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Abstract
The existence of soliton families in nonparity-time-
symmetric complex potentials remains poorly under-
stood, especially in two spatial dimensions. In this arti-
cle, we analytically investigate the bifurcation of soliton
families from linearmodes in one- and two-dimensional
nonlinear Schrödinger equations with localizedWadati-
type nonparity-time-symmetric complex potentials. By
utilizing the conservation law of the underlying non-
Hamiltonian wave system, we convert the complex soli-
ton equation into a new real system. For this new real
system, we perturbatively construct a continuous fam-
ily of low-amplitude solitons bifurcating from a lin-
ear eigenmode to all orders of the small soliton ampli-
tude. Hence, the emergence of soliton families in these
nonparity-time-symmetric complex potentials is analyt-
ically explained.We also compare these analytically con-
structed soliton solutions with high-accuracy numer-
ical solutions in both one and two dimensions, and
the asymptotic accuracy of these perturbation solutions
is confirmed.
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1 INTRODUCTION

Nonlinear wave phenomena in parity-time ( ) symmetric systems have been under intensive
studies in the past decade (see Refs.1–3 for reviews). Although the concept of  symmetry orig-
inated from non-Hermitian quantum mechanics,4–6 it was the interpretation of  symmetry as
balanced gain and loss that made it flourish in optics and many other branches of physics.1–3,6,7
 symmetric systems are important for at least two reasons. From the intellectual point of view,
these systems are the first reported non-Hamiltonian systems that, despite the gain and loss,
exhibit many properties of Hamiltonian systems—such as all-real linear spectra and continuous
families of solitons.1–6 From the practical point of view,  symmetry has inspired many inter-
esting applications, such as the coherent perfect absorber laser8–10 and single-mode  lasers.11,12
While applications of  symmetry are still developing, its peculiar Hamiltonian-like phenom-
ena, such as the existence of all-real spectrum and continuous families of solitons, have already
been understood from a mathematical point of view.1,2,5,6 In particular, this understanding relies
entirely on the  symmetry.
In the past few years, it was discovered that certain non- -symmetric non-Hamiltonian

systems also share properties of Hamiltonian systems. For example, the linear Schrödinger
operator with certain types of non- -symmetric complex potentials could still admit all-real
spectra.13–16 In addition, the one- and two-dimensional nonlinear Schrödinger (NLS) equations
with Wadati-type non- -symmetric complex potentials could still admit continuous families of
solitons.15,17–19 Furthermore, in the NLS equations with Wadati-type non- -symmetric poten-
tials, the linear-stability spectra of solitons still exhibit the quartet eigenvalue symmetry that is
typical ofHamiltonian systems.20 In a generic non- -symmetric non-Hamiltonian system, none
of these properties would hold. Thus, why these Hamiltonian-like properties arise in certain types
of non- -symmetric non-Hamiltonian systems is an intriguing theoretical question. While the
all-real spectra of certain non- -symmetric complex potentials can be explained by techniques
such as supersymmetry and pseudo-Hermiticity,13–16 analytical explanations for the other prop-
erties associated with nonlinear non- -symmetric systems remain elusive.
This article is concerned with the question of why the NLS equations with Wadati-type non-

 -symmetric complex potentials could still admit continuous families of solitons. This phe-
nomenon is peculiar, because these non- -symmetric systems are non-Hamiltonian due to the
presence of gain and loss, and solitons in non-Hamiltonian systems are generically isolated and
do not exist as continuous families due to the double balancing requirement of nonlinearity with
dispersion and gain with loss.21 Numerical evidence to support this generic behavior in a non-
 -symmetric system can be found in Ref. 22, and a more mathematical reason for it can be
found in Ref. 23. In view of this generic behavior and in the absence of  symmetry, why soliton
families could appear in the NLS equations with special Wadati-type non- -symmetric poten-
tials is a deep mathematical mystery. It is physically meaningful for us to add that, unlike  -
symmetric potentials where the spatial gain and loss distributions must be balanced in an exact
anti-symmetric way, the Wadati potentials allow the gain and loss distributions to be arbitrary,
which could potentially accommodate more realistic non-Hamiltonian physical systems in optics
and beyond. A physical setup to realize Wadati potentials in a coherent atomic system has been
proposed in Ref. 24.
In the one-dimensional (1D) case, some analytical understanding on this question has been

provided in Refs. 17 and 19. In Ref. 17, Konotop and Zezyulin discovered a constant of motion for
the underlying soliton equation with Wadati potentials. Combining this constant of motion with
a shooting argument, the authors gave a plausible, but not definitive, explanation for these soliton
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families. In Ref. 19, the authors used this constant of motion to convert the original second-order
complex soliton equation into a second-order real equation for the amplitude of the soliton. From
this real soliton-amplitude equation, it was shown that continuous families of solitons bifurcating
from linear modes could be constructed perturbatively. One drawback of this treatment in Ref.
19 is that this real amplitude equation has some sign ambiguity in front of a square root term,
which can cause technical complications. Another drawback, which is more serious, is that this
treatment cannot be generalized to two and higher spatial dimensions.
In the 2D case, while soliton families in the 2D NLS equations with separable Wadati-type

non- -symmetric potentials were briefly mentioned on numerical grounds in Ref. 18, there has
been absolutely no analytical explanation for this phenomenon yet, except that a conservation law
for the underlying non-Hamiltonian 2D equation was reported in that same article. Note that in
this 2D case, the shooting argument of Ref. 17 no longer applies. In addition, the real-amplitude-
equation treatment of Ref. 19 also fails. Thus, new approaches need to be developed to analytically
explain these 2D soliton families.
Wewould like tomention that continuous families of solitons in the 1DNLS equation perturbed

by non- -symmetric potentials more general than theWadati-type were also reported by Komi-
nis et al.25 throughMelnikov’s perturbationmethod. As the authors’ analysis was carried out only
to the first order of the perturbation series, we suspect that those soliton families in non-Wadati
potentials are valid only to the first order of the perturbation theory, but not to higher orders.
If so, then those “soliton families” would be just approximate solutions, but not true solitons.
This suspicion makes it more imperative to analytically explain the existence of soliton families
in non- -symmetricWadati potentials, since such analytical understanding could shed light on
the nature of “soliton families” reported in Ref. 25 for non-Wadati potentials.
In this article, we analytically investigate the bifurcation of soliton families from linearmodes in

the 1D and 2D NLS equations with non- -symmetric Wadati-type localized potentials through
a new perturbative treatment. Utilizing the constant of motion of the underlying soliton equa-
tion, we convert this complex soliton equation into a new real system. The advantage of this new
real system is that it allows us to analytically construct low-amplitude soliton families perturba-
tively to all orders of the amplitude in both one and two dimensions. Hence, soliton families in
these 1D and 2D non- -symmetric systems are analytically established. The reason this con-
struction can be pursued to all orders is that the linear operator of these perturbation equations
possesses two localized functions in its kernel, whereas the associated adjoint operator contains a
single localized or bounded function in its kernel. These kernel structures, togetherwith the phase
invariance of solitons, ensure that at each order, the Fredholm condition for localized perturba-
tion solutions can always be satisfied. Hence, we can construct a low-amplitude soliton solution,
as a perturbation series to all orders, at each propagation constant in a continuous interval bor-
dering the linear eigenmode of the potential. In other words, a soliton family bifurcating from
a linear mode is derived in the underlying non- -symmetric non-Hamiltonian system. These
analytically constructed perturbation-series solutions for the soliton families are also compared
to direct numerical solutions, and the asymptotic accuracy of these perturbation series solutions
is confirmed.

2 CONSTRUCTION OF SOLITON FAMILIES IN THE 1D CASE

We first consider the 1D NLS equation

𝑖𝑈𝑡 + 𝑈𝑥𝑥 + 𝑉(𝑥)𝑈 + 𝜎|𝑈|2𝑈 = 0 (1)
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with a non- -symmetric Wadati potential
𝑉(𝑥) = 𝑔2(𝑥) + i𝑔′(𝑥), (2)

where 𝑔(𝑥) is an asymmetric real function that is differentiable everywhere, the prime repre-
sents differentiation, and 𝜎 = ±1 is the sign of cubic nonlinearity. As 𝑔(𝑥) is real and asymmetric,
𝑉∗(−𝑥) ≠ 𝑉(𝑥), that is, the complex potential 𝑉(𝑥) is non- -symmetric.1–3,7 Potentials of this
form appeared in Wadati’s investigation of complex potentials with real spectra,26 and are thus
sometimes referred to as the Wadati potentials in the literature. In the optical context, the com-
plex potential 𝑉(𝑥) in Equation (1) corresponds to the complex refractive index of the medium,
where the imaginary part of 𝑉(𝑥), that is, Im(𝑉), describes the spatial gain and loss distributions,
with regions of Im(𝑉) > 0 being lossy and regions of Im(𝑉) < 0 being gain.1–3,7 In this physical
setting, since the function 𝑔(𝑥) in theWadati potential (2) can be arbitrary, this complex potential
then can accommodate optical systems with arbitrary gain and loss distributions. The main con-
straint of theWadati potential is that, the real refractive index profile of the medium, as described
by the real part of the complex potential Re(𝑉), should be designed accordingly as 𝑔2(𝑥). But
this requirement on the real refractive index profile can be readily met given the sophisticated
refractive-index engineering technology that is currently widely available.
An important property of the NLS equation (1) with Wadati potentials is that although this

equation is non-Hamiltonian due to the complex potential, it admits a conservation law

𝑄𝑡 + 𝐽𝑥 = 0, (3)

where

𝑄 = −𝑈∗(i𝑈𝑥 − 𝑔𝑈), 𝐽 = |𝑈𝑥 + i𝑔𝑈|2 + i𝑈∗𝑈𝑡 +
𝜎

2
|𝑈|4, (4)

and the asterisk “*” represents complex conjugation. This conservation law is a special case of
the more general conservation law reported in Ref. 18 for the 2D NLS equation with a separable
Wadati-type potential.
Solitons in Equation (1) are of the form

𝑈(𝑥, 𝑡) = 𝑒i𝜇𝑡𝑢(𝑥), (5)

where 𝜇 is a real propagation constant, and 𝑢(𝑥) is a localized function satisfying the soliton equa-
tion

𝑢𝑥𝑥 + (𝑔2 + i𝑔′)𝑢 − 𝜇𝑢 + 𝜎|𝑢|2𝑢 = 0. (6)

Notice that this complex soliton equation is phase-invariant, that is, if 𝑢(𝑥) is a solution, so is
𝑒i𝜃𝑢(𝑥), where 𝜃 is an arbitrary real constant. Substituting the soliton solution (5) into the conser-
vation law (3), we get 𝑑𝐽∕𝑑𝑥 = 0, where

