + 2)f · f = 2gh,

(D2
x − iDt)g · f = 0,

}
(29)

where h is another complex function. Algebraic solutions of Gram-determinant types for this higher-
dimensional bilinear system have been given in [39]. By choosing Gram determinants which are more general 
than previously used, we can show these algebraic solutions satisfy the dimension reduction condition

(∂x − ∂y) f = Cf, (30)

where C is some constant. Thus, these solutions satisfy the (1 + 1)-dimensional bilinear system

(D2
x + 2)f · f = 2gh,

(D2
x − iDt)g · f = 0.

}
(31)

By judiciously choosing parameters in these Gram determinants, we can further show that they would 
satisfy the nonlocal reduction condition

f̄ = f, h = ḡ. (32)

Thus, these solutions also satisfy the original bilinear equations (26). Details of these steps are given next.

4.1. Algebraic solutions for the (1 + 1)-dimensional bilinear system (31)

Introducing Gram determinants

τn = det
1≤i,j≤N

(
m

(n)
i,j

)
, (33)

where

m
(n)
i,j = AiBjm̃

(n)|p=1,q=1, m̃(n) = 1
p + q

(
−p

q

)n

eξ̃+η̃, (34)

ξ̃ = 1
p
x−1 + px1 + p2x2, η̃ = 1

q
x−1 + qx1 − q2x2, (35)

Ai and Bj are differential operators with respect to p and q as
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Ai =
∑i

k=0
ak

(i−k)! (p∂p)i−k

Bj =
∑j

l=0
bl

(j−l)! (q∂q)j−l
,

⎫⎬⎭ (36)

and ak, bk are complex constants, then it was shown in Ref. [39] that for arbitrary sequences of indices

(i1, i2, ..., iN ; j1, j2, ..., jN ) , (37)

the determinant

τn = det
1≤ν,μ≤N

(
m

(n)
iν ,jμ

)
(38)

satisfies the following bilinear equations

(
Dx1Dx−1 − 2

)
τn · τn = −2τn+1τn−1(

D2
x1

−Dx2

)
τn+1 · τn = 0.

}
(39)

In Ref. [39], the authors chose the determinant as

τ (1)
n = det

1≤i,j≤N

(
m

(n)
2i−1,2j−1

)
, (40)

and showed that this determinant satisfies the dimension reduction condition

(∂x1 + ∂x−1)τ (1)
n = 4Nτ (1)

n . (41)

In this paper, we show that in addition to the determinant (40), there exist other types of determinants 
τn which also satisfy the dimension reduction condition (41). Specifically, any one of the following three 
determinants,

τ (2)
n = det

1≤i,j≤N

(
m

(n)
2i−1,2j−2

)
, (42)

τ (3)
n = det

1≤i,j≤N

(
m

(n)
2i−2,2j−1

)
, (43)

τ (4)
n = det

1≤i,j≤N

(
m

(n)
2i−2,2j−2

)
, (44)

still satisfies the condition (41). More importantly, if we combine the matrix elements of these four deter-
minants into a 2 × 2-block determinant

τn =

∣∣∣∣∣∣
(
m

(n)
2i−1,2j−1

)
1≤i≤N1,1≤j≤M1

(
m

(n)
2i−1,2j−2

)
1≤i≤N1,1≤j≤M2(

m
(n)
2i−2,2j−1

)
1≤i≤N2,1≤j≤M1

(
m

(n)
2i−2,2j−2

)
1≤i≤N2,1≤j≤M2

∣∣∣∣∣∣ , (45)

where [N1, N2,M1,M2] are arbitrary non-negative integers with N1 + N2 = M1 + M2, then this τn would 
still satisfy the condition (41). This result is summarized in the following lemma, which can be regarded 
as a generalization of Lemma 3.2 in [39]. This more general determinant solution fulfilling the dimension 
reduction condition (41) will open the way for us to discover wider classes of rogue waves in the nonlocal 
NLS equation (1).
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Lemma 1. Defining the matrix element m(n)
i,j as

m
(n)
i,j = AiBjm

(n)|p=1, q=1, (46)

where

m(n) = 1
p + q

(
−p

q

)n

eξ+η, ξ = px1 + p2x2, η = qx1 − q2x2, (47)

and Ai, Bj are as defined in (36), then the 2 × 2-block determinant (45), i.e.,

τn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m
(n)
1, 1 · · · m

(n)
1, 2M1−1 m

(n)
1, 0 · · · m

(n)
1, 2M2−2

...
...

...
...

m
(n)
2N1−1, 1 · · · m

(n)
2N1−1, 2M1−1 m

(n)
2N1−1, 0 · · · m

(n)
2N1−1, 2M2−2

m
(n)
0, 1 · · · m

(n)
0, 2M1−1 m

(n)
0, 0 · · · m

(n)
0, 2M2−2

...
...

