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a b s t r a c t

We show that universal rogue wave patterns exist in integrable systems. These rogue patterns
comprise fundamental rogue waves arranged in shapes such as a triangle, pentagon and heptagon,
with a possible lower-order rogue wave at the center. These patterns appear when one of the
internal parameters in bilinear expressions of rogue waves gets large. Analytically, these patterns are
determined by the root structures of the Yablonskii–Vorob’ev polynomial hierarchy through a linear
transformation. Thus, the induced rogue patterns in the space–time plane are simply the root structures
of Yablonskii–Vorob’ev hierarchy polynomials under actions such as dilation, rotation, stretch, shear
and translation. Which level of the Yablonskii–Vorob’ev hierarchy is determined by which internal
parameter is chosen to be large, and which polynomial at that level of the hierarchy is determined
by the order of the underlying rogue wave. As examples, these universal rogue patterns are explicitly
determined and graphically illustrated for the generalized derivative nonlinear Schrödinger equations,
the Boussinesq equation, and the Manakov system. Similarities and differences between these rogue
patterns and those reported earlier in the nonlinear Schrödinger equation are discussed.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Rogue waves were first studied in oceanography, where they referred to large spontaneous and localized water wave excitations
hat are a threat even to big ships [1,2]. Later, their counterparts in optics were also reported [3,4]. Due to their physical importance,
ogue waves have received intensive theoretical and experimental studies in the past decade. One physical mechanism for rogue wave
eneration is modulation instability of nonlinear periodic wave trains — also called Benjamin–Feir instability in water waves [5]. Under
his mechanism, the first rogue wave solution was derived by Peregrine for the nonlinear Schrödinger (NLS) equation [6], which governs
ave envelope propagation in the ocean and optical systems [7]. In this NLS equation for wave envelopes, the modulation instability
f periodic wave trains reduces to the instability of a uniform (envelope) background. Peregrine’s solution was later generalized to
igher orders which could reach higher peak amplitudes [8–12]. Since modulation instability also arises in many other integrable
hysical systems, rogue waves have also been derived for such systems, such as the derivative NLS equations for circularly polarized
onlinear Alfvén waves in plasmas and short-pulse propagation in a frequency-doubling crystal [13–21], the Manakov equations for
ight transmission in randomly birefringent fibers [22–27], and the three-wave resonant interaction equations [28–33]. Experimentally,
arious rogue waves governed by the NLS equation and defocusing Manakov equations have been observed in optical fibers, water
anks, and plasma [34–39].

Pattern formation in rogue waves is an important question, as such information allows for the prediction of later rogue wave events
rom earlier wave forms. For the NLS equation, this question has been investigated in [10,40–43]. It was observed in [10] that if a Nth
order rogue wave exhibits a single-shell ring structure, then the center of the ring is a (N − 2)-nd order rogue wave. This observation
was explained analytically in [40] through Darboux transformation. In [41], it was observed that NLS rogue patterns could be classified
according to the order of the rogue waves and the parameter shifts applied to the Akhmediev breathers in the rogue-wave limit. This
latter observation allowed the authors to extrapolate the shapes of rogue waves beyond order six, where numerical plotting of rogue
waves became difficult. In [42], it was stated that the total number of elementary (Peregrine) rogue waves in a Nth order rogue wave
solution was N(N + 1)/2 (but those elementary rogue waves were allowed to coalesce). In [43], we predicted analytically that when
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ne of the internal parameters in a high-order NLS rogue wave was large, then this rogue wave would exhibit clear geometric patterns,
omprising Peregrine waves forming shapes such as a triangle, pentagon and heptagon, with a possible lower-order rogue wave at its
enter. Asymptotically, this rogue pattern was given by the root structure of the Yablonskii–Vorob’ev polynomial hierarchy through
ilation and rotation. This deep connection between rogue patterns and root structures of Yablonskii–Vorob’ev polynomials is a drastic
tep forward in our understanding of rogue events. As small applications of our analytical theory, all previous numerical observations
nd heuristic statements in [10,41,42] were explained.
A natural question that follows is, do these NLS rogue patterns associated with the Yablonskii–Vorob’ev polynomial hierarchy also

ppear in other integrable systems? The answer is a definite yes. In this paper, we study rogue patterns in three other integrable
ystems — namely, the generalized derivative nonlinear Schrödinger (GDNLS) equations, the Boussinesq equation, and the Manakov
ystem. In all these three systems, we show analytically and verify numerically that when one of the internal parameters in their
ogue wave solutions is large, then these rogue waves would also exhibit similar geometric patterns such as triangles, pentagons and
eptagons formed by their fundamental rogue waves, plus a possible lower-order rogue wave at the center. In addition, these rogue
atterns are described by the root structures of the Yablonskii–Vorob’ev polynomial hierarchy as well. Which level of this hierarchy is
etermined by which internal parameter is chosen to be large, and which polynomial at that level of the hierarchy is determined by
he order of the underlying rogue wave. The main difference from the NLS rogue patterns is that, while the NLS rogue pattern is just a
ilation and rotation of the root structure of Yablonskii–Vorob’ev polynomials, rogue patterns in these three other integrable systems
ay also involve other actions such as stretch, shear and translation to the Yablonskii–Vorob’ev root structure. All these actions from

he Yablonskii–Vorob’ev root structure to the rogue pattern are analytically described by a linear transformation, the details of which
epend on the underlying integrable equation. We thus conclude that, there exist universal rogue patterns in integrable systems, which
re the Yablonskii–Vorob’ev root structures under linear transformations.
This paper is structured as follows. In Section 2, bilinear expressions of rogue waves are presented for the GDNLS, Boussinesq

nd Manakov equations. In addition, the Yablonskii–Vorob’ev polynomial hierarchy is introduced, and its root structures displayed.
n Section 3, we present our analytical predictions of rogue patterns in these three integrable systems when one of their internal
arameters is large. All these rogue patterns turn out to be just the Yablonskii–Vorob’ev root structures under linear transformations.
n Section 4, these analytical predictions of rogue patterns are compared to true rogue wave solutions, and complete agreement is
emonstrated. Section 5 contains proofs for the analytical predictions of rogue patterns presented in Section 3. In Section 6, we describe
he common features of rogue patterns in these three integrable systems and others, and highlight the universality of such patterns
ssociated with the Yablonskii–Vorob’ev hierarchy. Section 7 summarizes the results of this paper. The two appendices contain brief
erivations of bilinear rogue waves given in Section 2 for the Boussinesq and Manakov equations.

. Preliminaries

In this article, we will consider three integrable systems and show that their rogue waves exhibit universal patterns similar to those
eported in Ref. [43] for the NLS equation. For that purpose, we will present these three integrable systems as well as their bilinear rogue
ave solutions first. These three integrable systems are the GDNLS equations, the Boussinesq equation, and the Manakov system. We
ote that although we have derived bilinear rogue waves for the GDNLS equations and the Boussinesq equation before [21,44], those
ilinear expressions can be further simplified, and it is these simplified bilinear expressions which we will present below. For the
anakov system, however, bilinear expressions of rogue waves have not been derived before; so the solutions that we will present

n this section will be new results. Although rogue waves for the Manakov system have been derived by Darboux transformation in
efs. [23–27], those rogue expressions from Darboux transformation are not convenient for our rogue-pattern analysis and thus will
ot be used.
Our bilinear rogue waves will be presented through elementary Schur polynomials. These Schur polynomials Sj(x), with x =

x1, x2, . . .), are defined by
∞∑
j=0

Sj(x)ϵ j
= exp

(
∞∑
k=1

xkϵk

)
, (1)

r more explicitly,

Sj(x) =

∑
l1+2l2+···+mlm=j

(
m∏

k=1

xlkk
lk!

)
. (2)

.1. The GDNLS equations and their rogue wave solutions

The normalized GDNLS equations are [21,45–47]

iut +
1
2
uxx + iγ |u|2ux + i(γ − 1)u2u∗

x +
1
2
(γ − 1)(γ − 2)|u|4u = 0, (3)

here γ is a real constant. These equations become the Kaup–Newell equation when γ = 2 [13], the Chen–Lee–Liu equation when
= 1 [48], and the Gerdjikov–Ivanov equation when γ = 0 [49]. These GDNLS equations and their special versions govern a number of
hysical processes such as the propagation of circularly polarized nonlinear Alfvén waves in plasmas [14,15], short-pulse propagation
n a frequency-doubling crystal [16], and propagation of ultrashort pulses in a single-mode optical fiber [50,51]. Rogue waves in these
quations satisfy the following normalized boundary conditions [21]

u(x, t) → ei(1−γ−α)x− i
2

[
α2

+2(γ−2)α+1−γ

]
t
, x, t → ±∞, (4)
2
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here α > 0 is a free wavenumber parameter. Unlike the NLS equation, the GDNLS equations (3) do not admit Galilean invariance.
hus, α is an irreducible parameter in these rogue waves.
General rogue waves to the GDNLS equations (3) have been derived by the bilinear method in Ref. [21]. It turns out that those rogue

xpressions can be further simplified by setting all (x±

2 , x±

4 , x±

6 , . . .) to zero, similar to the NLS case we reported in Ref. [43] for similar
easons. In addition, we can set the first parameter a1 to zero by a shift of (x, t). Then, we get the following lemma for bilinear rogue
aves in the GDNLS equations.

emma 1. The GDNLS equations (3) under the boundary condition (4) admit rogue wave solutions

uN (x, t) = ei(1−γ−α)x− i
2

[
α2

+2(γ−2)α+1−γ

]
t (f ∗

N )
γ−1gN
f γ

N
, (5)

here the positive integer N represents the order of the rogue wave, ‘*’ represents complex conjugation,

fN (x, t) = σ0,0, gN (x, t) = σ−1,1, (6)

σn,k = det
1≤i,j≤N

(
φ

(n,k)
2i−1,2j−1

)
, (7)

he matrix elements in σn,k are defined by

φ
(n,k)
i,j =

min(i,j)∑
ν=0

1
4ν

Si−ν(x+(n, k) + νs) Sj−ν(x−(n, k) + νs), (8)

he vectors x±(n, k) =
(
x±

1 , x±

2 , . . .
)
are defined by

x+

1 = k +

(
n +

1
2

)(
h1 +

1
2

)
+

√
α x +

√
α
[
(α − 1) + i

√
α
]
t, (9)

x−

1 = −k −

(
n +

1
2

)(
h∗

1 +
1
2

)
+

√
α x +

√
α
[
(α − 1) − i

√
α
]
t, (10)

x+

2r+1 = (n +
1
2
)h2r+1 +

1
(2r + 1)!

{√
α x +

[√
α(α − 1) + 22r iα

]
t
}

+ a2r+1, r ≥ 1, (11)

x−

2r+1 = −(n +
1
2
)h∗

2r+1 +
1

(2r + 1)!

{√
α x +

[√
α(α − 1) − 22r iα

]
t
}

+ a∗

2r+1, r ≥ 1, (12)

x±

2r = 0, r ≥ 1, (13)

s = (s1, s2, . . .), hr (α) and sr are coefficients from the expansions
∞∑
r=1

hrλ
r
= ln

(
ieλ/2

+
√

αe−λ/2

i +
√

α

)
,

∞∑
r=1

srλr
= ln

[
2
λ
tanh

(
λ

2

)]
, (14)

and a3, a5, . . . , a2N−1 are free irreducible complex constants.

2.2. The Boussinesq equation and its rogue wave solutions

The Boussinesq equation was introduced in 1871 for the propagation of long surface waves on water of constant depth [52,53]
(see also [54]). After variable normalizations and variable shifts, this equation can be written as [44,55]

utt + uxx − (u2)xx −
1
3
uxxxx = 0, (15)

and its rogue waves are subject to the boundary conditions

u(x, t) → 0, x, t → ±∞. (16)

Special rogue waves in this equation were considered in [55–57]. General rogue waves were derived in [44]; however, bilinear
expressions of those general rogue waves could be significantly simplified through a new parameterization [21]. The simplified bilinear
rogue waves are presented in the following lemma, and their derivation will be provided in Appendix A.

Lemma 2. General rogue waves in the Boussinesq equation (15) under the boundary condition (16) are

uN (x, t) = 2∂2
x ln σ , (17)

where

σ (x, t) = det
1≤i,j≤N

(
φ2i−1,2j−1

)
, (18)

φi,j =

min(i,j)∑
ν=0

(
−1
12

)ν

Si−ν(x+
+ νs) Sj−ν(x−

+ νs), (19)
3
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he vectors x±
=
(
x±

1 , x±

2 , . . .
)
and s = (s1, s2, . . .) are defined by

x+

2r+1 =

√
3 i

2 · 32r+1 · (2r + 1)!

(
x + 22r it

)
+ a2r+1, r = 0, 1, 2, . . . , (20)

x−

2r+1 =

√
3 i

2 · 32r+1 · (2r + 1)!