𝐽(𝑥) = |𝑢𝑥 + i𝑔𝑢|2 − 𝜇|𝑢|2 + 𝜎

2
|𝑢|4. (7)
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As solitons decay to zero as 𝑥 → ±∞, we see that 𝐽(𝑥) = 0, which is a constant of motion for the
soliton equation (6). This constant of motion is equivalent to the one reported in Ref. 17 for the
same equation (6).
Soliton families in Equation (6), parameterized by the propagation constant 𝜇, for non- -

symmetric Wadati potentials were reported numerically in Ref. 15, and studied analytically in
Refs. 17, 19, and 23 with limited success. In particular, the perturbative construction of small-
amplitude soliton families as proposed in Refs. 23 and 19 exhibits some difficulties. The pertur-
bative construction in Ref. 23 was based on the complex soliton equation (6). The difficulty with
this construction, as explained in Ref. 23, is that each order of the perturbation series creates a
nontrivial condition that needs to be satisfied, and it is almost impossible to prove that all those
infinite number of conditions would hold. The perturbative construction in Ref. 19 was based on
a real second-order equation for the amplitude |𝑢(𝑥)| of the soliton, and this real amplitude equa-
tion was derived from the original complex equation (6) with the help of the above constant of
motion 𝐽(𝑥) = 0. This latter construction removed those infinite number of nontrivial conditions
of the former, and thus made the perturbative construction possible, at least in principle. But it
does create some technical difficulties. For example, this reduced amplitude equation contains a
square root term, whose sign can be ambiguous and cause technical complications. To remove
this ambiguity, some technical assumptions had to be imposed in Ref. 19. Amore serious problem
with this latter treatment is that it does not work for the 2D case. In other words, in two (and
higher) spatial dimensions, we will not be able to convert the original complex soliton equation
into a single real equation for the amplitude of the soliton.
In this section, we will develop a new perturbative construction of low-amplitude soliton fam-

ilies in Equation (6), which can be easily pursued to all orders of the perturbation series. More
importantly, this new 1D treatment can be readily generalized to the 2D case.
For the technical convenience of our perturbative construction, we will assume that theWadati

potential (2) is localized in space, that is, the real function 𝑔(𝑥) and its derivative 𝑔′(𝑥) in this
potentialwill be assumed to be localized. This assumption of locality on the potential has twomain
benefits. One is that such a Wadati potential often admits a discrete real eigenvalue,15,16 which is
the starting point of our perturbative calculation. The other is that under this locality assumption,
the eigenfunction associated with this discrete real eigenvalue of the potential features simple and
explicit exponential decay at large distances. These explicit decay rates of the eigenfunction facili-
tate our derivation and understanding of the kernels for the linearization operator and its adjoint
in the upcoming Section 2.2. If the Wadati potential (2) is not localized (for instance, unbounded)
but still admits a discrete real eigenvalue, then the analysis of this section can still go through,
because the kernel structures of the linearization operator and its adjoint to be established in Sec-
tion 2.2 would still remain valid. However, if theWadati potential (2) is periodic, then the situation
would be different. In this case, the periodic potential does not admit any discrete real eigenval-
ues. Instead, the spectrum of the potential comprises Bloch bands. Low-amplitude solitons, if any,
would have to bifurcate out from edges of these Bloch bands as envelope solitons.27 The analytical
calculation of soliton bifurcation from Bloch-band edges in a periodic Wadati potential would be
very different from the one to be developed in this section, and it will be left for future studies.

2.1 A new real system for solitons and its perturbation expansion

It can be checked that the original complex soliton equation (6) is equivalent to two real
equations—one is that the real part of (6) is zero, and the other is 𝐽 = 0, where 𝐽 is given in
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Equation (7). The first real equation comes directly from (6), and the second one is the constant of
motion discussed below Equation (7). To see these two real equations combined could also repro-
duce the original complex equation (6), we only need to notice that 𝑑𝐽∕𝑑𝑥 is equal to the real part
of the product between 𝑢∗𝑥 − 𝑖𝑔𝑢∗ and the left side of the complex soliton equation (6). Thus, if
𝐽 = 0 and the real part of (6) is zero, then the imaginary part of (6) needs to be zero as well.
Expressing 𝑢(𝑥) as

𝑢(𝑥) = 𝑝(𝑥) + i𝑞(𝑥), (8)

where 𝑝(𝑥) and 𝑞(𝑥) are the real and imaginary parts of the complex function 𝑢(𝑥), these two real
equations for solitons are

𝑝𝑥𝑥 + (𝑔2 − 𝜇)𝑝 − 𝑔′𝑞 + 𝜎(𝑝2 + 𝑞2)𝑝 = 0, (9)

(𝑝𝑥 − 𝑔𝑞)2 + (𝑞𝑥 + 𝑔𝑝)2 − 𝜇(𝑝2 + 𝑞2) +
𝜎

2
(𝑝2 + 𝑞2)2 = 0. (10)

This system of two real equations will be the one we use to analytically calculate soliton families.
It is important to notice that this is a third-order real system, which contrasts the original soliton
equation (6), which is a fourth-order real systemwhen that complex equation is split into two real
second-order equations for 𝑝(𝑥) and 𝑞(𝑥). This third-order real system also contrasts the second-
order real system we derived in Ref. 19 for the amplitude |𝑢(𝑥)| of the soliton.
Now, we perturbatively construct a continuous family of low-amplitude solitons bifurcating

from a linear discrete eigenmode of a localized Wadati potential. Suppose the Schrödinger oper-
ator 𝜕𝑥𝑥 + 𝑉(𝑥) with a localized Wadati potential (2) admits a discrete real eigenvalue 𝜇0, whose
eigenfunction is 𝜙(𝑥) + i𝜓(𝑥), where 𝜙(𝑥) and 𝜓(𝑥) are localized real functions. Then,(

𝜕𝑥𝑥 + 𝑔2 + i𝑔′
)
(𝜙 + i𝜓) = 𝜇0(𝜙 + i𝜓). (11)

The existence of such a real eigenvalue is common in a Wadati potential. For instance, it was
shown in Ref. 15 that if 𝑔(𝑥) is a single-humped localized real function, then the spectrum of the
corresponding Wadati potential is strictly real. In the more general case, it was shown in Ref.
16 that eigenvalues in a Wadati potential always come as complex–conjugate pairs and are thus
often real. Because this potential is assumed to be localized, its discrete real eigenvalue 𝜇0 must
be positive, that is, 𝜇0 > 0.
Bifurcating from this linear discrete eigenmode, we seek a low-amplitude soliton at each real

propagation constant 𝜇 near 𝜇0, and this soliton can be expanded into the following perturbation
series:

𝑝(𝑥; 𝜇) = 𝜖1∕2
[
𝑝0(𝑥) + 𝜖𝑝1(𝑥) + 𝜖2𝑝2(𝑥) +⋯

]
, (12)

𝑞(𝑥; 𝜇) = 𝜖1∕2
[
𝑞0(𝑥) + 𝜖𝑞1(𝑥) + 𝜖2𝑞2(𝑥) +⋯

]
, (13)



10 YANG

where 𝜖 = 𝜇 − 𝜇0 and is assumed to be small positive (so that 𝜖1∕2 is real). This means that we
assume that the bifurcation is to the right side of 𝜇0, that is, 𝜇 > 𝜇0. As we will see in later text
(see Equation (34)), this rightward bifurcation can be induced by a proper choice on the sign of
nonlinearity 𝜎. If this sign of nonlinearity is opposite of that choice, the soliton bifurcation will
be to the left side of 𝜇0. In that case, we can define 𝜖 = 𝜇0 − 𝜇, and the rest of the perturbative
calculation would be very similar.
Substituting the above perturbation expansion into the real system (9)–(10), we get a sequence

of real equations for the functions (𝑝𝑘, 𝑞𝑘). The equations for (𝑝0, 𝑞0) are

(𝜕𝑥𝑥 + 𝑔2 − 𝜇0)𝑝0 − 𝑔′𝑞0 = 0, (14)

(𝑝0𝑥 − 𝑔𝑞0)
2 + (𝑞0𝑥 + 𝑔𝑝0)

2 − 𝜇0(𝑝
2
0
+ 𝑞2

0
) = 0. (15)

Even though this is a nonlinear system, it is scaling invariant, that is, if (𝑝0, 𝑞0) is a solution, so
is (𝛼𝑝0, 𝛼𝑞0), where 𝛼 is an arbitrary real constant. Thus, this system is actually an eigenvalue
problem in disguise and is equivalent to the linear complex eigenvalue problem (11). Its solution
then is [

𝑝0
𝑞0

]
= 𝑐0

[
𝜙

𝜓

]
, (16)

where 𝑐0 is a real constant to be determined. Indeed, since 𝜙 + i𝜓 is a solution to the linear eigen-
value problem (11), the above (𝑝0, 𝑞0) then satisfy the original equations (9)–(10) to leading order,
which are Equations (14) and (15).
Utilizing the above (𝑝0, 𝑞0) solution, we find that the functions (𝑝𝑘, 𝑞𝑘) for 𝑘 ≥ 1 are governed

by the following linear nonhomogeneous system of equations


[
𝑝𝑘
𝑞𝑘

]
=

[
𝑓𝑘
𝑔𝑘

]
, (17)

where

 =

[
𝜕𝑥𝑥 + 𝑔2 − 𝜇0 −𝑔′

(𝜙′ − 𝑔𝜓)𝜕𝑥 + 𝑔(𝜓′ + 𝑔𝜙) − 𝜇0𝜙 (𝜓′ + 𝑔𝜙)𝜕𝑥 − 𝑔(𝜙′ − 𝑔𝜓) − 𝜇0𝜓

]
, (18)

[
𝑓1
𝑔1

]
= 𝑐0

[
𝜙 − 𝜎𝑐2

0
(𝜙2 + 𝜓2)𝜙

1

2
(𝜙2 + 𝜓2) −

1

4
𝜎𝑐2

0
(𝜙2 + 𝜓2)2

]
, (19)

[
𝑓2
𝑔2

]
=

[(
1 − 3𝜎𝑝2

0
− 𝜎𝑞2

0

)
𝑝1 − 2𝜎𝑝0𝑞0𝑞1

1

2𝑐0

[
2
(
1 − 𝜎𝑝2

0
− 𝜎𝑞2

0

)
(𝑝0𝑝1 + 𝑞0𝑞1) + 𝜇0

(
𝑝2
1
+ 𝑞2

1

)
− (𝑝1𝑥 − 𝑔𝑞1)

2 − (𝑞1𝑥 + 𝑔𝑝1)
2)
]],
(20)
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[
𝑓𝑘
𝑔𝑘

]
=

[11 1221 22

][
𝑝𝑘−1
𝑞𝑘−1

]
+

[ [1]

𝑘 [2]

𝑘

]
, 𝑘 ≥ 3, (21)

the matrix elements𝑖𝑗 are 𝑘-independent and given by the formulae

11 = 1 − 3𝜎𝑝2
0
− 𝜎𝑞2

0
,

12 = −2𝜎𝑝0𝑞0,

21 =
1

𝑐0

[
𝑝0
(
1 − 𝜎𝑝2

0
− 𝜎𝑞2

0

)
+ 𝜇0𝑝1 − (𝑝1𝑥 − 𝑔𝑞1)𝜕𝑥 − 𝑔(𝑞1𝑥 + 𝑔𝑝1)

]
,

22 =
1

𝑐0

[
𝑞0
(
1 − 𝜎𝑝2

0
− 𝜎𝑞2

0

)
+ 𝜇0𝑞1 + 𝑔(𝑝1𝑥 − 𝑔𝑞1) − (𝑞1𝑥 + 𝑔𝑝1)𝜕𝑥

]
,

and [1]

𝑘
, [2]

𝑘
are functions that depend only on 𝑘, 𝑝0, 𝑝1, … , 𝑝𝑘−2, 𝑞0, 𝑞1, … , 𝑞𝑘−2 and 𝑔(𝑥). For

example, when 𝑘 = 3,

 [1]
3

= −𝜎
(
3𝑝0𝑝

2
1
+ 2𝑝1𝑞0𝑞1 + 𝑝0𝑞

2
1

)
,

 [2]
3

=
1

2𝑐0

[(
𝑝2
1
+ 𝑞2

1

) (
1 − 𝜎𝑝2

0
− 𝜎𝑞2

0

)
− 2𝜎(𝑝0𝑝1 + 𝑞0𝑞1)

2
]
.

Next, we will show that we can solve the linear nonhomogeneous equations (17) and obtain
localized solutions (𝑝𝑘, 𝑞𝑘) for all 𝑘, using the Fredholm alternative method.

