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Weak interactions of solitary waves in the generalized nonlinear Schrödinger equations are studied. It is first
shown that these interactions exhibit similar fractal dependence on initial conditions for different nonlineari-
ties. Then by using the Karpman-Solov’ev method, a universal system of dynamical equations is derived for
the velocities, amplitudes, positions, and phases of interacting solitary waves. These dynamical equations
contain a single parameter, which accounts for the different forms of nonlinearity. When this parameter is zero,
these dynamical equations are integrable, and the exact analytical solutions are derived. When this parameter
is nonzero, the dynamical equations exhibit fractal structures which match those in the original wave equations
both qualitatively and quantitatively. Thus the universal nature of fractal structures in the weak interaction of
solitary waves is analytically established. The origin of these fractal structures is also explored. It is shown that
these structures bifurcate from the initial conditions where the solutions of the integrable dynamical equations
develop finite-time singularities. Based on this observation, an analytical criterion for the existence and loca-
tions of fractal structures is obtained. Lastly, these analytical results are applied to the generalized nonlinear
Schrödinger equations with various nonlinearities such as the saturable nonlinearity, and predictions on their
weak interactions of solitary waves are made.
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I. INTRODUCTION

Solitary wave interactions are a fascinating and important
phenomenon for both physical and mathematical reasons.
Physically, such interactions have arisen in a wide array of
disciplines such as water waves �1�, optics �2–7�, and Jo-
sephson junctions �8�. For instance, in soliton-based fiber
communication systems, optical pulses traveling in different
frequency channels pass through each other, giving rise to
collisions �strong interactions� of solitary waves. In the same
frequency channel, neighboring optical pulses interfere with
each other through overlapping tails, giving rise to weak in-
teractions of solitary waves. Motivated by these physical ap-
plications, solitary wave interactions have been studied ex-
tensively in both the mathematical and physical
communities. If the system is integrable, collisions of soli-
tons are elastic �1�, and weak interactions of solitons exhibit
interesting yet simple behaviors �2,9–12�. However, in non-
integrable systems, solitary wave interactions can be far
more complex. The first sign of this complexity was reported
by Ablowitz et al. �13� for kink and antikink collisions in the
�4 model where, inside the trapping interval, a reflection
window was found. Later extensive numerical studies on this
model by Campbell et al. �14–17� revealed that in fact, se-
quences of two- and more-bounce reflection windows exist,
and the physical mechanism for these refection windows is a
resonant energy transfer between the translational motion
and internal modes of kinks/antikinks. Anninos et al. �18�

pointed out further that there is a fractal structure in kink-
antikink collisions. Using a collective-coordinate �i.e., varia-
tional� approach, they derived a set of fourth-order ordinary
differential equations �ODEs� for these collisions, and these
ODEs exhibit qualitatively similar fractal structures as in the
�4 model �a comprehensive review on kink-antikink colli-
sions in �4-type equations can be found in �19��. These com-
plex dynamics turn out to be not restricted to kink-antikink
collisions. Indeed, similar phenomena have been reported on
kink-defect collisions in the sine-Gordon and �4 models
�20–22�, as well as vector-soliton collisions in the coupled
nonlinear Schrödinger �NLS� equations �23–25�. Further-
more, fractal scattering has also been reported on weak in-
teractions of breathers in a weakly discrete sine-Gordon
equation �26� and weak interactions of solitary waves in a
weakly discrete NLS equation �27�. Recently, Goodman and
Haberman �28–30� provided a deep analysis on the
collective-coordinate models �ODEs� for kink-antikink colli-
sions in the �4 model �18�, kink-defect collisions in the sine-
Gordon model �20�, and vector-soliton collisions in the
coupled NLS equations �25,31� using sophisticated dynami-
cal system techniques. They derived analytical formulas for
the locations of reflection-window sequences, which agree
qualitatively with numerical results on the original partial
differential equations �PDEs�. Their results shed much light
on the origins of these window sequences and fractal struc-
tures, especially from a mathematical point of view.

Despite the above progress on solitary wave interactions,
our understanding of these phenomena is far from satisfac-
tory. On the collision of solitary waves, the analyses done so
far were all based on approximate collective-coordinate ap-
proaches, hence the reduced ODE models can only provide
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qualitative results at best. Many features reported in the ODE
models cannot be seen in the PDE simulations, thus it is not
possible to make a reliable prediction on the collision dy-
namics based on those ODE models and their analysis. In
addition, the ODE models obtained from the collective-
coordinate approaches not only are complicated, but also dif-
fer significantly from one PDE system to another. This
forced previous researchers to analyze each PDE and its re-
duced ODE systems on an individual basis, which prevents
an overall understanding on collision processes of solitary
waves. On the weak interaction of solitary waves, the situa-
tion is even less satisfactory. The fractal nature of this weak
interaction was reported only for systems which are weakly
perturbed integrable systems �sine-Gordon and NLS equa-
tions, to be more specific� �26,27�. It is not known yet
whether similar phenomena arise in strongly nonintegrable
equations. More seriously, the previous work on this subject
is largely numerical. No analysis has been attempted yet �not
even the approximate collective-coordinate studies�. Thus an
analytical understanding of weak interactions of solitary
waves is a completely open question.

In this paper, we study weak interactions of solitary waves
in a whole class of generalized NLS equations �with arbitrary
nonlinearities� both analytically and numerically. These gen-
eralized NLS equations are not weak perturbations of the
NLS equation in general. First we show by direct PDE simu-
lations that these weak interactions for different nonlineari-
ties exhibit similar fractal structures on initial parameters of
solitary waves. This establishes that fractal scattering is a
common feature of weak interactions in this class of gener-
alized NLS equations. Next, we rigorously derive a universal
system of dynamical equations �ODEs� for the velocities,
amplitudes, positions, and phases of interacting solitary
waves in this class of PDEs by the Karpman-Solov’ev
method. This universal ODE system is remarkably simple,
and it contains only a single parameter which depends on the
individual PDEs �after variable rescalings�. When this pa-
rameter is zero, these dynamical equations are integrable,
and their exact analytical solutions are derived. When this
parameter is nonzero, the dynamical equations are found to
exhibit fractal structures for a wide range of initial condi-
tions. These fractal structures match those in the original
PDEs both qualitatively and quantitatively, thus the universal
nature of fractal scattering in the weak interaction of solitary
waves is analytically established. We further explore the ori-
gin of these fractal structures. Our numerical studies on the
ODE system show that these fractal structures bifurcate from
the initial conditions where the solutions of the integrable
dynamical equations develop finite-time singularities. Based
on this observation, we present an analytical criterion for the
existence and locations of fractal structures. One corollary
from this criterion is that when the initial separation velocity
is above a certain threshold value, fractal structures should
disappear—a prediction which agrees with our PDE numer-
ics as well as previous numerics on the weakly discrete NLS
equation �see Fig. 6 in Ref. �27��. Lastly, we apply these
analytical results to the generalized NLS equations with vari-
ous nonlinearities such as the cubic-quintic, exponential, and
saturable nonlinearities, and make detailed predictions on the
dynamics of their weak interactions.

This paper is structured as follows. In Sec. II, we describe
individual solitary waves in the generalized NLS equations.
In Sec. III, we present direct PDE simulation results on weak
interactions of solitary waves in the generalized NLS equa-
tions with two different nonlinearities, and reveal the com-
mon �universal� fractal structures in this class of PDEs. In
Sec. IV, we analytically derive a universal system of dynami-
cal equations �ODEs� for parameters of interacting solitary
waves using asymptotic methods, and show that these ODEs
accurately describe the weak interactions in the PDEs. In
Sec. V, we solve this ODE system analytically when the
single parameter in this system is equal to zero �which is the
integrable case�. In addition, we derive explicit conditions
for the solutions of the integrable ODE system to develop
finite-time singularities. In Sec. VI, we show that fractal
structures appear in this ODE system when its parameter is
nonzero and explore the origin of these fractal structures. In
Sec. VII, we apply the analytical results to the generalized
NLS equations with various nonlinearities. In Sec. VIII, we
summarize the results of the paper and make some further
remarks.

II. PRELIMINARIES

The generalized NLS equation is

iUt + Uxx + F��U�2�U = 0, �2.1�

where F�·� is a real-valued algebraic function with F�0�=0.
Equation �2.1� supports solitary waves of the form

U = ��x − Vt − x0;��e1/2iV�x−x0�−1/4iV2t+i�t−i�0, �2.2�

where ���� is a positive function which satisfies the follow-
ing equation:

��� + F����2�� − �� = 0,

� → 0, ��� → � , �2.3�

and ���0�, V, x0, and �0 are real constants. For conve-
nience, we introduce the notations

� = Vt + x0, � = x − � ,

� = �� +
1

4
V2�t − �0, � =

1

2
V� + � . �2.4�

Physically, � is the propagation constant which is related to
the solitary-wave amplitude �henceforth, we call � an ampli-
tude parameter�, � is the phase of the solitary wave, �0 is its
initial phase, � is its center position, V is its velocity, and x0
is its initial position. The solitary wave is characterized
uniquely by its four parameters: V, �, �0, and and x0. The
asymptotic behavior of this solution at infinity is

���� → ce−�����, ��� → � , �2.5�

where c is the tail coefficient which is determined by the
nonlinear function F and propagation constant �. We define
the power of the solitary wave as
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P��� = 	
−�

�

�2��;��d� , �2.6�

which plays an important role in the linear stability of the
solitary wave. For general functions F, the analytical formu-
las for �, P, and c are not available; but for some special
nonlinearities, one can find the analytical solutions. For in-
stance, for the cubic-quintic nonlinearity

F��U�2� = 	�U�2 + 
�U�4, �2.7�

the analytical formulas for �, P, and c are �6,32�

���;�� =� 4B�/	

B + cosh 2���
, �2.8�

P =

4B����/2 − arctan
B

�1 − B2�
	�1 − B2

, �2.9�

c = �8B�/	 , �2.10�

where

B = sgn�	��1 +
16�


3	2 �−1/2

. �2.11�

For special values of 	=1, 
=0, Eq. �2.1� becomes the in-
tegrable NLS equation, and then