...
...

m
(n)
2N2−2, 1 · · · m

(n)
2N2−2, 2M1−1 m

(n)
2N2−2, 0 · · · m

(n)
2N2−2, 2M2−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (48)

with N1 + N2 = M1 + M2, satisfies the (1 + 1)-dimensional bilinear equations

(
D2

x1
+ 2

)
τn · τn = 2τn+1τn−1(

D2
x1

−Dx2

)
τn+1 · τn = 0.

}
(49)

Proof. First of all, since the (2 + 1)-dimensional determinant (38) with arbitrary indices (37) satisfies the 
(2 + 1)-dimensional bilinear equations (39) [39], this determinant with a particular choice of indices as in 
(48) certainly also satisfies these bilinear equations. Thus, if this determinant also satisfies the dimension 
reduction condition (41), then it would satisfy the (1 + 1)-dimensional bilinear equations (49). Meanwhile, 
by taking x−1 = 0, this (2 + 1)-dimensional determinant reduces to the (1 + 1)-dimensional determinant 
(48).

To show the (2 + 1)-dimensional determinant (38) with index choices of (48) satisfies the dimension 
reduction condition (41), we recall that m(n)

i,j with p = 1 and q = 1 and arbitrary indices (i, j) satisfies the 
contiguity condition [39]

(∂x1 + ∂x−1)
(
m

(n)
i,j |p=1,q=1

)
= 2

i∑
k=0, k:even

1
k!m

(n)
i−k,j |p=1,q=1 + 2

j∑
l=0, l:even

1
l!m

(n)
i,j−l|p=1,q=1. (50)

Then, using the cofactor expansion of determinants, we get

(∂x1 + ∂x−1)τn =
2∑

i=1

2∑
j=1

Ni∑
k=1

Mj∑
l=1

Δ(i,j)
k,l

(
∂x1 + ∂x−1

) (
m

(n)
2k−i, 2l−j

∣∣
p=1,q=1

)

= 2
2∑

i=1

2∑
j=1

Ni∑
k=1

Mj∑
l=1

Δ(i,j)
k,l

⎡⎣ 2k−i∑
α=0, α:even

1
α!m

(n)
2(k−α

2 )−i, 2l−j

∣∣
p=1,q=1 +

2l−j∑
β=0, β:even

1
β!m

(n)
2k−i, 2(l− β

2 )−j

∣∣
p=1,q=1

⎤⎦ ,

(51)
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where Δ(i,j)
k,l is the cofactor of the element m(n)

2k−i, 2l−j in the determinant (48). In these summations, only 
the terms with α = 0 and β = 0 survive, because the other terms correspond to determinants of the type 
(48) but with two identical rows or columns. As a result,

(∂x1 + ∂x−1)τn = 2
2∑

i=1

2∑
j=1

Ni∑
k=1

Mj∑
l=1

Δ(i,j)
k,l

[
m

(n)
2k−i, 2l−j

∣∣
p=1,q=1 + m

(n)
2k−i, 2l−j

∣∣
p=1,q=1

]
= 4(N1 + N2)τn.

(52)

Thus, the dimension reduction condition is satisfied, and the determinant (48) then satisfies the (1 + 1)-
dimensional bilinear equations (49). �

From Lemma 1, by taking x1 = x and x2 = −it, then

f = τ0, g = τ1, h = τ−1 (53)

would satisfy the (1 + 1)-dimensional bilinear equations (31). But these (f, g, h) functions are not just 
polynomials of x and t. Rather, they are polynomials multiplying (m(n))N1+N2 , which is an exponential of 
a linear function of x and t. However, the bilinear equations (31) are invariant when (f, g, h) are multiplied 
by an exponential of a linear function in (x, t). Thus, when we define

σn = τn
(m(n))N1+N2

, (54)

then

f = σ0, g = σ1, h = σ−1 (55)

would be polynomials of x and t but still satisfy the (1 + 1)-dimensional bilinear equations (31).

4.2. Nonlocal reduction condition

Now we consider the nonlocal reduction condition (32). In view of Eq. (55), this condition is

σ̄0 = σ0, σ̄−1 = σ1. (56)

Due to the nonlocality of this condition, i.e., the σn functions at x and −x need to be related, imposition 
of this condition would require the use of explicit algebraic expressions of the σn solutions, which we will 
derive first.

Let m̂(n)
i,j ≡ m

(n)
i,j /m

(n), where m(n)
i,j and m(n) are as given in Eqs. (46)–(47) with x1 = x and x2 = −it. 