2.2 Kernel structures of the linear operator and its adjoint operator

The key to solving linear nonhomogeneous equations (17) by the Fredholm alternative method is
to understand the kernel structures of the linear operator  and its adjoint operator 𝐴. Under
the inner product of

⟨𝐹,𝐺⟩ ≡ ∫
∞

−∞

[𝐹(𝑥)]𝑇 𝐺(𝑥) d𝑥, (22)

where the superscript “𝑇” represents the transpose of a vector or matrix, the adjoint operator of
 is

𝐴 =

[
𝜕𝑥𝑥 + 𝑔2 − 𝜇0 −𝜕𝑥(𝜙

′ − 𝑔𝜓) + 𝑔(𝜓′ + 𝑔𝜙) − 𝜇0𝜙

−𝑔′ −𝜕𝑥(𝜓
′ + 𝑔𝜙) − 𝑔(𝜙′ − 𝑔𝜓) − 𝜇0𝜓

]
. (23)

First, we consider the kernel structure of operator. It is easy to check that this kernel contains
the following two localized functions:

𝐾1 ≡
[
𝜙

𝜓

]
, 𝐾2 ≡

[
−𝜓

𝜙

]
, (24)
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where

𝐾1 = 𝐾2 = 0. (25)

Indeed, 𝐾1 = 0 is equivalent to the complex linear eigenvalue equation (11), and 𝐾2 = 0 is
equivalent to this complex eigenvalue equation with the eigenfunction changing from 𝜙 + i𝜓 to
i(𝜙 + i𝜓), which clearly remains an eigenfunction. Another way to understand these kernel func-
tions is that the first kernel function 𝐾1 is induced by the scaling invariance of the complex linear
eigenvalue equation (11), and the second kernel function 𝐾2 is induced by the phase invariance of
that same equation.
It is clear that  is a third-order differential operator. Thus, the system 𝐾 = 0 admits one

more linearly independent solution 𝐾3 in addition to 𝐾1 and 𝐾2. This third solution is obviously
unbounded in space. Indeed, since 𝜙 + i𝜓 is the eigenfunction of the Schrödinger operator with
a localized potential at the positive eigenvalue 𝜇0 (see Equation (11)), both 𝜙(𝑥) and 𝜓(𝑥) decay
exponentially at the rate of 𝑒−

√
𝜇0 |𝑥| when 𝑥 → ±∞. Then, converting the system 𝐾 = 0 into a

system of three first-order equations and using Abel’s formula, we can show that this third solu-
tion 𝐾3(𝑥) grows exponentially at the rate of 𝑒

√
𝜇0 |𝑥| when 𝑥 → ±∞.

Next, we consider the kernel structure of 𝐴. Functions in this kernel can be derived from
the functions in the kernel of . One way to do so is to first rewrite the equation 𝐾 = 0 with
𝐾 ≡ [𝐾[1], 𝐾[2]]𝑇 as a first-order system

𝜕𝑥𝑌 = 𝑃(𝑥)𝑌 (26)

for 𝑌 = [𝐾[1], 𝐾
[1]
𝑥 , 𝐾[2]]𝑇 , where 𝑃(𝑥) is a 3 × 3 real matrix function. The fundamental matrix

(𝑥) of this first-order homogeneous system is given through the three solutions 𝐾1, 𝐾2, and 𝐾3
of the original system 𝐾 = 0 as

 =

⎡⎢⎢⎢⎣
𝐾
[1]
1

𝐾
[1]
2

𝐾
[1]
3

𝐾
[1]
1,𝑥

𝐾
[1]
2,𝑥

𝐾
[1]
3,𝑥

𝐾
[2]
1

𝐾
[2]
2

𝐾
[2]
3

⎤⎥⎥⎥⎦. (27)

The adjoint of the first-order system (26) is

−𝜕𝑥𝑌
𝐴 = 𝑃𝑇𝑌𝐴, (28)

whose fundamentalmatrix is𝐴 = (−1)𝑇 . Using the large-𝑥 asymptotics of the (𝐾1, 𝐾2, 𝐾3) solu-
tions described in the previous paragraph, together with their Wronskian expression from Abel’s
formula, we can readily show that the third column of 𝐴 is localized with its second compo-
nent decaying at the rate of 𝑒−

√
𝜇0 |𝑥| at large |𝑥|, whereas the first and second columns of 𝐴 are

unbounded with their second components growing at the rate of 𝑒
√
𝜇0 |𝑥| at large |𝑥|.

The adjoint first-order system (28) has a simple connection with the original adjoint sys-
tem 𝐴𝐾𝐴 = 0. Specifically, if 𝑌𝐴 = [𝑌𝐴[1], 𝑌𝐴[2], 𝑌𝐴[3]]𝑇 , then 𝐾𝐴 = [𝑌𝐴[2], 𝑌𝐴[3]∕(𝜓′ + 𝑔𝜙)]𝑇 .
Using this connection, we see that the kernel of 𝐴 contains a single localized function, which



YANG 13

we denote as

𝐾𝐴
0
=

[
𝜙𝐴

𝜓𝐴

]
, (29)

where𝐴𝐾𝐴
0
= 0. This𝐾𝐴

0
is obtained from the third column of𝐴; so 𝜙𝐴(𝑥) decays at the rate of

𝑒−
√
𝜇0 |𝑥|when𝑥 → ±∞. Regarding the decay rate of𝜓𝐴(𝑥), using dominant balance on the second

equation of the adjoint system𝐴𝐾𝐴 = 0, we can show that 𝜓𝐴(𝑥) decays at the same rate of 𝑔(𝑥)
for large |𝑥|. The other two functions in the kernel of 𝐴 are obtained from the first and second
columns of 𝐴 and are thus both unbounded. More specifically, their first components grow at
the rate of 𝑒

√
𝜇0 |𝑥|, and their second components grow at the rate of 𝑒2

√
𝜇0 |𝑥|, when 𝑥 → ±∞.

2.3 The Fredholm solvability condition

Utilizing the above kernel structures of operators  and 𝐴, we can solve the linear nonhomo-
geneous equations (17) and obtain a localized solution (𝑝𝑘, 𝑞𝑘) for all 𝑘. To do so, we will use the
Fredholm solvability condition, which will be explained in this subsection.
First, we notice that 𝑓𝑘 on the right side of the nonhomogeneous equations (17) is localized, and

its decay rate at large |𝑥| is 𝑒−√𝜇0 |𝑥|, multiplied by a certain polynomial function of 𝑥. In addition,
𝑔𝑘 on the right side of these equations is also localized, and its decay rate at large |𝑥| is 𝑒−2√𝜇0 |𝑥|,
multiplied by another polynomial function of 𝑥. The reason for these decay rates of (𝑓𝑘, 𝑔𝑘) is that
𝑝𝑛 and 𝑞𝑛 in the expressions of 𝑓𝑘 and 𝑔𝑘 decay at the rate of 𝑒−

√
𝜇0 |𝑥|, multiplied by a polynomial

function of 𝑥. These decay rates of (𝑝𝑛, 𝑞𝑛) can be seen from the 𝜖 expansions (12)–(13) of solitons
(𝑝, 𝑞), which decay at the rate of 𝑒−

√
𝜇0+𝜖 |𝑥| at large |𝑥|. These decay rates of (𝑝𝑛, 𝑞𝑛) can also be

seen from Equations (17) that determine them.
In view of the decay rates of (𝑓𝑘, 𝑔𝑘) on the right side of the linear nonhomogeneous equations

(17), as well as the kernel structures of linear operators  and 𝐴 delineated in the previous sub-
section, the Fredholm alternative theorem says that these nonhomogeneous equations (17) would
admit a localized solution (𝑝𝑘, 𝑞𝑘) if and only if the nonhomogeneous term (𝑓𝑘, 𝑔𝑘)

𝑇 is orthogonal
to the localized function 𝐾𝐴

0
in the kernel of 𝐴, that is,⟨[
𝜙𝐴

𝜓𝐴

]
,

[
𝑓𝑘
𝑔𝑘

]⟩
= ∫

∞

−∞

(
𝜙𝐴𝑓𝑘 + 𝜓𝐴𝑔𝑘

)
d𝑥 = 0. (30)

The Fredholm alternative theorem was originally developed for compact operators (Ref. 28, page
160), which is restrictive. But this theorem can be generalized to operators with closed range
(Ref. 28, page 46). In this article, we will not attempt to prove that our operator  has closed
range. Instead, we will provide an elementary proof of this Fredholm alternative result below.
The necessity of the above condition (30) for Equation (17) to admit a localized solution can

be derived quickly by taking the inner product of this equation with the localized function 𝐾𝐴
0
in

the kernel of 𝐴. To prove the sufficiency of this condition, we can first rewrite Equation (17) as a
first-order system

𝜕𝑥𝑌 − 𝑃(𝑥)𝑌 = 𝐹, (31)
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where 𝑌 = [𝑝𝑘, 𝑝𝑘,𝑥, 𝑞𝑘]
𝑇 , 𝐹 = [0, 𝑓𝑘, 𝑔𝑘∕(𝜓

′ + 𝑔𝜙)]𝑇 , and 𝑃(𝑥) is the 3 × 3 real matrix function
in Equation (26). The fundamental matrix  for the first-order homogeneous system of (31) has
been discussed before. Using this fundamental matrix and variation of parameters, we can derive
the general solution to the nonhomogeneous system (31) as

𝑌(𝑥) = (𝑥)
(
𝐜 + ∫

𝑥

0

[𝐴(𝑧)
]𝑇
𝐹(𝑧)d𝑧

)
, (32)

where 𝐜 is a constant vector, and𝐴 = (−1)𝑇 is the fundamental matrix of the first-order adjoint
system (28). In viewof this explicit solution formula for Equation (31), aswell as the large-𝑥 asymp-
totics of fundamental matrices  and 𝐴 described earlier, we can readily see that a localized
solution 𝑌(𝑥) can be obtained, through a proper choice of the third element of the 𝐜 constant, if
the following condition is met:

∫
∞

−∞

[𝐴
3
(𝑥)

]𝑇
𝐹(𝑥)d𝑥 = 0, (33)

where 𝐴
3
is the third column of 𝐴. This third column is connected to the localized function

𝐾𝐴
0
through a relation explained in the last paragraph of the previous subsection. Then, using the

expression of 𝐹 given above, the above condition (33) reduces exactly to the Fredholm solvability
condition (30). Thus, the sufficiency of this Fredholm condition to guarantee the existence of a
localized solution in Equation (17) is directly proved.

2.4 Construction of perturbation series to all orders

Now, we use the Fredholm solvability condition (30) to determine a soliton solution 𝑢(𝑥; 𝜇)

through the perturbation series (12)–(13), to all orders of 𝜖 ≡ 𝜇 − 𝜇0, at each 𝜇 value near 𝜇0. These
solutions then constitute a continuous family of solitons, parameterized by the propagation con-
stant 𝜇, in the non- -symmetric Wadati potential (2).
We first consider Equation (17) for (𝑝1, 𝑞1). Substituting the (𝑓1, 𝑔1) expressions (19) into the

Fredholm solvability condition (30) and simplifying, we see that Equation (17) admits a localized
solution (𝑝1, 𝑞1) if and only if the constant 𝑐0 is selected as

𝑐0 = ±

√√√√√√ ∫ ∞

−∞

[
𝜙𝜙𝐴 +

1

2
(𝜙2 + 𝜓2)𝜓𝐴

]
d𝑥

𝜎 ∫ ∞

−∞

[
(𝜙2 + 𝜓2)𝜙𝜙𝐴 +

1

4
(𝜙2 + 𝜓2)2𝜓𝐴

]
d𝑥

. (34)

In order for the quantity under the square root above to be positive, 𝜎 must have the same sign
as the ratio of the two integrals in the above formula. In other words, in order for the soliton
bifurcation to appear for 𝜇 > 𝜇0, the nonlinearity must be of a certain sign. In this case, 𝑐0 has
two value choices that differ by a sign. But it is easy to see that these two sign choices in 𝑐 would
simply lead to two soliton solutions 𝑢(𝑥) = 𝑝(𝑥) + i𝑞(𝑥) that also differ only by a sign. As the 𝑢(𝑥)
equation (6) is phase-invariant, solutions differing by a sign are equivalent. Thus, we will just take
the plus sign for 𝑐0 below.
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When 𝑐0 is selected from the above formula (34), Equation (17) admits a localized solution for
(𝑝1, 𝑞1), which we denote as (𝑝1𝑠, 𝑞1𝑠). However, since the kernel of the homogeneous operator 
in Equation (17) contains two localized functions 𝐾1 and 𝐾2 given in Equation (24), the general
localized solution (𝑝1, 𝑞1) to the linear nonhomogeneous equations (17) is then[

𝑝1
𝑞1

]
=

[
𝑝1𝑠
𝑞1𝑠

]
+ 𝑐1

[
𝜙

𝜓

]
+ 𝑑1

[
−𝜓

𝜙

]
, (35)

where 𝑐1 and 𝑑1 are two real constants.
It is important to recognize that the 𝑑1 term above can be removed by phase invariance of the

complex soliton solution 𝑢(𝑥). To see this more clearly, we put the above perturbation solutions
together and get

𝑢(𝑥) = 𝜖1∕2
[
𝑐0𝜙 + 𝜖(𝑝1𝑠 + 𝑐1𝜙 − 𝑑1𝜓) + i[c0ψ + ϵ(q1s + c1ψ + d1ϕ)] + O(ϵ2)

]
= 𝜖1∕2

[
(𝑐0 + 𝜖𝑐1 + iϵd1)(ϕ + iψ) + ϵ(p1s + iq1s) + O(ϵ2)

]
= 𝜖1∕2𝑒iϵd1∕c0

[
(𝑐0 + 𝜖𝑐1)(𝜙 + iψ) + ϵ(p1s + iq1s) + O(ϵ2)

]
.