(
x − 22r it

)
− a∗

2r+1, r = 0, 1, 2, . . . , (21)

x±

2r = 0, r = 1, 2, 3, . . . , (22)
∞∑
r=1

srλr
= ln

[
2i

√
3

λ
tanh

λ

6
tanh

(
λ

6
+

2iπ
3

)]
, (23)

a1 = 0, and a3, a5, . . . , a2N−1 are free irreducible complex constants.

Note 1. In these Boussinesq rogue waves, we have normalized a1 = 0 through a shift of (x, t) axes. But we still keep a1 in the solution
formulae for reasons which we will explain in Theorem 2 of the next section. A similar treatment will be applied to the Manakov system
as well, see Lemma 3.

Note 2. The function f (λ) on the right side of Eq. (23) satisfies the symmetry f ∗(λ) = f (−λ), where λ is considered real. Because of
that, all seven values are real, and all sodd values are purely imaginary. The first few sk values are

s1 =
2i

3
√
3
, s2 = −

5
108

, s3 = −
5i

243
√
3
. (24)

2.3. The Manakov system and its rogue wave solutions

The Manakov system is [58](
i∂t + ∂2

x

)
u1 +

(
ϵ1|u1|

2
+ ϵ2|u2|

2) u1 = 0, (25)(
i∂t + ∂2

x

)
u2 +

(
ϵ1|u1|

2
+ ϵ2|u2|

2) u2 = 0, (26)

where ϵ1 = ±1 and ϵ2 = ±1. These equations govern many physical processes such as the interaction of two incoherent light beams in
crystals [51,59,60], the transmission of light in a randomly birefringent optical fiber [22,35,61,62], and the evolution of two-component
Bose–Einstein condensates [63,64]. This system admits plane wave solutions

u1,0(x, t) = ρ1ei(k1x+ω1t), (27)

u2,0(x, t) = ρ2ei(k2x+ω2t), (28)

where (k1, k2) and (ω1, ω2) are the wavenumbers and frequencies of the two components, and (ρ1, ρ2) are their amplitudes which will
be set real using the phase invariance of the system. Parameters of these plane waves satisfy the following relations,

ω1 = ϵ1ρ
2
1 + ϵ2ρ

2
2 − k21, (29)

ω2 = ϵ1ρ
2
1 + ϵ2ρ

2
2 − k22. (30)

Then, boundary conditions for rogue waves in the Manakov system are

uj(x, t) → uj,0(x, t), x, t → ±∞, j = 1, 2. (31)

Rogue waves in the Manakov system have been derived in Refs. [23–27], all by Darboux transformation. However, those rogue
expressions are inconvenient for our rogue pattern analysis. Thus, we have derived bilinear rogue expressions, which will be presented
in the following lemma. Details of this derivation will be provided in Appendix B.

Lemma 3. If the algebraic equation F ′

1(p) = 0, where

F1(p) =
ϵ1ρ

2
1

p − ik1
+

ϵ2ρ
2
2

p − ik2
+ 2p (32)

nd the prime denotes differentiation, admits a non-imaginary simple root p0, then the Manakov system (25)–(26) under boundary
onditions (31) admits rogue wave solutions

u1,N (x, t) = ρ1
g1,N
fN

ei(k1x+ω1t), u2,N (x, t) = ρ2
g2,N
fN

ei(k2x+ω2t), (33)

where N is an arbitrary positive integer which represents the order of the rogue wave,

fN = σ0,0, g1,N = σ1,0, g2,N = σ0,1, (34)

σn,k = det
1≤i,j≤N

(
φ

(n,k)
2i−1,2j−1

)
, (35)

the matrix elements in σn,k are defined by

φ
(n,k)
i,j =

min(i,j)∑ [
|p1|2

(p + p∗)2

]ν

Si−ν(x+(n, k) + νs) Sj−ν(x−(n, k) + νs∗), (36)

ν=0 0 0

4
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he vectors x±(n, k) = (x±

1 , x±

2 , . . .) are defined by

x+

r (n, k) = prx +

(
r∑

i=0

pipr−i

)
(it) + nθr + kλr + ar , when r is odd, (37)

x−

r (n, k) = p∗

r x −

(
r∑

i=0

p∗

i p
∗

r−i

)
(it) − nθ∗

r − kλ∗

r + a∗

r , when r is odd, (38)

x±

r (n, k) = 0, when r is even, (39)

s = (s1, s2, . . .), (θr , λr , sr ) are coefficients from the expansions

ln
[
p (κ) − ik1
p0 − ik1

]
=

∞∑
r=1

θrκ
r , ln

[
p (κ) − ik2
p0 − ik2

]
=

∞∑
r=1

λrκ
r , (40)

ln
[
1
κ

(
p0 + p∗

0

p1

)(
p (κ) − p0
p (κ) + p∗

0

)]
=

∞∑
r=1

srκ r , (41)

he function p (κ) is defined by the equation

F1 [p (κ)] = F1(p0) cosh(κ), (42)

r = p(r)(0)/r!, with the superscript ‘(r)’ of p representing the rth derivative of p(κ), a1 = 0, and a3, a5, . . . , a2N−1 are free irreducible
complex constants.

Note 3. The rogue waves given in Lemma 3 for a simple root of the F ′

1(p) = 0 equation are an important class of rogue waves in
the Manakov system, and their τ functions (35) involve Schur polynomials with index jumps of 2. But such rogue waves are not the
only ones in the system. For example, the Manakov system also admits rogue waves that correspond to a double root of the F ′

1(p) = 0
equation, similar to the three-wave resonant interaction system as studied in Ref. [65]. In this article, we only consider Manakov rogue
patterns in solutions of Lemma 3 associated with a simple root of the F ′

1(p) = 0 equation.

.4. The Yablonskii–Vorob’ev polynomial hierarchy

As for the NLS equation [43], we will show that rogue patterns in the above three integrable systems are also linked to the root
tructures of the Yablonskii–Vorob’ev polynomial hierarchy. This polynomial hierarchy has been presented before in [43,66,67]. Due to
ts importance to our work, we present it again below. In addition, a useful formula on its polynomial structure as derived in [43] is
lso reproduced here.
Let p[m]

j (z) be the polynomial defined by
∞∑
j=0

p[m]

j (z)ϵ j
= exp

(
zϵ −

22m

2m + 1
ϵ2m+1

)
, (43)

here m = 1, 2, 3, . . . is a positive integer. Notice that

p[m]

j (z) = [p[m]

j+1]
′(z). (44)

hen the Yablonskii–Vorob’ev polynomial hierarchy Q [m]

N (z) is defined through the N × N determinant [66,67]

Q [m]

N (z) = cN

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

p[m]

1 (z) p[m]

0 (z) · · · p[m]

2−N (z)

p[m]

3 (z) p[m]

2 (z) · · · p[m]

4−N (z)
...

...
...

...

p[m]

2N−1(z) p[m]

2N−2(z) · · · p[m]

N (z)

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
, (45)

where p[m]

j ≡ 0 when j < 0, and cN =
∏N

j=1(2j−1)!!. This is a Wronskian determinant in view of the relation (44). When m = 1, Q [1]
N (z)

is the original Yablonskii–Vorob’ev polynomial [68,69]; and when m > 1, Q [m]

N (z) gives the higher members of the Yablonskii–Vorob’ev
hierarchy.

These Yablonskii–Vorob’ev polynomials have the general functional form [43]

Q [m]

N (z) = zN0(N0+1)/2q[m]

N (ζ ), ζ ≡ z2m+1, (46)

where q[m]

N (ζ ) is a monic polynomial with all-real coefficients and a nonzero constant term, and the integer N0 is determined from
(N,m) by the formula

N0 =

{
N mod (2m + 1), if 0 ≤ N mod (2m + 1) ≤ m,

2m − [N mod (2m + 1)] , if N mod (2m + 1) > m.
(47)

According to this formula, 0 ≤ N0 ≤ m. Note that this N0 formula is equivalent to that given in Ref. [43], but this current form is more
explicit. Eq. (46) gives the multiplicity of the root zero in Q [m]

N (z) as N0(N0 + 1)/2 (if N0 = 0, then zero is not a root). It also shows that
the root structure of Q [m](z) is invariant under a 2π/(2m + 1)-angle rotation in the complex z plane.
N

5



B. Yang and J. Yang Physica D 425 (2021) 132958
Fig. 1. Plots of the roots of the Yablonskii–Vorob’ev polynomial hierarchy Q [m]

N (z) in the complex z plane for 2 ≤ N ≤ 5 and 1 ≤ m ≤ N − 1. In all panels, the real
and imaginary axes of z are on the same [−7, 7] interval.

Regarding nonzero roots of Q [m]

N (z), it was shown in [70] that for the original Yablonskii–Vorob’ev polynomials Q [1]
N (z), all roots are

simple. For the higher Yablonskii–Vorob’ev polynomial hierarchy Q [m]

N (z), it was conjectured in [67] that all nonzero roots are simple.
We have checked this conjecture for a myriad of (N,m) values and found it to hold in all our cases. Thus, we will assume it true in this
article. In view of Eq. (46) and the fact that the degree of the polynomial Q [m]

N (z) is N(N + 1)/2 [43], this conjecture then implies that
the polynomial Q [m]

N (z) has

Np =
1
2
[N(N + 1) − N0(N0 + 1)] (48)

nonzero simple roots.
Roots of many Yablonskii–Vorob’ev polynomials Q [m]

N (z) have been plotted in the complex z plane in [67]. Critical to rogue waves in
later sections, we replot such roots in Fig. 1 for 2 ≤ N ≤ 5 and 1 ≤ m ≤ N − 1. It is seen that these roots exhibit highly organized and
symmetric structures, ranging from triangle to pentagon to heptagon and so on, depending on the value of m. In addition, all nonzero
roots are simple, while the zero root may have higher multiplicity according to the above formula (46).

This root information of the polynomial Q [m]

N (z) turns out to be extremely important for the pattern analysis of rogue waves in
Lemmas 1–3, since these roots are the ‘‘DNA" of the wave pattern and codify its key information. Indeed, this intimate connection
between rogue patterns and roots of the Yablonskii–Vorob’ev polynomials was first recognized in the NLS equation [43], where we
showed that if the internal parameter a2m+1 in the Nth order NLS rogue wave was large, then the geometric shape formed by the roots
of Q [m]

N (z) gave the geometric structure of the NLS rogue pattern; each simple root led to a fundamental (Peregrine) rogue wave inside
that pattern; and the zero root of multiplicity N0(N0 + 1)/2 resulted in a N0-th order rogue wave at the center. In this article, we will
show that similar connections between roots of Q [m]

N (z) and rogue patterns also hold for other integrable systems such as the ones
presented earlier in this section.

3. Analytical results on rogue patterns in the three integrable systems

It can be noticed that, similar to the NLS equation [43], rogue waves presented in the previous section for the three integrable
systems also contain free internal complex parameters {a3, a5, . . . , a2N−1}. In this section, we will show that, when any of these internal
parameters gets large, these rogue waves would also exhibit clear geometric patterns which are fully characterized by the root structures
of the Yablonskii–Vorob’ev polynomial hierarchy, similar to the NLS equation [43].
6
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Suppose a2m+1 is large, where 1 ≤ m ≤ N − 1, and the value of m is defined by the choice of a2m+1 in the parameter set
{a3, a5, . . . , a2N−1} of the rogue wave uN (x, t). Suppose also that the other parameters {a3, a5, . . . , a2m−1, a2m+3, . . . , a2N−1} are all O(1).
In addition, we introduce the quantity

Ω ≡

(
−

2m + 1
22m a2m+1

) 1
2m+1

. (49)

Then, our analytical results on the large-a2m+1 asymptotics of rogue waves in the GDNLS, Boussinesq and Manakov equations are
summarized by the following three theorems.

Theorem 1. Let uN (x, t) be the GDNLS rogue wave in Eq. (5), where a2m+1 is large and the other internal parameters O(1).