Then m̂(n)
i,j can be expressed as [39]

m̂
(n)
i,j =

min(i,j)∑
ν=0

1
4ν

i−ν∑
k=0

j−ν∑
l=0

akblSi−k−ν(x+(n) + νs)Sj−l−ν(x−(n) + νs), (57)

where Si−k−ν(x+(n) + νs) and Sj−l−ν(x−(n) + νs) are Schur polynomials with vectors x±(n) and s
defined in equations (10)–(11). Using the formula of τn in (48) and the above algebraic representation, the 
expression of σn in Eqs. (6)–(9) will be obtained. Moreover, σn can be rewritten as the following 3N × 3N
determinant [39]
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σn = det
1≤i,j≤2

⎡⎣mat1≤ki≤Ni
1≤lj≤Mj

⎛⎝min(2ki−i, 2lj−j)∑
ν=0

Φ(n)
2ki−i, νΨ

(n)
2lj−j, ν

⎞⎠⎤⎦
= det

1≤i,j≤2

[
mat1≤ki≤Ni

1≤lj≤Mj

(2N−1∑
ν=0

Φ(n)
2ki−i, νΨ

(n)
2lj−j, ν

)]

= (−1)N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ON×N

Φ(n)
10 Φ(n)

11 · · · Φ(n)
1,2N−1

...
...

...

Φ(n)
2N1−1,0 Φ(n)

2N1−1,1 · · · Φ(n)
2N1−1,2N−1

Φ(n)
00 Φ(n)

01 · · · Φ(n)
0,2N−1

...
...

...

Φ(n)
2N2−2,0 Φ(n)

2N2−2,1 · · · Φ(n)
2N2−2,2N−1

Ψ(n)
10 · · · Ψ(n)

2M1−1,0 Ψ(n)
00 · · · Ψ(n)

2M2−2,0

Ψ(n)
11 · · · Ψ(n)

2M1−1,1 Ψ(n)
01 · · · Ψ(n)

2M2−2,1

...
...

...
...

Ψ(n)
1,2N−1 · · · Ψ(n)

2M1−1,2N−1 Ψ(n)
0,2N−1 · · · Ψ(n)

2M2−2,2N−1

I2N×2N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(58)

where we have defined N ≡ N1 + N2 and Φ(n)
i,ν = Ψ(n)

i,ν ≡ 0 when i < ν, ON×N is the zero matrix of size 
N ×N , and I2N×2N is the identify matrix of size 2N × 2N .

To impose the nonlocal reduction condition (56), we also need two properties on Schur polynomials, 
which are provided in the following two lemmas.

Lemma 2. Schur polynomials Sk(x) with x = (x1, x2, x3, . . .) and Schur polynomials Sk(y) with

y = (−x1, x2,−x3, . . .) = {(−1)jxj}∞j=1 (59)

are related as

Sk(y) = (−1)kSk(x). (60)

Lemma 3. Schur polynomials Sk(x̂) with x̂ = (x1, x2, 0, x4, 0, x6, 0, . . .) can be expressed as a series of Schur 
polynomials Sk(ŷ) with ŷ = (x2, x4, x6, . . .) as

Sk(x̂) =

[
k
2
]∑

l=0

(x1)k−2l

(k − 2l)!Sl(ŷ), (61)

where [x] represents the integer part of a real number x.

Both lemmas can be proved through a direct calculation using the definition (3) of Schur polynomials.
With the above algebraic expressions of σn and the two lemmas, we now derive parameter constraints 

on ak and bl so that σn satisfies the nonlocal reduction condition (56), or equivalently

σn = σ−n. (62)

First, if we impose nonlocal reductions on the vector x±(n) as defined in (10), we get

x±
1 (−n) = −x±

1 (n) − 1; x± = −x± − 2rk, (k > 1). (63)
k k
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Thus,

x±(−n) + ν s = y±(n) + ν s + ŷ±, (64)

where vectors y± and ŷ± are defined as

y±(n) =
(
−x±

1 (n), x±
2 ,−x±

3 , x
±
4 , . . .

)
, ŷ± =

(
−1,−2x±

2 − 2r2, 0,−2x±
4 − 2r4, 0, . . .

)
. (65)

Here, the fact of r1 = r3 = · · · = rodd = 0 has been used [39]. Since

∞∑
k=0

Sk

(
x±(−n) + ν s

)
λk =

∞∑
k=0

Sk

(
y±(n) + ν s + ŷ±)λk,

= exp

⎛⎝ ∞∑
j=1

(
y±j (n) + ν sj + ŷ±j

)
λj

⎞⎠ = exp

⎛⎝ ∞∑
j=1

(
y±j (n) + ν sj

)
λj

⎞⎠ exp

⎛⎝ ∞∑
j=1

ŷ±j λj

⎞⎠
=

∞∑
k=0

Sk(y±(n) + νs)λk
∞∑
k=0

Sk(ŷ±)λk =
∞∑
k=0

∑
μ1+μ2=k

Sμ1(y±(n) + νs)Sμ2(ŷ
±)λk, (66)

by using the above two lemmas and the fact of s1 = s3 = · · · = sodd = 0 [39], comparison of the power of 
λk on the two sides of equation (66) gives

Sk

(
x±(−n) + ν s

)
= (−1)k

k∑
μ=0

Sμ(x±(n) + νs)

[
k−μ

2

]∑
l=0

Sl(w)
(k − μ− 2l)! , (67)

where w =
(
−2x±

2 − 2r2,−2x±
4 − 2r4, . . .