Notice that the 𝑑1 term only contributes a constant phase of order 𝜖 to the soliton solution 𝑢(𝑥).
But 𝑢(𝑥) is phase-invariant. Thus, that 𝑑1 term in (35) can be dropped and we can set[

𝑝1
𝑞1

]
=

[
𝑝1𝑠
𝑞1𝑠

]
+ 𝑐1

[
𝜙

𝜓

]
(36)

without loss of generality.
The (𝑝1, 𝑞1) solution in the above equation contains an unknown real constant 𝑐1. This 𝑐1 con-

stant will be determined from the Fredholm solvability condition on the (𝑝2, 𝑞2) equations. The
equations for (𝑝2, 𝑞2) are (17), where the nonhomogeneous terms (𝑓2, 𝑔2) are given in Equation
(20). Substituting the (𝑝0, 𝑞0) solutions (16) and (𝑝1, 𝑞1) solutions (36) into the (𝑓2, 𝑔2) expressions
(20) and recalling that (𝜙, 𝜓) satisfy Equation (15), we find that the (𝑓2, 𝑔2) expressions (20) reduce
to [

𝑓2
𝑔2

]
=

[
𝑓2𝑎
𝑔2𝑎

]
+ 𝑐1

[
𝑓2𝑏
𝑔2𝑏

]
, (37)

where

𝑓2𝑎 = (1 − 3𝜎𝑝2
0
− 𝜎𝑞2

0
)𝑝1𝑠 − 2𝜎𝑝0𝑞0𝑞1𝑠,

𝑓2𝑏 = (1 − 3𝜎𝑝2
0
− 𝜎𝑞2

0
)𝜙 − 2𝜎𝑝0𝑞0𝜓,

𝑔2𝑎 =
1

2𝑐0

[
2(1 − 𝜎𝑝2

0
− 𝜎𝑞2

0
)(𝑝0𝑝1𝑠 + 𝑞0𝑞1𝑠) + 𝜇0(𝑝

2
1𝑠
+ 𝑞2

1𝑠
) − (𝑝1𝑠,𝑥 − 𝑔𝑞1𝑠)

2
− (𝑞1𝑠,𝑥 + 𝑔𝑝1𝑠)

2
]
,

𝑔2𝑏 =
1

𝑐0

[
(1 − 𝜎𝑝2

0
− 𝜎𝑞2

0
)(𝑝0𝜙 + 𝑞0𝜓) + 𝜇0(𝑝1𝑠𝜙 + 𝑞1𝑠𝜓)

)
−
(
(𝑝1𝑠,𝑥 − 𝑔𝑞1𝑠)(𝜙𝑥 − 𝑔𝜓) − (𝑞1𝑠,𝑥 + 𝑔𝑝1𝑠)(𝜓𝑥 + 𝑔𝜙)

]
,
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which are independent of the unknown constant 𝑐1. Then, the Fredholm solvability condition
(30) at 𝑘 = 2 gives the formula for the constant 𝑐1 as

𝑐1 = −
∫ ∞

−∞

(
𝜙𝐴𝑓2𝑎 + 𝜓𝐴𝑔2𝑎

)
d𝑥

∫ ∞

−∞
(𝜙𝐴𝑓2𝑏 + 𝜓𝐴𝑔2𝑏) d𝑥

. (38)

The rest of the perturbation calculations can then proceed to all orders as follows. When 𝑐𝑘−1
(𝑘 ≥ 2) has been obtained, the (𝑝𝑘−1, 𝑞𝑘−1) solutions are completely determined. Meanwhile, the
solvability condition (30) for (𝑝𝑘, 𝑞𝑘) is also satisfied, and thus, there exists a localized solution
which we denote as (𝑝𝑘,𝑠, 𝑞𝑘,𝑠). The general localized solutions for (𝑝𝑘, 𝑞𝑘) can be written as[

𝑝𝑘
𝑞𝑘

]
=

[
𝑝𝑘,𝑠
𝑞𝑘,𝑠

]
+ 𝑐𝑘

[
𝜙

𝜓

]
. (39)

The constant 𝑐𝑘 will be determined from the solvability condition for the (𝑝𝑘+1, 𝑞𝑘+1) equations
(17). Specifically, when the above (𝑝𝑘, 𝑞𝑘) solutions are inserted into the (𝑓𝑘+1, 𝑔𝑘+1) formulas (21),
it is easy to see that the solvability condition (30) at 𝑘 + 1 is a linear equation for 𝑐𝑘, which we can
easily solve to obtain the value of 𝑐𝑘 as

𝑐𝑘 = −

⟨[
𝜙𝐴

𝜓𝐴

]
,

[11 1221 22

][
𝑝𝑘,𝑠
𝑞𝑘,𝑠

]
+

[ [1]

𝑘+1 [2]

𝑘+1

]⟩
⟨[

𝜙𝐴

𝜓𝐴

]
,

[11 1221 22

][
𝜙

𝜓

]⟩ , 𝑘 ≥ 2.

Utilizing the (𝑝1, 𝑞1) formula (36) and the fact that (𝜙, 𝜓) satisfy Equation (15), we can verify that
the denominator in this 𝑐𝑘 formula is equal to the denominator in the 𝑐1 formula (38). Thus, the
above 𝑐𝑘 formula can be reduced to

𝑐𝑘 = −

⟨[
𝜙𝐴

𝜓𝐴

]
,

[11 1221 22

][
𝑝𝑘,𝑠
𝑞𝑘,𝑠

]
+

[ [1]

𝑘+1 [2]

𝑘+1

]⟩
∫ ∞

−∞
(𝜙𝐴𝑓2𝑏 + 𝜓𝐴𝑔2𝑏) d𝑥

, 𝑘 ≥ 2. (40)

This process is then repeated to higher orders.
The only conditions for the above perturbation calculations to succeed to all orders are that the

numerator and denominator in the 𝑐0 formula (34), as well as the denominator in the 𝑐1 formula
(38), are all nonzero. Thus, we only have three numbers to check, which can be easily done for
each given Equation (1) when its Wadati potential 𝑉(𝑥) is specified.

2.5 Comparison with numerics

In this subsection, we compare the above perturbation-series soliton solution (12)–(13) with the
high-accuracy numerical solution, for a continuous range of small 𝜖 values, and confirm the
asymptotic accuracy of this analytical solution.
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(a) (b) (c)

(d) (e) (f)

F IGURE 1 Comparison of solitons between theory and numerics for the 1D equation (6) with 𝜎 = 1 and
𝑔(𝑥) given by Equation (41). (A) Wadati potential (2), where solid blue is Re(𝑉) and dashed red Im(𝑉). (B) Linear
eigenmode 𝜙(𝑥) + iψ(x) of this potential, with solid blue being 𝜙(𝑥) and dashed red 𝜓(𝑥). (C) Localized adjoint
eigenfunction, with solid blue being 𝜙𝐴(𝑥) and dashed red 𝜓𝐴(𝑥). (D) Amplitude profile |𝑢(𝑥; 𝜇)| of the soliton at
𝜇 = 𝜇0 + 0.1, where solid blue is from numerical computation and red dots from analytical third-order
perturbation series prediction. (E) Power curve of this soliton family, with solid blue from numerical
computations and red dots from the third-order perturbation expansion (43). (F) Log-log plot of the power
difference (45) between numerical values and the third-order perturbation expansion versus 𝜖 = 𝜇 − 𝜇0. The
dashed red line is the Δ𝑃 = 𝜖4 curve for comparison

In our comparison, we choose the non- -symmetric Wadati potential (2) as the one with
𝑔(𝑥) = 0.8[sech(𝑥 + 2) + 1.2sech(𝑥 − 2)]. (41)

The resulting Wadati potential is shown in Figure 1A. This potential admits a discrete real
eigenvalue 𝜇0 ≈ 0.37080447, and its corresponding eigenfunction 𝜙(𝑥) + iψ(x) is plotted in Fig-
ure 1B. Numerically, we find that the adjoint operator 𝐴 in Equation (23) indeed admits a single
localized function (𝜙𝐴, 𝜓𝐴)𝑇 in its kernel, and this function is displayed in Figure 1C. Utilizing
these eigenfunctions and adjoint eigenfunctions, the ratio of integrals under the square root in
Equation (34) is found to be positive. Thus, according to our perturbation theory, a continuous
family of solitons would bifurcate out for 𝜇 > 𝜇0 under the positive sign of nonlinearity 𝜎 = 1 and
for 𝜇 < 𝜇0 under the negative sign of nonlinearity 𝜎 = −1.
Numerically, this is found to be the case. With the choice of positive sign of nonlinearity 𝜎 = 1,

this soliton at 𝜇 = 𝜇0 + 0.1 is exhibited in Figure 1D. In addition, the power function of this soliton
family, defined as

𝑃(𝜇) = ∫
∞

−∞

|𝑢(𝑥; 𝜇)|2 d𝑥, (42)

is shown in Figure 1E. These solitons are computed numerically by the Newton-conjugate-
gradient method described in Ref. 18, and their numerical error is below 10−10. Due to their high
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accuracy, we will call these numerical solutions as exact solutions in the remainder of this sub-
section.
Now, we make a more quantitative comparison between our perturbation-series solution and

the exact solution. For this purpose, we first consider the perturbation-series solution (12)–(13) at
𝜇 = 𝜇0 + 0.1, that is, when 𝜖 = 0.1. This analytical solution, to the third order of the perturbation
series, is determined from the formulae and equations for (𝑐0, 𝑐1, 𝑐2), (𝑝0, 𝑞0), (𝑝1, 𝑞1), and (𝑝2, 𝑞2)
in the previous subsection, and plotted in Figure 1D alongside the exact solution. As can be seen,
this third-order perturbation solution is almost indistinguishable from the exact solution. This
is not surprising, because this third-order perturbation solution has relative error of order 𝜖3, or
roughly 0.001 for 𝜖 = 0.1, which is indeed very small.
Next, we compare the power function of our perturbation-series solutions (12)–(13) to that of

the exact soliton solutions. For this purpose, we insert the perturbation-series solution (12)–(13)
into the power function definition (42) and get

𝑃𝑎𝑛𝑎𝑙 (𝜇) = 𝜖𝑃1 + 𝜖2𝑃2 + 𝜖3𝑃3 +⋯ , (43)

where 𝜇 = 𝜇0 + 𝜖 as before, and

𝑃1 =∫
∞

−∞

(𝑝2
0
+ 𝑞2

0
)d𝑥, 𝑃2 =∫

∞

−∞

2(𝑝0𝑝1 + 𝑞0𝑞1)d𝑥, 𝑃3 =∫
∞

−∞

[
𝑝2
1
+ 𝑞2

1
+ 2(𝑝0𝑝2 + 𝑞0𝑞2)

]
d𝑥.