(1) Far away from the origin, with
√
x2 + t2 = O

(
|a2m+1|

1/(2m+1)), this uN (x, t) asymptotically separates into Np fundamental rogue

waves, where Np is given in Eq. (48). These fundamental rogue waves are û1(x − x̂0, t − t̂0) e
i(1−γ−α)x− i

2

[
α2

+2(γ−2)α+1−γ

]
t , where

û1(x, t) =
(f ∗

1 )
γ−1g1
f γ

1
, (50)

the functions f1(x, t) and g1(x, t) are given by Eq. (6) of Lemma 1 as

f1(x, t) =

[
1
2

(
h1 +

1
2

)
+

√
α x +

√
α
[
(α − 1) + i

√
α
]
t
]

×

[
−

1
2

(
h∗

1 +
1
2

)
+

√
α x +

√
α
[
(α − 1) − i

√
α
]
t
]

+
1
4
, (51)

g1(x, t) =

[
1 −

1
2

(
h1 +

1
2

)
+

√
α x +

√
α
[
(α − 1) + i

√
α
]
t
]

×

[
−1 +

1
2

(
h∗

1 +
1
2

)
+

√
α x +

√
α
[
(α − 1) − i

√
α
]
t
]

+
1
4
, (52)

with h1 = [i −
√

α]/[2(i +
√

α)], and positions (x̂0, t̂0) of these fundamental rogue waves are given by

x̂0 =
1

√
α

ℜ [z0Ω] −
α − 1

α
ℑ [z0Ω] , (53)

t̂0 =
1
α

ℑ [z0Ω] , (54)

with z0 being any of the Np non-zero simple roots of Q [m]

N (z), and (ℜ, ℑ) representing the real and imaginary parts of a complex number.
The error of this fundamental rogue wave approximation is O(|a2m+1|

−1/(2m+1)). Expressed mathematically, when |a2m+1| ≫ 1 and[
(x − x̂0)2 + (t − t̂0)2

]1/2
= O(1), we have the following solution asymptotics

uN (x, t; a3, a5, . . . , a2N−1) = û1(x − x̂0, t − t̂0) e
i(1−γ−α)x− i

2

[
α2

+2(γ−2)α+1−γ

]
t
+ O

(
|a2m+1|

−1/(2m+1)) . (55)

When (x, t) is not in the neighborhood of any of these Np fundamental waves, or
√
x2 + t2 is larger than O

(
|a2m+1|

1/(2m+1)), then
uN (x, t) asymptotically approaches the constant-amplitude background ei(1−γ−α)x− i

2

[
α2

+2(γ−2)α+1−γ

]
t as |a2m+1| → ∞.

(2) In the neighborhood of the origin, where
√
x2 + t2 = O(1), uN (x, t) is approximately a lower N0-th order rogue wave uN0 (x, t), where

N0 is obtained from (N,m) by the formula (47), 0 ≤ N0 ≤ N − 2, and uN0 (x, t) is given by Eq. (5) with its internal parameters
(a3, a5, . . . , a2N0−1) being the first N0 − 1 values in the parameter set {a3, a5, . . . , a2N−1} of the original rogue wave uN (x, t). The
error of this lower-order rogue wave approximation uN0 (x, t) is O(|a2m+1|

−1). Expressed mathematically, when |a2m+1| ≫ 1 and
√
x2 + t2 = O(1),

uN (x, t; a3, a5, . . . , a2N−1) = uN0 (x, t; a3, a5, . . . , a2N0−1) + O
(
|a2m+1|

−1) . (56)

If N0 = 0, then there will not be such a lower-order rogue wave in the neighborhood of the origin, and uN (x, t) asymptotically

approaches the constant-amplitude background ei(1−γ−α)x− i
2

[
α2

+2(γ−2)α+1−γ

]
t there as |a2m+1| → ∞.

Theorem 2. Let uN (x, t) be the Boussinesq rogue wave in Eq. (17), where a2m+1 is large and the other internal parameters O(1).

(1) Far away from the origin, with
√
x2 + t2 = O

(
|a2m+1|

1/(2m+1)), this uN (x, t) asymptotically separates into Np fundamental rogue
waves, where Np is given in Eq. (48). These fundamental rogue waves are u1(x − x̂0, t − t̂0), where

u1(x, t) = 2∂2
x ln

(
x2 + t2 + 1

)
, (57)

and their positions (x̂0, t̂0) are given by

x̂0 = ℜ

[(
−2i

√
3
)
z0Ω

]
+ ∆B, (58)

t̂ = ℑ

[(
−2i

√
3
)
z Ω

]
, (59)
0 0

7
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with z0 being any of the Np non-zero simple roots of Q [m]

N (z), and

∆B = −
4
3
(N − 1). (60)

The error of this fundamental rogue wave approximation is O(|a2m+1|
−1/(2m+1)). Expressed mathematically, when |a2m+1| ≫ 1 and[

(x − x̂0)2 + (t − t̂0)2
]1/2

= O(1), we have the following solution asymptotics

uN (x, t; a3, a5, . . . , a2N−1) = u1(x − x̂0, t − t̂0) + O
(
|a2m+1|

−1/(2m+1)) . (61)

When (x, t) is not in the neighborhood of any of these Np fundamental waves, or
√
x2 + t2 is larger than O

(
|a2m+1|

1/(2m+1)), then
uN (x, t) asymptotically approaches the zero background as |a2m+1| → ∞.

(2) In the neighborhood of the origin, where
√
x2 + t2 = O(1), uN (x, t) is approximately a lower N0-th order rogue wave uN0 (x, t), where

N0 is obtained from (N,m) by the formula (47), 0 ≤ N0 ≤ N − 2, and uN0 (x, t) is given by Eq. (17) with its new internal parameters
(â1, â3, . . . , â2N0−1) related to the original parameters of uN (x, t) as

â2r−1 = a2r−1 + (N − N0) s2r−1, r = 1, 2, . . . ,N0. (62)

The error of this lower-order rogue wave approximation uN0 (x, t) is O(|a2m+1|
−1). Expressed mathematically, when |a2m+1| ≫ 1 and

√
x2 + t2 = O(1),

uN (x, t; a1, a3, a5, . . . , a2N−1) = uN0 (x, t; â1, â3, â5, . . . , â2N0−1) + O
(
|a2m+1|

−1) . (63)

Note that while a1 = 0 in the original rogue wave uN (x, t) (see Lemma 2), its counterpart â1 in the lower-order rogue wave uN0 (x, t)
will not be zero. If N0 = 0, then there will not be such a lower-order rogue wave in the neighborhood of the origin, and uN (x, t)
asymptotically approaches the zero background there as |a2m+1| → ∞.

Theorem 3. Let [u1,N (x, t), u2,N (x, t)] be the Manakov rogue wave in Eq. (33), where a2m+1 is large and the other internal parameters O(1).

(1) Far away from the origin, with
√
x2 + t2 = O

(
|a2m+1|

1/(2m+1)), this [u1,N (x, t), u2,N (x, t)] asymptotically separates into Np fundamen-
tal rogue waves, where Np is given in Eq. (48). These fundamental rogue waves are [û1,1(x − x̂0, t − t̂0) ei(k1x+ω1t), û2,1(x − x̂0, t −

t̂0) ei(k2x+ω2t)], where

û1,1(x, t) = ρ1
[p1x + 2p0p1 (it) + θ1]

[
p∗

1x − 2p∗

0p
∗

1 (it) − θ∗

1

]
+ ζ0

|p1x + 2p0p1 (it)|2 + ζ0
, (64)

û2,1(x, t) = ρ2
[p1x + 2p0p1 (it) + λ1]

[
p∗

1x − 2p∗

0p
∗

1 (it) − λ∗

1

]
+ ζ0

|p1x + 2p0p1 (it)|2 + ζ0
, (65)

θ1 =
p1

p0 − ik1
, λ1 =

p1
p0 − ik2

, ζ0 =
|p1|2

(p0 + p∗

0)2
, (66)

and their positions (x̂0, t̂0) are given by

x̂0 =
1

ℜ(p0)
ℜ

[
z0Ω
p1

p∗

0

]
+ ∆1M , (67)

t̂0 =
1

2ℜ(p0)
ℑ

[
z0Ω
p1

]
+ ∆2M , (68)

with z0 being any of the Np non-zero simple roots of Q [m]

N (z), and

∆1M = −
1

ℜ(p0)
ℜ

[
(N − 1)s1

p1
p∗

0

]
, ∆2M = −

1
2ℜ(p0)

ℑ

[
(N − 1)s1

p1

]
. (69)

The error of this fundamental rogue wave approximation is O(|a2m+1|
−1/(2m+1)). Expressed mathematically, when |a2m+1| ≫ 1 and[

(x − x̂0)2 + (t − t̂0)2
]1/2

= O(1), we have the following solution asymptotics

u1,N (x, t; a3, a5, . . . , a2N−1) = û1,1(x − x̂0, t − t̂0) ei(k1x+ω1t) + O
(
|a2m+1|

−1/(2m+1)) , (70)

u2,N (x, t; a3, a5, . . . , a2N−1) = û2,1(x − x̂0, t − t̂0) ei(k2x+ω2t) + O
(
|a2m+1|

−1/(2m+1)) . (71)

When (x, t) is not in the neighborhood of any of these Np fundamental waves, or
√
x2 + t2 is larger than O

(
|a2m+1|

1/(2m+1)), then
[u1,N (x, t), u2,N (x, t)] asymptotically approaches the constant-amplitude background [ρ1ei(k1x+ω1t), ρ2ei(k2x+ω2t)] as |a2m+1| → ∞.

(2) In the neighborhood of the origin, where
√
x2 + t2 = O(1), [u1,N (x, t), u2,N (x, t)] is approximately a lower N0-th order rogue wave

[u1,N0 (x, t), u2,N0 (x, t)], where N0 is obtained from (N,m) by the formula (47), 0 ≤ N0 ≤ N − 2, and [u1,N0 (x, t), u2,N0 (x, t)] is given
by Eq. (33) with its new internal parameters (â1, â3, . . . , â2N0−1) related to the original parameters of [u1,N (x, t), u2,N (x, t)] as

â2r−1 = a2r−1 + (N − N0) s2r−1, r = 1, 2, . . . ,N0. (72)

The error of this lower-order rogue wave approximation is O(|a2m+1|
−1). Expressed mathematically, when |a2m+1| ≫ 1 and

√
x2 + t2 =

O(1),

u (x, t; a , a , a , . . . , a ) = u (x, t; â , â , â , . . . , â ) + O
(
|a |

−1) , (73)
1,N 1 3 5 2N−1 1,N0 1 3 5 2N0−1 2m+1

8
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i
m
B

1

T

u2,N (x, t; a1, a3, a5, . . . , a2N−1) = u2,N0 (x, t; â1, â3, â5, . . . , â2N0−1) + O
(
|a2m+1|

−1) . (74)

Note that a1 = 0 in the original rogue wave [u1,N (x, t), u2,N (x, t)], but its counterpart â1 in the lower-order rogue wave
[u1,N0 (x, t), u2,N0 (x, t)] will not be zero. If N0 = 0, then there will not be such a lower-order rogue wave in the neighborhood of
the origin, and [u1,N (x, t), u2,N (x, t)] asymptotically approaches the constant-amplitude background [ρ1ei(k1x+ω1t), ρ2ei(k2x+ω2t)] there
as |a2m+1| → ∞.

One can clearly see from these theorems that rogue patterns under the large-parameter limit in these three integrable systems have
a lot in common. In all cases, the center of the wave pattern is a lower-order rogue wave. The order N0 of this center rogue wave
depends only on the order N of the original rogue wave and the index m of the large internal parameter, while the profile of this center
rogue wave depends on its internal parameters as specified in Eqs. (56), (63) and (73)–(74) of the three theorems. This center rogue
wave can be single- or multi-humped depending on those internal parameters, and examples of its profiles will be seen in the next
section.

Away from the center, the rogue wave comprises fundamental rogue waves, whose number is equal to the number of nonzero simple
roots of the Yablonskii–Vorob’ev polynomial Q [m]

N (z), and whose (x, t) locations are linearly dependent on the real and imaginary parts
of these nonzero simple roots. To put it mathematically, the location (x̂0, t̂0) of each fundamental rogue wave inside the rogue structure
is given by the real and imaginary parts of each nonzero simple root z0 of Q [m]

N (z) through a linear transformation[
x̂0
t̂0

]
= B

[
ℜ(z0)
ℑ(z0)

]
+

[
∆1
∆2

]
, (75)

where B is a constant matrix and (∆1, ∆2) a constant vector. For the GDNLS equations (3), it is easy to see from Eqs. (53)–(54) of
Theorem 1 that

B =

[ 1
√

α
ℜ(Ω) −

α−1
α

ℑ(Ω) −
1

√
α
ℑ(Ω) −

α−1
α

ℜ(Ω)
1
α
ℑ(Ω) 1

α
ℜ(Ω)

]
,

[
∆1
∆2

]
=

[
0
0

]
. (76)

For the Boussinesq equation (15), Eqs. (58)–(59) of Theorem 2 give

B = 2
√
3
[

ℑ(Ω) ℜ(Ω)
−ℜ(Ω) ℑ(Ω)

]
,

[
∆1
∆2

]
=

[
∆B
0

]
, (77)

where ∆B is provided by Eq. (60). For the Manakov system (25)–(26), Eqs. (67)–(68) of Theorem 3 give

B =
1

ℜ(p0)

⎡⎣ ℜ

(
p∗
0Ω

p1

)
−ℑ

(
p∗
0Ω

p1

)
1
2ℑ

(
Ω
p1

)
1
2ℜ

(
Ω
p1

) ⎤⎦ ,

[
∆1
∆2

]
=

[
∆1M
∆2M

]
, (78)

where (∆1M , ∆2M ) are provided by Eq. (69). It is important to notice that the constant matrix B and the constant vector (∆1, ∆2) are both
ndependent of the root z0, which is why (75) is a linear transformation from the z-plane to the (x, t) plane. This linear transformation
eans that the whole rogue pattern formed by fundamental rogue waves in the (x, t) plane is just a linear transformation matrix
applied to the root structure of the Yablonskii–Vorob’ev polynomial Q [m]

N (z) in the complex z plane, plus a constant position shift
(∆1, ∆2). For the GDNLS equations with α = 1, B/|Ω| is a rotation matrix (since it is orthogonal with determinant 1). For the Boussinesq
equation, B/

(
2
√
3 |Ω|

)
is a rotation matrix. For the Manakov system with p0 = 1/2, B/(|p1|−1

|Ω|) is a rotation matrix. In these cases,
the B part of the transformation is just a combination of rotation and dilation to the root structure. But for the GDNLS equations with
α ̸= 1 and the Manakov system with p0 ̸= 1/2, the B part of the transformation would also involve other actions such as shear and
stretch to the root structure.