)
. Then by switching the order of summations, the above equation 

becomes

Sk

(
x±(−n) + ν s

)
= (−1)k

[
k
2
]∑

l=0

Sl(w)
k−2l∑
μ=0

Sμ(x±(n) + νs)
(k − 2l − μ)! . (68)

Using this formula and imposing nonlocal reductions on functions Φ(n)
i,ν and Ψ(n)

i,ν as defined in Eq. (9), we 
get

Φ(−n)
i,ν = 1

2ν
i−ν∑
k=0

a∗kSi−ν−k

(
x+(−n) + ν s

)

= 1
2ν

i−ν∑
k=0

a∗k(−1)i−ν−k

[
i−ν−k

2

]∑
l=0

Sl(w)
i−ν−k−2l∑

μ=0

Sμ(x+(n) + νs)
(i− ν − k − 2l − μ)! .

Switching the order of summations then leads to

Φ(−n)
i,ν = (−1)i−ν

2ν

[
i−ν
2

]∑
l=0

Sl(w)
[
i−ν−2l∑
k=0

(−1)ka∗k
i−ν−2l−k∑

μ=0

Sμ(x+(n) + νs)
(i− ν − 2l − k − μ)!

]
. (69)

Similarly, we get
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Ψ(−n)
j,ν = (−1)j−ν

2ν

[
j−ν
2

]∑
l=0

Sl(w)
[
j−ν−2l∑
k=0

(−1)kb∗k
j−ν−2l−k∑

μ=0

Sμ(x−(n) + νs)
(j − ν − 2l − k − μ)!

]
. (70)

These two expressions can be reshaped into matrix forms:

Φ(−n)
i,ν = (−1)i−ν

2ν

[
i−ν
2

]∑
l=0

Sl(w)
[
Si−ν−2l(z+), Si−ν−2l−1(z+), . . . , S0(z+)

]
Mi−ν−2l

⎛⎜⎜⎜⎜⎜⎝
a∗0

a∗1
...

a∗i−ν−2l

⎞⎟⎟⎟⎟⎟⎠ , (71)

Ψ(−n)
j,ν = (−1)j−ν

2ν

[
j−ν
2

]∑
l=0

Sl(w)
[
Sj−ν−2l(z−), Sj−ν−2l−1(z−), . . . , S0(z−)

]
Mj−ν−2l

⎛⎜⎜⎜⎜⎜⎜⎝
b∗0

b∗1
...

b∗j−ν−2l

⎞⎟⎟⎟⎟⎟⎟⎠ , (72)

where z± ≡ x±(n) + νs, and the square matrices Mi−ν−2l, Mj−ν−2l are defined as

Mj =

⎛⎜⎜⎜⎜⎜⎜⎝
1/0! 0 · · · 0

1/1! −1/0! · · · 0
...

...
. . .

...

1/j! −1/(j − 1)! · · · (−1)j/0!

⎞⎟⎟⎟⎟⎟⎟⎠ . (73)

In view of the lower triangular structure of the matrix Mj, if parameters {aj , bj} satisfy the conditions

Mj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a∗0

a∗1

a∗2

a∗3
...

a∗j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= α0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0

a1

a2

a3

...

aj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ α1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

a0

a1

...

aj−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ · · · + α[

j
2

]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0
...

a
j−2

[
j
2

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (74)

and

Mj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b∗0

b∗1

b∗2

b∗3
...

b∗j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= β0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0

b1

b2

b3

...

bj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ β1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

b0

b1

...

bj−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ · · · + β[ j

2

]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0
...

b
j−2

[
j
2

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (75)

where α0 = β0 = 1, and α1, α2, . . . , β1, β2, . . . are some constants, then the right-hand sides of (71)–(72)
would become
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Φ(−n)
i,ν = (−1)i−ν

[
i−ν
2

]∑
l=0

[
l∑

k=0

αkSl−k(w)
]

Φ(n)
i−2l,ν , (76)

Ψ(−n)
j,ν = (−1)j−ν

[
j−ν
2

]∑
l=0

[
l∑

k=0

βkSl−k(w)
]

Ψ(n)
j−2l,ν . (77)

These two equations show that, for any indices (i, ν) and (j, ν), the nonlocal reduction function Φ(−n)
i,ν

can be expressed as a linear combination of functions Φ(n)
i−2l,ν for l = 0, 1, . . ., and the nonlocal reduction 

function Ψ(−n)
j,ν can be expressed as a linear combination of functions Ψ(n)

j−2l,ν for l = 0, 1, . . .. Then, using 
these relations and performing simple determinant manipulations on the 3N × 3N determinant (58), one 
can quickly show that

σ−n = (−1)N1+M2σn. (78)

Thus, by redefining (−1)(N1+M2)/2σn as a new σn function, the nonlocal reduction condition (62) would be 
satisfied.

Our last task is to solve the equations (74)–(75) and derive explicit conditions on the parameters {aj, bj}
so that the nonlocal reduction condition (62) would be satisfied.