B = 1, ���;�� = �2� sech����� ,

P = 4��, c = �8� . �2.12�

III. UNIVERSAL FRACTAL STRUCTURES IN WEAK
INTERACTIONS OF SOLITARY WAVES

When two solitary waves are placed adjacent to each
other, they would interfere through tail overlapping. In this
case, the initial condition is

U�x,0� = U1�x,0� + U2�x,0� ,

Uk�x,0� = ��x − x0,k;�0,k�ei�0,k,

�0,k =
1

2
V0,k�x − x0,k� − �0,k, �3.1�

where � satisfies Eq. �2.3�. Here “0” in the subscript repre-
sents the initial value of the underlying parameter. For con-
venience, we assign the left solitary wave with index k=1,
and the right solitary wave with index k=2. To study the
weak interaction between these two solitary waves, we re-
quire that the two solitary waves are both stable, well-
separated, and having almost the same velocities and ampli-
tudes. Introducing notations

� =
1

2
��1 + �2�, V =

1

2
�V1 + V2�, � =

1

2
��1 + �2� ,

�3.2�

and

�� = �2 − �1, �V = V2 − V1, �� = �2 − �1, �3.3�

the above requirements then amount to

P� � 0, ����  �, ��V�  1, ��� � 1 � ������ .
�3.4�

Here, P�
dP /d��0 corresponds to the Vakhitov-
Kolokolov criterion for the linear stability of solitary waves
in Eq. �2.1� �6,13�.

Below, we numerically study the weak interaction of soli-
tary waves in Eq. �2.1�. This equation is numerically inte-
grated by the pseudospectral method coupled with the
fourth-order Runge-Kutta integration along the time direc-
tion. Since each solitary wave has four parameters, we have
eight parameters in the initial conditions. Due to the phase,
translation, and Galilean invariances of Eq. �2.1�, we can fix
�0,1=0, x0,1+x0,2=0, and V0
�V0,1+V0,2� /2=0 without any
loss of generality. Also, for simplicity, we take �V0=V0,2
−V0,1=0 in all our simulations of this section, i.e., the two
solitary waves are initially at rest. This leaves four free pa-
rameters in the initial conditions �3.1�: �x0
x0,2−x0,1,
��0
�0,2−�0,1=−�0,2, �0
��0,1+�0,2� /2, and ��0
�0,2

−�0,1. We define the exit velocity �V�
 limt→+� �V. We
also define the collision time t̃ as the time when the two
solitary waves are the closest �i.e., the separation distance
between peaks of the two solitary waves is the smallest�
during interactions. The lifetime of interaction is defined as
the time length from the beginning �t=0� to the collision
time t̃, which is equal to the collision time in value. Thus t̃
will be used to denote the lifetime as well. Of the four pa-
rameters in initial conditions, we will fix �0, ��0, and �x0,
and use ��0 as the control parameter and vary it continu-
ously between 0 and 2�. At each ��0 value, we simulate the
evolution of the two solitary waves and record the exit ve-
locity and the lifetime. Numerically, the exit velocity is de-
termined as follows. We let the solitary waves propagate for
a long time. If they still do not separate, we assign the exit
velocity as zero. If they do separate, we wait until they have
separated far apart and their velocities stabilized. Then we
locate the positions of maximum solitary wave amplitudes at
serval different time values. The average separation velocity
of the two solitary waves in these time intervals is assigned
as the exit velocity. The numerical lifetime is simply the time
when the two solitary waves are the closest in the simula-
tions. Below, we carry out numerical studies of weak inter-
actions as described above on two different nonlinearities:
the cubic-quintic and exponential nonlinearities.

A. Weak interactions for the cubic-quintic nonlinearity

Our first example of nonlinearity is the cubic-quintic non-
linearity �2.7�, which arises in a wide array of physical sys-
tems such as optics �6� and boson condensates �32,34�. In
this nonlinearity, we set

	 = 1, 
 = 0.04. �3.5�

It is easy to verify that all solitary waves �Eq. �2.8�� in this
case are linearly stable using the Vakhitov-Kolokolov crite-
rion. In our simulations, we set �x0=10 and �0=1. The x
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interval is 70 units wide, discretized by 512 grid points; and
the time step size is 0.004.

We first study the nonequal-amplitude case and take
��0=−0.065. The �V� versus ��0 diagram is shown in Fig.
1. The prominent structures in this graph can be split into
two regions: one region is −0.34���0�2.5 and the other
region is 2.9���0�3.3. The structures in these two regions
turn out to be quite similar �except a horizontal reflection
with respect to a vertical axis�, thus we focus on the larger
region −0.34���0�2.5 below. The main structure in this
region forms a sequence of hills; their widths get smaller
from the right to the left, and their heights are about the
same. These hills will be called the primary hills. This
primary-hill sequence converges to the accumulation point
��0c=−0.339. In order to see this hill sequence near the
accumulation point ��0c more clearly, we zoom in on the
region �−0.35,0.4�, and the zoomed-in diagram is shown in
Fig. 2. In this figure, the cascading sequence can be seen
very clearly �see Fig. 2�a��. In Fig. 2�b�, the corresponding
lifetime diagram is displayed. We can see that on the same
hill, interactions have roughly the same lifetime. On different
hills, lifetimes are different: hills closer to the accumulation
point ��0c have longer lifetimes. Between hills, even longer
lifetimes can be seen, suggesting more complex dynamics
there. To explore differences in interaction dynamics on dif-
ferent hills, we select three points, ��0=0.1759, −0.0057,
and −0.1053 �marked in Fig. 2�a� by circles�, on three adja-
cent primary hills. These points are at the same relative po-
sitions �roughly halfway between the peak and bottom� of
the respective hills. At these points, the interaction dynamics
is plotted in Figs. 2�1–3�. Here only the separation distance
�� versus time t graphs are shown. We find that these three
dynamical processes are similar, except that the oscillation
times before final separation differ by one from one hill to
the next. The lifetimes t̃n of interactions on this primary hill
sequence are found to be an almost perfect linear function of
the hill index n as

�t̃n = 2n� + � , �3.6�

where the least-squares linear fit gives

� = 0.08605, � = 2.8897. �3.7�

Here the lifetime of each primary hill is measured numeri-
cally at the relative location of that hill shown in Fig. 2�a� by
circles. This lifetime formula has the same form as those for
all window sequences reported before �15,16,20,23,29�.

In addition to the primary hill sequence as described
above, Fig. 1 also possesses higher-order structures between
primary hills. To demonstrate, we first isolate the long inter-
val �−0.35,2.5� in Fig. 1 and replot that part of the graph in
Fig. 3�a�. Then we zoom into its subinterval �0.91, 0.995�,
which is between the two largest primary hills in Fig. 3�a�.
The zoomed-in graph is shown in Fig. 3�b�. We see that the
zoomed-in graph is similar to Fig. 3�a�, but the cascading
direction has reversed. This behavior is analogous to that
reported in �18,24� for the �4 model and the coupled NLS
equations. The main structure in this zoomed-in window is
again two sequences of hills, accumulating to the left and

FIG. 1. The graph of exit velocity �V� versus the initial phase
difference ��0 in the nonequal initial amplitude case of the cubic-
quintic NLS equations �2.1� and �2.7�. The cubic and quintic non-
linearity coefficients are given in Eq. �3.5�, and the other �fixed�
initial parameters are �x0=10, �0=1, ��0=−0.065, and �V0=0.

FIG. 2. �a� The exit velocity versus initial phase difference
graph of Fig. 1 replotted near the accumulation point of the primary
hill sequence; �b� the lifetime versus initial phase difference graph;
and �1�–�3�: separation versus time diagrams of solitary wave inter-
actions at three values of ��0 marked by circles in �a�: �1� 0.1759;
�2� −0.0057; and �3� −0.1053.
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right, respectively. We call them secondary hills. Between
secondary hills, we see even higher-order structures. To see
these structures more clearly, we zoom into the subinterval
�0.9657, 0.96785�, which is between the two largest second-
ary hills in Fig. 3�b�. The zoomed-in graph is shown in Fig.
3�c�. We see that it is again similar to Fig. 3�b� but with a
reversed cascading direction. One can zoom into the regions
between these tertiary hills in Fig. 3�c� further, and will get
even higher order structures which are similar to the ones
shown in Fig. 3. Thus Fig. 3�a� is a fractal structure. We have
also explored the interaction dynamics on this fractal. To
demonstrate, we pick three ��0 values 1.511, 0.952 48, and
0.9669 which are at the same relative positions of the fractal
�roughly halfway between the peak and bottom of the widest
hills� in Figs. 3�a�–3�c� �marked by circles�. The interaction
dynamics at these three points are displayed in Figs. 3�1–3�,
respectively. Here the positions of maximum amplitudes of
the interacting waves are plotted against time. We see that
these dynamical patterns are clearly similar, except that the
numbers of oscillations before final separation are different.

In the above numerical simulations, the two solitary
waves have different initial amplitudes ���0=−0.065�. We
have also studied interactions of equal-amplitude solitary
waves, i.e., with ��0=0, while keeping the other parameters
the same. In this case, the graph of exit velocity �V� versus
initial phase difference ��0 is shown in Fig. 4. This graph is
symmetric with respect to ��0 for obvious reasons. Exami-
nation of this graph shows that it is also a fractal. Thus
fractal dependence arises in weak interactions of both equal
and nonequal amplitude solitary waves.

B. Weak interactions with exponential nonlinearity

To explore whether the above fractal structures for weak
interactions persist or not with other types of nonlinearities,

we consider in this section a different type of nonlinearity,
the exponential nonlinearity, with

F��U�2� = e�U� − 1. �3.8�

Here, −1 is introduced into this function to meet the condi-
tion F�0�=0. Note that this nonlinearity does not have any
parameters. Throughout this section, we set the initial sepa-
ration �x0=8, and average propagation constant �0=2.3.
We study two cases, one for nonequal amplitudes with ��0
=−0.045, and the other for equal amplitudes with ��0=0.