To get a visual impression of the linear transformation (75), we plot in Fig. 2 its effects on the root structures of Q [m]

5 (z) with
≤ m ≤ 4 for the underlying three integrable systems. The reader is reminded that these root structures of Q [m]

5 (z) have been plotted
in the bottom row of Fig. 1. In the top row of Fig. 2, the images of the transformation (75) on these root structures are displayed for
the GDNLS equations with the background wavenumber α = 16/9 and the large internal parameter a2m+1 respectively as

(a3, a5, a7, a9) = (−15i, −250i, −1000i, −3000i). (79)

The middle row of Fig. 2 are images of this transformation for the Boussinesq equation with the large parameter a2m+1 respectively as

(a3, a5, a7, a9) = (−5, 20, −80, 200). (80)

In the bottom row of Fig. 2, images of the transformation for the Manakov equations are illustrated under system and background
parameter choices of

ϵ1 = 1, ϵ2 = 1, k1 =
1
2
, k2 = −

1
2
, ρ1 = 1, ρ2 = 1, p0 =

1
2

√
1 + 2i, (81)

with the large parameter a2m+1 respectively as

(a3, a5, a7, a9) = (40, 400, 3000, 20000). (82)

Notice that in these parameter choices, |a2m+1| increases with m. The reason for it is that according to Eqs. (75)–(78), the image size of
the linear transformation (75) on the root structure of Q [m]

N (z) is roughly proportional to |Ω|, i.e., roughly proportional to |a2m+1|
1

2m+1 .
hus, in order for these images to be of similar sizes, |a | must increase with m.
2m+1

9
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l
r

Fig. 2. The (x, t) plane images of the linear transformation (75) on the root structures of Q [m]

5 (z) with 1 ≤ m ≤ 4, for the three integrable systems with the respective
arge internal parameter a2m+1 and other system parameters provided by Eqs. (79)–(82). Upper row: images for the GDNLS equations, where −13 ≤ x, t ≤ 13. Middle
ow: images for the Boussinesq equation, where −35 ≤ x, t ≤ 35. Lower row: images for the Manakov system, where −28 ≤ x, t ≤ 28.

By comparing these images to the original root structures at the bottom row of Fig. 1, we can see that in the Boussinesq case, the
images (middle row of Fig. 2) have the same shapes of the root structures but with different orientations. To obtain these orientation
angles, we notice from Eqs. (58)–(59) of Theorem 2 that

x̂0 + it̂0 =

(
−2i

√
3
)
z0Ω + ∆B. (83)

Thus, the orientation angle of the image is equal to that of the root structure plus arg(Ω) and minus π/2. Notice from the definition
(49) of Ω that arg(Ω) is controlled by the phase of a2m+1. Then, using the phase of a2m+1, we can quickly predict the orientation angle
of the image. For example, with a3 = −5 in the first panel of the middle row of Fig. 2, arg(Ω)=0. Then, the orientation of this image
should be that of the root structure rotated clockwise by π/2, which is clearly the case. Orientation angles of other panels in the middle
row of Fig. 2 can be predicted similarly.

In the GDNLS and Manakov cases, however, the images (top and bottom rows of Fig. 2) look different from the root structures,
because stretch and shear are clearly seen in addition to changes in orientation. As we have mentioned before, this stretch and shear
is induced by the underlying linear transformation matrix B not being a rotation matrix, since in Fig. 2, α ̸= 1 in the GDNLS images
and p0 ̸= 1/2 in the Manakov images. In these cases, the amounts of stretch, shear and orientation shift are all dictated by details of
the B matrix.

4. Predicted rogue patterns and comparison with true ones in the three integrable systems

In this section, we illustrate our analytical predictions of rogue patterns in Theorems 1–3 and compare them to true rogue patterns
in the underlying three integrable systems.

4.1. Prediction and comparison for the GDNLS equations

First, we present the prediction and comparison for the GDNLS equations (3). According to Theorem 1, our predictions for their
rogue patterns under a large internal parameter a2m+1 can be assembled into a single formula

|uN (x, t)| ≈
⏐⏐uN0 (x, t)

⏐⏐+ Np∑
k=1

(⏐⏐⏐û1(x − x̂(k)0 , t − t̂ (k)0 )
⏐⏐⏐− 1

)
, (84)

where N0 is obtained from (N,m) by the formula (47), uN0 (x, t) is the lower-order rogue wave at the center whose internal parameters
(a3, a5, . . . , a2N0−1) are inherited directly from those of the original rogue wave uN (x, t) [as predicted in Eq. (56)], the function û1(x, t)
is the fundamental rogue wave given in Eq. (50), with its position (x̂(k)0 , t̂ (k)0 ) given by Eqs. (53)–(54) for every one of the nonzero simple
roots z(k)0 of Q [m]

N (z), and Np is the number of such fundamental rogue waves whose value is given by Eq. (48). Then, when we choose
α = 16/9 in the background (4), the above amplitude approximations (84) for 2 ≤ N ≤ 5, with the large internal parameter a
2m+1

10
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Table 1
Value of the large parameter for GDNLS rogue waves in Fig. 3 with α = 16/9.
N a3 a5 a7 a9
2 −30i
3 −28i −500i
4 −20i −300i −1500i
5 −15i −250i −1000i −3000i

Fig. 3. Predicted GDNLS rogue patterns |uN (x, t)| for the orders 2 ≤ N ≤ 5 and the large parameter a2m+1 from m = 1 to N − 1 [the background wavenumber
arameter in Eq. (4) is chosen as α = 16/9]. For each panel, the large parameter a2m+1 in the rogue wave is displayed in Table 1, with the other internal parameters
et as zero. The center of each panel is always the origin x = t = 0, but the (x, t) intervals differ slightly from panel to panel. For instance, in the bottom row, the
eft-most panel has −12 ≤ x, t ≤ 12, and the right-most panel has −10 ≤ x, t ≤ 10.

anging from m = 1 to N − 1 and its value taken as in Table 1, and with the other internal parameters taken as zero, are displayed
n Fig. 3. Notice that the predicted patterns are stretched triangles in the first column (for large a3), stretched pentagons in the second
olumn (for large a5), stretched heptagons in the third column (for large a7), and so on. To understand how these predicted patterns
ome about, let us consider these patterns in the bottom row of this figure (where N = 5). Notice that the large internal parameters
n this row of rogue patterns are the same as those in Eq. (79) for the top (GDNLS) row of the linear-transformation image Fig. 2. Thus,
ccording to our Theorem 1, the top row of Fig. 2 gives the predicted locations of fundamental rogue waves which form the rogue
attern. When we flesh out those top panels by replacing each non-center dot with the GDNLS fundamental rogue wave in Eq. (50),
nd replacing the center dot by the lower N0-th order rogue wave predicted in Eq. (56), then we get the bottom row of Fig. 3. Thus,
he predicted rogue patterns in the bottom row of Fig. 3 are inherited directly from the top row of Fig. 2, i.e., from images of the linear
ransformation (75) on the root structure of the Yablonskii–Vorob’ev polynomials. The other predicted rogue patterns in Fig. 3 can be
nderstood similarly through the linear transformation (75).
Now, we compare these predicted rogue patterns with true ones. For brevity, we only show this comparison for N = 5. Under

dentical α and internal parameter choices and identical (x, t) intervals as in the bottom row of Fig. 3, true rogue patterns are displayed
n Fig. 4. It is seen that the true rogue patterns are almost indistinguishable from the predictions in all aspects, from the locations of
ndividual fundamental rogue waves, to the overall shapes formed by these fundamental waves, and to the fine details of the lower-order
ogue waves at the center. Similar agreements hold for the other panels of Fig. 3 as well. These apparent visual agreements testify to
he power and accuracy of our theoretical predictions.

Our Theorem 1 also states quantitatively that the error of the predicted solution in the neighborhood of each fundamental rogue
ave away from the origin is O(|a |

−1/(2m+1)), while that error in the neighborhood of the origin is O(|a |
−1). We have numerically
2m+1 2m+1

11
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Fig. 4. True GDNLS rogue patterns |uN (x, t)| for N = 5. The α value, internal parameters and (x, t) intervals for these true solutions are identical to those in the
theoretically predicted patterns shown in the bottom row of Fig. 3.

Table 2
Value of the large parameter for Boussinesq rogue waves in Fig. 5.
N a3 a5 a7 a9
2 −20
3 −16 150
4 −10 50 −100
5 −5 20 −80 200

verified the orders of these errors similarly to what we did earlier for the NLS equation in Ref. [43], but details will not be shown for
the sake of brevity.

4.2. Prediction and comparison for the Boussinesq equation

Next, we present prediction and comparison of rogue patterns for the Boussinesq equation. In this case, our prediction from
heorem 2 for the Boussinesq rogue pattern under a large internal parameter a2m+1 can be assembled into the formula

uN (x, t) ≈ uN0 (x, t) +

Np∑
k=1

u1

(
x − x̂(k)0 , t − t̂ (k)0

)
, (85)

where N0 is given by formula (47), uN0 (x, t) is the lower-order rogue wave at the center whose new internal parameters (â1, â3, . . . ,
â2N0−1) are given by Eq. (62), the function u1(x, t) is the fundamental Boussinesq rogue wave given in Eq. (57), with its position (x̂(k)0 , t̂ (k)0 )
given by Eqs. (58)–(59) for every one of the nonzero simple roots z(k)0 of Q [m]

N (z), and Np is the number of such fundamental rogue waves
whose value is given by Eq. (48). When the large internal parameter a2m+1 is selected as in Table 2 for 2 ≤ N ≤ 5 and 1 ≤ m ≤ N − 1,
with the other internal parameters set as zero, the predicted rogue solutions (85) are illustrated in Fig. 5. Notice that for the Boussinesq
equation where the linear transformation matrix B is as given in Eq. (77), B/

(
2
√
3 |Ω|

)
is a rotation matrix. Thus, the predicted rogue

atterns in this figure can be obtained from the root structures of the Yablonskii–Vorob’ev polynomials through the actions of rotation,
ilation and uniform shift but without stretch and shear — a fact that is obvious by visually comparing these rogue patterns with the
oot structures of the Yablonskii–Vorob’ev polynomials displayed in Fig. 1. Like the GDNLS case before, the predicted rogue patterns
n the bottom row of Fig. 5 (for N = 5), whose large internal parameter values are the same as those in the earlier Eq. (80), are also
he flesh-out of the images of linear transformation (75) on the Yablonskii–Vorob’ev root structures (those images were shown in the
iddle row of Fig. 2). Notice that the current linear transformation involves a uniform x-position shift [see Eqs. (60) and (77)], which

results in an overall x-shift of ∆B = −4(N − 1)/3 to the whole rogue pattern. This shift is quite visible in Fig. 5, especially for higher
order rogue waves, because the amount ∆B of this shift increases with N . But since the Boussinesq equation is translation-invariant in
(x, t), this overall x-shift does not affect the shape of the rogue pattern.

Now, we compare these predicted Boussinesq rogue patterns of Fig. 5 to the true solutions. Again, for brevity, we only do the
comparison for the fifth-order rogue waves (N = 5). Under the same internal parameter choices and (x, t) intervals as those in the
bottom row of Fig. 5, the true Boussinesq rogue patterns are displayed in Fig. 6. It is seen that again, the true rogue patterns are visually
indistinguishable from our theoretical predictions on all aspects, from locations of fundamental rogue waves away from the center, to
fine details of lower-order rogue waves at the center, and to the amounts of x-position shifts to the whole structure. Order of accuracy
of our predictions as stated in Theorem 2 has also been confirmed numerically, with the details omitted.

4.3. Prediction and comparison for the Manakov system

Now, we consider the Manakov case. Our prediction from Theorem 3 for Manakov rogue patterns can be assembled into the formulae

⏐⏐u1,N (x, t)
⏐⏐ ≈ ⏐⏐u1,N0 (x, t)

⏐⏐+ Np∑
k=1

(⏐⏐⏐û1,1(x − x̂(k)0 , t − t̂ (k)0 )
⏐⏐⏐− ρ1

)
, (86)

⏐⏐u2,N (x, t)
⏐⏐ ≈ ⏐⏐u2,N0 (x, t)

⏐⏐+ Np∑(⏐⏐⏐û2,1(x − x̂(k)0 , t − t̂ (k)0 )
⏐⏐⏐− ρ2

)
, (87)
k=1

12
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Fig. 5. Predicted Boussinesq rogue patterns uN (x, t) for the orders 2 ≤ N ≤ 5 and the large parameter a2m+1 from m = 1 to N−1. For each panel, the large parameter
2m+1 in the rogue wave is displayed in Table 2, with the other internal parameters set as zero. The center of each panel is always the origin x = t = 0, but the

(x, t) intervals differ slightly from panel to panel. For instance, in the bottom row, the first two panels have −32.25 ≤ x, t ≤ 32.25 and −35.25 ≤ x, t ≤ 35.25
respectively.

Fig. 6. True Boussinesq rogue patterns uN (x, t) for N = 5. The internal parameters and (x, t) intervals for these true solutions are identical to those in the theoretically
redicted patterns shown in the bottom row of Fig. 5.

here N0 is given by Eq. (47), [u1,N0 (x, t), u2,N0 (x, t)] is the lower-order rogue wave at the center whose new internal parameters
â1, â3, . . . , â2N0−1) are given by Eq. (72), the functions [û1,1(x, t), û2,1(x, t)] are the fundamental Manakov rogue wave given in Eqs.
64)–(65), with their positions (x̂(k)0 , t̂ (k)0 ) given by Eqs. (67)–(68) for every one of the nonzero simple roots z(k)0 of Q [m]

N (z), and Np is
he number of such fundamental rogue waves whose value is given by Eq. (48). Since the Manakov waves have two components, to
how both components, we will make the prediction and comparison for N = 5 only. With the system and background parameters
hosen as in Eq. (81), and with the large internal parameter a2m+1 taken as in Eq. (82) respectively, and the other internal parameters
et as zero, the predicted rogue solutions (86)–(87) are plotted in Fig. 7. These predicted rogue patterns are a flesh-out of the bottom
anels in Fig. 2, which are images of the transformation (75) on the Yablonskii–Vorob’ev root structures for the Manakov system under
he same large-parameter values. In the current case, the linear transformation matrix B in Eq. (78) induces stretch and shear to the
ablonskii–Vorob’ev root structure, and this skewed pattern is evident in Fig. 7. Another feature in the present Manakov case is that
13
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c
w

Fig. 7. Predicted patterns of fifth-order rogue waves in the Manakov equations under system parameters (81) (upper row: |u1,N |; lower row: |u2,N |). The large
internal parameter is as shown in Eq. (82), i.e., a3 = 40 in the first column, a5 = 400 in the second column, a7 = 3000 in the third column, a9 = 20000 in the
fourth column, and the other internal parameters are set as zero.

Fig. 8. True fifth-order Manakov rogue patterns. The system parameters, internal parameters and (x, t) intervals for these true solutions are identical to those in the
theoretically predicted patterns shown in Fig. 7.

the predicted rogue patterns contain uniform shifts in both x and t , since ∆1 and ∆2 in Eq. (78) are both nonzero. However, under our
hoices of system and background parameters (81) and for N = 5, we find from Eq. (69) that ∆1 ≈ −1.07433 and ∆2 ≈ −0.68328,
hich are both relatively small. Thus, these (x, t) shifts to the rogue patterns in Fig. 7 are not as pronounced as those for the Boussinesq

equation in Fig. 5.
Now, we compare these predicted fifth-order Manakov rogue patterns to the true solutions. Under identical system and internal

parameter choices and (x, t) intervals as those in Fig. 7, the true Manakov rogue patterns are displayed in Fig. 8. It is seen that the true
rogue patterns closely mimic the predicted ones on all major aspects such as the overall shapes, orientations, and center-rogue-wave
profiles. Some minor differences do exist, such as the three sides of the triangular true-rogue patterns in the first column of Fig. 8 are
a little more curvy than the predicted ones in the first column of Fig. 7. But those differences will diminish if the large parameter a3 in
those panels gets larger. Quantitatively, we have also verified the order of accuracy of our analytical predictions as stated in Theorem 3,
with details omitted.
14
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. Proofs of the three theorems

Now, we prove our main theorems on rogue-pattern predictions stated in Section 3 for the three underlying integrable systems
hen one of the internal parameters in their rogue waves is large.

.1. Proof of Theorem 1 for the GDNLS equations

The proof of Theorem 1 for the GDNLS equations is quite similar to that which we developed in Ref. [43] for the NLS equation, since
he bilinear GDNLS rogue waves in Lemma 1 have similar structures as those for the NLS equation. Thus, our proof here will be brief.

When |a2m+1| ≫ 1 and the other parameters O(1) in the GDNLS rogue wave solution (5), at (x, t) where
√
x2 + t2 = O(

|a2m+1|
1/(2m+1)), we have [43]

Sj(x+(n, k) + νs) = Sj(v)
[
1 + O

(
a−1/(2m+1)
2m+1

)]
, |a2m+1| ≫ 1, (88)

where

v =
(√

α x +
√

α
[
(α − 1) + i

√
α
]
t, 0, . . . , 0, a2m+1, 0, . . .

)
. (89)

otice that the first element in this v vector is simply the leading-order terms of x+

1 in Lemma 1 when (x, t) are large, and the retention
f only these leading-order terms in x+

1 is sufficient here since we are only looking for the leading-order asymptotics in Eq. (88) at the
moment. From the definition of Schur polynomials (1), we see that Sj(v) is related to the polynomial p[m]

j (z) in Eq. (43) as

Sj(v) = Ω jp[m]

j (z), (90)

where Ω was defined in Eq. (49), and

z = Ω−1 (√α x +
√

α
[
(α − 1) + i

√
α
]
t
)
. (91)

imilar relations can also be obtained for Sj(x−(n, k) + νs). Using these formulae and following identical steps as in Ref. [43], we find
hat

σn,k ∼ χ1 |a2m+1|
N(N+1)
2m+1

⏐⏐⏐Q [m]

N (z)
⏐⏐⏐2 , |a2m+1| ≫ 1, (92)

where

χ1 = c−2
N

(
1
2

)N(N−1) (2m + 1
22m

) N(N+1)
2m+1

.

ince χ1 is independent of n and k, the above equation shows that for large a2m+1, σ−1,1/σ0,0 ∼ 1, i.e., the solution |uN (x, t)| in Eq. (5)
s on the unit background, except at or near (x, t) locations

(
x̂0, t̂0

)
where

z0 = Ω−1 (√αx̂0 +
√

α
[
(α − 1) + i

√
α
]
t̂0
)

(93)

is a root of the polynomial Q [m]

N (z). These
(
x̂0, t̂0

)
locations can be derived explicitly from the above equation, and their expressions are

given in Eqs. (53)–(54) of Theorem 1.
Next, we show that when (x, t) is in the neighborhood of each of the

(
x̂0, t̂0

)
locations given by Eqs. (53)–(54), i.e., when[

(x − x̂0)2 + (t − t̂0)2
]1/2

= O(1), the rogue wave uN (x, t) in Eq. (5) approaches a fundamental rogue wave û1(x − x̂0, t − t̂0)
i(1−γ−α)x− i

2

[
α2

+2(γ−2)α+1−γ

]
t for large a2m+1, where the function |û1(x, t)| is given in Eq. (50). For this purpose, we notice that when

x, t) is in the neighborhood of
(
x̂0, t̂0

)
, we have a more refined asymptotics for Sj(x+(n, k) + νs) as [43]

Sj(x+(n, k) + νs) = Sj(v̂)
[
1 + O

(
a−2/(2m+1)
2m+1

)]
, (94)

where

v̂ = (x+

1 , 0, . . . , 0, a2m+1, 0, . . .), (95)

and x+

1 is as given in Lemma 1. Notice that this new asymptotics boasts a relative error that is an order smaller than that of the previous
asymptotics (88); thus it is more accurate. This more accurate asymptotics is necessary because the previous asymptotics (88) gives
only zero contribution to σn,k in the neighborhood of

(
x̂0, t̂0

)
, as we have shown in Eq. (92). To arrive at this more refined asymptotics

(94), we have utilized the fact that s1 = 0 and x+

2 = 0 in our bilinear rogue wave solution of Lemma 1. In addition, we have kept all
terms of x+

1 in v̂ now, not just its leading-order terms.
The polynomial Sj(v̂) in Eq. (94) is related to p[m]

j (z) of Eq. (43) as Sj(v̂) = Ω jp[m]

j

(
Ω−1x+

1

)
, where Ω is given in Eq. (49). Inserting

his relation into (94), we get a refined asymptotics for Sj(x+(n, k) + νs) through polynomials p[m]

j (z). Similar refined asymptotics can
lso be obtained for Sj(x−(n, k) + νs).
Using these refined asymptotics of Sj(x±(n, k) + νs) and following the same steps as in Ref. [43], we find that

σn,k(x, t) = χ̂1

⏐⏐⏐⏐[Q [m]

N

]′

(z0)
⏐⏐⏐⏐2 |a2m+1|

N(N+1)−2
(2m+1)

[
x+

1 (x − x̂0, t − t̂0; n, k)x−

1 (x − x̂0, t − t̂0; n, k) +
1
4

] [
1 + O

(
a−1/(2m+1)
2m+1

)]
, (96)

here χ̂1 = [(2m+1)2−2m
]
−2/(2m+1)χ1. Finally, we recall our assumption on the simplicity of the nonzero roots in Yablonskii–Vorob’ev

olynomials in Section 2.4, which implies that
[
Q [m]

N

]′

(z0) ̸= 0. This indicates that the above leading-order asymptotics for σn,k(x, t) does

ot vanish. Therefore, when a is large and (x, t) in the neighborhood of
(
x̂ , t̂

)
, we insert the above equation into the rogue-wave
2m+1 0 0

15



B. Yang and J. Yang Physica D 425 (2021) 132958

s

i

T

5

O

a

e

N[
w

T
c

w

olution (5) of Lemma 1 and get

uN (x, t) = ei(1−γ−α)x− i
2

[
α2

+2(γ−2)α+1−γ

]
t (σ ∗

0,0)
γ−1σ−1,1

σ
γ

0,0

= û1(x − x̂0, t − t̂0) e
i(1−γ−α)x− i

2

[
α2

+2(γ−2)α+1−γ

]
t
+ O

(
a−1/(2m+1)
2m+1

)
, (97)

where

û1(x, t) =

[
x+

1 (x, t; 0, 0)x
−

1 (x, t; 0, 0) +
1
4

]∗(γ−1) [
x+

1 (x, t; −1, 1)x−

1 (x, t; −1, 1) +
1
4

][
x+

1 (x, t; 0, 0)x
−

1 (x, t; 0, 0) +
1
4

]γ (98)

s the fundamental GDNLS rogue wave given in Eq. (50), and the error of this prediction is O
(
a−1/(2m+1)
2m+1

)
.

Regarding the proof for the GDNLS rogue pattern near the origin in Theorem 1, it is identical to that for the NLS equation in Ref. [43].
heorem 1 is then proved.