To proceed, we notice that by performing simple manipulations to the 3N × 3N determinant (58) of σn

as was done in [39], we can set

a0 = b0 = 1, a2 = a4 = · · · = aeven = 0, b2 = b4 = · · · = beven = 0 (79)

without any loss of generality. Under this parameter normalization, by setting j = 2k−1 in conditions (74), 
these conditions on parameters {a1, a3, . . . } can be written simply as

1
(2k − 2)! −

1
(2k − 3)!a

∗
1 −

1
(2k − 5)!a

∗
3 − · · · − 1

1!a
∗
2k−3 = αk−1, (80)

1
(2k − 1)! −

1
(2k − 2)!a

∗
1 −

1
(2k − 4)!a

∗
3 − · · · − 1

0!a
∗
2k−1 = α0a2k−1 + α1a2k−3 + · · · + αk−1a1, (81)

where k = 1, 2, . . . . Substituting the first equation into the second and rearranging terms, we then obtain 
the recurrence relation (13) for �(a2k−1) in Theorem 1, and �(a2k−1) are free parameters. Notice that the 
double summation term in (13) is always real, because its complex conjugate can be shown to be equal 
to itself after switching the two summations. Performing similar calculations, we can derive the recurrence 
relation (14) for �(b2k−1) in Theorem 1, and �(b2k−1) are free parameters. This completes the proof of 
Theorem 1 (except for the boundary condition part).

4.3. Boundary conditions and proof of Theorem 2

In order to prove the boundary conditions (2) in Theorem 1 and the results in Theorem 2, we need to 
derive the highest-power terms for the polynomials σ0 and σ1 in the solution (5). This calculation follows the 
same approach as in [39]. But since the determinant (6) of the present σn function has a different structure, 
results of this calculation will be quite different.
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We start by applying the Laplace expansion to the 3N × 3N determinant (58) of σn and get

σn =
∑

0≤ν1<ν2<···<νN≤2N−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ(n)
1,ν1

Φ(n)
1,ν2

· · · Φ(n)
1,νN

...
...

...

Φ(n)
2N1−1,ν1

Φ(n)
2N1−1,ν2

· · · Φ(n)
2N1−1,νN

Φ(n)
0,ν1

Φ(n)
0,ν2

· · · Φ(n)
0,νN

...
...

...

Φ(n)
2N2−2,ν1

Φ(n)
2N2−2,ν2

· · · Φ(n)
2N2−2,νN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣

Ψ(n)
1,ν1

· · · Ψ(n)
2M1−1,ν1

Ψ(n)
0,ν1

· · · Ψ(n)
2M2−2,ν1

Ψ(n)
1,ν2

· · · Ψ(n)
2M1−1,ν2

Ψ(n)
0,ν2

· · · Ψ(n)
2M2−2,ν2

...
...

...
...

Ψ(n)
1,νN

· · · Ψ(n)
2M1−1,νN

Ψ(n)
0,νN

· · · Ψ(n)
2M2−2,νN

∣∣∣∣∣∣∣∣∣∣∣∣
. (82)

Since the degrees of polynomial functions Φ(n)
i,ν and Ψ(n)

j,ν are equal to i − ν and j − ν, with the highest-
power terms being a0(x − 2it)i−ν/ [(i− ν)!2ν ] and b0(x + 2it)j−ν/ [(j − ν)!2ν ] [39], the highest-power terms 
in the above equation will come from the choice of ν1 = 0, ν2 = 1, . . ., νN = N − 1 in the summation. 
Under this choice, replacing every Φ(n)

i,ν and Ψ(n)
j,ν by their highest-power terms and rearranging rows of 

the |Φ| determinant and columns of the |Ψ| determinant, we can derive the highest-power terms in the 
σn polynomial function. Details of this calculation depend on the values of [N1, N2] and [M1, M2]. Let us 
consider the case of N1 > N2 as an example. In this case, the |Φ| determinant in Eq. (82) under the above 
choice of νk = k − 1 becomes

det
(
Φ(n)

i,j

)
= (−1)N2(2N1−N2+1)/2

∣∣∣∣∣ P1 O

P2 P3

∣∣∣∣∣+ (lower degree terms), (83)

where O is the zero matrix of size (2N2) × (N1 −N2),

P1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 0 0 · · · 0

a0x
+
1

a0
2 0 · · · 0

a0(x+
1 )2

2!
a0x

+
1

1!2
a0
22 · · · 0

...
...

...
. . .

...
a0(x+

1 )2N2−1

(2N2−1)!
a0(x+

1 )2N2−2

(2N2−2)!2
a0(x+

1 )2N2−3

(2N2−3)!22 · · · a0
22N2−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (84)

and

P3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0x
+
1

1!22N2
a0

22N2+1 0 0 0 · · ·
a0(x+

1 )3

3!22N2
a0(x+

1 )2

2!22N2+1
a0x

+
1

1!22N2+2
a0

22N2+3 0 · · ·
...

...
...

...
...