FIG. 3. Top: the exit velocity versus initial phase difference graph of Fig. 1 and its two zoomed-in structures; bottom: soliton-positions
versus time diagrams at three values of ��0 marked by circles in the top panel: �1� 1.511; �2� 0.95248; and �3� 0.9669.

FIG. 4. The exit velocity versus initial phase difference graph in
the equal initial amplitude case of the cubic-quintic NLS equations
�2.1� and �2.7�. The cubic and quintic nonlinearity coefficients as
well as the initial conditions are the same as in Fig. 1, except that
��0=0 now.
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For both cases, the control parameter is ��0 as before. In our
simulations, the x interval was 70 units wide, discretized by
512 grid points. The time step size was 0.002. The �V�

versus ��0 graphs for both cases are plotted in Fig. 5. We
have verified that both graphs in this figure are fractals.
Comparing these fractals with those in Figs. 1 and 4 of the
cubic-quintic nonlinearity, we see that the fractal structures
for these two different nonlinearities are very similar. The
only major difference between them is in the nonequal am-
plitude case, where there is only one primary hill sequence
�accumulating toward the left� for the exponential nonlinear-
ity, while there are two primary hill sequences for the cubic-
quintic nonlinearity. It is remarkable that two very different
nonlinearities exhibit quite similar fractal dependence on ini-
tial conditions. Thus fractal scattering appears to be a univer-
sal feature in weak interactions of Eq. �2.1� rather than an
accident. This leads us to the following questions: how can
we analytically establish the universal nature of fractal scat-
terings for Eq. �2.1� with general nonlinearities? How can we
analytically explain the major differences of fractals for dif-
ferent nonlinearities? These questions will be answered in
the following sections.

IV. DYNAMICAL EQUATIONS

To study weak interactions analytically, we use the
Karpman-Solov’ev method �9� by treating the interference as

a small perturbation to each solitary wave �see also �35��.
This method has been successfully used before on the NLS
equation �2,9,10,35�, the modified NLS equation �11�, the
Manakov equations �12�, as well as the �nonintegrable�
coupled NLS equations �36�. To proceed, we first need to
consider the evolution of a single solitary wave in the per-
turbed generalized NLS equation

iUt + Uxx + F��U�2�U = �G , �4.1�

where function G is a perturbation term, and � is a small
parameter. Without perturbations ��=0�, the solitary wave
�Eq. �2.2�� is an exact solution of Eq. �4.1�, and its internal
parameters V, �, �0, and x0 are time-independent. When the
perturbation is turned on, these internal parameters of the
solitary wave will evolve slowly on the time scale T=�t. The
multiple-scale perturbation theory for this slow evolution is
well-known �36,37�. We write the perturbed solution as

U = �̂��,t,T�eiV�/2+i�, �4.2�

where

� = x − 	
0

t

Vdt − x0, � = 	
0

t

�� + V2/4�dt − �0. �4.3�

Here V�T�, ��T�, �0�T�, and x0�T� are all functions of slow
time T. Next, we will derive the dynamical equations �ODEs�
for the slow-time evolution of these parameters. Substituting

Eq. �4.2� into Eq. �4.1�, we get the equation for �̂ as

i�̂t + �̂�� − ��̂ + F��̂2��̂ = �Ge−i� − ��i�̂��T − i�̂�x0T�

− ��Vx0T/2 − VT�/2 + �0T��̂ ,

�4.4�

where � is defined in Eq. �2.4�. We expand the amplitude

function �̂ into a perturbation series

�̂ = ���;�� + ��̃ + O��2� . �4.5�

The equation at order �0 is satisfied automatically since �

satisfies Eq. �2.3�. At order �, the equation for �̃ can be
written as

i�t + L� = H , �4.6�

where

� = ��̃ + �̃*

�̃* − �̃
�, L = � 0 L0

L1 0
� , �4.7�

L0 = − ��� + � − F��2� ,

L1 = − ��� + � − F��2� − 2�2F���2� , �4.8�

and

H = � − G*ei� + Ge−i� − 2i���T + 2i��x0T

− G*ei� − Ge−i� + �Vx0T − �VT + 2�0T�� � . �4.9�

Here the superscript asterisk represents complex conjugation.
Operator L has two eigenfunctions and two generalized

FIG. 5. The exit velocity versus initial phase difference graphs
for the exponential nonlinearity �3.8�: �a� the nonequal initial am-
plitude case with ��0=−0.045 and �b� the equal initial amplitude
case with ��0=0. The other �fixed� initial parameters are �0=2.3,
�x0=8, and �V0=0.
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eigenfunctions associated with the zero eigenvalue,

�1 = ���

0
�, �2 = � 0

�
� ,

�̃1 = � 0

− ��/2
�, �̃2 = �− ��

0
� , �4.10�

with the relations

L�k = 0, L�̃k = �k, k = 1,2. �4.11�

In order for the inhomogeneous solution � of the first-order
equation �4.6� to be nonsecular at large time, the inhomoge-
neous term in Eq. �4.6� must be orthogonal to the above
eigenfunctions and generalized eigenfunctions of the zero ei-
genvalue, i.e.,

H,�k� = H,�̃k� = 0, k = 1,2, �4.12�

under the inner product defined as

F1,F2� = 	
−�

�

F1
†�0 1

1 0
�F2d� . �4.13�

Here Fk
† is the Hermitian of Fk. Evaluating the four integrals

in Eq. �4.12�, the slow-time evolution equations for param-
eters V�T�, ��T�, �0�T�, and x0�T� will be obtained. These
evolution equations can be written as

P
dV

dT
= 2	

−�

�

���G*ei� + Ge−i��d� , �4.14�

P�

d�

dT
=

1

i
	

−�

�

��Ge−i� − G*ei��d� , �4.15�

P
dx0

dT
=

1

i
	

−�

�

���Ge−i� − G*ei��d� , �4.16�

P��V

2

dx0

dT
+

d�0

dT
� = 	

−�

�

���G*ei� + Ge−i��d� .

�4.17�

These equations will be critical for the development of weak
interaction theory of solitary waves below.

Now, we consider the weak interaction of two solitary
waves. Here the tail overlapping can be considered as a small
perturbation which causes the internal parameters of each
solitary wave to evolve on a slow time scale �t. Here � is the
magnitude of tail overlapping which is exponentially small
with solitary wave spacing ��. We will not introduce � ex-
plicitly in the next analysis. To the leading order, the inter-
acting solution is simply a superposition of two solitary
waves,

U = U1 + U2,

Uk = �ke
i�k, k = 1,2, �4.18�

where all parameters slowly vary over time. Picking up the
dominant interference terms, each solitary wave is governed
by the following perturbed generalized NLS equations:

iUk,t + iUk,�� + F��Uk�2�Uk = Hk, �4.19�

where

Hk = − �F��Uk�2� + F���Uk�2��Uk�2�U3−k − F���Uk�2�Uk
2U3−k

* .

�4.20�

In this paper, we only study the weak interaction, so condi-
tions �3.4� are assumed. Since ��V�1, the phase difference

�� = �2 − �1 � − V��/2 + �� , �4.21�

which is independent of �.
Now we apply the above solitary wave perturbation

theory to Eq. �4.19�. In this problem,

�Ge−i� = − �F��k
2��3−k + F���k

2��k
2�3−k�e�− 1�k+1i��

− F���k
2��k

2�3−ke
�− 1�ki��. �4.22�

Substituting Eq. �4.22� into Eqs. �4.14�–�4.17�, we obtain the
following dynamical equations:

Pk
dVk

dt
= − 4	

−�

�

�k,��F��k
2��3−k

+ 2F���k
2��k

2�3−k�d� cos���� , �4.23�

Pk,�k

d�k

dt
= �− 1�k2	

−�

�

�kF��k
2��3−kd� sin���� ,

�4.24�

Pk
dxk,0

dt
= �− 1�k2	

−�

�

�k�F��k
2��3−kd� sin���� ,

�4.25�

Pk,�k
�Vk

2

dxk,0

dt
+

d�k,0

dt
� = − 2	

−�

�

�k,�k
�F��k

2��3−k

+ 2F���k
2��k

2�3−k�d� cos���� ,

�4.26�

where Pk, k=1,2 are powers of the two individual solitary
waves. These equations can be simplified greatly. Due to
assumptions �3.4�, and noticing that ���� and ����� are
even functions of �, the leading-order terms of the above
integrals can be explicitly calculated. For instance,
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−�

�

�kF��k
2��3−kd� = 	

−�

�

�F��2�ce�− 1�k+1���d�e−����

= 	
−�

�

��� − ����ce���d�e−����

= 2��c2e−����. �4.27�

Similarly,

	
−�

�

�k,��F��k
2��3−k + 2F���k

2��k
2�3−k�d�

= 	
−�

�

���F��2� + 2F���2��2�ce�− 1�k+1���d�e−����

= �− 1�k��	
−�

�

�F��2�ce���d�e−����

= �− 1�k2�c2e−����, �4.28�

	
−�

�

�k�F��k
2��3−kd� = 	

−�

�

��F��2�ce�− 1�k+1���d�e−����

= �− 1�k+1	
−�

�

��F��2�ce���d�e−����

=
def

�− 1�k+1D1e−����, �4.29�

	
−�

�

�k,�k
�F��k

2��3−k + 2F���k
2��k

2�3−k�d�

= 	
−�

�

���F��2� + 2F���2��2�ce�− 1�k+1���d�e−����

= 	
−�

�

���F��2� + 2F���2��2�ce���d�e−����

=
def

D2e−����. �4.30�

With the above simplifications, the dynamical equations re-
duce to

P
dVk

dt
= �− 1�k+18�c2 cos����e−����, �4.31�

P�

d�k

dt
= �− 1�k4��c2 sin����e−����, �4.32�

P
dxk,0

dt
= − 2D1 sin����e−����, �4.33�

P��V

2

dxk,0

dt
+

d�k,0

dt
� = − 2D2 cos����e−����, �4.34�

where P is the power of the solitary wave with propagation
constant �, and D1, D2 are defined in Eqs. �4.29� and �4.30�.
From the above equations, we find that

�t = Vt = 0, �4.35�

��t = �V , �4.36�

��t = �� , �4.37�

�Vt = −
16�c2

P
cos����e−����, �4.38�

��t =
8��c2

P�

sin����e−����. �4.39�

Equations �4.35�–�4.39� are the key results in the weak inter-
action theory of solitary waves. These equations can be fur-
ther simplified by variable rescalings. Introducing notations

� = ��, � = − ����, f =
16�3/2c2

P
, g =

8��c2

P�

,

�4.40�

and

� = �ft, � =
g

f
− 1 =

P

2�P�

− 1, �4.41�

then the dynamical equations �4.36�–�4.39� reduce to

��� = cos �e�,

��� = �1 + ��sin �e�. �4.42�

Equation �4.42� is the final dynamical system we obtained
for the analytical treatment of weak interactions in the gen-
eralized NLS equations �2.1�. It is important to remark that
Eq. �4.42� is universal for the generalized NLS equations
with arbitrary nonlinearities. It contains only a single param-
eter �, which depends on the specific form of nonlinearity.