Using the (𝑝0, 𝑞0), (𝑝1, 𝑞1), and (𝑝2, 𝑞2) solutions we have numerically obtained, we find that

𝑃1 ≈ 5.89609348, 𝑃2 ≈ −5.65066426, 𝑃3 ≈ −9.38398099. (44)

Truncating the power-function expansion (43) to the third order, this truncated power function
is plotted in Figure 1E alongside the exact power function. Again, the two functions are almost
indistinguishable when 𝜇 is close to 𝜇0.
The power series (43) is an asymptotic series. It does not have to be convergent, but it must

satisfy the requirement of an asymptotic series, which is that |𝑃(𝜇) −∑𝑛

𝑘=1
𝜖𝑘𝑃𝑘| = 𝑜(𝜖𝑛) when

𝜖 → 0 for every positive integer 𝑛.29 To verify this asymptotic condition of our power series (43),
we examine the difference between the third-order truncated power expansion (43) and the exact
power function. According to our power expansion, this difference is expected to be

Δ𝑃 ≡ 𝑃(𝜇) − 𝜖𝑃1 − 𝜖2𝑃2 − 𝜖3𝑃3 = 𝑂(𝜖4). (45)

If this is indeed true, then the above asymptotic condition for 𝑛 = 3 would be met. To confirm
this Δ𝑃 = 𝑂(𝜖4) asymptotics for small 𝜖, we show in Figure 1F a log-log plot of Δ𝑃 versus 𝜖. Its
comparison with the benchmark Δ𝑃 = 𝜖4 curve on the same graph shows that this Δ𝑃 is indeed
𝑂(𝜖4) at small 𝜖, confirming the asymptotic accuracy of our third-order power expansion.
In the above numerical example, we chose the focusing nonlinearity (with 𝜎 = 1). If the nonlin-

earity is defocusing, we have found similarly good agreement between perturbation-series solu-
tions and the numerics.
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2.6 An alternative perturbation calculation

In the above perturbation calculation, we introduced the tangible small parameter as 𝜖 = 𝜇 − 𝜇0.
Because of that, we only needed to expand the solutions (𝑝, 𝑞) into perturbation series. In this
treatment, the (𝑝𝑛, 𝑞𝑛)𝑇 solution at each order must contain the homogeneous term 𝑐𝑛(𝜙, 𝜓)

𝑇, so
that 𝑐𝑛 can be selected judiciously to satisfy the solvability condition of the linear nonhomoge-
neous (𝑝𝑛+1, 𝑞𝑛+1)𝑇 equation.
There is an alternative perturbation calculation, where we expand not only the solutions

(𝑝, 𝑞), but also the propagation constant 𝜇, into perturbation series. In this treatment, the (𝑝, 𝑞)
expansion would still be (12)–(13), whereas the 𝜇 expansion would be

𝜇 = 𝜇0 + 𝜇1𝜖 + 𝜇2𝜖
2 +⋯ , (46)

where 𝜇1, 𝜇2, … are real constants to be determined. Due to the introduction of these (𝜇1, 𝜇2, …)
parameters in the 𝜇-expansion, we can choose each 𝜇𝑛 judiciously to satisfy the solvability condi-
tion of the linear nonhomogeneous (𝑝𝑛, 𝑞𝑛)𝑇 equation. As a consequence, we do not need to intro-
duce the homogeneous term 𝑐𝑛(𝜙, 𝜓)

𝑇 in the (𝑝𝑛, 𝑞𝑛)𝑇 solution anymore. In this alternative treat-
ment, we systematically detune the propagation constant 𝜇; although in the original treatment,
we systematically detune the coefficient of the (𝜙, 𝜓)𝑇 term in the (𝑝, 𝑞)𝑇 solution, because that
coefficient is 𝑐0 + 𝑐1𝜖 + 𝑐2𝜖

2 +⋯. Algebrawise, this alternative perturbation calculation turns out
to be a little simpler, because 𝜇 appears in the original two real soliton equations (9)–(10) in a sim-
pler way than 𝑝 and 𝑞, and thus, this 𝜇-detuning introduces less terms in each (𝑝𝑛, 𝑞𝑛) equation
than our present treatment. The slight downside of this alternative treatment is that the “physical”
meaning of the small parameter 𝜖 in it is less clear. Indeed, 𝜖 in this alternative treatment is more
like a nontangible arbitrary book-keeping-type small parameter, to which both the propagation
constant 𝜇 and the soliton solution (𝑝, 𝑞) relate in a nontrivial parametric (perturbation-series)
way. Overall, these two different perturbation procedures are roughly equivalent, and their choice
is largely a personal taste. Indeed, we have also implemented this alternative perturbation treat-
ment analytically and compared its results to the numerics, and found similar agreement as that
shown in Figure 1.

3 CONSTRUCTION OF SOLITON FAMILIES IN THE 2D CASE

Now, we consider the 2D NLS equation

𝑖𝑈𝑡 + 𝑈𝑥𝑥 + 𝑈𝑦𝑦 + 𝑉(𝑥, 𝑦)𝑈 + 𝜎|𝑈|2𝑈 = 0, (47)

where 𝑉(𝑥, 𝑦) is a complex potential and 𝜎 is the sign of nonlinearity. It has been shown in Ref.
16 that when this potential is of the form

𝑉(𝑥, 𝑦) = 𝑔2(𝑥) + i𝑔′(𝑥) + ℎ(𝑦), (48)

where 𝑔(𝑥) and ℎ(𝑦) are real functions, then its spectrum can be all-real. This potential is sep-
arable, and its 𝑥-part is the 1D Wadati potential (2). So, this 2D potential will also be called
Wadati-type in this article. When 𝑔(𝑥) is even, then this potential admits the partial  symmetry
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𝑉∗(𝑥, 𝑦) = 𝑉(−𝑥, 𝑦). In this case, Equation (47) admits continuous families of solitons, which has
been demonstrated numerically and explained analytically in Ref. 30. However, when 𝑔(𝑥) is not
even, so that the potential 𝑉(𝑥, 𝑦) is non- -symmetric, numerical evidence in Ref. 18 indicates
that Equation (47) could still admit continuous families of solitons, which is mysterious in the
absence of  symmetry.
In this section, we analytically explain the existence of continuous families of solitons in the

2D NLS equation (47) with a non- -symmetric Wadati-type potential (48) by extending the 1D
perturbation calculations of the previous section to the present 2D case. In this potential (48), we
require all of 𝑔(𝑥), 𝑔′(𝑥), and ℎ(𝑦) to be localized functions.
Solitons in Equation (47) are of the form

𝑈(𝑥, 𝑦, 𝑡) = 𝑒i𝜇𝑡𝑢(𝑥, 𝑦), (49)

where𝜇 is a real propagation constant, and𝑢(𝑥, 𝑦) is a localized function satisfying the 2D complex
soliton equation [

𝜕𝑥𝑥 + 𝜕𝑦𝑦 + 𝑔2(𝑥) + i𝑔′(𝑥) + ℎ(𝑦)
]
𝑢 − 𝜇𝑢 + 𝜎|𝑢|2𝑢 = 0. (50)

3.1 A real system for 2D solitons and its perturbation expansion

Similar to the 1D case, an important property of Equation (47) with theWadati-type potential (48)
is that it admits a conservation law even though it is non-Hamiltonian.18 Substituting the soliton
solution (49) into that conservation law, we get a stationary real-valued flux equation

𝜕𝐽1
𝜕𝑥

+
𝜕𝐽2
𝜕𝑦

= 0, (51)

where

𝐽1 = |𝑢𝑥 + i𝑔(𝑥)𝑢|2 + [ℎ(𝑦) − 𝜇]|𝑢|2 + 𝜎

2
|𝑢|4 − |𝑢𝑦|2, (52)

and

𝐽2 = 𝑢𝑥𝑢
∗
𝑦 + 𝑢∗𝑥𝑢𝑦 − i𝑔(𝑥)(𝑢𝑦𝑢

∗ − 𝑢𝑢∗𝑦). (53)

Following the 1D strategy, instead of workingwith the complex soliton equation (50), wewill work
with the real part of that soliton equation, that is,[

𝜕𝑥𝑥 + 𝜕𝑦𝑦 + 𝑔2(𝑥) + ℎ(𝑦) − 𝜇
]
𝑝 − 𝑔′(𝑥)𝑞 + 𝜎(𝑝2 + 𝑞2)𝑝 = 0, (54)

where 𝑢 ≡ 𝑝 + i𝑞 as before (see (8)), together with the real-valued flux equation (51), in our con-
struction of a continuous family of 2D solitons. A minor difference from the 1D case is that here,
we have to use the flux equation (51), which is the counterpart of the 𝑑𝐽∕𝑑𝑥 = 0 equation in the 1D
case. This contrasts the 1D case where we used 𝐽 = 0 directly. This minor difference in the start-
ing equations for solitons will lead to minor differences in the technical constructions of soliton
solutions, as we will see later in this section.
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The soliton family to be constructed bifurcates from a discrete real eigenvalue 𝜇0 of the poten-
tial. The corresponding localized eigenmode �̂�(𝑥, 𝑦) + i�̂�(𝑥, 𝑦), with real (�̂�, �̂�), satisfies the linear
eigenmode equation obtained by dropping the nonlinear term in the soliton equation (50), that
is, [

𝜕𝑥𝑥 + 𝜕𝑦𝑦 + 𝑔2(𝑥) + i𝑔′(𝑥) + ℎ(𝑦)
]
(�̂� + i�̂�) = 𝜇0(�̂� + i�̂�). (55)

As the potential in this equation is separable, its linear mode is also separable and can be decom-
posed as

�̂�(𝑥, 𝑦) = 𝜙(𝑥)𝜁(𝑦), �̂�(𝑥, 𝑦) = 𝜓(𝑥)𝜁(𝑦), (56)

and 𝜇0 = 𝜇01 + 𝜇02, where 𝜙(𝑥) + i𝜓(𝑥) is a localized eigenmode of the 𝑥-part of the potential (a
Wadati potential) with a discrete real eigenvalue 𝜇01, that is,[

𝜕𝑥𝑥 + 𝑔2(𝑥) + i𝑔′(𝑥)
]
(𝜙 + i𝜓) = 𝜇01(𝜙 + i𝜓), (57)

and 𝜁(𝑦) is a real localized eigenmode of the 𝑦-part of the potential with a discrete real eigenvalue
𝜇02, that is, [

𝜕𝑦𝑦 + ℎ(𝑦)
]
𝜁 = 𝜇02𝜁. (58)

This 2D eigenmode 𝑢 = �̂�(𝑥, 𝑦) + i�̂�(𝑥, 𝑦) satisfies the flux equation (51) with the |𝑢|4 term
dropped in 𝐽1 and 𝜇 replaced by 𝜇0.
Bifurcating from this linear eigenmode, we seek a low-amplitude soliton at each real propaga-

tion constant value 𝜇 near the linear eigenvalue 𝜇0, and this soliton is expanded into the following
perturbation series:

𝑝(𝑥, 𝑦; 𝜇) = 𝜖1∕2
[
𝑝0(𝑥, 𝑦) + 𝜖𝑝1(𝑥, 𝑦) + 𝜖2𝑝2(𝑥, 𝑦) +⋯

]
, (59)

𝑞(𝑥, 𝑦; 𝜇) = 𝜖1∕2
[
𝑞0(𝑥, 𝑦) + 𝜖𝑞1(𝑥, 𝑦) + 𝜖2𝑞2(𝑥, 𝑦) +⋯

]
, (60)

where 𝜖 = 𝜇 − 𝜇0 and is assumed to be small positive (so that 𝜖1∕2 is real). As explained in the 1D
case, this positive-𝜖 assumption corresponds to a proper sign of nonlinearity 𝜎, and the negative-𝜖
case can be treated similarly.
Substituting the above perturbation expansion into Equations (51) and (54), we get a sequence

of real equations for (𝑝𝑘, 𝑞𝑘). The equations for (𝑝0, 𝑞0) are just the flux equation (51) with the |𝑢|4
term dropped in 𝐽1, and the linear part of Equation (54), with 𝜇 replaced by 𝜇0. Their solutions
are obviously [

𝑝0
𝑞0

]
= 𝑐0

[
�̂�

�̂�

]
, (61)
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where 𝑐0 is a real constant to be determined. The equations for (𝑝𝑘, 𝑞𝑘) (𝑘 ≥ 1) are the following
linear nonhomogeneous system of equations:

̂
[
𝑝𝑘
𝑞𝑘

]
=

[
𝑓𝑘

𝜕𝑥�̂�𝑘1 + 𝜕𝑦�̂�𝑘2

]
, (62)

where ̂ is a 2 × 2matrix operator whose elements are

̂11 = 𝜕𝑥𝑥 + 𝜕𝑦𝑦 + 𝑔2 + ℎ − 𝜇0,

̂12 = −𝑔𝑥,

̂21 = 𝜕𝑥
[
(�̂�𝑥 − 𝑔�̂�)𝜕𝑥 + 𝑔(�̂�𝑥 + 𝑔�̂�) + (ℎ − 𝜇0)�̂� − �̂�𝑦𝜕𝑦

]
+ 𝜕𝑦

[
�̂�𝑦𝜕𝑥 + (�̂�𝑥 − 𝑔�̂�)𝜕𝑦 + 𝑔�̂�𝑦

]
,

̂22 = 𝜕𝑥
[
(�̂�𝑥 + 𝑔�̂�)𝜕𝑥 − 𝑔(�̂�𝑥 − 𝑔�̂�) + (ℎ − 𝜇0)�̂� − �̂�𝑦𝜕𝑦

]
+ 𝜕𝑦

[
�̂�𝑦𝜕𝑥 + (�̂�𝑥 + 𝑔�̂�)𝜕𝑦 − 𝑔�̂�𝑦

]
,

⎡⎢⎢⎣
𝑓1
�̂�11
�̂�12

⎤⎥⎥⎦ = 𝑐0

⎡⎢⎢⎢⎣
�̂� − 𝜎𝑐2

0
(�̂�2 + �̂�2)�̂�

1

2
(�̂�2 + �̂�2) −

1

4
𝜎𝑐2

0
(�̂�2 + �̂�2)2

0

⎤⎥⎥⎥⎦, (63)

⎡⎢⎢⎣
𝑓2
𝑔21
𝑔22

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

(
1 − 3𝜎𝑝2

0
− 𝜎𝑞2

0

)
𝑝1 − 2𝜎𝑝0𝑞0𝑞1

1

2𝑐0

[
2
(
1 − 𝜎𝑝2

0
− 𝜎𝑞2

0

)
(𝑝0𝑝1 + 𝑞0𝑞1) + (𝜇0 − ℎ)(𝑝2

1
+ 𝑞2

1
)
)

+
(
(𝑝2

1𝑦
+ 𝑞2

1𝑦
) − (𝑝1𝑥 − 𝑔𝑞1)

2
− (𝑞1𝑥 + 𝑔𝑝1)

2
]

−
1

𝑐0

[
(𝑝1𝑥 − 𝑔𝑞1)𝑝1𝑦 + (𝑞1𝑥 + 𝑔𝑝1)𝑞1𝑦

]
⎤⎥⎥⎥⎥⎥⎦
, (64)

⎡⎢⎢⎣
𝑓𝑘
�̂�𝑘1
�̂�𝑘2

⎤⎥⎥⎦ =
⎡⎢⎢⎣
̂11 ̂12̂21 ̂22̂31 ̂32

⎤⎥⎥⎦
[
𝑝𝑘−1
𝑞𝑘−1

]
+

[̂ [1]

𝑘̂ [2]

𝑘

]
, 𝑘 ≥ 3, (65)

the matrix elements ̂𝑖𝑗 are 𝑘-independent and given by the formulas

̂11 = 1 − 3𝜎𝑝2
0
− 𝜎𝑞2

0
,

̂12 = −2𝜎𝑝0𝑞0,

̂21 =
1

𝑐0

[
𝑝0
(
1 − 𝜎𝑝2

0
− 𝜎𝑞2

0

)
+ (𝜇0 − ℎ)𝑝1 + 𝑝1𝑦𝜕𝑦 − (𝑝1𝑥 − 𝑔𝑞1)𝜕𝑥 − 𝑔(𝑞1𝑥 + 𝑔𝑝1)

]
,

̂22 =
1

𝑐0

[
𝑞0
(
1 − 𝜎𝑝2

0
− 𝜎𝑞2

0

)
+ (𝜇0 − ℎ)𝑞1 + 𝑞1𝑦𝜕𝑦 + 𝑔(𝑝1𝑥 − 𝑔𝑞1) − (𝑞1𝑥 + 𝑔𝑝1)𝜕𝑥

]
,

̂31 = (𝑝1𝑥 − 𝑔𝑞1)𝜕𝑦 + 𝑝1𝑦𝜕𝑥 + 𝑔𝑞1𝑦,
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̂32 = (𝑞1𝑥 + 𝑔𝑝1)𝜕𝑦 + 𝑞1𝑦𝜕𝑥 − 𝑔𝑝1𝑦,

and ̂ [1]

𝑘
, ̂ [2]

𝑘
are functions that depend only on 𝑘, 𝑝0, 𝑝1, … , 𝑝𝑘−2, 𝑞0, 𝑞1, … , 𝑞𝑘−2, 𝑔(𝑥) and ℎ(𝑦).

3.2 Kernel structures of the 2D linear operator and its adjoint
operator

To solve the 2D linear nonhomogeneous equations (62) and obtain localized solutions (𝑝𝑘, 𝑞𝑘)
for all 𝑘, we will also use the Fredholm alternative method. To do so, we need to understand the
kernel structures of the 2D operator ̂ and its adjoint operator ̂𝐴, where elements of the adjoint
operator are

̂𝐴
11
= 𝜕𝑥𝑥 + 𝜕𝑦𝑦 + 𝑔2 + ℎ − 𝜇0,

̂𝐴
21
= −𝑔𝑥,

̂𝐴
12
=
[
𝜕𝑥(�̂�𝑥 − 𝑔�̂�) − 𝑔(�̂�𝑥 + 𝑔�̂�) − (ℎ − 𝜇0)�̂� − 𝜕𝑦�̂�𝑦

]
𝜕𝑥 +

[
𝜕𝑥�̂�𝑦 + 𝜕𝑦(�̂�𝑥 − 𝑔�̂�) − 𝑔�̂�𝑦

]
𝜕𝑦,

̂𝐴
22
=
[
𝜕𝑥(�̂�𝑥 + 𝑔�̂�) + 𝑔(�̂�𝑥 − 𝑔�̂�) − (ℎ − 𝜇0)�̂� − 𝜕𝑦�̂�𝑦

]
𝜕𝑥 +

[
𝜕𝑥�̂�𝑦 + 𝜕𝑦(�̂�𝑥 + 𝑔�̂�) + 𝑔�̂�𝑦

]
𝜕𝑦.

First, we consider the kernel structure of ̂. It is easy to check that this kernel contains two
localized functions

𝐾1 ≡
[
�̂�

�̂�

]
, 𝐾2 ≡

[
−�̂�

�̂�

]
, (66)

where

̂𝐾1 = ̂𝐾2 = 0, (67)

similar to the 1D case and for similar reasons. As the kernel equation ̂𝐾 = 0 is the linearization
of the two real “eigenvalue” equations for (𝑝0, 𝑞0) (the 2D counterparts of 1D equations (14)–(15))
around the linear mode (�̂�, �̂�), localized functions in ̂’s kernel can only be induced by amplitude
and phase invariances of these (𝑝0, 𝑞0) equations, which result in 𝐾1 and 𝐾2 above. Thus, there
are no other localized functions in ̂’s kernel.
Next, we consider the kernel structure of the adjoint 2D operator ̂𝐴. Due to the separability of

the 2D eigenmode (�̂�, �̂�) in Equation (56), we can quickly verify that the kernel of ̂𝐴 contains a
bounded function

𝐾𝐴
0
=

[
𝜙𝐴(𝑥)𝜁(𝑦)

− ∫ 𝜓𝐴(𝑥)d𝑥

]
, (68)

where ̂𝐴𝐾𝐴
0
= 0, and [𝜙𝐴(𝑥), 𝜓𝐴(𝑥)]

𝑇
is the unique localized function (29) in the kernel of the

1D adjoint operator 𝐴 given in Equation (23), with 𝜇0 replaced by 𝜇01. One may notice that this
kernel function of the 2D adjoint operator does not naturally fall back to the 1D adjoint kernel
function (29). The reason is twofold. One is that the second column of the 2D adjoint operator ̂𝐴,
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that is, [̂𝐴
12
, ̂𝐴

22
]
𝑇
given above, contains an additional spatial derivative compared to the second

column of the 1D adjoint operator 𝐴 given in Equation (23)—a difference caused by our using
the divergence form of the flux equation (51) in 2D instead of its integrated form 𝐽(𝑥) = 0 in 1D.
This difference in the second column of the adjoint operator explains the integral in the second
element of𝐾𝐴

0
above. The second reason for𝐾𝐴

0
in 2D not naturally falling back to𝐾𝐴

0
in 1D is that

the second columns of the two adjoint operators contain linear eigenmodes or their derivatives as
multiplicative factors, whereas the first columns of these adjoint operators do not. Thus, in the 2D
case, we need to introduce the factor 𝜁(𝑦) from the 2D linear eigenmode (56) into the first element
of the adjoint kernel function 𝐾𝐴

0
in Equation (68) in order to balance such a term coming from

the second column of ̂𝐴.
We can further show that if ℎ(𝑦) is a slowly varying function, then the above 𝐾𝐴

0
would be

the only bounded function in the kernel of ̂𝐴. To do so, let ℎ(𝑦) = �̂�2𝐻(𝑌) be a slowly varying
function of 𝑌 = �̂�𝑦, where �̂� is a small real parameter. For this ℎ(𝑦), its eigenmode from Equation
(58) is 𝜁(𝑦) = 𝜁(𝑌), with eigenvalue 𝜇02 = 𝑂(�̂�2). In this case, ̂𝐴 can be rewritten as a quadratic
function of �̂�,

̂𝐴 = ̂𝐴
0
(𝑥, 𝑌) + �̂�̂𝐴

1
(𝑥, 𝑌) + �̂�2̂𝐴

2
(𝑥, 𝑌), (69)

where

̂𝐴
0
(𝑥, 𝑌) =

[
𝜕𝑥𝑥 + 𝑔2 − 𝜇01 𝜁(𝑌)

[
−𝜕𝑥(𝜙

′ − 𝑔𝜓) + 𝑔(𝜓′ + 𝑔𝜙) − 𝜇01𝜙
]
(−𝜕𝑥)

−𝑔′ 𝜁(𝑌)
[
−𝜕𝑥(𝜓

′ + 𝑔𝜙) − 𝑔(𝜙′ − 𝑔𝜓) − 𝜇01𝜓
]
(−𝜕𝑥)

]

= 𝐴

[
1 0

0 −𝜁(𝑌)𝜕𝑥

]
, (70)

and 𝐴 is the 1D adjoint operator (23) with 𝜇0 replaced by 𝜇01. As ̂𝐴 is a function of 𝑥, 𝑌, and
�̂�, functions 𝐹 in its kernel are also functions of these same variables and can be expanded into a
perturbation series of �̂� as

𝐹(𝑥, 𝑦; �̂�) = 𝐹0(𝑥, 𝑌) + �̂�𝐹1(𝑥, 𝑌) + �̂�2𝐹2(𝑥, 𝑌) +⋯ . (71)

Inserting this expansion and Equation (69) into ̂𝐴𝐹 = 0 and using the kernel structures of the
1D operators  and its adjoint 𝐴 detailed in Section 2.2, we can sequentially determine 𝐹𝑛(𝑥, 𝑌)
in the above perturbation expansion and show that the only bounded function in the kernel of ̂𝐴

is

𝐹 =

[
𝜙𝐴(𝑥)𝜁(𝑌)

− ∫ 𝜓𝐴(𝑥)d𝑥

]
, (72)

whichmatches (68) when the eigenmode 𝜁(𝑦) = 𝜁(𝑌) is slowly varying. All other functions in the
kernel of ̂𝐴 grow exponentially at large |𝑥| or |𝑌|.
When ℎ(𝑦) continuously deforms from slowly varying to the general case of nonslowly varying,

the above kernel structure of ̂𝐴 generically will not change, that is, its kernel will generically still
contain a single bounded function (68). Although we cannot at this time rule out the possibility
of additional bounded functions appearing in the kernel of ̂𝐴 at some special ℎ(𝑦) functions
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during this deformation process, for specific examples of the potentials, we can use numerics to
directly verify this single-bounded-function kernel structure for ̂𝐴, so that our analysis below
can proceed.