...
a0(x+

1 )2(N1−N2)−1

[2(N1−N2)−1]!22N2
a0(x+

1 )2(N1−N2)−2

[2(N1−N2)−2]!22N2+1
a0(x+

1 )2(N1−N2)−3

[2(N1−N2)−3]!22N2+2
a0(x+

1 )2(N1−N2)−4

[2(N1−N2)−4]!22N2+3 · · · a0(x+
1 )N1−N2

(N1−N2)!2N−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(85)
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The matrix P1 is a lower triangular matrix whose determinant is a constant. The matrix P3 has the same 
structure as in [39], and thus its determinant can be calculated by the same technique as used in [39]. These 
calculations directly lead to

det
(
Φ(n)

i,j

)
= ĉ0(x− 2it)(N1−N2)(N1−N2+1)/2 + (lower degree terms), (86)

where ĉ0 is a (a0, N1, N2)-dependent but n-independent constant. When N1 ≤ N2, det
(
Φ(n)

i,j

)
can be 

calculated similarly. In addition, det
(
Ψ(n)

i,j

)
in Eq. (82) can be treated in a similar fashion. Collecting these 

results and setting a0 = b0 = 1 (as in Theorem 1), we find that

σn = c0(x− 2it)(N1−N2)(N1−N2+1)/2(x + 2it)(M1−M2)(M1−M2+1)/2 + (lower degree terms), (87)

where c0 is a [N1, N2,M1,M2]-dependent but n-independent constant. Hence the solution (5) satisfies the 
boundary condition (2), and Theorem 2 is also proved.

5. Conclusions and discussions

In this article, we have derived wider classes of rogue wave solutions in the nonlocal PT -symmetric NLS 
equation (1) through the bilinear method, and these solutions are given explicitly as Gram determinants 
with matrix elements in terms of Schur polynomials. These wider classes of solutions were found through 
a generalization of the previous bilinear method, where a richer τ function structure was discovered. New 
rogue waves in these solutions contain not only the ones with novel polynomial degrees, but also the ones 
with old polynomial degrees but different functional forms. These new rogue waves were shown to exhibit 
distinctive solution patterns which have not been seen before.

Given these wider classes of rogue waves than those reported before [52], a natural question is whether 
the nonlocal NLS equation (1) admits even more rogue waves which are not covered in Theorem 1. This is 
a challenging question which is not easy to answer. Our opinion is that, in order to satisfy the dimension 
reduction condition (41), our 2 × 2-block determinant (48) is the most general τ function which leads to 
algebraic solutions of the (1 + 1)-dimensional bilinear equations (49). Based on this opinion, we conjecture 
that the rogue waves reported in Theorem 1 are all rogue-wave solutions in the PT -symmetric NLS equation 
(1).

Another natural question inspired by results in this article is whether the local NLS equation can also 
admit rogue waves with polynomial degrees beyond the type N(N+1) [6,39]. We have examined this question 
and our answer is no. It is true that the more general 2 ×2-block determinant (48) can also satisfy the (1 +1)-
dimensional bilinear equations of the local NLS equation before complex conjugacy reduction [see Eq. (3.6) 
of [39], which is the counterpart of Eq. (49) in this article before the nonlocal reduction (62)]. However, to 
further satisfy the complex conjugacy reduction [see Eq. (3.5) of [39]], which is σn = σ∗

−n in the notation of 
this article, we generally have to require N1 = M1 and N2 = M2, so that the parameter constraint of ak = b∗k
would fulfill this complex conjugacy condition. But the third example in Remark 5 shows that the solutions 
with [N1, N2, N1, N2] are equivalent to those with [N1 −N2, 0, N1 −N2, 0] when N1 > N2 and equivalent to 
those with [0, N2−N1, 0, N2−N1] when N1 < N2. In the former case, solutions with [N1−N2, 0, N1−N2, 0]
are exactly the rogue waves reported in [39] with N = N1 −N2 (see Remark 2). In the latter case, solutions 
with [0, N2 − N1, 0, N2 − N1] are equivalent to those with [N2 − N1 − 1, 0, N2 − N1 − 1, 0] in view of the 
second example in Remark 5, and are thus also the rogue waves reported in [39] with N = N2 − N1 − 1. 
Thus, we conclude that the more general 2 × 2-block determinant (48) does not generate new rogue waves 
in the local NLS equation due to the complex conjugacy reduction.
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Appendix A. Number of free real parameters in rogue waves of Theorem 1

In this appendix, we prove the number of irreducible free real parameters given in Table 1 for rogue 
waves of Theorem 1. To illustrate the idea behind our proof, we use an example of solutions with index 
values [N1, N2,M1,M2] = [2, 1, 1, 2]. Solutions with these index values correspond to the following 3 × 3
Gram-determinant in view of Eq. (6),

τn =

∣∣∣∣∣∣∣∣
m

(n)
11 m

(n)
10 m

(n)
12

m
(n)
31 m

(n)
30 m

(n)
32

m
(n)
01 m

(n)
00 m

(n)
02

∣∣∣∣∣∣∣∣ . (88)