Equation �4.42� has the following general properties.
First, it is Hamiltonian with the conserved Hamiltonian �en-
ergy� as

E =
1

2
��̇2 − �̇2� − e� cos � +

�

2�1 + ��
�̇2. �4.43�

Here �˙�
d /d�. Second, it has some symmetry pro-
perties. One is that it is time-reversible, i.e., if ����� ,�����
is a solution with initial conditions ��0 , �̇0 ,�0 , �̇0�, then
���−�� ,��−��� is a solution with initial conditions ��0 ,

−�̇0 ,�0 ,−�̇0�. Another symmetry is on phase flipping, i.e., if
����� ,����� is a solution with initial conditions

��0 , �̇0 ,�0 , �̇0�, then ����� ,−����� is a solution with initial

conditions ��0 , �̇0 ,−�0 ,−�̇0�. Physically, this latter symmetry
corresponds to the interchange of the left and right solitary
waves in the PDE evolutions, which of course does not
change the interaction outcome. Equation �4.42� also has the
property that if ���� is a solution, so is ����+2n� for any
integer of n. This reflects the fact that in the PDE system,
solution evolution remains the same if the phase difference
between the solitary waves changes by a multiple of 2�.
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The dynamical equations �4.42� are asymptotically accu-
rate in describing weak interactions in the PDE system �to
the leading order� when the spacing �� is large. Surprisingly,
even when the two solitary waves come close to each other,
Eq. �4.42� can still describe the interaction process very well.
This is analogous to weak interactions in the �integrable�
NLS equation �2,9�. Below, we make detailed comparisons
between the ODE solutions of Eq. �4.42� and the PDE solu-
tions in Sec. III A for the cubic-quintic nonlinearity. Insert-
ing the parameter values 	=1, 
=0.04, and �0=1 of PDE
simulations into Eqs. �2.9� and �2.10�, we get P=3.747 20,
P�=1.648 35, and c=2.694 95, thus f =31.010 80, g
=35.248 45, and �=0.136 65. Corresponding to the initial
conditions for PDE simulations in Sec. III A, the initial con-
ditions for the ODE system �4.42� with nonequal and equal
initial amplitudes are

�0 = − 10, �̇0 = 0, �̇0 = − 0.011 67, �4.44�

and

�0 = − 10, �̇0 = 0, �̇0 = 0, �4.45�

respectively. In both cases, the initial phase difference �0 is
the control parameter as in PDE simulations. The ODE sys-
tem �4.42� is numerically solved by the fourth-order Runge-
Kutta method, with the time step set as 0.01. The simulation

results on the exit velocity −�̇� versus �0 graph are shown in
Fig. 6. Clearly, these graphs are very similar to Figs. 1 and 4
from PDE simulations. We have also investigated the de-
tailed structures of Fig. 6 in ways analogous to what we did
for Figs. 2 and 3. Specifically, we have examined the primary
hill sequence in Fig. 6�a� and zoomed into regions between
primary hills. The results are shown in Figs. 7 and 8, respec-
tively. Both figures closely resemble Figs. 2 and 3 from the
PDE simulations.

The agreement between the ODE model and the PDE
simulations is not only qualitative, but also quantitative. To
demonstrate, we compare the locations and lifetimes of pri-
mary hill sequences in Figs. 2 and 7. The comparison results
are summarized in Table I. Very good quantitative agreement
between them can be seen. In the ODE model, the lifetime is
also an almost perfect linear function of the hill index n in
the form �3.6�. When the time rescaling �4.41� is recovered,
the ODE model gives

���ODE = 0.085 70, ���ODE = 2.9655, �4.46�

closely resembling the corresponding values �3.7� from the
PDE simulations.

Above we have established that the reduced ODE system
�4.42� accurately describes weak interactions of the PDE sys-
tem. Since the ODE system �4.42� is universal for Eq. �2.1�
regardless of details of its nonlinearities, we see that the hill
sequences and fractal structures in Eq. �4.42� are universal
for weak interactions of solitary waves in the PDE system
�2.1�, as Figs. 1 and 4–6 clearly indicate.

Next we will turn our attention to the ODE system �4.42�
and analyze its solution dynamics in more detail. In particu-
lar, we would like to understand why fractal structures arise
in this system, and how to analytically predict their locations
and other main features.

V. SOLUTIONS OF THE INTEGRABLE DYNAMICAL
EQUATIONS AND THEIR SINGULARITY CONDITIONS

Equation �4.42� conserves energy �Eq. �4.43�� for all val-
ues of �. When �=0, it has another conserved quantity,

M = �̇�̇ − e� sin � , �5.1�

which can be called the momentum of this system. In this
particular case, system �4.42� is an integrable Hamiltonian
system and can be analytically solved. Let Y =�+ i�, Eq.
�4.42� becomes

Y�� = eY . �5.2�

The general solution of this equation is

FIG. 6. The exit velocity �−�̇�� versus the initial phase differ-
ence ��0� graphs from the ODE model �4.42�. Here the initial con-
ditions for �a� and �b� are chosen corresponding to the PDE simu-
lation results in Figs. 1 and 4, respectively �see text�.
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Y��� = ln�− 2C1
2 sech2�C1� + C2�� , �5.3�

where

C1 =
1

2
�Ẏ0

2 − 2eY0 =
1
�2

�E + iM �5.4�

and

C2 = − arctanh� Ẏ0

2C1
� . �5.5�

Here the branch of the square root function in Eq. �5.4� is
chosen such that Re�C1��0. It is noted that solutions Y
which differ by a multiple of 2�i correspond to the same
physical solution, thus it does not matter which Riemann
surface one takes for the logarithmic function in Eq. �5.3�. If

C1=0, i.e., Ẏ0= ±�2eY0/2, the solution �5.3� degenerates to
the form

Y��� = − 2 ln�e−1/2Y0 �
1
�2

�� . �5.6�

The asymptotic behaviors of these solutions as �→� can be
easily determined. Let

C1 = a + bi,
C2

C1
= c + di , �5.7�

where a, b, c, and d are real constants, then the following
leading-order asymptotic expressions for the solution can be
obtained when �→�:

�1� a � 0: Y��� → − 2�a�� − sgn�a�2b�i; �5.8�

�2� a = 0, b � 0:

�2a� d = 0:

Y��� = ln 2b2 − ln cos2 b�� + c�; �5.9�

�2b� d � 0:

Y��� = ln 4b2 − ln�cosh 2bd + cos 2b�� + c��

+ 2i arctan�tanh�bd�tan b�� + c��; �5.10�

�3� a = 0, b = 0: Y��� → − 2 ln���� . �5.11�

From these asymptotic expressions, we see that when a�0,
the two solitary waves eventually move away from each
other with exit velocity 2�a�; when a=0 but b�0, the solu-
tion is time-periodic for both d=0 and d�0, the difference
being that in the former case, the periodic solution exhibits
finite-time singularities �where �=Re�Y�→��, while in the
latter case, the solution has no singularities; when a=b=0,
the two solitary waves eventually separate logarithmically,
and the exit velocity is zero. As an example, we take the
initial conditions �4.44�. In this case, the graph of exit veloc-

ity −�̇��=2�a�� versus �0 is plotted in Fig. 9 �bottom panel�.
This graph is smooth everywhere, except at �0=0 , ±� where
it has a cusp �due to the absolute-value function in �a��. The
squares and diamonds on this graph will be explained later.
Clearly, this graph has no fractal structure anywhere. Thus
fractal dependence is a signature of the dynamical system
�4.42� when it is nonintegrable �with ��0�, not when it is
integrable �with �=0�.

The above asymptotic states do not tell the full story
about the solution dynamics in the integrable system. For
instance, for the case of a�0, even though the solution has a
benign-looking asymptotics �5.8� as �→�, the solution can
still develop a singularity �where the separation �→�� at a
finite time. These solutions with finite-time singularities turn
out to be critical for the appearance of fractal structures in
the nonintegrable system, as our numerics in the next section
will indicate. Thus we analyze these singularity solutions in
more detail below. The necessary and sufficient conditions
for singularities in solution �5.3� are that

FIG. 7. �a� The exit velocity versus initial phase difference
graph of Fig. 6�a� replotted near the accumulation point of the pri-
mary hill sequence; �b� the lifetime versus initial phase difference
graph; �1�–�3� separation �−�� versus time ��� diagrams at three
values of �0 marked by circles in �a�: �1� 0.187; �2� 0.0056; and �3�
−0.0939. All these graphs are obtained from the ODE model �4.42�
and they should be compared to the corresponding PDE graphs in
Fig. 2.
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cosh�C1�̃ + C2� = 0, �5.12�

and �̃�0, where �̃ is the time of singularity. If �̃�0, i.e.,
singularities in the solution occur at a negative time, such
singularities are irrelevant for the time evolution of Eq.
�4.42� and need not be considered. The solutions of Eq.
�5.12� are

C1�̃ + C2 =
1

2
�2n + 1��i, n = 0, ± 1, ± 2, . . . .