.2. Proof of Theorem 2 for the Boussinesq equation

The proof for Theorem 2 is along similar lines of the previous proof but with small modifications.
When |a2m+1| ≫ 1 and the other parameters O(1) in the Boussinesq rogue wave solution (17), at (x, t) where

√
x2 + t2 =(

|a2m+1|
1/(2m+1)), we have

Sj(x+
+ νs) = Sj(v)

[
1 + O

(
a−1/(2m+1)
2m+1

)]
, |a2m+1| ≫ 1, (99)

where

v =
(
x+

1 , 0, . . . , 0, a2m+1, 0, . . .
)
, (100)

nd x+

1 (x, t) = (
√
3 i/6) (x+ it) from Lemma 2. Unlike the earlier GDNLS case, all terms in x+

1 here are of the same order for large (x, t);
hence we keep all of them. But we did drop the νs1 term of x+

1 + νs1 in v even though s1 ̸= 0 now [see Eq. (24)], because this νs1 term
is much smaller than x+

1 and thus does not contribute to the leading order. The Schur polynomial Sj(v) is related to the polynomial
p[m]

j (z) of Eq. (43) in the same way as Eq. (90), except that z is now replaced by z = Ω−1x+

1 , where Ω is as given in Eq. (49). Thus,

Sj(x+
+ νs) ∼ Ω jp[m]

j (z), |a2m+1| ≫ 1. (101)

Similarly, using the definition of Schur polynomials (1) and the fact that x−

1 = −(x+

1 )
∗ from Lemma 2, we get

Sj(x−
+ νs) ∼ (−Ω∗)jp[m]

j

(
z∗
)
, |a2m+1| ≫ 1. (102)

Using these formulae and following the same steps as in Ref. [43], we find that σ of Eq. (18) has the asymptotics

σ ∼ χ2 |a2m+1|
N(N+1)
2m+1

⏐⏐⏐Q [m]

N (z)
⏐⏐⏐2 , |a2m+1| ≫ 1, (103)

where χ2 is a (N,m)-dependent constant. This asymptotics shows that the solution uN (x, t) in Eq. (17) would be approximately zero,
xcept at or near (x, t) locations

(
x̃0, t̃0

)
where Ω−1x+

1 is a root of the polynomial Q [m]

N (z), i.e.,

z0 = Ω−1

√
3 i
6

(x̃0 + i t̃0) (104)

is a root of the polynomial Q [m]

N (z). These
(
x̃0, t̃0

)
locations can be derived explicitly from the above equation as

x̃0 = ℜ

[
z0
(
−2i

√
3
)

Ω

]
, t̃0 = ℑ

[
z0
(
−2i

√
3
)

Ω

]
. (105)

otice that these
(
x̃0, t̃0

)
values match the leading-order terms of

(
x̂0, t̂0

)
given in Theorem 2.

Next, we show that when (x, t) is in the neighborhood of each of the
(
x̃0, t̃0

)
locations given by the above equation, i.e., when

(x − x̃0)2 + (t − t̃0)2
]1/2

= O(1), the Boussinesq rogue wave uN (x, t) in Eq. (17) under large a2m+1 approaches a fundamental rogue
ave, whose location is not exactly at

(
x̃0, t̃0

)
but is close to it. For this purpose, we use a refined asymptotics (94) for Sj(x+

+νs) when
(x, t) is in the neighborhood of

(
x̃0, t̃0

)
, where the vector v̂ is now

v̂ = (x+

1 + νs1, 0, . . . , 0, a2m+1, 0, . . .). (106)

Compared to its GDNLS counterpart (95) and a similar one for the NLS equation in Ref. [43], the vector v̂ here contains a new term νs1.
his term was absent in the GDNLS and NLS cases because s1 vanishes there. This new νs1 term in v̂ will introduce an additional O(1)
ontribution to the fundamental-rogue-wave location

(
x̂0, t̂0

)
in Boussinesq rogue patterns, as we will see below.

The polynomial Sj(v̂) is related to p[m]

j (z) of Eq. (43). Using that relation, we can rewrite the asymptotics of Sj(x+
+ νs) as

Sj(x+
+ νs) = Ω jp[m]

j

(
z + νs1Ω−1) [1 + O

(
a−2/(2m+1)
2m+1

)]
, (107)

here Ω is given in Eq. (49), and z = Ω−1x+

1 as mentioned before. Similarly, we have

S (x−
+ νs) = (−Ω∗)j

[
p[m]

(
z + νs Ω−1)]∗ [

1 + O
(
a−2/(2m+1)

)]
(108)
j j 1 2m+1
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n view that s1 is purely imaginary [see Eq. (24)].
Using these refined asymptotics of Sj(x±

+ νs), we can now estimate the leading order terms of σ (x, t) in Eq. (18) when (x, t) is in
he neighborhood of

(
x̃0, t̃0

)
. For this purpose, we use determinant identities and the Laplace expansion to rewrite σ (x, t) as [12]

σ (x, t) =

∑
0≤ν1<ν2<···<νN≤2N−1

det
1≤i,j≤N

[(√
3 i
6

)νj

S2i−1−νj (x
+

+ νjs)

]
× det

1≤i,j≤N

[(√
3 i
6

)νj

S2i−1−νj (x
−

+ νjs)

]
, (109)

here Sj ≡ 0 when j < 0. When a2m+1 is large, Ω is large. In this case, contributions to leading-order terms in σ (x, t) come from two
ndex choices, one being ν = (0, 1, . . . ,N − 1), and the other being ν = (0, 1, . . . ,N − 2,N).

For the first index choice of ν = (0, 1, . . . ,N − 1), i.e., νj = j − 1, we have

det
1≤i,j≤N

[(√
3 i
6

)νj

S2i−1−νj (x
+

+ νjs)

]
=

(√
3 i
6

) N(N−1)
2

Ω
N(N+1)

2 det
1≤i,j≤N

[
p[m]

2i−j

(
z + (j − 1)s1Ω−1)] [1 + O

(
a−2/(2m+1)
2m+1

)]
. (110)

ince z = Ω−1x+

1 , which is a linear function of x and t , and z0 = Ω−1x+

1 (x̃0, t̃0), we can rewrite z + (j − 1)s1Ω−1 as

z + (j − 1)s1Ω−1
= z0 +

[
x+

1 (x − x̃0, t − t̃0) + (j − 1)s1
]
Ω−1. (111)

hen, expanding p[m]

2i−j

(
z + (j − 1)s1Ω−1

)
around z0, we get

p[m]

2i−j

(
z + (j − 1)s1Ω−1)

= p[m]

2i−j(z0) +

(
p[m]

2i−j

)′

(z0)
[
x+

1 (x − x̃0, t − t̃0) + (j − 1)s1
]
Ω−1

+ O(Ω−2). (112)

Substituting this expansion into the determinant of the above equation (110), the O(1) term of this determinant is Q [m]

N (z0), which
s zero since z0 is a root of this Yablonskii–Vorob’ev polynomial. To derive the remaining terms, we recall the property (44) of p[m]

j (z)

polynomials, which yields
(
p[m]

2i−j

)′

(z0) = p[m]

2i−j−1(z0). Utilizing this relation, we find that many terms in the expansion of the determinant
in (110) vanish, and the only dominant contribution is

det
1≤i,j≤N

[
p[m]

2i−j

(
z + (j − 1)s1Ω−1)]

= det
1≤i≤N

[
p[m]

2i−1(z0), p
[m]

2i−2(z0), . . . , p
[m]

2i−N+1(z0), p
[m]

2i−N−1(z0)
[
x+

1 (x − x̃0, t − t̃0) + (N − 1)s1
]]

Ω−1
+ O(Ω−2)

= c−1
N

[
Q [m]

N

]′

(z0)
[
x+

1 (x − x̃0, t − t̃0) + (N − 1)s1
]

Ω−1
+ O(Ω−2),

where cN is given below Eq. (45). In the last step, the fact of the determinant (45) of Q [m]

N (z) being Wronskian has been used. Recalling
that the s1 value from Eq. (24) is purely imaginary, we can absorb the (N − 1)s1 term of the above equation into its x̃0 term and get

det
1≤i,j≤N

[
p[m]

2i−j

(
z + (j − 1)s1Ω−1)]

= c−1
N

[
Q [m]

N

]′

(z0) x+

1 (x − x̂0, t − t̂0) Ω−1
+ O(Ω−2), (113)

where
(
x̂0, t̂0

)
are as given in Theorem 2. Inserting this result into (110) and noticing that Ω−1

= O(a−1/(2m+1)
2m+1 ), we get

det
1≤i,j≤N

[(√
3 i
6

)νj

S2i−1−νj (x
+

+ νjs)

]
= c−1

N

[
Q [m]

N

]′

(z0)

(√
3 i
6

) N(N−1)
2

Ω
N(N+1)−2

2 x+

1 (x − x̂0, t − t̂0)
[
1 + O

(
a−1/(2m+1)
2m+1

)]
. (114)

Similarly, we get

det
1≤i,j≤N

[(√
3 i
6

)νj

S2i−1−νj (x
−

+ νjs)

]
= c−1

N

[
Q [m]

N

]′

(z∗

0 )

(√
3 i
6

) N(N−1)
2 (

−Ω∗
) N(N+1)−2

2 x−

1 (x−x̂0, t−t̂0)
[
1 + O

(
a−1/(2m+1)
2m+1

)]
. (115)

hen, the contribution to Eq. (109) from the first index choice of ν = (0, 1, . . . ,N − 1) is

χ̂2

⏐⏐⏐⏐[Q [m]

N

]′

(z0)
⏐⏐⏐⏐2 |a2m+1|

N(N+1)−2
2m+1 x+

1 (x − x̂0, t − t̂0) x−

1 (x − x̂0, t − t̂0)
[
1 + O

(
a−1/(2m+1)
2m+1

)]
, (116)

where

χ̂2 = c−2
N (−1)N

2
−1
(

1
12

) N(N−1)
2

(
2m + 1
22m

) N(N+1)−2
2m+1

. (117)

Next, we calculate the contribution to σ (x, t) in Eq. (109) from the second index choice of ν = (0, 1, . . . ,N − 2,N). In this case,
utilizing Eq. (107), we get

det
1≤i,j≤N

[(√
3 i
6

)νj

S2i−1−νj (x
+

+ νjs)

]
=

(√
3 i
6

) N(N−1)+2
2

Ω
N(N+1)−2

2 det
1≤i,j≤N

[
p[m]

2i−1−νj

(
z + νjs1Ω−1)] [1 + O

(
a−2/(2m+1)
2m+1

)]
. (118)
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he leading-order asymptotics of this determinant can be directly obtained by neglecting the νjs1Ω−1 terms and replacing z by z0,
hich gives

det
1≤i,j≤N

[(√
3 i
6

)νj

S2i−1−νj (x
+

+ νjs)

]
=

(√
3 i
6

) N(N−1)+2
2

Ω
N(N+1)−2

2 det
1≤i,j≤N

[
p[m]

2i−1−νj
(z0)

] [
1 + O

(
a−1/(2m+1)
2m+1

)]

=

(√
3 i
6

) N(N−1)+2
2

Ω
N(N+1)−2

2

[
Q [m]

N

]′

(z0)
[
1 + O

(
a−1/(2m+1)
2m+1

)]
. (119)

imilarly,

det
1≤i,j≤N

[(√
3 i
6

)νj

S2i−1−νj (x
−

+ νjs)

]
=

(√
3 i
6

) N(N−1)+2
2

(−Ω∗)
N(N+1)−2

2

[
Q [m]

N

]′

(z∗

0 )
[
1 + O

(
a−1/(2m+1)
2m+1

)]
. (120)

hen, the contribution to Eq. (109) from the second index choice is

χ̂2

⏐⏐⏐⏐[Q [m]

N

]′

(z0)
⏐⏐⏐⏐2 |a2m+1|

N(N+1)−2
2m+1

[
−

1
12

+ O
(
a−1/(2m+1)
2m+1

)]
, (121)

here χ̂2 is given in Eq. (117). Combining both contributions to σ (x, t) of Eq. (109), we get

σ (x, t) = χ̂2

⏐⏐⏐⏐[Q [m]

N

]′

(z0)
⏐⏐⏐⏐2 |a2m+1|

N(N+1)−2
2m+1

[
x+

1 (x − x̂0, t − t̂0) x−

1 (x − x̂0, t − t̂0) −
1
12

] [
1 + O

(
a−1/(2m+1)
2m+1

)]
= −

1
12

χ̂2

⏐⏐⏐⏐[Q [m]

N

]′

(z0)
⏐⏐⏐⏐2 |a2m+1|

N(N+1)−2
2m+1

[
(x − x̂0)2 + (t − t̂0)2 + 1

] [
1 + O

(
a−1/(2m+1)
2m+1

)]
. (122)

Recalling our assumption on the simplicity of the nonzero roots in Yablonskii–Vorob’ev polynomials in Section 2.4, the above leading-
order asymptotics for σ (x, t) does not vanish. Therefore, when a2m+1 is large and (x, t) in the neighborhood of

(
x̂0, t̂0

)
, the above

asymptotics and Eq. (17) show that

uN (x, t) = 2∂2
x ln σ = 2∂2

x ln
[
(x − x̂0)2 + (t − t̂0)2 + 1

]
+ O

(
a−1/(2m+1)
2m+1

)
, (123)

which proves Eq. (61) in Theorem 2.
Next, we prove Eq. (63) in Theorem 2 regarding the asymptotics of the rogue wave uN (x, t) in the neighborhood of the origin. In

this case, we first rewrite the N × N determinant of σ (x, t) in Eq. (18) as a 3N × 3N determinant [12]

σ (x, t) =

⏐⏐⏐⏐ ON×N ΦN×2N
−Ψ2N×N I2N×2N

⏐⏐⏐⏐ , (124)

where

Φi,j =

(√
3 i
6

)j−1

S2i−j
[
x+

+ (j − 1)s
]
, Ψi,j =

(√
3 i
6

)i−1

S2j−i
[
x−

+ (i − 1)s
]
, (125)

nd Sj ≡ 0 when j < 0. Then, we use relations similar to Eq. (58) of Ref. [43] to express the matrix elements of Φ and Ψ as powers
f a2m+1 and a∗

2m+1 respectively. Next, we perform the same row and column operations of Ref. [43] to the Φ and Ψ matrices so that
ertain high-power terms of a2m+1 and a∗

2m+1 are eliminated. Afterwards, we keep only the highest power terms of a2m+1 in each row
r column of the remaining Φ and Ψ matrices. With these manipulations, σ (x, t) is asymptotically reduced to the same expression (64)
f Ref. [43], which is

σ (x, t) = β̂

⏐⏐⏐⏐ ON0×N0 Φ̂N0×2N0
−Ψ̂2N0×N0 I2N0×2N0

⏐⏐⏐⏐ [1 + O
(
a−1
2m+1

)]
, (126)

where β̂ is a (m,N)-dependent constant multiplying a certain power of |a2m+1|,

Φ̂i,j =

(√
3 i
6

)j−1

S2i−j
[
y+

+ (j − 1 + ν0)s
]
, Ψ̂i,j =

(√
3 i
6

)i−1

S2j−i
[
y−

+ (i − 1 + ν0)s
]
, (127)

vectors y± are x± without the a2m+1 terms, i.e.,

y+
= x+

− (0, . . . , 0, a2m+1, 0, . . .), y−
= x−

+ (0, . . . , 0, a∗

2m+1, 0, . . .), (128)

and ν0 = N − N0, where N0 is a function of (N,m) as explained in Section 2.4.
For the NLS and GDNLS equations, s1 = s3 = · · · = sodd = 0. Because of that, the determinant in Eq. (126) could be further reduced

to one with ν0 set as zero in Eq. (127) due to the relation (65) in Ref. [43]. As a consequence, the asymptotics (126) would yield a
lower-order rogue wave uN0 (x, t) in the neighborhood of the origin, whose internal parameters were identical to the corresponding
ones in the original rogue wave uN (x, t). However, for the Boussinesq equation, sodd is not zero [see Eq. (24)]. Because of this, a slightly
different treatment is needed. In this case, we split the vector s into two vectors of even and odd elements,

s = s + s , (129)
odd even

18
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here sodd = (s1, 0, s3, 0, . . .), and seven = (0, s2, 0, s4, . . .). Then, using a relation similar to Eq. (65) in Ref. [43], we can show that the
eterminant in Eq. (126) is equal to one whose matrix elements are reduced to

Φ̂i,j =

(√
3 i
6

)j−1

S2i−j
[
y+

+ (j − 1) s + ν0 sodd
]
, Ψ̂i,j =

(√
3 i
6

)i−1

S2j−i
[
y−

+ (i − 1) s + ν0 sodd
]
. (130)

Lastly, we absorb ν0 sodd, i.e., (N − N0) sodd, into the vector y± in the above equations by redefining parameters

â2r−1 = a2r−1 + (N − N0) s2r−1, r = 1, 2, . . . ,N0. (131)

This absorption is possible since all sodd values are purely imaginary for the Boussinesq equation, see Note 2 below Lemma 2; hence
absorptions for y+ and y− are consistent. The σ (x, t) function (126) with such matrix elements (130) then gives a N0-th order rogue
wave, whose internal parameters â2r−1 are related to a2r−1 of the original Nth order rogue wave uN (x, t) through Eq. (131), i.e., (62) of
Theorem 2, and the error of this lower-order rogue wave approximation is O(|a2m+1|

−1) in view of Eq. (126). Eq. (63) in Theorem 2 is
then proved.

5.3. Proof of Theorem 3 for the Manakov system

The proof of Theorem 3 for the Manakov system has a lot in common with proofs for Theorems 1 and 2; so we will be brief here.
First, we consider the solution asymptotics away from the origin when a2m+1 is large. In this case,

Sj(x+(n, k) + νs) = Sj(v)
[
1 + O

(
a−1/(2m+1)
2m+1

)]
, |a2m+1| ≫ 1, (132)

Sj(x−(n, k) + νs∗) = Sj(v∗)
[
1 + O

(
a−1/(2m+1)
2m+1

)]
, |a2m+1| ≫ 1, (133)

where

v = (p1x + 2ip0p1t, 0, . . . , 0, a2m+1, 0, . . .) , (134)

whose first element is the leading-order terms of x+

1 in Lemma 3. Using these asymptotics and repeating similar steps as before, we
find that the solution [|u1,N (x, t)|, |u2,N (x, t)|] would be on the uniform background except at or near (x, t) locations

(
x̃0, t̃0

)
where

z0 = Ω−1 (p1x̃0 + 2ip0p1 t̃0
)

(135)

is a root of the polynomial Q [m]

N (z). This
(
x̃0, t̃0

)
is the leading-order approximate location of nontrivial rogue dynamics, and they can

be solved explicitly as

x̃0 =
1

ℜ(p0)
ℜ

[
z0Ω
p1

p∗

0

]
, t̃0 =

1
2ℜ(p0)

ℑ

[
z0Ω
p1

]
.

Next, we use a refined asymptotics to show that near the above location there is a fundamental Manakov rogue wave, whose position
s the above

(
x̃0, t̃0

)
plus a certain O(1) shift. We start with the refined asymptotics

Sj(x+(n, k) + νs) = Ω jp[m]

j

[
z+

+ νs1Ω−1] [1 + O
(
a−2/(2m+1)
2m+1

)]
, (136)

where z+
= Ω−1x+

1 , and x+

1 (x, t; n, k) is defined in Lemma 3. Performing similar calculations as in the proof of Theorem 2 for the
Boussinesq equation, we have

det
1≤i,j≤N

[
p[m]

2i−j

(
z+

+ (j − 1)s1Ω−1)]
= c−1

N

[
Q [m]

N

]′

(z0)
[
x+

1 (x − x̃0, t − t̃0; n, k) + (N − 1)s1
]

Ω−1
+ O(Ω−2).

e can absorb the (N − 1)s1 term of the above equation into its x̃0 and t̃0 terms, so that it becomes

det
1≤i,j≤N

[
p[m]

2i−j

(
z+

+ (j − 1)s1Ω−1)]
= c−1

N

[
Q [m]

N

]′

(z0) x+

1 (x − x̂0, t − t̂0; n, k) Ω−1
+ O(Ω−2), (137)

where (x̂0, t̂0) are as given in Eqs. (67)–(68) of Theorem 3. This (x̂0, t̂0) is the improved, and asymptotically more accurate, location of
fundamental rogue wave, which we will see in a moment.
The σn,k determinant in Eq. (35) of Lemma 3 can be expanded similarly to Eq. (109). Using the above asymptotics and their

counterparts for Sj(x−(n, k) + νs∗), and repeating similar calculations as in the proof of Theorem 2, we can readily get

σn,k(x, t) = χ̂3

⏐⏐⏐⏐[Q [m]

N

]′

(z0)
⏐⏐⏐⏐2 |a2m+1|

N(N+1)−2
(2m+1)

[
x+

1 (x − x̂0, t − t̂0; n, k)x−

1 (x − x̂0, t − t̂0; n, k) +
|p1|2

(p0 + p∗

0)2

] [
1 + O

(
a−1/(2m+1)
2m+1

)]
,

here

χ̂3 = c−2
N

(
|p1|2

(p0 + p∗

0)2

) N(N−1)
2

(
2m + 1
22m

) N(N+1)−2
2m+1

.

rom Lemma 3, we see that the leading order term of this asymptotics of σn,k(x, t) yields the fundamental rogue wave of the Manakov
ystem, whose explicit expressions are given in Eqs. (64)–(65), and the error of this leading order approximation is O

(
a−1/(2m+1)
2m+1

)
.

Asymptotics of (70)–(71) away from the origin in Theorem 3 is then proved.
Regarding the asymptotics (73)–(74) in the neighborhood of the origin, its proof is identical to that for the Boussinesq equation.

In particular, the new parameters {â1, â3, . . . , â2N0−1} in the lower-order rogue wave [u1,N0 (x, t), u2,N0 (x, t)] are related to the original
parameters {a , a , . . . , a } by the same relation (131), which is Eq. (72) in Theorem 3. This completes the proof of Theorem 3.
1 3 2N0−1
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. Universal rogue patterns associated with the Yablonskii–Vorob’ev polynomial hierarchy

Rogue patterns presented in Theorems 1–3 for the GDNLS, Boussinesq and Manakov equations have a lot in common. In all three
ases, their rogue waves form clear geometric shapes made up of fundamental rogue waves, whose (x, t) locations are determined by
he root structures of the Yablonskii–Vorob’ev polynomial hierarchy Q [m]

N (z) through a linear transformation (75). In addition, a possible
ower-order rogue wave may appear at the wave center. Since this transformation (75), from the complex root plane of Q [m]

N (z) to the
(x, t) plane of fundamental-rogue-wave locations, is linear, we see that rogue patterns in these equations are nothing but a linear
transformation of the Yablonskii–Vorob’ev root structures. These root structures have elegant shapes such as triangles, pentagons and
heptagons (see Fig. 1), and their linear transformations are just those shapes under simple actions such as rotation, dilation, stretch,
shear and translation (see Fig. 2). This explains all the rogue-wave shapes illustrated in Section 4 for these three integrable systems.

Clearly, the above rogue patterns are not restricted to these three integrable systems. In fact, we reported these same rogue patterns
first for the NLS equation in Ref. [43]. In that case, rogue patterns from the fundamental (Peregrine) waves are described by the linear
transformation (75) as well, where

B =

[
ℜ(Ω) −ℑ(Ω)
ℑ(Ω) ℜ(Ω)

]
,

[
∆1
∆2

]
=

[
0
0

]
, (138)

and Ω is as defined in Eq. (49). We have also checked the three-wave resonant interaction system, whose bilinear rogue waves were
derived in Ref. [65]. Again, for a broad class of its rogue waves which are counterparts of Manakov rogue waves in Lemma 3, we
have found that when one of their internal parameters is large, those rogue waves would exhibit geometric shapes, made up of
fundamental-rogue-wave ‘‘molecules", that are also the linearly-transformed root structures of the Yablonskii–Vorob’ev polynomial
hierarchy, together with a possible lower-order rogue wave at the center, just like the NLS equation and the three other integrable
systems considered in this article.

In all these integrable systems, the τ functions of their rogue waves can be expressed through Schur polynomials with index jumps
of 2, see Eqs. (7), (18), (35) and Ref. [43,65]. Whenever that happens, we can clearly see from the asymptotic analysis such as that
given in the previous section that rogue patterns will always be linearly-transformed Yablonskii–Vorob’ev root structures. Since the τ
functions of rogue waves can also be expressed through Schur polynomials with index jumps of 2 in many other integrable systems,
such as the Ablowitz–Ladik equation [71], the Yajima–Oikawa system [72], the nonlinear Schrödinger–Boussinesq equation [73], and
the long-wave-short-wave interaction system [74], rogue patterns similar to the ones reported in this article would obviously hold for
such systems as well. Thus, these are universal rogue patterns associated with the Yablonskii–Vorob’ev polynomial hierarchy.

What are the common features of these universal rogue patterns obtained from a linear transformation (75) to the Yablonskii–
Vorob’ev root structures? First, these rogue waves all have geometric shapes such as triangles, pentagons and heptagons, formed by
fundamental-rogue-wave components, together with a possible lower-order rogue wave at the center. These geometric shapes are
inherited from similar shapes in the Yablonskii–Vorob’ev root structures. Second, the size of the rogue pattern in the (x, t) plane is
proportional to |Ω|, i.e., to |a2m+1|

1/(2m+1), where a2m+1 is the large internal parameter of the rogue wave. The reason is that this size
is controlled by the magnitude of the matrix B’s elements in the transformation (75), and it is easy to see that the magnitude of every
element in the matrix B is proportional to |Ω|. Thirdly, the orientation of the rogue pattern is controlled by the phase of the large
parameter a2m+1 through the matrix B of the transformation. This third feature has been elaborated for the NLS equation in Ref. [43],
and is also clearly visible from the matrix B’s expressions (76)–(78) for the GDNLS, Boussinesq and Manakov equations.

Are there differences between rogue patterns in different integrable systems? Definitely, as inspections of rogue patterns displayed
in Section 4 clearly show. The largest difference is the amount of stretch and shear induced by the matrix B to the Yablonskii–Vorob’ev
root structures. For the NLS equation, the Boussinesq equation, the GDNLS equations with α = 1, and the Manakov system with
p0 = 1/2, the matrix B is equal to a certain scalar multiplying a rotation matrix. In such cases, the action of the B matrix on the
root structure is just a combination of dilation and rotation — no stretch and shear. The resulting rogue patterns are then the most
recognizable from the Yablonskii–Vorob’ev root structures, see Figs. 5–6 for the Boussinesq equation and Ref. [43] for the NLS equation.
However, for other integrable systems such as the GDNLS equations with α ̸= 1 and the Manakov system with p0 ̸= 1/2, the B matrix
does induce stretch and shear, and the resulting rogue patterns are thus skewed versions of the Yablonskii–Vorob’ev root structures,
see Figs. 3–4 and 7–8. The degree of this skewness is determined by details of the B matrix. Our studies show that in the GDNLS and
Manakov equations, this skewness is often quite visible; but in the three-wave interaction model, this skewness is often more severe.

Another difference between rogue patterns in different integrable systems is the amount of position shifts to the rogue structure,
which is induced by the vector [∆1, ∆2] in the transformation (75). This position shift is zero for the NLS and GDNLS equations, but
nonzero for the Boussinesq and Manakov systems. However, since this position shift is uniform, it does not cause visual changes to the
shape of the rogue pattern.

7. Summary and discussion

We have shown that universal rogue wave patterns exist in integrable systems. These rogue patterns are linearly transformed root
structures of the Yablonskii–Vorob’ev polynomial hierarchy. At each transformed nonzero root lies a fundamental rogue wave of the
underlying system, and at the transformed zero root lies a lower-order rogue wave of the system. Visually, these rogue patterns appear
in shapes such as triangles, pentagons and heptagons, or their skewed versions due to stretch and shear. They reliably arise when
one of the internal parameters in bilinear expressions of rogue waves gets large, and different internal parameters induce different
rogue shapes. Detailed analytical predictions of these rogue patterns have been worked out for the GDNLS, Boussinesq and Manakov
equations, and these predictions have been found to be in complete agreement with true rogue patterns. When compared to rogue
patterns reported earlier for the NLS equation in Ref. [43], the main difference is that in these more general integrable systems, rogue
patterns can be skewed versions of the Yablonskii–Vorob’ev root structures.

These rogue patterns associated with the Yablonskii–Vorob’ev polynomial hierarchy can also arise in other different situations.
For example, rational high-order lump solutions in configurations of triangles, pentagons and heptagons have been reported in the
20
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adomtsev–Petviashvili (KP) I equation [75]. This is not surprising, since at least some rational lump solutions of the KP-I equation
an be obtained from NLS rogue wave solutions through a proper variable connection [9]. KP lumps can also be expressed through
eneralized Schur polynomials [76–78]. Thus, performing large-parameter asymptotics to these KP-lump solutions in the same spirit
s this paper, patterns of KP lumps could be analytically predicted.
It is noted that these rogue patterns as reported in this article are universal when the τ functions of the underlying rogue wave

expressions can be expressed through Schur polynomials with index jumps of 2, which is the case for the three integrable systems of
this article and many others [43,71–74]. However, there also exist rogue waves whose τ functions cannot be expressed through Schur
polynomials with index jumps of 2. For example, certain rogue waves in the three-wave resonant interaction system as derived by the
bilinear method in Ref. [65] are expressed through Schur polynomials with index jumps of 3 instead of 2. When internal parameters
in such rogue waves get large, very different rogue patterns will arise, and they will be asymptotically described by root structures of
different types of polynomials. Pattern analysis of such rogue waves is beyond the scope of this article and will be pursued in future
publications.
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Appendix A

In this appendix, we briefly derive the new bilinear expressions of Boussinesq rogue waves presented in Lemma 2. These rogue wave
expressions can be obtained by applying the new parameterization developed in Ref. [21] to the bilinear derivation of rogue waves in
Ref. [44]. Specifically, instead of the previous choice (7) for the matrix element mij in Ref. [44], which we denote as φij in the present
paper, we now choose

φij =
1
i!
[f (p)∂p]i

1
j!
[f (q)∂q]jφ

⏐⏐⏐⏐
p=q=−1

, (139)

here

φ =
(p − 1)(q − 1)

−2(p + q)
exp

(
ξ + η +

∞∑
r=1

ar [lnW(p)]r +

∞∑
r=1

br [lnW(q)]r
)

, (140)

ξ = px1 + p2x2, η = qx1 − q2x2, (141)

f (p), W(p) are certain well-defined functions given in [44], and ar , br are arbitrary complex constants. Obviously, the function τ =

det1≤i,j≤N
(
φ2i−1,2j−1

)
with the above choice of φij also satisfies the bilinear equation (38) in Ref. [44]. Then, when we set br = (−1)ra∗

r ,
x1 = x/2 and x2 = −it/4, this τ function would satisfy the bilinear equation (35) of the Boussinesq equation in Ref. [44].

Applying the same reduction technique of [44] to the above new τ solution, we can remove the differential operators in the
expression (139) of its matrix element φij and reduce it to σ = det1≤i,j≤N

(
φ2i−1,2j−1

)
, where

φi,j =

min(i,j)∑
ν=0

(
−1
12

)ν

Si−ν(x̂+
+ νs) Sj−ν(x̂−

+ νs), (142)

ectors x̂±
=
(
x̂±

1 , x̂±

2 , . . .
)
are defined by

x̂+

r =
e2iπ/3

+ (−1)re−2iπ/3

2 · 3r · r!

[
x + (−2)r−1it

]
+ ar , r ≥ 1, (143)

x̂−

r =
e2iπ/3

+ (−1)re−2iπ/3

2 · 3r · r!

[
x − (−2)r−1it

]
+ (−1)ra∗

r , r ≥ 1, (144)

nd s = (s1, s2, . . .) are coefficients from the expansion (23) in Lemma 2. Notice that
(
x̂+
r

)∗
= (−1)r x̂−

r and [Sj(x̂+
+ νs)]∗ =

−1)jSj(x̂−
+ νs), and thus σ is real. Through a shift of the x and t axes, we normalize a1 = 0 without loss of generality. Finally,

e split the vectors x̂± into x±
+ w±, where x±

= (x̂±

1 , 0, x̂±

3 , 0, . . .), and w±
= (0, x̂±

2 , 0, x̂±

4 , . . .). Repeating the same steps as in
ppendix A of Ref. [43], we can show that the determinant det1≤i,j≤N

(
φ2i−1,2j−1

)
becomes one whose matrix element φij is as given in

emma 2.
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ppendix B

In this appendix, we briefly derive the Manakov bilinear rogue waves presented in Lemma 3.
Under the transformation

u1(x, t) = ρ1
g
f
ei(k1x+ω1t), u2(x, t) = ρ2

h
f
ei(k2x+ω2t), (145)

where f is real and (g, h) complex, the Manakov system (25)–(26) can be converted into the following bilinear equations,(
D2
x + ϵ1ρ

2
1 + ϵ1ρ

2
1

)
f · f = ϵ1ρ

2
1gg

∗
+ ϵ2ρ

2
2hh

∗,(
iDt + D2

x + 2ik1Dx
)
g · f = 0,(

iDt + D2
x + 2ik2Dx

)
h · f = 0.

(146)

This bilinear system can be reduced from the following higher-dimensional bilinear system in the 2-component Kadomtsev–Petviashvili
(KP) hierarchy [79],

( 12DxDr − 1)τn,k · τn,k = −τn+1,k τn−1,k,

(D2
x − Dy + 2aDx)τn+1,k · τn,k = 0,

( 12DxDs − 1)τn,k · τn,k = −τn,k+1 τn,k−1,

(D2
x − Dy + 2bDx)τn,k+1 · τn,k = 0,

(147)

here n, k are integers, τn,k is a function of four independent variables (x, y, r, s), and

a = ik1, b = ik2. (148)

he solution τn,k to these higher-dimensional bilinear equations was given by a certain Gram determinant in Ref. [79], but that Gram
olution was appropriate only for the derivation of dark solitons. For the derivation of rogue waves here, the solution τn,k should be
hosen as

τn,k = det
1≤ν,µ≤N

(
φ

(n,k)
iν ,jµ

)
, (149)

here (i1, i2, . . . , iN ) and (j1, j2, . . . , jN ) are arbitrary sequences of indices, the matrix element φ
(n,k)
ij is defined as

φ
(n,k)
ij = AiBjφ

(n,k), (150)

φ(n,k)
=

(p + q0)(q + p0)
(p0 + q0)(p + q)

(
−

p − a
q + a

)n (
−

p − b
q + b

)k

eξ+η, (151)

ξ = px + p2y +
1

p − a
r +

1
p − b

s + ξ0(p), (152)

η = qx − q2y +
1

q + a
r +

1
q + b

s + η0(q), (153)

Ai =
1
i!

[
f1(p)∂p

]i
, Bj =

1
j!

[
f2(q)∂q

]j
, (154)

p, q, p0, q0 are arbitrary complex constants, and ξ0(p), η0(q), f1(p), f2(q) are arbitrary functions of p and q respectively. The reason these
unctions also satisfy the higher-dimensional bilinear system (147) is that these functions satisfy the same differential and difference
elations (10) of Ref. [79]. Compared to the counterpart choices of the τ -function’s matrix elements in Eq. (8) of Ref. [79], our choice
f the φ(n,k) function above contains an extra factor of (p + q0)(q + p0)/(p0 + q0). The benefit of this extra factor is that it will slightly
implify the derivation of rogue wave expressions through Schur polynomials at the end of this appendix. It is noted that this extra
actor has also been introduced in the derivation of rogue waves for the Boussinesq equation in Appendix A of this article, and for the
LS equation in Ref. [43], for similar reasons.
To reduce the higher-dimensional bilinear system (147) to the original system (146), we need to set

f = τ0,0, g = τ1,0, h = τ0,1, y = it, (155)

mpose the dimension reduction condition(
2∂x + ϵ1ρ

2
1∂r + ϵ2ρ

2
2∂s
)
τn,k = C τn,k, (156)

here C is some constant, and impose the conjugation condition

τ−n,−k = τ ∗

n,k. (157)

hese two reductions proceed exactly the same way as in Ref. [65]. Here,(
2∂x + ϵ1ρ

2
1∂r + ϵ2ρ

2
2∂s
)
φ

(n,k)
ij = AiBj [F1(p) + F2(q)]φ(n,k), (158)

where

F1(p) =
ϵ1ρ

2
1

+
ϵ2ρ

2
2

+ 2p, (159)

p − a p − b
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hich is the same as the expression (32) in Lemma 3 in view of Eq. (148), and F2(q) is the above F1(p) function with p switching to
and (a, b) switching to their complex conjugates. Then, if p0 is a non-imaginary simple root of the algebraic equation F ′

1(p) = 0, the
imension reduction and complex conjugation conditions (156)–(157) would be satisfied if we select the τn,k determinant (149) as

τn,k = det
1≤i,j≤N

(
φ

(n,k)
2i−1,2j−1

)
, (160)

here the matrix elements in τn,k are defined by

φ
(n,k)
i,j = AiBjφ

(n,k)
⏐⏐
p=p0, q=p∗

0, q0=p∗
0
, (161)

he function f1(p) inside the operator Ai is given by

f1(p) =

√
F2

1 (p) − F2
1 (p0)

F ′

1(p)
, (162)

he function f2(q) inside the operator Bi is the same as (162) except that the variable subscript 1 changes to 2 and (p, p0) change
o (q, p∗

0), and the function η0(q) in φ(n,k) is taken as η0(q) = [ξ0(p)]∗. Regarding free parameters, they are introduced through ξ0(p)
s [21,65]

ξ0(p) =

∞∑
r=1

ar lnr W1(p), (163)

here

W1(p) =

F1(p) +

√
F2

1 (p) − F2
1 (p0)

F1(p0)
, (164)

and ar (r = 1, 2, . . . ) are free complex constants. Notice that W1(p) is related to f1(p) through the relation f1(p) = W1(p)/W ′

1(p), which
as the key idea of the W-p treatment for dimension reduction as proposed in Ref. [44] and generalized in Ref. [65].
Lastly, we remove the differential operators in the matrix elements (161) and derive more explicit expressions of rogue waves

hrough Schur polynomials. This derivation is very similar to that we did in Ref. [65] for the three-wave system. In fact, this derivation
s a bit simpler now due to our introduction of the extra factor (p + q0)(q + p0)/(p0 + q0) in Eq. (151). Our algebraic expressions for
atrix elements of rogue waves can be further simplified beyond those in Ref. [65] by using the technique of splitting x̂± into x±

+w±,
ust as what we did at the end of Appendix A for the Boussinesq equation. Combining these steps, we then can obtain the rogue wave
xpressions given in Lemma 3 for the Manakov system. In addition, the parameter a1 can be normalized to zero through a shift of the
x, t) axes.
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