Parameters contained in this determinant include �(a1), �(a3) and �(b1) (see Theorem 1). However, we 
can rewrite this τn into a 9 × 9 determinant in view of Eq. (58). Then, reorganizing the rows and columns 
of this 9 × 9 determinant, we get

τn =

∣∣∣∣∣O3×3 Gn

Hn I6×6

∣∣∣∣∣ , (89)

where Gn is a 3 × 6 matrix of functions Φ(n)
i,j ,

Gn =

⎛⎜⎜⎝
Φ(n)

0,0 0 0 0 0 0

Φ(n)
1,0 Φ(n)

1,1 0 0 0 0

Φ(n)
3,0 Φ(n)

3,1 Φ(n)
3,2 Φ(n)

3,3 0 0

⎞⎟⎟⎠ , (90)

and Hn is a 6 × 3 matrix of functions Ψ(n)
k,l ,

Hn =

⎛⎜⎜⎝
Ψ(n)

0,0 0 0 0 0 0

Ψ(n)
1,0 Ψ(n)

1,1 0 0 0 0

Ψ(n)
2,0 Ψ(n)

2,1 Ψ(n)
2,2 0 0 0

⎞⎟⎟⎠
T

. (91)

From the definitions of Φ(n)
k,ν and Ψ(n)

k,ν in Theorem 1, we have Φ(n)
k,k = Ψ(n)

k,k = 1/2k. Thus, performing simple 
determinant expansions to (89), we get

τn = γ

∣∣∣∣∣∣∣∣∣∣∣

Φ(n)
3,2 Φ(n)

3,3 0 0

0 1 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣
= γ Φ(n)

3,2 , (92)

where γ = Φ(n)
0,0Φ(n)

1,1Ψ(n)
0,0Ψ(n)

1,1Ψ(n)
2,2 = 1/16. Notice that in this τn expression, parameters �(a3) and �(b1)

have dropped out, and �(a1) is the only remaining parameter in the solution (88). Following the idea of 
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this example, we can show in general that when N2 < N1, parameters �(a2(N1−N2)+1), �(a2(N1−N2)+3), . . .
drop out; when N2 = N1 or N2 = N1 +1, all �(a1), �(a3), . . . drop out; and when N2 > N1 +1, parameters 
�(a2(N2−N1)−1), �(a2(N2−N1)+1), . . . drop out. Likewise, when M2 < M1, parameters �(b2(M1−M2)+1), 
�(b2(M1−M2)+3), . . . drop out; when M2 = M1 or M2 = M1 + 1, all �(b1), �(b3), . . . drop out; and when 
M2 > M1 + 1, parameters �(b2(M2−M1)−1), �(b2(M2−M1)+1), . . . drop out. Since the nonlocal NLS equation 
(1) is time-translation invariant, by a shift of the t axis, we can remove one more real parameter (see 
Ref. [39] for details). Thus, the number of irreducible free real parameters in rogue waves of Theorem 1 can 
be obtained as those given in Table 1.

Appendix B. Proof of Remark 5

In this appendix, we prove the equivalency of solutions in Remark 5.
First, we prove that solutions with [N1, N2,M1,M2] =

[
Ñ1, Ñ2, M̃1, M̃2

]
and those with 

[
Ñ2, Ñ1 + 1,

M̃2, M̃1 + 1
]

are equivalent to each other. To prove this fact, we start from the 3N × 3N determinant 

expression for σn with [N1, N2,M1,M2] =
[
Ñ1, Ñ2, M̃1, M̃2

]
, which in view of Eq. (58) is

σn = (−1)N×∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ON×N

Φ(n)
10 Φ(n)

11 · · · Φ(n)
1,2N−1

...
...

...

Φ(n)
2Ñ1−1,0

Φ(n)
2Ñ1−1,1

· · · Φ(n)
2Ñ1−1,2N−1

Φ(n)
00 Φ(n)

01 · · · Φ(n)
0,2N−1

...
...

...

Φ(n)
2Ñ2−2,0

Φ(n)
2Ñ2−2,1

· · · Φ(n)
2Ñ2−2,2N−1

Ψ(n)
10 · · · Ψ(n)

2M̃1−1,0
Ψ(n)

00 · · · Ψ(n)
2M̃2−2,0

Ψ(n)
11 · · · Ψ(n)

2M̃1−1,1
Ψ(n)

01 · · · Ψ(n)
2M̃2−2,1

...
...

...
...

Ψ(n)
1,2N−1 · · · Ψ(n)

2M̃1−1,2N−1
Ψ(n)

0,2N−1 · · · Ψ(n)
2M̃2−2,2N−1

I2N×2N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(93)

Here, N = Ñ1 + Ñ2 = M̃1 + M̃2.
Then, we consider the similar determinant expression for

[N1, N2,M1,M2] =
[
Ñ2, Ñ1 + 1, M̃2, M̃1 + 1

]
. (94)

Recalling that Φ(n)
0,0 = Ψ(n)

0,0 = 1 and Φ(n)
0,ν = Ψ(n)

0,ν = 0 for ν ≥ 1, the row of Φ(n)
0,0 and the column of Ψ(n)

0,0
have a single nonzero element each. In addition, the last row and the last column are all zero except for the 
diagonal element. Thus, expanding this 3(N + 1) × 3(N + 1) determinant along those rows and columns, it 
is reduced to the following 3N × 3N determinant,

σn = (−1)N+1×
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ON×N

Φ(n)
11 Φ(n)

12 · · · Φ(n)
1,2N

...
...