�5.13�

This is a complex-valued relation, which gives two real re-
lations on �̃, C1, and C2. When a�0, i.e., C1 is not purely
imaginary, we find by separating the real and imaginary parts
of Eq. �5.13� that the solution �5.3� has a single finite-time

singularity of the type ln��− �̃� if the following conditions are
satisfied:

S 

Im�C1

*C2�
Re�C1�

=
1

2
�2n + 1��, n = 0, ± 1, ± 2, . . . ,

�5.14�

FIG. 8. Top: the exit velocity versus initial phase difference graph of Fig. 6�a� and its two zoomed-in structures. Bottom: separation
versus time diagrams at three values of �0 marked by circles in the top panel: �1� 1.532; �2� 0.950 71; and �3� 0.966 03. These graphs from
the ODE model should be compared to the corresponding PDE graphs in Fig. 3.

TABLE I. Comparison of locations and lifetimes of primary
hills in Figs. 2�a� and 7�a� from the PDE and ODE simulations.

Location �PDE� Location �ODE� Life �PDE� Life �ODE�

n ��0,n �0,n tn
�f�n

1 1.7735 1.7794 65 68

2 0.6985 0.7015 117 119

3 0.2430 0.2468 183 185

4 0.0280 0.0359 253 255

5 −0.0850 −0.0763 325 327

6 −0.1530 −0.1431 398 400

7 −0.1963 −0.1863 470 473

8 −0.2258 −0.2157 544 547

9 −0.2475 −0.2367 617 620

10 −0.2630 −0.2523 691 693

� −0.3392 −0.3280 � �

FIG. 9. Top: graph of the function S��0� defined in Eq. �5.14�
for the initial conditions �4.44�. Intersections of the graph with hori-
zontal lines are singularity points. Bottom: exit velocity versus �0

graph in the integrable system �4.42�. Both squares and diamonds
are singularity points.
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�̃ = −
Re�C2�
Re�C1�

� 0. �5.15�

Here Re�·� and Im�·� represent the real and imaginary parts
of a complex number. When a=0�b�0�, singularity solu-
tions exist if d=0. These solutions have an infinite number of
finite-time singularities of the type ln��− �̃�, as the formula
�5.9� indicates. Physically, at the time of singularity �̃, the
two solitary waves strongly collide, thus �̃ is the collision
time. Whether conditions �5.14� and �5.15� can be satisfied
depends on the initial conditions �which determine the C1
and C2 values, see Eqs. �5.4� and �5.5��. In the text below, we

will call initial conditions ��0 , �̇0 ,�0 , �̇0� which satisfy Eqs.
�5.14� and �5.15� as singularity points. At singularity points,
solutions of the integrable dynamical system �4.42� develop
finite-time singularities.

To demonstrate how to determine singularity points in the
initial-condition space, we take initial conditions �4.44� of
Fig. 6�a� as an example. Here �0 is a control parameter. With
these initial conditions, the graph of function S��0� is plotted
in Fig. 9 �top panel�. This graph has a maximum of 0.96. As
�0→0+ or �−, S��0�→−�. As we can see from this graph,
for any value of n�−1, Eq. �5.14� has two roots, �0,n

�1� and
�0,n

�2�. We have checked that these roots satisfy the other sin-
gularity condition �5.15�, thus these �0,n

�1� and �0,n
�2� values are

singularity points. It is noted that the graph of function S��0�
also has another piece in the interval ���0�2�, which is
the mirror image of that shown in Fig. 9 around the point
�0=�; but in that interval, �̃�0, not satisfying the second
singularity condition �5.15�, thus we did not plot that piece
of the graph in Fig. 9.

Next, we examine these singularity points �0,n
�1� and �0,n

�2� in
more detail. These points form two infinite sequences with
n=−1,−2, . . ., which accumulate at �0=0+ and �−, respec-
tively. In Fig. 9 �bottom panel�, these two sequences are
marked by squares and diamonds on the exit velocity versus
�0 graph. Calculating the asymptotics of C1 from Eq. �5.14�
and substituting it into Eq. �5.15�, we find that the collision
times �̃n of both sequences have the following asymptotic
expressions:

��̃n = 2�n�� + �, n → − � , �5.16�

where �=2 Im��C1��0=0� and 2 Im��C1��0=�� for the left and
right sequences, respectively. The asymptotic formulas for
the locations of these two singularity sequences ��0,n

�1�� and
��0,n

�2�� can also be calculated. We find from Eq. �5.14� that

�0,n
�1� →

A1

�2n + 1��
, n → − � �5.17�

and

� − �0,n
�2� →

A2

�2n + 1��
, n → − � , �5.18�

where

A1 = 8e−�0 Re�C2�Im2��C1���0=0

and

A2 = 8e−�0 Re�C2�Im2��C1���0=�.

The above detailed analysis on singularity points was per-
formed for the particular initial conditions �4.44� where the

two solitary waves are initially stationary ��̇0=0�. What will

happen if �̇0�0? To answer this question, we fix �0 and �̇0 as

in Eq. �4.44�, vary �̇0, and examine how singularity points

move in the ��0 , �̇0� plane. The results are shown in Fig. 10.
The top curve corresponds to n=−1, the next curve corre-
sponding to n=−2, and so on. All curves are bounded from
both above and below except the top one �with n=−1�. When
n→−�, these curves approach the accumulation curve plot-
ted by the dashed line in Fig. 10. Below this accumulation
curve, there are no singularity points. The analytical formula
for this accumulation curve can be easily derived. On this
accumulation curve, C1 must be pure imaginary, thus

M = �̇0c�̇0 − e�0 sin �0 = 0, �5.19�

E =
1

2
��̇0c

2 − �̇0
2� − e�0 cos �0 � 0. �5.20�

Here ��̇0c ,�0� is an accumulation point. From Eq. �5.19�, we
see that the function of the accumulation curve is

�̇0c =
e�0 sin �0

�̇0

. �5.21�

The maximum and minimum of this curve are

�̇0c,min = − �̇0c,max = − � e�0

�̇0
� . �5.22�

For the �0 and �̇0 values of Fig. 10, we get �̇0c,min

=−0.003 89. If �̇0��̇0c,min, there are no singularity solutions

for any value of �0. When �̇0c,min��̇0��̇0c,max, two infinite

FIG. 10. Singularity points satisfying conditions �5.14� and

�5.15� in the ��0 , �̇0� plane. The dashed curve is the accumulation

curve. Here �0=−10, �̇0=−0.011 67.
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sequences of singularity points can be found. When �̇0

��̇0c,max, however, the number of singularity points becomes

finite; this number gradually decreases �down to one� as �̇0
increases.

The above calculations of singularity points and their ac-
cumulation curves were made for special choices of initial

conditions �0=−10 and �̇0=−0.011 67 �see Fig. 10�. In view
of the importance of singularity points for fractal structures
which we will reveal in the next section, we would like to
discuss singularity points and their accumulation curves fur-
ther for general initial conditions below.

First, we examine the accumulation curve in the ��0 , �̇0�
plane for general initial conditions �0 and �̇0. In this general
case, the accumulation curve �if it exists� is necessarily given
by Eq. �5.21�. But the curve �5.21� �or portions of it� may not
satisfy condition �5.20�, and thus may not actually be the
accumulation curve. Below we determine what portions of
the curve �5.21� are the accumulation curve. Before we do
so, let us first point out that conditions �5.19� and �5.20� are
not only necessary, but also sufficient conditions for the ac-
cumulation curve. In addition, the accumulation of singular-
ity points toward the accumulation curve is always from the
upper side, not lower side. To show these, we only need to
prove that condition �5.15� holds only on the upper edge of
the curve �5.21�, but not the lower edge of it. On the upper
edge of curve �5.21�, C1 is purely imaginary, and sgn�M�
=sgn��̇0�. Thus sgn(Im�C1�)=sgn�M�=sgn��̇0�. Conse-

quently, Re�Ẏ0 /2C1��0. Notice that for any complex num-
ber z, Re�tanh�z�� and Re�z� have the same sign, hence
Re�C2��0. Then due to Re�C1��0, condition �5.15� thus
holds. By similar reasoning, we can show that on the lower
edge of the curve �5.21�, condition �5.15� does not hold.
Thus singularity points accumulate toward curve �5.21� only
from above, not below.

Now we turn to Eqs. �5.19� and �5.20�, and use them to
determine the accumulation curve for the general case. Sub-
stituting Eq. �5.21� into inequality �5.20� and simplifying,
this inequality becomes

−
1

�̇0
2
„�̇0

2 + e�0�1 + cos �0�…„�̇0
2 − e�0�1 − cos �0�… � 0,

�5.23�

which is equivalent to

cos �0 � 1 − e−�0�̇0
2. �5.24�

Thus the accumulation curve is the parts of curve �5.21�
where �0 satisfies the constraint �5.24�. If �̇0

2�2e�0, condi-
tion �5.24� is satisfied for all values of �0, hence the entire

curve �5.21� is the accumulation curve. If 0��̇0
2�2e�0, por-

tions of the curve �5.21� centered at �0=� do not satisfy
condition �5.24�, and thus do not belong to the accumulation
curve. The rest of the curve �5.21� does satisfy condition

�5.24�, and thus is the accumulation curve. If �̇0=0 �equal
initial �0� satisfies condition �5.24�, thus accumulation points
do not exist.

Next, we derive two general properties about singularity

points in the ��0 , �̇0� plane for general initial conditions �0

and �̇0. One property is that, if �̇0c is on the accumulation

curve, then for any �̇0��̇0c, singularity points cannot exist.