3.3 Construction of perturbation series to all orders in 2D

With the above kernel structures of ̂ and ̂𝐴 in hand,we cannow sequentially solveEquation (62)
for localized solutions (𝑝𝑘, 𝑞𝑘) using the Fredholm alternative method. According to this method,
if functions (𝑓𝑘, �̂�𝑘1, �̂�𝑘2) on the right side of the linear nonhomogeneous system (62) are localized
(which is the case here), this system would admit a localized solution (𝑝𝑘, 𝑞𝑘) if and only if its
right-hand side is orthogonal to the bounded function 𝐾𝐴

0
of (68) in the kernel of ̂𝐴, that is,⟨[

𝜙𝐴(𝑥)𝜁(𝑦)

− ∫ 𝜓𝐴(𝑥)d𝑥

]
,

[
𝑓𝑘

𝜕𝑥�̂�𝑘1 + 𝜕𝑦�̂�𝑘2

]⟩
= 0. (73)

It is noted that the arbitrary constant out of the indefinite integral ∫ 𝜓𝐴(𝑥)d𝑥 gives no contribution
to the inner product in the above solvability condition. In addition, the above integral is convergent
because (𝑓𝑘, �̂�𝑘1, �̂�𝑘2) are all localized in space.
Our perturbative construction of 2D solitons bifurcating from a linear localized eigenmode of

the complex potential (48) proceeds similarly as the 1D case, because the kernel structures in the
2D case resemble those in the 1D case. We first consider Equation (62) for (𝑝1, 𝑞1). Substituting
the (𝑓1, �̂�11, �̂�12) expressions (63) into the above solvability condition and performing integration
by parts, we get ⟨[

𝜙𝐴(𝑥)𝜁(𝑦)

𝜓𝐴(𝑥)

]
,

[
𝑓1
�̂�11

]⟩
= 0. (74)

Inserting the (𝑓1, �̂�11) expressions (63) and (�̂�, �̂�) formulas (56) into the above equation, we obtain
a formula for 𝑐0 as

𝑐0 = ±

√√√√√√ ∫ ∞

−∞

[
𝜙𝜙𝐴 +

1

2
(𝜙2 + 𝜓2)𝜓𝐴

]
d𝑥

𝜎 ∫ ∞

−∞

[
(𝜙2 + 𝜓2)𝜙𝜙𝐴 +

1

4
(𝜙2 + 𝜓2)2𝜓𝐴

]
d𝑥

∫ ∞

−∞
𝜁2(𝑦)d𝑦

∫ ∞

−∞
𝜁4(𝑦)d𝑦

. (75)

As in the 1D case, the sign of 𝜎 must match the sign of the ratio between integrals in the above
equation so that the quantity under the square root is positive. In addition, we can choose the plus
sign outside the square root without loss of generality.
When 𝑐0 is selected from the above formula (75), Equation (62) admits a localized solution for

(𝑝1, 𝑞1), which we denote as (𝑝1𝑠, 𝑞1𝑠). Since the kernel of the homogeneous operator ̂ in Equa-
tion (62) contains two localized functions 𝐾1 and 𝐾2 given in Equation (66), the general localized
solution (𝑝1, 𝑞1) to the linear nonhomogeneous equations (62) is then [𝑝1𝑠, 𝑞1𝑠]𝑇 + 𝑐1𝐾1 + 𝑑1𝐾2,
where 𝑐1 and 𝑑1 are two real constants. But as in the 1D case, the 𝑑1 term can be removed by phase
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invariance of the complex soliton solution 𝑢(𝑥, 𝑦). Thus, the (𝑝1, 𝑞1) solution can be set as[
𝑝1
𝑞1

]
=

[
𝑝1𝑠
𝑞1𝑠

]
+ 𝑐1

[
�̂�

�̂�

]
. (76)

The constant 𝑐1 in this solution will be determined from the Fredholm solvability condition on
the (𝑝2, 𝑞2) equations.
The equations for (𝑝2, 𝑞2) are (62), where (𝑓2, �̂�21, �̂�22) in the nonhomogeneous terms are given

in Equation (64). Substituting the (𝑝0, 𝑞0) solutions (61) and (𝑝1, 𝑞1) solutions (76) into these
nonhomogeneous terms and recalling that the eigenmode 𝑢 = �̂�(𝑥, 𝑦) + i�̂�(𝑥, 𝑦) satisfies the flux
equation (51) with the |𝑢|4 term dropped in 𝐽1 and 𝜇 replaced by 𝜇0, we see that the right side of
Equation (62) for (𝑝2, 𝑞2) reduces to[

𝑓2
𝜕𝑥�̂�21 + 𝜕𝑦�̂�22

]
=

[
𝑓2𝑎

𝜕𝑥�̂�21𝑎 + 𝜕𝑦�̂�22𝑎

]
+ 𝑐1

[
𝑓2𝑏

𝜕𝑥�̂�21𝑏 + 𝜕𝑦�̂�22𝑏

]
, (77)

where

𝑓2𝑎 =
(
1 − 3𝜎𝑝2

0
− 𝜎𝑞2

0

)
𝑝1𝑠 − 2𝜎𝑝0𝑞0𝑞1𝑠,

𝑔21𝑎 =
1

2𝑐0

[
2
(
1 − 𝜎𝑝2

0
− 𝜎𝑞2

0

)
(𝑝0𝑝1𝑠 + 𝑞0𝑞1𝑠) + (𝜇0 − ℎ)(𝑝2

1𝑠
+ 𝑞2

1𝑠
) + (𝑝2

1𝑠,𝑦
+ 𝑞2

1𝑠,𝑦
)
)

−
(
(𝑝1𝑠,𝑥 − 𝑔𝑞1𝑠)

2
− (𝑞1𝑠,𝑥 + 𝑔𝑝1𝑠)

2
)
]
,

𝑔22𝑎 = −
1

𝑐0

[
(𝑝1𝑠,𝑥 − 𝑔𝑞1𝑠)𝑝1𝑠,𝑦 + (𝑞1𝑠,𝑥 + 𝑔𝑝1𝑠)𝑞1𝑠,𝑦

]
,

and

𝑓2𝑏 = (1 − 3𝜎𝑝2
0
− 𝜎𝑞2

0
)𝜙 − 2𝜎𝑝0𝑞0𝜓,

𝑔21𝑏 =
1

𝑐0

[(
1 − 𝜎𝑝2

0
− 𝜎𝑞2

0

)
(𝑝0𝜙 + 𝑞0𝜓) + (𝜇0 − ℎ)(𝑝1𝑠𝜙 + 𝑞1𝑠𝜓) + (𝑝1𝑠,𝑦𝜙𝑦 + 𝑞1𝑠,𝑦𝜓𝑦)

)
−
(
(𝑝1𝑠,𝑥 − 𝑔𝑞1𝑠)(𝜙𝑥 − 𝑔𝜓) − (𝑞1𝑠,𝑥 + 𝑔𝑝1𝑠)(𝜓𝑥 + 𝑔𝜙)

]
,

𝑔22𝑏 = −
1

𝑐0

[
(𝑝1𝑠,𝑥 − 𝑔𝑞1𝑠)𝜙𝑦 + 𝑝1𝑠,𝑦(𝜙𝑥 − 𝑔𝜓) + (𝑞1𝑠,𝑥 + 𝑔𝑝1𝑠)𝜓𝑦 + 𝑞1𝑠,𝑦(𝜓𝑥 + 𝑔𝜙)

]
.

Inserting (77) into the Fredholm solvability condition (73) at 𝑘 = 2, we get a formula for the con-
stant 𝑐1 as

𝑐1 = −

⟨[
𝜙𝐴(𝑥)𝜁(𝑦)

− ∫ 𝜓𝐴(𝑥)d𝑥

]
,

[
𝑓2𝑎

𝜕𝑥�̂�21𝑎 + 𝜕𝑦�̂�22𝑎

]⟩
⟨[

𝜙𝐴(𝑥)𝜁(𝑦)

− ∫ 𝜓𝐴(𝑥)d𝑥

]
,

[
𝑓2𝑏

𝜕𝑥�̂�21𝑏 + 𝜕𝑦�̂�22𝑏

]⟩ . (78)
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When the 𝑐1 value is selected as above, the (𝑝1, 𝑞1) solutions (76) are completely determined.
In addition, the Fredholm solvability condition (73) for the (𝑝2, 𝑞2) equations (62) is also satisfied;
so these equations admit a localized (𝑝2, 𝑞2) solution, which we denote as (𝑝2𝑠, 𝑞2𝑠). In view of the
kernel structure of operator ̂ and phase invariance of the complex soliton solution 𝑢(𝑥, 𝑦), the
general localized solutions for (𝑝2, 𝑞2) can be written as[

𝑝2
𝑞2

]
=

[
𝑝2𝑠
𝑞2𝑠

]
+ 𝑐2

[
�̂�

�̂�

]
, (79)

where 𝑐2 is a real constant. This constant 𝑐2 will be determined from the Fredholm solvability
condition for the (𝑝3, 𝑞3) equations. Indeed, inserting this (𝑝2, 𝑞2) solution into the right side of
Equation (62) with 𝑘 = 3, it is easy to see that the solvability condition (73) at 𝑘 = 3 is a linear
equation for 𝑐2, which we can easily solve to obtain the value of 𝑐2. After this 𝑐2 value is obtained,
(𝑝2, 𝑞2) is ascertained. In addition, the (𝑝3, 𝑞3) equation admits a localized solution, which we
denote as (𝑝3𝑠, 𝑞3𝑠), and the general (𝑝3, 𝑞3) solutions can bewritten as (79)with the index changed
from 2 to 3. This process is then repeated to higher orders.

3.4 Comparison with numerics in 2D

Lastly, we compare the above 2D perturbation series soliton solution (59)-(60) with the high-
accuracy numerical solution and confirm the asymptotic accuracy of this 2D analytical solution.
In our comparison, we choose the potential (48) with

𝑔(𝑥) = 0.8[sech(𝑥 + 2) + 1.2sech(𝑥 − 2)], ℎ(𝑦) = 2sech2𝑦. (80)

Notice that this 𝑔(𝑥) function is the same as (41) in the 1D example. This potential admits a discrete
real eigenvalue𝜇0 = 𝜇01 + 𝜇02 ≈ 1.37080447, where𝜇01 ≈ 0.37080447 as in the 1D case, and𝜇02 =
1. The corresponding eigenfunction (�̂�, �̂�) is given inEquation (56), where [𝜙(𝑥), 𝜓(𝑥)] is as shown
in Figure 1B, and 𝜁(𝑦) = sech(𝑦). Numerically, we confirmed that the 2D adjoint operator ̂𝐴

indeed admits a single bounded function (68) in its kernel, where [𝜙𝐴(𝑥), 𝜓𝐴(𝑥)] is the localized
function (29) in the kernel of the 1D adjoint operator 𝐴 in Equation (23), which was plotted in
Figure 2C.
When 𝜎 = 1 (focusing nonlinearity), our theory predicts that a continuous family of solitons

bifurcates out from the above linear discrete eigenmode when 𝜇 > 𝜇0. This is indeed the case.
For the choice of 𝜇 = 𝜇0 + 0.1 (i.e., 𝜖 = 0.1), the second-order perturbation-series solution (59)–
(60) is determined from the formulas and equations for 𝑐0, 𝑐1, 𝑝0, 𝑞0, 𝑝1, and 𝑞1 in the previous
subsection, and plotted in Figure 2A. The high-accuracy numerical solution at this same 𝜇 value
is displayed in Figure 2B for comparison. It is seen that these two solutions are visually identical.
We have also calculated the difference between these two solutions, and found that the relative
error between them is under 2.5%, which is 𝑂(𝜖2) (i.e., order of 0.01) as expected.
Next, we compare the power function of our perturbation-series solutions (59)–(60) to that of

the exact soliton solutions. This 2D power function is defined as

𝑃(𝜇) = ∫
∞

−∞
∫

∞

−∞

|𝑢(𝑥, 𝑦; 𝜇)|2 d𝑥d𝑦, (81)
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F IGURE 2 Comparison of solitons between theory and numerics for the 2D equation (50) with 𝜎 = 1, and
𝑔(𝑥), ℎ(𝑦) given by Equation (80). (a) Amplitude profile |𝑢(𝑥, 𝑦; 𝜇)| of the second-order perturbation series
solution (82) at 𝜇 = 𝜇0 + 0.1. (b) Numerically computed soliton |𝑢| at the same 𝜇 value of (A). (c) Power curve of
this soliton family, with solid blue from numerical computations and red dots from the second-order perturbation
expansion (82). (d) Log-log plot of the power difference between numerical values and the second-order
perturbation expansion versus 𝜖 = 𝜇 − 𝜇0. Dashed red line is the Δ𝑃 = 𝜖3 curve for comparison

analogous to the 1D case (42). Inserting the perturbation-series solution (59)-(-60) into this power
function, we get

𝑃𝑎𝑛𝑎𝑙 (𝜇) = 𝜖𝑃1 + 𝜖2𝑃2 +⋯ , (82)

where

𝑃1 = ∫
∞

−∞
∫

∞

−∞

(𝑝2
0
+ 𝑞2

0
)d𝑥d𝑦, 𝑃2 = ∫

∞

−∞
∫

∞

−∞

2(𝑝0𝑝1 + 𝑞0𝑞1) d𝑥d𝑦. (83)

Using the (𝑝0, 𝑞0) and (𝑝1, 𝑞1) solutions obtained from Equations (61) and (76), we find that

𝑃1 ≈ 17.68828045, 𝑃2 ≈ −21.74575.