...

Φ(n)
2Ñ2−1,1

Φ(n)
2Ñ2−1,2

· · · Φ(n)
2Ñ2−1,2N

Φ(n)
21 Φ(n)

22 · · · Φ(n)
2,2N

...
...

...

Φ(n)
2Ñ1,1

Φ(n)
2Ñ1,2

· · · Φ(n)
2Ñ1,2N

Ψ(n)
11 · · · Ψ(n)

2M̃2−1,1
Ψ(n)

21 · · · Ψ(n)
2M̃1,1

Ψ(n)
12 · · · Ψ(n)

2M̃2−1,2
Ψ(n)

22 · · · Ψ(n)
2M̃1,2

...
...

...
...

Ψ(n)
1,2N · · · Ψ(n)

2M̃2−1,2N
Ψ(n)

2,2N · · · Ψ(n)
2M̃1,2N

I2N×2N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (95)

Now we use properties of Schur polynomials to transform the determinant (95) to (93). For this purpose, 
we consider Schur polynomials on vectors y = x±(n) + νs and ŷ = x±(n) + (ν + 1)s, where x±(n) and s
are defined in equations (10)–(11). Since ŷ = y + s, from the definition of Schur polynomials, we have

∞∑
k=0

[Sk(ŷ) − Sk(y)]λk = exp

⎛⎝ ∞∑
j=1

ŷjλ
j

⎞⎠− exp

⎛⎝ ∞∑
j=1

yjλ
j

⎞⎠
= exp

⎛⎝ ∞∑
j=1

yjλ
j

⎞⎠⎡⎣exp

⎛⎝ ∞∑
j=1

sjλ
j

⎞⎠− 1

⎤⎦ =
∞∑
k=0

Sk(y)λk
∞∑
k=1

Sk(s)λk =
∞∑
k=1

∑
k1+k2=k
k1≥1, k2≥0

Sk1(s)Sk2(y)λk.

(96)

From this, we get a relation between Sk(ŷ) and Sk(y) as

Sk(ŷ) = Sk(y) +
∑

k1+k2=k
k1≥1, k2≥0

Sk1(s)Sk2(y). (97)

In view that Sk1(s) are just constants, this means that polynomials Sk(ŷ) can be expressed as linear 
combinations of {Sj(y), 0 ≤ j ≤ k}. In addition, since s1 = s3 = · · · = sodd = 0,

S1(s) = S3(s) = · · · = Sodd(s) = 0. (98)

Then, from the definition of functions Φ(n)
i,ν in Eq. (9), we can directly show that

Φ(n)
i+1,ν+1 = 1

2

[
i−ν
2

]∑
k=0

S2k(s)Φ(n)
i−2k,ν . (99)

Using this relation and performing simple row operations to the determinant (95), we can reduce its first 
Ñ2 rows to the (Ñ1 + 1)-th to (Ñ1 + Ñ2)-th rows of the determinant (93), and reduce its (Ñ2 + 1)-th to 
(Ñ1 + Ñ2)-th rows to the first Ñ1 rows of the determinant (93), plus a factor of 1

2 on each element. Using 

similar treatments, we can reduce the first M̃2 columns of the determinant (95) to the (M̃1 + 1)-th to 
(M̃1 +M̃2)-th columns of the determinant (93), and reduce the (M̃2 +1)-th to (M̃1 +M̃2)-th columns of the 
determinant (95) to the first M̃1 columns of the determinant (93), plus a factor of 1 on each element. These 
2
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factors of 1
2 cancel out in the ratio of σ1/σ0, and thus solutions with [N1, N2,M1,M2] =

[
Ñ1, Ñ2, M̃1, M̃2

]
and those with 

[
Ñ2, Ñ1 + 1, M̃2, M̃1 + 1

]
are equivalent to each other.

The second example of equivalency in Remark 5 is a direct consequence of the above equivalency and 
does not need proof.

Regarding the third example of equivalency in Remark 5, we notice that due to the above equivalency, 
solutions with indices [N, K, N, K] and those with [K − 1, N, K − 1, N ] are equivalent. Also from the above 
equivalency, we see that solutions with indices [K−1, N, K−1, N ] and those with [N−1, K−1, N−1, K−1]
are equivalent. Combining these two results, we find that solutions with indices [N, K, N, K] and those with 
[N−1, K−1, N−1, K−1] are equivalent. Then, repeating this process, we can show that the third example 
of equivalency in Remark 5 is valid.
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