We will prove this by showing that �̃�0 for �̇0��̇0c. To

show �̃�0, we only need to show Re�Ẏ0 /2C1��0 �see
above�. Without loss of generality, we only show this for

�̇0�0; the proof for �̇0�0 is similar �in fact, as has been

pointed out before, flipping the sign of �̇0 physically
amounts to interchanging the positions of the left and right
solitary waves and thus does not affect the interaction out-

come�. For �̇0�0 and �̇0��̇0c, C1 is in the first quadrant �as

M �0�. If �̇0�0, then Ẏ0 is in the third quadrant, thus

Re�Ẏ0 /2C1��0 holds. Now we consider 0��̇0��̇0c. In this

case, Ẏ0 is in the fourth quadrant, hence iẎ0 lies in the first

quadrant �like C1�. To show Re�Ẏ0 /2C1��0, we only need

to show arg�iẎ0��arg�2C1�. Since both iẎ0 and C1 are in the

first quadrant, we only need to show arg�−Ẏ0
2��arg�4C1

2�.
Notice that

− Ẏ0
2 + 4C1

2 = − 2eY0, �5.25�

which is independent of �̇0. In addition, the angle of

−2eY0 falls in between those of −Ẏ0
2 and 4C1

2. Thus to

show arg�−Ẏ0
2��arg�4C1

2�, we only need to show arg�−Ẏ0
2�

�arg�−2eY0�. Note that

− Ẏ0
2 = �̇0

2 − �̇0
2 − 2i�̇0�̇0, �5.26�

whose angle is an increasing function of �̇0 when �̇0�0, thus

for �̇0��̇0c,

arg�− Ẏ0
2� � arg��̇0

2 − �̇0c
2 − 2i�̇0�̇0c� . �5.27�

Now recall that �̇0c lies on the accumulation curve, thus it
satisfies the conditions �5.19� and �5.20�. Substituting these
conditions into Eq. �5.27�, and recalling our assumptions of

�̇0�0 and 0��̇0��̇0c, we find that the right-hand side of

Eq. �5.27� is less than arg�−2eY0�, thus inequality arg�−Ẏ0
2�

�arg�−2eY0� is proved. Summarizing the above arguments,

we conclude that for any �̇0 below the accumulation curve,

singularity points do not exist in the ��0 , �̇0� plane.
Another general property about singularity points is that,

at sufficiently large values of �̇0, there is a unique singularity
point in the �0 interval. The proof is as follows. It is easy to

check that when �̇0
2+ �̇0

2�e�0 and ��̇0�� ��̇0�, functions S and
�̃ have the following leading-order asymptotic expressions:

�̃ →
1

�̇0

ln
2��̇0

2 + �̇0
2�

e�0
, �5.28�

UNIVERSAL FRACTAL STRUCTURES IN THE WEAK… PHYSICAL REVIEW E 75, 036605 �2007�

036605-13



S →
1

2
sgn��̇0��0 + SA, �5.29�

where

SA =
�̇0

2��̇0�
ln

2��̇0
2 + �̇0

2�
e�0

− arctan
�̇0

��̇0�
−

1

2
� , �5.30�

and the relative errors are O(e�0 / ��̇0
2+ �̇0

2�). From Eq. �5.29�,
we see that the rise of the S value over the interval 0��0
�2� is �, which guarantees that Eq. �5.14� has a single
solution in the �0 interval for a single value of n. From Eq.

�5.28�, we see that when �̇0�0 is sufficiently large, �̃�0
over the entire �0 interval. Thus singularity conditions �5.14�
and �5.15� admit a unique singularity point. We note in pass-

ing that when �̇0 is sufficiently large negative, �̃�0 over the
entire �0 interval, thus there cannot be any singularity points.
This is consistent with the previous general property proved
above.

To summarize the above results on singularity points and
accumulation points and slightly extend them, we present the
following classifications on singularity solutions in the inte-
grable system �4.42�.

�1� �̇0=0 �equal initial amplitudes�.

�a� If �̇0�−�2e�0/2, a singularity solution exists at the

single singularity point �0=0. Here M =0, and E�0 for �̇0
��2e�0/2 and E�0 otherwise.

�b� If �̇0�−�2e�0/2, there are no singularity solutions
for any �0.

�2� �̇0�0, �̇0=0 �nonequal initial amplitudes, zero initial
velocities�.

�a� If �̇0
2�2e�0, singularity solutions exist at two infi-

nite sequences of �0 values, accumulating at �0= �0+,�−�, or

��+ ,2�−�, for �̇0�0 and �̇0�0, respectively.

�b� If 0��̇0
2�2e�0, singularity solutions exist at one

infinite sequence of �0 values, accumulating at �0=0+ or

2�− for �̇0�0 and �̇0�0, respectively.

On these sequences of singularity points, M �0 and E�0
generically �at the accumulation points, M =0, and E�0�.

�3� �̇0�0 �the general nonequal initial amplitude case�.
In this case, the accumulation curve is the parts of curve

�5.21� where �0 satisfies the constraint �5.24�. When �̇0
2

�2e�0, the entire curve �5.21� is the accumulation curve.

When 0��̇0
2�2e�0, the accumulation curve is curve �5.21�

except portions of it which are centered at �0=�. For �̇0
below the accumulation curve, there are no singularity

points; at sufficiently large �̇0 values, there is a single singu-
larity point. At all these singularity values, E and M are
nonzero generically �except the accumulation points where
M =0�.

It is noted that in the above classifications, case �2� is just
a special case of case �3�, and can be readily deduced from
case �3�. Case �1� can be deduced from case �3� as well under

the limit �̇0→0. But cases �1� and �2� are important special
cases, hence we listed them out separately.

VI. ORIGINS OF FRACTAL STRUCTURES IN THE
NONINTEGRABLE DYNAMICAL EQUATIONS

We have known from Figs. 6–8 that the nonintegrable
ODE system �4.42� exhibits hill sequences and fractal struc-
tures which coincide with those in the PDE simulations, but
such structures do not exist when this ODE system becomes
integrable. The natural question then is, where do the fractal
structures in the nonintegrable system �4.42� come from? In
this section, we will establish through careful numerics that
these fractal structures bifurcate from singularity points of
the integrable system.

To determine the origin of these fractals, we take the same
initial conditions �4.44� as in Fig. 6�a�, but gradually de-
crease the value of � from 0.136 65 of Fig. 6�a� down to zero
�the integrable case�, then down further to negative values. In
this process, we closely monitor how the fractal structure of
Fig. 6�a� changes as � decreases. The result is shown in Fig.

11. Here, the −�̇� versus �0 graphs are plotted at six decreas-
ing � values: �=0.136 65, 0.036, 0.0036, 0, −0.0036, and

FIG. 11. The exit velocity versus initial phase difference graphs
in the ODE model �4.42� at various values of �: �1� 0.136 65; �2�
0.036; �3� 0.0036; �4� 0; �5� −0.0036; and �6� −0.036. The initial
conditions are given in Eq. �4.44�. The squares and diamonds in �4�
are singularity points of the integrable system �see Fig. 9, bottom�.
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−0.036. We see that as � decreases from 0.136 65 but above
zero, primary hill sequences and the fractal regions between
them persist and are clearly visible in Figs. 11�1–3�. Indeed,
we have zoomed into the sensitive regions between primary
hills in each of Figs. 11�1–3�, and obtained higher order
structures which look very similar to those shown in Fig. 8.
As �→0+, our key observation is that the peaks of individual
primary hills as well as the nearby fractal regions collapse to

sequences of points on the smooth −�̇� curve of the inte-
grable system �see Figs. 11�3 and 4��. Closer examination
tells us that these sequences of points in Fig. 11�4� are noth-
ing but the two sequences of singularity points of the inte-
grable system which we plotted in Fig. 9. In other words, hill
sequences and fractal structures in the nonintegrable system
bifurcate from the singularity points of the integrable system.
However, this bifurcation is one-sided: as � decreases below
zero, no fractal regions appear, see Fig. 11�5�. A finite num-
ber of primary hills, reminiscent of primary hill sequences
for positive � values, do exist; but the whole graph is
smooth, and it has no fractal structures inside �even the
spike-looking parts of the graph in Fig. 11�5� turn out to be
smooth upon closer examination. Furthermore, as � de-
creases further below zero, the number of primary hills keeps
decreasing, and the graph becomes more smooth, see Fig.
11�6�. Thus fractal structures are a signature of the noninte-
grable system �4.42� only for positive values of �, not nega-
tive values of �.

To further substantiate our claim on fractal structures of
the nonintegrable system bifurcating from singularity points
of the integrable system, we tune initial conditions so that
singularity points in the integrable system gradually disap-
pear in the �0 interval, and check if fractal structures in the
nonintegrable system disappear as well �for small ��. Spe-

cifically, we fix the �0 and �̇0 values in Eq. �4.44� and tune

the �̇0 value, as we did in Fig. 10. The � value in Eq. �4.42�
is taken as �=0.0036, which is very small. Thus the nonin-
tegrable system is weakly perturbed from the integrable one.
For the above initial conditions, singularity points of the in-

tegrable system have been displayed in Fig. 10 in the ��0 , �̇0�
plane. We gradually decrease the �̇0 value. For each �̇0, we
numerically compute the exit velocity versus �0 graph in the
perturbed �nonintegrable� system �4.42�, and compare how
this graph relates to singularity points of the integrable sys-

tem in Fig. 10. To illustrate, we pick seven representative �̇0
values, which are 0.007 07, 0.005 48, 0.004 95, 0.003 50, 0,
−0.003 50, and −0.004 24 in decreasing order. These seven

�̇0 values are marked by horizontal dashed lines in Fig. 10.

As we can see from that figure, at these seven �̇0 values, the
numbers of singularity points in the �0 interval are 1, 3, 5, �,

�, �, and 0, respectively. For each of these seven �̇0 values,
the corresponding exit velocity versus �0 graph in the per-
turbed system �4.42� is shown in Fig. 12. We notice from this
figure that the numbers of primary hills and fractal regions

near these hills at these �̇0 values are equal to 1, 3, 5, �, �,
�, and 0, respectively—exactly like singularity points in the
integrable system. In particular, when singularity points in
the integrable system disappear, so do primary hills and frac-

tal structures in the weakly perturbed nonintegrable system.
Furthermore, the locations of primary hills and fractal re-
gions closely follow those of singularity points of the inte-
grable system. Thus the connections between them are un-
mistakable. Figure 12, together with Fig. 11, establishes
beyond doubt that primary hills and fractal structures in the
nonintegrable system �4.42� indeed bifurcate from singular-
ity points of the integrable system.

The bifurcation of fractal structures from singularity
points of the integrable system indicates that near such
points, the solutions of the perturbed system �4.42� are very
sensitive to initial conditions. To shed light on why this sen-
sitivity occurs, we present some numerical results below.
First, we look at the integrable system �with �=0�. Taking
the initial conditions as Eq. �4.44�, evolutions of � versus �
at the singularity point �0=0.983 25 �marked in Fig. 9, bot-
tom panel� and its left and right near neighbors �0=0.92 and
1.05 are plotted in Fig. 13�a� using the solution formula
�5.3�. An interesting feature about these evolutions is that for
initial �0 values at the two sides of the singularity point, the
phase functions ���� have drastically different trajectories as
they go through the time ��700 where the two solitary
waves interact strongly �this time is the singularity time of
the singular solution at �0=0.983 25�. For �0 below the sin-

FIG. 12. The exit velocity versus initial phase difference graphs

in the ODE model �4.42� at various values of �̇0: �1� 0.007 07; �2�
0.005 48; �3� 0.004 95; �4� 0.003 50; �5� 0; �6� −0.003 50; and �7�
−0.004 24. Here �0=−10, �̇0=−0.011 67, and �=0.0036.
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gularity point, the phase sharply �but continuously� decreases
by 2�, while for �0 above the singularity point, the phase

sharply �but continuously� increases by 2�. Recall that �̇
��� and it determines the relative energy �amplitude� dis-
tributions among the two solitary waves �see Eqs. �4.37�,
�4.40�, and �4.41��, we know that on the two sides of the
singularity point, the energies have opposite distributions
among the two solitary waves during their strong interac-
tions. However, after the interaction is completed, the
asymptotic slopes of the three ���� trajectories in Fig. 13�a�
are almost the same, signaling that the interaction outcome is
actually insensitive to the �0 values �the roughly 2� differ-
ence between these phase trajectories does not affect the
physical solutions�. This is why outcomes of weak interac-
tions in the integrable system �4.42� do not exhibit sensitive
dependence on initial conditions �see Fig. 9, bottom panel�.
However, when system �4.42� is positively perturbed, the
results are completely different. To demonstrate, we take �
=0.0036 now, while the initial conditions �4.44� remain the
same. In this slightly perturbed system, the solution develops

finite-time singularity at the singularity point �0=0.9695,
which is the counterpart of the singularity point mentioned
above in the integrable system. The phase function at this
singularity point is plotted in Fig. 13�b� �solid line�. �It is
noted that in this perturbed case, we do not have exact solu-
tion formulas, hence this solution was obtained by numeri-
cally integrating Eq. �4.42�. Due to the finite-time singularity
in the solution, our numerical integration cannot go beyond
the singularity time ��700. The solution beyond the singu-
larity time, shown in Fig. 13�b� as dotted lines, was inferred
from our numerics at nearby �0 values.� On the two sides of
the singularity point, we select two nearby values �0=0.92
and 1.01. The phase trajectories at these �0 values are also
plotted in Fig. 13�b�. We see that as these trajectories go
through the time ��700, one sharply decreases by 2�, while
the other sharply increases by 2�, similar to what happens in
the integrable case �see Fig. 13�a��. However, after these
sharp decreases/increases, the trajectories turn around and
start to move in the opposite direction. Eventually, these tra-
jectories approach drastically different asymptotic slopes
�one positive and the other one negative in fact�, indicating
that the interaction outcomes are very different for these
slight changes in the �0 values. This is the phenomenon of
sensitive dependence on initial conditions which occurs in
the perturbed system �4.42� �with ��0�, but not the inte-
grable system �with �=0�.

It is also enlightening to look at this sensitive dependence
on initial conditions from the viewpoint of PDE evolutions.
To illustrate, we take the cubic-quintic nonlinearity �2.7� in
Eq. �2.1�, and take 	=1, �0=1. Then for the � values and
initial conditions used in the ODE simulations of Fig. 13,
and in view of the variable rescalings �4.40� and �4.41�, the
corresponding PDE parameters for Fig. 13�a� �the integrable
case� are 
=0, ��0=−0.066 016, �V0=0, and �x0=10, and
the corresponding PDE parameters for Fig. 13�b� �the per-
turbed case� are 
=0.0010, ��0=−0.066, �V0=0, and �x0
=10. For these PDE parameters, the PDE evolution results
�in the form of contour plots� at three ��0 values corre-
sponding to those in the ODE simulations of Fig. 13 are
displayed in Fig. 14. In the integrable �NLS� case �top row of
Fig. 14�, we take the three ��0 values exactly the same as
those in Fig. 13�a�, i.e., ��0=0.92 0.983 25, and 1.05. In this
case, at the lower ��0 value, the left solitary wave retains its
higher energy at the collision time; at the singularity point of
��0, the two waves completely coalesce at the collision
time, signaling the singularity formation in the ODE system;
at the higher ��0 value, the right solitary wave gets higher
energy at the collision time. However, after interaction, the
two waves always separate, and the right wave always gets
higher energy, in all three cases. Recall that before interac-
tion, the left wave has higher energy, thus we can call these
interaction outcomes transmission. In these interactions,
even though the intermediate process �especially the colli-
sion segment� rather strongly depends on the initial phase
difference ��0, the interaction outcome is insensitive to it.
These PDE evolution results completely resemble the ODE
simulations in Fig. 13�a�. In the perturbed �nonintegrable�
case, the PDE simulation results are quite different from the
integrable ones �as in the ODE simulations�. In the perturbed
case, we take the three ��0 values to be 0.92, 0.972, and

FIG. 13. Evolutions of � versus � at a singularity point �0 and
its left and right neighbor points in the dynamical system �4.42�
with initial condition �4.44�. �a� �=0 �the integrable case�; here
�0=0.983 25 is the singularity point which is marked in Fig. 9
�bottom panel�; the left and right neighbor points are taken as �0

=0.92 and 1.05. �b� �=0.0036 �the positively perturbed case�; here
�0=0.9695 is the singularity point; its left and right neighbor points
are taken as �0=0.92 and 1.01.
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1.01. Notice that the first and third of these ��0 values are
exactly the same as those in the ODE simulations of Fig.
13�b�, while the middle ��0 value of 0.972 is slightly dif-
ferent from the corresponding ODE value of 0.9695. This
slight difference in the middle ��0 value is necessary in
order for the corresponding ODE and PDE simulations to
exhibit the same behaviors, and this difference is due to the
modeling error of the PDE evolutions by the ODE system
�4.42�. At ��0=0.92 �see Fig. 13�1��, the interaction out-
come is similar to the integrable ones �top row of Fig. 13� in
that it is also transmission; but at ��0=0.972 �Fig. 13�2��,
the two waves strongly coalesce, then form an oscillating
bound state. At ��0=1.01, on the other hand, the two exiting
waves have opposite energy distributions from Fig. 13�1�;
this interaction outcome can be called reflection. Thus, in the
perturbed case, the interaction outcome is sensitive to initial
conditions, which distinctively contrasts the integrable case.
Again, these PDE evolution results for the perturbed case
completely resemble the ODE simulations in Fig. 13�b�.

The above ODE and PDE simulations corroborate the fact
that the source of this sensitive dependence on initial condi-
tions in the perturbed system lies in the finite-time singulari-
ties of solutions in the integrable dynamical system �4.42�.
From the PDE point of view, the origin of this sensitive
dependence can be traced to the coalescing of the two soli-
tary waves in the integrable PDE system. At the moment, our
understanding on this sensitive dependence and fractal struc-
tures in the perturbed system is still very limited. For in-
stance, we cannot yet explain any quantitative details inside
these fractal structures, nor can we explain why this sensitive

dependence occurs only for one-sided perturbations of the
integrable system �with ��0�. These are nontrivial questions
which merit further analysis, but they are beyond the scope
of the present paper.

The fact of primary hills and fractal structures in the non-
integrable system �4.42� bifurcating from singularity points
of the integrable system has far reaching consequences. One
important consequence is that the main features of primary
hill sequences shown in Figs. 2�a� and 7�a� for PDEs and
ODEs can now be analytically explained. For instance, the
lifetime formula �3.6� for primary hill sequences in the
weakly perturbed system �4.42� is nothing but the analogous
collision-time �singularity time� formula �5.16� for sequences
of singularity points in the integrable system. To make a
quantitative comparison between these formulas, we take the
initial condition �4.44� which was used in the PDE and ODE
simulations of Figs. 2�a� and 7�a�. When the time rescaling
�4.41� is recovered, the collision-time formula �5.16� of the
integrable system becomes

0.0839t̃n = 2n� + � , �6.1�

which compares very favorably with the lifetime formulas
�3.6�, �3.7�, and �4.46� in direct PDE and ODE simulations.
The small differences in the � and � values between the
analytical formula �5.16� and the PDE/ODE ones �3.6� are
caused by the not-so-small value of �=0.136 65. As �→0,
these quantitative differences will vanish. Regarding the lo-
cations of individual hills in the primary-hill sequence, they

FIG. 14. �Color online� Evolu-
tions of �U�x , t�� in the PDE �2.1�
with cubic-quintic nonlinearity
�2.7�, corresponding to the ODE
simulations of Fig. 13. Top row:
the integrable �NLS� equation �

=0�; �a� ��0=0.92, �b� ��0

=0.983 25, and �c� ��0=1.05.
Bottom row: the perturbed case
�with 
=0.0010�; �1� ��0=0.92;
�2� ��0=0.972; and �3� ��0

=1.01. The values of other initial
parameters are given in the text.
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are described by the formula �5.17� for singularity-point lo-
cations of the integrable system when �1. Note that the
form of this formula is different from all previous ones on
window sequences in solitary-wave collisions
�15,16,20,25,29�.

For ��0, each primary hill is paired with a sensitive
�fractal� region at its foot �see Figs. 11 and 12�. Similar to
primary hill sequences, the locations of these fractal regions
are described by the same formula �5.17� in the limit �
→0+.

The fact of primary hills and fractal structures bifurcating
from singularity points of the integrable system also explains
major features of interaction results in Fig. 5�a� for the ex-
ponential nonlinearity �3.8�. We have noticed that, unlike
Fig. 1, this graph has only one infinite sequence of primary
hills accumulating toward the left �the right sequence of Fig.
1 is absent�. This phenomenon is due to the fact that for the
choices of initial conditions for Fig. 5�a�, there is only one
infinite sequence of singularity points in the integrable sys-
tem. To see it, we first calculate the f , g, and � values for Fig.
5�a�, which are found to be

f = 228.8211, g = 231.917 70, � = 0.013 53. �6.2�

Thus in the scaled dynamical equation �4.42�, the initial con-
ditions corresponding to those for Fig. 5�a� are

�0 = − 12.132 60, �̇0 = 0, �̇0 = − 0.002 97. �6.3�

Notice that �̇0
2�2e�0, thus according to the classifications of

singularity points in the end of the previous section �case 2�,
the integrable equation �4.42� with the above initial condi-
tions has only one sequence of singularity points in the �0
interval, accumulating to the left toward �0=0+. This is in
perfect agreement with the primary-hill sequence of Fig. 5�a�
from direct PDE simulations.

In many of the interaction results presented in this paper,
the exit velocity versus �0 graphs have infinite sequences of
primary hills �see Figs. 1 and 5, for instance�; when zooming
into the sensitive regions between primary hills, one gets
infinite sequences of secondary hills. It is important to un-
derstand that these two infinite sequences are pure coinci-
dence, and are totally unrelated. Each primary hill corre-
sponds to a particular singularity point of the integrable
system, thus the number of primary hills is equal to the num-
ber of singularity points in the integrable system. This num-
ber can be either infinite or finite, depending on the choices
of initial conditions. For instance, Figs. 12�1–3� have 1, 3,
and 5 primary hills, corresponding to the same numbers of
singularity points on the top three dashed lines of Fig. 10. On
the other hand, at the foot of each primary hill, there is al-
ways an infinite sequence of secondary hills �when ��0�. In
other words, secondary hills always exist as an infinite, not
finite, sequence. For example, if one zooms into each of the
three sensitive regions at the foot of the three primary hills in
Fig. 12�2�, one always gets an infinite sequence of secondary
hills. Thus secondary-hill structures are unrelated to primary-
hill structures. If we zoom into the sensitive regions between
secondary hills, we always get infinite sequences of tertiary
hills which are very similar to the sequences of secondary

hills both qualitatively and quantitatively �see Figs. 3�b� and
3�c��. This process can continue indefinitely. Thus our con-
clusion is that sensitive regions between primary hills are
fractal structures �in the sense that portions of these struc-
tures, when amplified, are the same as the structures them-
selves�; but the whole graph with primary hills is not a frac-
tal.

VII. APPLICATIONS TO THE GENERALIZED NLS
EQUATIONS WITH VARIOUS NONLINEARITIES

In previous sections, we have shown that for the cubic-
quintic and exponential nonlinearities at selected parameters
�	=1, 
=0.04, �0=1 for the former, and �0=2.3 for the
latter�, weak interactions of solitary waves exhibit hill se-
quences and fractal structures for a wide range of initial con-
ditions, and the reduced ODE model �4.42� accurately cap-
tures these interaction dynamics both qualitatively and
quantitatively. In this section, we consider a larger question:
for a given form of nonlinearity in the PDE �2.1�, can it
exhibit fractal structures? For example, with the cubic-
quintic nonlinearity �2.7�, for what parameters 	 and 
 can
one possibly find fractal structures? This question can be
answered by applying our previous results on the ODE
model �4.42�. For demonstration purposes, we will do so for
three forms of nonlinearity: cubic-quintic, exponential, and
saturable nonlinearities.

From the analysis of the ODE system �4.42� in the previ-
ous section, we have found that fractal structures in weak
interactions can only occur for ��0, not for ��0. Thus
once we have obtained the functional dependence of � on
system parameters, it will quickly become clear when fractal
structures can arise. The analytical expression for � is given
in Eq. �4.41�. Notice that due to the Vakhitov-Kolokolov
stability criterion �6,33�, the solitary wave is linearly stable
only when P��0, i.e., ��−1. Below, we will use the �
formula in Eq. �4.41� to calculate � for general system pa-
rameters in the three nonlinearities mentioned above.

First we consider the cubic-quintic nonlinearity �2.7�.
When 	�0, we found that P� is always negative, i.e., the
solitary wave is always linearly unstable. Thus we only con-
sider the 	�0 case below. In this case, it is easy to see from
Eqs. �2.3� and �2.7� that by a rescaling of variables, we can
make 	=�0=1. Thus the only remaining parameter for this
nonlinearity is 
. Using the analytical formula �2.9� for P,
we can obtain the dependence of � on 
, which is plotted in
Fig. 15�1�. From this graph, we see that ��0 when 
�0,
and ��0 when 
�0. Thus fractal structures in this cubic-
quintic model can appear only when 
�0, not when 
�0.
If 
=0, this cubic-quintic model reduces to the integrable
NLS equation, and the dynamical equations �4.42� reduce to
the integrable case �with �=0� studied in Sec. V. In this
integrable case, there is of course no fractal dependence in
solitary wave interactions.

Next, we consider the exponential nonlinearity �3.8�. In
this case, the solitary wave depends only on the propagation
constant �, thus � depends only on � as well. The analytical
expression for function ���� is not available, but this func-
tion can be easily determined by numerical methods, and its
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graph is plotted in Fig. 15�b�. It is seen that this graph has

two critical propagation constants, �̄a=2.2457 where �=0,

and �̄b=14.0051 where �= +�. When ���̄a, ��0, thus

fractal structures do not exist; when �̄a����̄b, thus fractal

structures can appear �see previous sections�; when ���̄b,
��−1, thus the solitary wave is linearly unstable.

Next, we consider the saturable nonlinearity,

F��U�2� = 1 −
1

1 + �U�2
, �7.1�

which is common in optics �for instance, in photorefractive
crystals �38��. Here one is added in the above formula to
make F�0�=0 �this does not affect the solitary waves and
their interaction dynamics�. In this case, � also depends only
on the propagation constant �. This dependence is computed
numerically and plotted in Fig. 15�c�. We find that � is nega-
tive for all values of �, thus fractal structures cannot exist in
weak interactions of solitary waves for this saturable nonlin-
earity. This conclusion is consistent with our earlier results
for the cubic-quintic nonlinearity, as the saturable nonlinear-
ity �7.1� resembles the cubic-quintic nonlinearity �2.7� with
	�0 and 
�0. It is noted, however, that for the saturable
nonlinearity, weak interactions of solitary waves can still ex-
hibit some interesting structures as shown in Figs. 11�5, 6�,
but these structures are not fractal structures.

From the above three examples �as well as the previous
section�, we see that the reduced ODE model �4.42� enables
us to accurately predict when and where fractal structures
and hill sequences appear in the space of initial parameters of
solitary waves. Based on this reduced model, a global and
universal understanding on weak interactions of solitary
waves has been achieved for the generalized NLS equations
�2.1� with arbitrary forms of nonlinearity.

VIII. CONCLUSION AND DISCUSSION

In this paper, we have analyzed weak interactions of soli-
tary waves in the generalized nonlinear Schrödinger equa-
tions with general forms of nonlinearity. We have shown that
these interactions exhibit similar fractal dependence on ini-
tial conditions for different nonlinearities. To analytically ex-
plain these universal fractal structures, we derived a set of
fourth-order dynamical equations for the solitary-wave pa-
rameters using asymptotic methods. A remarkable feature of
these dynamical equations is that they contain only one pa-
rameter, which is dependent on the specific form of nonlin-
earity. When this parameter is zero, these dynamical equa-
tions are integrable, and the exact analytical solutions are
derived. When this parameter is nonzero, the dynamical
equations exhibit fractal structures which match those in the
original PDEs both qualitatively and quantitatively. We have
also investigated the origin of these fractal structures and
found that they bifurcate from the singularity points �i.e.,
initial conditions for singularity solutions� in the integrable
system. Based on this observation, an analytical criterion for
the existence and locations of fractal structures is obtained.
Lastly, we applied these analytical results to the generalized
nonlinear Schrödinger equations with various nonlinearities

such as the cubic-quintic, exponential and saturable nonlin-
earities, and predictions on their weak interactions of solitary
waves are presented.

Regarding the bifurcation of fractal structures from the
integrable dynamical equations, even though we have estab-
lished that this bifurcation occurs at the singularity points of
the integrable system, more challenging questions are to
comprehensively analyze how this bifurcation takes place,

FIG. 15. Graphs of � versus system parameters for three differ-
ent nonlinearities: �1� � versus 
 for the cubic-quintic nonlinearity
�2.7�; �2� � versus � for the exponential nonlinearity �3.8�; and �3�
� versus � for the saturable nonlinearity �7.1�.
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and to quantitatively predict the detailed geometric structures
inside these fractals. This has not been done yet. Recently,
Goodman and Haberman analyzed the approximate ODE
models for the collisions of solitary waves in three physical
systems where window sequences and fractal structures have
been reported �28–30�. They found that the origin of window
sequences and fractal structures in these systems lies in the
crossing of the separatrix �homoclinic orbit�. Analytical pre-
dictions on the locations of window sequences in the ODE
models were derived as well. It is not clear at the moment

whether similar analysis can be performed for our system
�4.42�. This question is beyond the scope of the present pa-
per, and will be left for future studies.
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