Truncating the power-function expansion (82) to these first two terms, this truncated power func-
tion is plotted in Figure 2C alongside the exact power function.Again, the two functions are almost
indistinguishable. To verify the asymptotic accuracy of our perturbation series solutions, we show
inFigure 2Da log-log plot ofΔ𝑃 ≡ 𝜖𝑃1 + 𝜖2𝑃2 − 𝑃(𝜇) versus 𝜖. Its comparisonwith the benchmark
Δ𝑃 = 𝜖3 curve on the same graph shows that this Δ𝑃 is 𝑂(𝜖3), which matches our asymptotic
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prediction for this quantity. The above comparison indicates that the true 2D soliton solutions
and our perturbation series solutions are in perfect agreement.

4 SUMMARY AND DISCUSSION

In this article, we have analytically constructed continuous families of low-amplitude solitons
bifurcating from linearmodes in one- and two-dimensional NLS equations with localizedWadati-
type non- -symmetric complex potentials, thus providing an analytical explanation for this
counterintuitive phenomenon of soliton families appearing in these non- -symmetric non-
Hamiltonian systems. Our analytical construction utilized the conservation laws of these non-
 -symmetric equations, which allowed us to convert the complex soliton equations into new
real systems. A key advantage of these new real systems is that, during a perturbation expan-
sion of low-amplitude solitons bifurcating from linear modes, the underlying linear operator has
two localized functions in its kernel, and the associated adjoint operator has a single localized
or bounded function in its kernel. This kernel structure, coupled with the phase invariance of
the complex soliton, guarantees that at each order of the soliton’s perturbation expansion, the
Fredholm solvability condition can always be satisfied, so that a localized solution at each order
of the perturbation series can be found. As a result, a continuous family of low-amplitude soli-
tons bifurcating from a linear mode is obtained as a perturbation series to all orders of the small
soliton amplitude.We have also compared these analytically constructed soliton solutions to high-
accuracy numerical solutions, in both one and two spatial dimensions, and the asymptotic accu-
racy of these perturbation solutions is fully confirmed.
In this article, the nonlinearity in our 1D and 2D NLS equations (1) and (47) is cubic. But our

analytical treatment for this cubic nonlinearity can be trivially generalized to other types of non-
linearities of the general form 𝐺(|𝑈|2)𝑈, where 𝐺(⋅) is an arbitrary real function. Indeed, for the
1D and 2D NLS equations (1) and (47) with this more general form of nonlinearity but the same
Wadati-type complex potentials (2) and (48), a conservation law still exists.18,19 Thus, the analytical
treatment of this article still applies.
In our perturbative construction of soliton families in the NLS equations (1) and (47) with non-

 -symmetric Wadati-type potentials, the conservation laws of those equations played a critical
role. If such conservation laws are absent, such as for non- -symmetric complex potentials not
ofWadati-type, this constructionwould notwork. In such cases, we do not believe that true soliton
families can still exist. This implies that we do not think that the “soliton families” reported in Ref.
25 for non-Wadati complex potentials are true soliton solutions.
A closely related subject is symmetry breaking of solitons in -symmetricWadati-type poten-

tials (2) and (48), where 𝑔(𝑥) is an even function. It is known that for generic  -symmetric
potentials, symmetry breaking of solitons is forbidden. However, for  -symmetric Wadati-type
potentials (2) and (48), symmetry breaking of solitons can occur, where two branches of non- -
symmetric solitons bifurcate out from the base branch of  -symmetric solitons when the base
branch’s power reaches a certain threshold.18,31 So far, there has been no analytical explanation for
these symmetry breakings. For  -symmetric Wadati-type potentials, the conservation laws (3)
and (51) are still valid. Then, using our new real system of soliton equations in this article, together
with bifurcation conditions for symmetry breaking, branches of symmetric and asymmetric soli-
tons in these  -symmetric Wadati-type potentials could be perturbatively constructed near the
symmetry-breaking point. Details of this construction will be left for future studies.
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The analytical construction of soliton solutions is often a precursor of the subsequent linear
stability analysis of these solitons. Thus, the results of this article could be helpful for the analytical
stability investigations of solitons in Wadati-type complex potentials.

ACKNOWLEDGMENT
I would like to thank the three anonymous referees, whose comments and suggestions have sig-
nificantly improved the clarity and presentation of this paper. This material is based upon work
supported by the Air Force Office of Scientific Research under award number FA9550-18-1-0098
and the National Science Foundation under award number DMS-1910282.

DATA AVAILAB IL ITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon
reasonable request.

ORCID
JiankeYang https://orcid.org/0000-0001-5247-1152

REFERENCES
1. Konotop VV, Yang J, Zezyulin DA. Nonlinear waves in  -symmetric systems. RevMod Phys. 2016;88:035002.
2. Suchkov SV, Sukhorukov AA, Huang J, Dmitriev SV, Lee C, Kivshar YS. Nonlinear switching and solitons in

 -symmetric photonic systems. Laser Photon Rev. 2016;10:177-213.
3. Christodoulides DN, Yang J. (Eds.). Parity-time Symmetry and Its Applications. Springer; 2018.
4. Bender CM, Boettcher S. Real spectra in non-Hermitian Hamiltonians having  symmetry. Phys Rev Lett.

1998;80:5243-5246.
5. Mostafazadeh A. Pseudo-Hermitian representation of quantum mechanics. Int J Geom Methods Mod Phys.

2010;7:1191-1306.
6. Bender CM.,  Symmetry in Quantum and Classical Physics. London: World Scientific; 2019.
7. Musslimani ZH, Makris KG, El-Ganainy R, Christodoulides DN. Optical solitons in  periodic potentials.

Phys Rev Lett. 2008;100:030402.
8. Longhi S.  -symmetric laser absorber. Phys Rev A. 2010;82:031801.
9. Chong YD, Ge L, Stone AD. PT-Symmetry breaking and laser-absorber modes in optical scattering systems.

Phys Rev Lett. 2011;106:093902.
10. Wong ZJ, Xu YL, Kim J, et al.. Lasing and anti-lasing in a single cavity. Nat Photon. 2016;10:796-801.
11. Feng L, Wong ZJ, Ma R, Wang Y, Zhang X. Single-mode laser by parity-time symmetry breaking. Science.

2014;346:972-975.
12. Hodaei H, Miri MA, Heinrich M, Christodoulides DN, Khajavikhan M. Parity-time-symmetric microring

lasers. Science. 2014;346:975-978.
13. Cannata F, Junker G, Trost J. Schrödinger operators with complex potential but real spectrum. Phys Lett A.

1998;246:219-226.
14. MiriM,HeinrichM,ChristodoulidesDN. Supersymmetry-generated complex optical potentialswith real spec-

tra. Phys Rev A. 2013;87:043819.
15. Tsoy EN, Allayarov IM, Abdullaev Kh F. Stable localizedmodes in asymmetric waveguides with gain and loss.

Opt Lett. 2014;39:4215-4218.
16. Nixon S, Yang J. All-real spectra in optical systems with arbitrary gain-and-loss distributions. Phys Rev A.

2016;93:031802(R).
17. Konotop VV, Zezyulin DA. Families of stationary modes in complex potentials. Opt Lett. 2014;39:5535-5538.
18. Yang J. Symmetry breaking of solitons in two-dimensional complex potentials. Phys Rev E. 2015;91:023201.
19. Nixon S, Yang J. Bifurcation of soliton families from linear modes in non- -symmetric complex potentials.

Stud Appl Math. 2016;136:459-483.

https://orcid.org/0000-0001-5247-1152
https://orcid.org/0000-0001-5247-1152


YANG 31

20. Yang J, Nixon S. Stability of soliton families in nonlinear Schrödinger equations with non-parity-time-
symmetric complex potentials. Phys Lett A. 2016;380:3803-3809.

21. Akhmediev N, Ankiewicz A. (Eds), Dissipative Solitons. Berlin: Springer; 2005.
22. Cuevas-Maraver J, Kevrekidis PG, Frantzeskakis DJ, Kominis Y. Nonlinear beam propagation in a class of

complex non- -symmetric potentials. In: D. Christodoulides, J. Yang (Eds.). Parity-Time Symmetry and Its
Applications. Tracts in Modern Physics 280. Singapore: Springer; 2018:557–579.

23. Yang J. Necessity of  symmetry for soliton families in one-dimensional complex potentials. Phys Lett A.
2014;378:367-373.

24. Hang C, Gabadadze G, Huang G. Realization of non- -symmetric optical potentials with all-real spectra in
a coherent atomic system. Phys Rev A. 2017;95:023833.

25. Kominis Y, Cuevas-Maraver J, Kevrekidis PG, Frantzeskakis DJ, Bountis A. Continuous families of soli-
tary waves in non-symmetric complex potentials: a Melnikov theory approach. Chaos Solitons Fractals.
2019;118:222-233.

26. Wadati M. Construction of parity-time symmetric potential through the soliton theory. J Phys Soc Jpn.
2008;77:074005.

27. Pelinovsky DE., Localization in Periodic Potentials: From Schrodinger Operators to the Gross-Pitaevskii Equa-
tion. Cambridge: Cambridge University Press; 2011.

28. Brezis H., Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York: Springer; 2011.
29. Bender CM, Orszag SA., Advanced Mathematical Methods for Scientists and Engineers. New York: McGraw-

Hill; 1978.
30. Yang J. Partially  -symmetric optical potentials with all-real spectra and soliton families in multi-

dimensions. Opt Lett. 2014;39:1133-1136.
31. Yang J. Symmetry breaking of solitons in one-dimensional parity-time-symmetric optical potentials. Opt Lett.

2014;39:5547-5550.

How to cite this article: Yang J. Analytical construction of soliton families in one- and
two-dimensional nonlinear Schrödinger equations with nonparity-time-symmetric
complex potentials. Stud Appl Math. 2021;147:4–31. https://doi.org/10.1111/sapm.12383

https://doi.org/10.1111/sapm.12383

	Analytical construction of soliton families in one- and two-dimensional nonlinear Schrödinger equations with nonparity-time-symmetric complex potentials
	Abstract
	1 | INTRODUCTION
	2 | CONSTRUCTION OF SOLITON FAMILIES IN THE 1D CASE
	2.1 | A new real system for solitons and its perturbation expansion
	2.2 | Kernel structures of the linear operator and its adjoint operator
	2.3 | The Fredholm solvability condition
	2.4 | Construction of perturbation series to all orders
	2.5 | Comparison with numerics
	2.6 | An alternative perturbation calculation

	3 | CONSTRUCTION OF SOLITON FAMILIES IN THE 2D CASE
	3.1 | A real system for 2D solitons and its perturbation expansion
	3.2 | Kernel structures of the 2D linear operator and its adjoint operator
	3.3 | Construction of perturbation series to all orders in 2D
	3.4 | Comparison with numerics in 2D

	4 | SUMMARY AND DISCUSSION
	ACKNOWLEDGMENT
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES


