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Abstract
We show that new types of rogue wave patterns exist
in integrable systems, and these rogue patterns are
described by root structures of Okamoto polynomial
hierarchies. These rogue patterns arise when the 𝜏 func-
tions of rogue wave solutions are determinants of Schur
polynomials with index jumps of three, and an inter-
nal free parameter in these rogue waves gets large. We
demonstrate these new rogue patterns in the Manakov
system and the three-wave resonant interaction system.
For each system, we derive asymptotic predictions of its
rogue patterns under a large internal parameter through
Okamoto polynomial hierarchies. Unlike the previously
reported rogue patterns associated with the Yablonskii–
Vorob’ev hierarchy, a new feature in the present rogue
patterns is that the mapping from the root structure
of Okamoto-hierarchy polynomials to the shape of the
rogue pattern is linear only to the leading order, but
becomes nonlinear to the next order. As a consequence,
the current rogue patterns are often deformed, some-
times strongly deformed, from Okamoto-hierarchy root
structures, unless the underlying internal parameter is
very large. Our analytical predictions of rogue patterns
are compared to true solutions, and excellent agree-
ment is observed, even when rogue patterns are strongly
deformed from Okamoto-hierarchy root structures.
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1 INTRODUCTION

Rogue waves are large and spontaneous nonlinear wave excitations that “come from nowhere
and disappear with no trace.” Such waves were first studied in oceanography, because they posed
a threat even to large ships.2,3 Later, these waves were also investigated in optics and other phys-
ical fields due to their peculiar nature.4,5 From a theoretical point of view, an important fact is
that many integrable nonlinear wave equations admit explicit rational solutions that correspond
to rogue waves. This fact was first reported by Peregrine,6 who presented a simple rogue wave
solution for the nonlinear Schrödinger (NLS) equation. Peregrine’s solution was later general-
ized, and more intricate rogue wave solutions in the NLS equation were derived.7–11 Since the
NLS equation governs nonlinear wave packet evolution in a wide range of physical systems,12,13
these theoretical rogue wave solutions of the NLS equation then motivated a lot of rogue-wave
experiments, ranging from water waves to optical waves to acoustic waves.14–20 These combined
theoretical and experimental studies significantly deepened our understanding of physical rogue
wave events. Due to this success, rogue wave solutions have also been derived in many other
physically important integrable equations, such as the derivative NLS equations for circularly
polarizednonlinearAlfvénwaves in plasmas and short-pulse propagation in a frequency-doubling
crystal,21–26 the Manakov equations for light transmission in randomly birefringent fibers and
interaction between two incoherent light beams in crystals,27–34 and the three-wave resonant
interaction equations in diverse physical situations.13,35–39 Such theoretical rogue wave solutions
have further stimulated experiments on optical rogue waves in randomly birefringent fibers.40,41
In addition to these rogue waves that arise from a uniform background, rogue waves that arise
fromanonuniformbackgroundhave also been predicted or observed in several wave systems.42–46
Pattern formation of rogue waves is an important question, because this information allows

for the prediction of later rogue wave events from earlier wave forms. Rogue wave patterns were
first studied for the NLS equation in Refs. [7–11, 47–53], where the maximum-amplitude rogue
waves and their near-field profiles were determined. In addition, clear geometric shapes of rogue
waves on the spatial-temporal plane, such as triangles, pentagons, and heptagons, were numer-
ically reported under certain parameters, and analytically explained for the case of triangles.52
Regarding the latter question of geometric shapes, significant progress was made recently in Ref.
[54], where an intimate connection between geometric shapes of NLS rogue waves and root struc-
tures of the Yablonskii–Vorob’ev polynomial hierarchy was revealed when one of the internal
parameters in the rogue solutions is large. Since roots of the Yablonskii–Vorob’ev polynomial
hierarchy on the complex plane come in shapes such as triangles, pentagons, and heptagons,
previous numerical reports on this subject can then be analytically explained. Further signifi-
cant progress in this direction was made in Ref. [55], where NLS rogue patterns associated with
the Yablonskii–Vorob’ev hierarchy were shown to be universal in integrable systems, as long as
rogue wave solutions of the integrable systems can be expressed by 𝜏 functions whose matrix ele-
ments contain Schur polynomials with index jumps of two, as in the generalized derivative NLS
equations, the Boussinesq equation, the Manakov system, and many others.55–58
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62 YANG and YANG

A natural next question is, are there other shapes of rogue wave patterns in integrable systems?
If so, what special polynomials would be associated with such rogue patterns?
In this article, we show that there are indeed other shapes of rogue patterns in integrable

systems. These new rogue patterns would arise if rogue solutions can be expressed by 𝜏 func-
tions whose matrix elements contain Schur polynomials with index jumps of three, which occurs
in integrable systems such as the Manakov equations (see later text), the three-wave resonant
interaction equations,59 and many others. Special polynomials associated with these new rogue
patterns are the Okamoto polynomial hierarchies. We demonstrate these new rogue patterns in
the Manakov system and the three-wave resonant interaction system. For each system, we derive
asymptotic predictions of its rogue shapes through Okamoto polynomial hierarchies when one
of the internal free parameters in the rogue waves gets large. Since roots of Okamoto-hierarchy
polynomials exhibit shapes such as double triangles, rhombuses, and squares, we then get new
rogue patterns in such shapes. However, unlike the previously reported rogue patterns associated
with the Yablonskii–Vorob’ev hierarchy, a new feature in the present case is that the mapping
from the root structure of Okamoto hierarchies to the shape of the rogue pattern is linear only to
the leading order, but becomes nonlinear to the next order of size 𝑂(1). This nonlinear nature of
the mapping then generates rogue shapes that are often deformed, sometimes strongly deformed,
from Okamoto-hierarchy root structures, unless the underlying internal parameter is very large
so that the next-order nonlinear correction of the mapping becomes insignificant. Our analytical
predictions of rogue patterns are compared to true solutions, and excellent agreement is observed,
even when rogue shapes are strongly deformed from Okamoto-hierarchy root structures.
This paper is structured as follows. In Section 2, we describe some preliminary facts and results.

Here, we introduce Okamoto polynomial hierarchies and study their root structures. We also
provide explicit rogue wave expressions through Schur polynomials in the Manakov and three-
wave-interaction systems. In Section 3, we present ourmain results on rogue patterns in these two
systems under a large internal parameter. In Section 4, we compare these analytical rogue-pattern
predictions to true solutions in the two systems. In Section 5, we prove the analytical results stated
in Section 3. Section 6 summarizes the paper. In Appendix A, we provide alternative definitions
of Okamoto polynomial hierarchies. In Appendices B and C, we prove root-structure results of
Okamoto-hierarchy polynomials, and derive the bilinear rogue wave expression in the Manakov
system, both of which have been stated in Section 2.

2 PRELIMINARIES

2.1 Okamoto polynomials and their hierarchies

Okamoto polynomials first arose in Okamoto’s study of rational solutions to the Painlevé IV
equation.60 He showed that a class of such rational solutions can be expressed as the logarith-
mic derivative of certain special polynomials, which are now called Okamoto polynomials. Later,
determinant expressions of these polynomials were discovered by Kajiwara and Ohta.61 Let 𝑝𝑗(𝑧)
be Schur polynomials defined by

∞∑
𝑗=0

𝑝𝑗(𝑧)𝜖
𝑗 = exp

(
𝑧𝜖 + 𝜖2

)
, (1)
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YANG and YANG 63

with 𝑝𝑗(𝑧) ≡ 0 for 𝑗 < 0. Then, the monic Okamoto polynomials𝑄𝑁(𝑧) and 𝑅𝑁(𝑧)with𝑁 ≥ 1 are
defined as61,62

𝑄𝑁(𝑧) = 𝑐𝑁

|||||||||||

𝑝2(𝑧) 𝑝1(𝑧) ⋯ 𝑝3−𝑁(𝑧)

𝑝5(𝑧) 𝑝4(𝑧) ⋯ 𝑝6−𝑁(𝑧)

⋮ ⋮ ⋮ ⋮

𝑝3𝑁−1(𝑧) 𝑝3𝑁−2(𝑧) ⋯ 𝑝2𝑁(𝑧)

|||||||||||
, (2)

and

𝑅𝑁(𝑧) = 𝑑𝑁

|||||||||||

𝑝1(𝑧) 𝑝0(𝑧) ⋯ 𝑝2−𝑁(𝑧)

𝑝4(𝑧) 𝑝3(𝑧) ⋯ 𝑝5−𝑁(𝑧)

⋮ ⋮ ⋮ ⋮

𝑝3𝑁−2(𝑧) 𝑝3𝑁−3(𝑧) ⋯ 𝑝2𝑁−1(𝑧)

|||||||||||
, (3)

where

𝑐𝑁 = 3
−

1

2
𝑁(𝑁−1) 2!5!⋯ (3𝑁 − 1)!

0!1!⋯ (𝑁 − 1)!
, (4)

and

𝑑𝑁 = 3
−

1

2
𝑁(𝑁−1) 1!4!⋯ (3𝑁 − 2)!

0!1!⋯ (𝑁 − 1)!
. (5)

Note that these two determinants are both Wronskians, because 𝑝′
𝑗+1

(𝑧) = 𝑝𝑗(𝑧) from the defini-
tion of 𝑝𝑗(𝑧) in Equation (1), where the prime denotes differentiation. The first three 𝑄𝑁(𝑧) and
𝑅𝑁(𝑧) polynomials are

𝑄1(𝑧) = 𝑧2 + 2,

𝑄2(𝑧) = 𝑧6 + 10𝑧4 + 20𝑧2 + 40,

𝑄3(𝑧) = 𝑧12 + 28𝑧10 + 260𝑧8 + 1120𝑧6 + 2800𝑧4 + 11200𝑧2 + 11200,

𝑅1(𝑧) = 𝑧,

𝑅2(𝑧) = 𝑧4 + 4𝑧2 − 4,

𝑅3(𝑧) = 𝑧(𝑧8 + 16𝑧6 + 56𝑧4 − 560).

Compared to the Okamoto polynomials introduced in Refs. [60–62], the polynomials above are
related to them through a simple scaling in 𝑧 and (𝑄𝑁, 𝑅𝑁).
Like the Yablonskii–Vorob’ev polynomials,63 these Okamoto polynomials can also be general-

ized to hierarchies. This generalization has not been done before (to our knowledge). Thus, we
do it now. Let 𝑝[𝑚]

𝑗
(𝑧) be Schur polynomials defined by

∞∑
𝑗=0

𝑝
[𝑚]
𝑗

(𝑧)𝜖𝑗 = exp (𝑧𝜖 + 𝜖𝑚), (6)
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64 YANG and YANG

where𝑚 is a positive integer larger than one, and 𝑝[𝑚]
𝑗

(𝑧) ≡ 0 if 𝑗 < 0. Then, we define the monic

Okamoto polynomial hierarchies 𝑅[𝑚]
𝑁 (𝑧) and 𝑄[𝑚]

𝑁 (𝑧) by the Wronskians

𝑄
[𝑚]
𝑁 (𝑧) = 𝑐𝑁

||||||||||||

𝑝
[𝑚]
2 (𝑧) 𝑝

[𝑚]
1 (𝑧) ⋯ 𝑝

[𝑚]
3−𝑁(𝑧)

𝑝
[𝑚]
5 (𝑧) 𝑝

[𝑚]
4 (𝑧) ⋯ 𝑝

[𝑚]
6−𝑁(𝑧)

⋮ ⋮ ⋮ ⋮

𝑝
[𝑚]
3𝑁−1(𝑧) 𝑝

[𝑚]
3𝑁−2(𝑧) ⋯ 𝑝

[𝑚]
2𝑁 (𝑧)

||||||||||||
, (7)

and

𝑅
[𝑚]
𝑁 (𝑧) = 𝑑𝑁

||||||||||||

𝑝
[𝑚]
1 (𝑧) 𝑝

[𝑚]
0 (𝑧) ⋯ 𝑝

[𝑚]
2−𝑁(𝑧)

𝑝
[𝑚]
4 (𝑧) 𝑝

[𝑚]
3 (𝑧) ⋯ 𝑝

[𝑚]
5−𝑁(𝑧)

⋮ ⋮ ⋮ ⋮

𝑝
[𝑚]
3𝑁−2(𝑧) 𝑝

[𝑚]
3𝑁−3(𝑧) ⋯ 𝑝

[𝑚]
2𝑁−1(𝑧)

||||||||||||
. (8)

If 𝑚 mod 3 = 0, then 𝑄
[𝑚]
𝑁 (𝑧) = 𝑧𝑁(𝑁+1) and 𝑅

[𝑚]
𝑁 (𝑧) = 𝑧𝑁

2 . Proofs for them would be a simple
modification of our proofs in Appendix B for Theorems 1 and 2 to be stated below and are thus
omitted for brevity. But such 𝑚 values turn out to be irrelevant to our rogue pattern problem.
Thus, in this article, we require𝑚 mod 3 ≠ 0, that is,𝑚 = 2, 4, 5, 7, 8, 10, …. When𝑚 = 2, 𝑄[2]

𝑁 (𝑧)

and 𝑅
[2]
𝑁 (𝑧) are the Okamoto polynomials 𝑄𝑁(𝑧) and 𝑅𝑁(𝑧). When 𝑚 > 2, 𝑄[𝑚]

𝑁 (𝑧) and 𝑅
[𝑚]
𝑁 (𝑧)

give higher members of Okamoto hierarchies.
The above Okamoto hierarchy polynomials can also be defined through Schur functions

associated with Young diagrams. Such alternative definitions will be provided in Appendix A.
We should point out that these Okamoto hierarchy polynomials are different from the gener-

alized Okamoto polynomials 𝑄𝑚,𝑛(𝑧) introduced and studied earlier in Refs. [62, 64, 65]. Those
generalized Okamoto polynomials are built from the original 𝑝𝑗(𝑧) polynomials of Equation (1),
but adding additional matrix elements into the original determinants (2)–(3). Our Okamoto hier-
archy polynomials, on the other hand, are built from the new 𝑝

[𝑚]
𝑗

(𝑧) polynomials of Equation (6),
while preserving the forms of the original determinants (2)–(3). Loosely speaking, the generalized
Okamoto polynomials are horizontal generalizations, whereas Okamoto hierarchy polynomials
are vertical generalizations.

2.2 Root structures of Okamoto polynomial hierarchies

Root structures of Okamoto-hierarchy polynomials will play a key role in our analytical study
of rogue wave patterns. For Okamoto polynomials 𝑄𝑁(𝑧) and 𝑅𝑁(𝑧), their root structures have
been investigated in Refs. [62, 66, 67]. It has been shown that for every positive integer 𝑁, 𝑄𝑁(𝑧)

and 𝑅𝑁(𝑧) have simple roots.66,67 In addition, graphs of root locations for many 𝑄𝑁(𝑧) and 𝑅𝑁(𝑧)
polynomials have been plotted, and double-triangle aswell as rhombus-shape root structures have
been observed.62 But for higher members of Okamoto hierarchies, their root structures have not
been studied yet since those polynomials have not been introduced before.

 14679590, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12573, W
iley O

nline L
ibrary on [12/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



YANG and YANG 65

In this subsection, we examine root structures of Okamoto hierarchies 𝑄[𝑚]
𝑁 (𝑧) and 𝑅

[𝑚]
𝑁 (𝑧).

Defining integer 𝑁0 as the remainder of 𝑁 divided by𝑚, that is,

𝑁0 ≡ 𝑁 mod 𝑚, (9)

and denoting [𝑎] as the largest integer less than or equal to a real number 𝑎, then our results are
summarized by the following two theorems.

Theorem 1. The Okamoto hierarchy polynomial 𝑄[𝑚]
𝑁 (𝑧) is monic with degree𝑁(𝑁 + 1), and is of

the form

𝑄
[𝑚]
𝑁 (𝑧) = 𝑧𝑁𝑄𝑞

[𝑚]
𝑁 (𝜁), 𝜁 ≡ 𝑧𝑚, (10)

where 𝑞[𝑚]
𝑁 (𝜁) is a monic polynomial of 𝜁 with all-real coefficients and a nonzero constant term. The

nonnegative integer𝑁𝑄 is the multiplicity of the zero root in 𝑄
[𝑚]
𝑁 (𝑧) and is given by the formula

𝑁𝑄 = 𝑁1𝑄(𝑁1𝑄 − 𝑁2𝑄 + 1) + 𝑁2
2𝑄
, (11)

where 𝑁1𝑄 and 𝑁2𝑄 are nonnegative integers. If 𝑚 > 1 and 𝑚 mod 3 = 1, these (𝑁1𝑄,𝑁2𝑄) values
are

(𝑁1𝑄,𝑁2𝑄) =

⎧⎪⎪⎨⎪⎪⎩
(𝑁0, 0), when 0 ≤ 𝑁0 ≤

[
𝑚

3

]
,([

𝑚

3

]
, 𝑁0 −

[
𝑚

3

])
, when

[
𝑚

3

]
+ 1 ≤ 𝑁0 ≤ 2

[
𝑚

3

]
,

(𝑚 − 1 − 𝑁0, 𝑚 − 1 − 𝑁0), when 2
[
𝑚

3

]
+ 1 ≤ 𝑁0 ≤ 𝑚 − 1;

(12)

and if𝑚 mod 3 = 2, these (𝑁1𝑄,𝑁2𝑄) values are

(𝑁1𝑄,𝑁2𝑄) =

⎧⎪⎪⎨⎪⎪⎩
(𝑁0, 0), when 0 ≤ 𝑁0 ≤

[
𝑚

3

]
,(

𝑁0 −
[
𝑚

3

]
− 1,

[
𝑚

3

])
, when

[
𝑚

3

]
+ 1 ≤ 𝑁0 ≤ 2

[
𝑚

3

]
,

(𝑚 − 1 − 𝑁0, 𝑚 − 1 − 𝑁0), when 2
[
𝑚

3

]
+ 1 ≤ 𝑁0 ≤ 𝑚 − 1.

(13)

If𝑁𝑄 = 0, then zero is not a root of 𝑄[𝑚]
𝑁 (𝑧).

Theorem 2. TheOkamoto hierarchy polynomial𝑅[𝑚]
𝑁 (𝑧) is monic with degree𝑁2, and is of the form

𝑅
[𝑚]
𝑁 (𝑧) = 𝑧𝑁𝑅𝑟

[𝑚]
𝑁 (𝜁), 𝜁 ≡ 𝑧𝑚, (14)

where 𝑟[𝑚]
𝑁 (𝜁) is a monic polynomial of 𝜁 with all-real coefficients and a nonzero constant term. The

nonnegative integer𝑁𝑅 is the multiplicity of the zero root in 𝑅
[𝑚]
𝑁 (𝑧) and is given by the formula

𝑁𝑅 = 𝑁1𝑅(𝑁1𝑅 − 𝑁2𝑅 + 1) + 𝑁2
2𝑅, (15)
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66 YANG and YANG

where 𝑁1𝑅 and 𝑁2𝑅 are nonnegative integers. If 𝑚 > 1 and 𝑚 mod 3 = 1, these (𝑁1𝑅,𝑁2𝑅) values
are

(𝑁1𝑅,𝑁2𝑅) =

⎧⎪⎪⎨⎪⎪⎩
(0, 𝑁0), when 0 ≤ 𝑁0 ≤

[
𝑚

3

]
,([

𝑚

3

]
− 1,𝑁0 − 1 −

[
𝑚

3

])
, when

[
𝑚

3

]
+ 1 ≤ 𝑁0 ≤ 2

[
𝑚

3

]
,

(𝑚 − 1 − 𝑁0, 𝑚 − 𝑁0), when 2
[
𝑚

3

]
+ 1 ≤ 𝑁0 ≤ 𝑚 − 1;

(16)

and if𝑚 mod 3 = 2, these (𝑁1𝑅,𝑁2𝑅) values are

(𝑁1𝑅,𝑁2𝑅) =

⎧⎪⎪⎨⎪⎪⎩
(0, 𝑁0), when 0 ≤ 𝑁0 ≤

[
𝑚

3

]
,(

𝑁0 − 1 −
[
𝑚

3

]
,
[
𝑚

3

]
+ 1

)
, when

[
𝑚

3

]
+ 1 ≤ 𝑁0 ≤ 2

[
𝑚

3

]
,

(𝑚 − 1 − 𝑁0, 𝑚 − 𝑁0), when 2
[
𝑚

3

]
+ 1 ≤ 𝑁0 ≤ 𝑚 − 1.

(17)

If𝑁𝑅 = 0, then zero is not a root of 𝑅[𝑚]
𝑁 (𝑧).

Proofs of these two theorems will be provided in Appendix B.
The most significant piece of information in these two theorems is the formulae for 𝑁𝑄 and

𝑁𝑅, which give the multiplicities of the zero root in 𝑄
[𝑚]
𝑁 (𝑧) and 𝑅[𝑚]

𝑁 (𝑧) polynomials. These root-
multiplicity formulae are particularly important for the analysis of roguewaves in the inner region
under a large parameter (see later text). Compared to the multiplicity formula of the zero root in
the Yablonskii–Vorob’ev polynomial hierarchy,54,55 the presentmultiplicity formulae for Okamoto
hierarchies are more involved, but their connection to the multiplicity formula of the Yablonskii–
Vorob’ev hierarchy is still visible (see especially Ref. [55]). For Okamoto polynomials 𝑄𝑁(𝑧) and
𝑅𝑁(𝑧) (where𝑚 = 2), these multiplicity formulae show that𝑁𝑄 = 0 for all𝑁 values, and𝑁𝑅 = 0

if 𝑁 is even and 𝑁𝑅 = 1 if 𝑁 is odd. This means that for any 𝑁, zero is not a root of 𝑄𝑁(𝑧). In
addition, for 𝑅𝑁(𝑧), zero is not a root when 𝑁 is even and is a simple root when 𝑁 is odd.
Another piece of information from formulae (10) and (14) of these theorems is that root struc-

tures of both 𝑄
[𝑚]
𝑁 (𝑧) and 𝑅

[𝑚]
𝑁 (𝑧) polynomials are invariant under 2𝜋∕𝑚-angle rotation in the

complex 𝑧 plane. This rotational symmetry of the root structures will have implications on shapes
of rogue patterns away from the origin under a large parameter, as we will see later.
The only major piece of information missing from the above two theorems is multiplicities of

nonzero roots in these 𝑄[𝑚]
𝑁 (𝑧) and 𝑅

[𝑚]
𝑁 (𝑧) polynomials. For Okamoto polynomials 𝑄𝑁(𝑧) and

𝑅𝑁(𝑧) (where 𝑚 = 2), it has been shown that all their roots are simple.66,67 For higher members
of these hierarchies, their zero root clearly can be nonsimple in view of the above 𝑁𝑄 and 𝑁𝑅

formulae. However, it is unclear whether their nonzero roots can also be nonsimple. We numeri-
cally studied this question formany particular polynomials in the two hierarchies, and found their
nonzero roots to be always simple. Based on this numerical evidence, we propose the following
conjecture.

Conjecture 1. Nonzero roots of Okamoto-hierarchy polynomials𝑄[𝑚]
𝑁 (𝑧) and𝑅[𝑚]

𝑁 (𝑧) are all simple
for arbitrary integers𝑁 ≥ 1 and𝑚 > 1.
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YANG and YANG 67

F IGURE 1 Root structures of the 𝑄[𝑚]
𝑁 (𝑧) polynomial hierarchy for 2 ≤ 𝑁 ≤ 4 and𝑚 = 2, 4, 5, 7. In all

panels, −8 ≤ Re(𝑧), Im(𝑧) ≤ 8.

If this conjecture holds, then from Theorems 1–2, numbers of nonzero roots in 𝑄
[𝑚]
𝑁 (𝑧) and

𝑅
[𝑚]
𝑁 (𝑧) would be

𝑀𝑄 = 𝑁(𝑁 + 1) − 𝑁𝑄, 𝑀𝑅 = 𝑁2 − 𝑁𝑅, (18)

respectively, where 𝑁𝑄 and 𝑁𝑅 are given in Equations (11) and (15).
To get a visual impression of root structures in Okamoto polynomial hierarchies, we plot in

Figure 1 roots of the 𝑄[𝑚]
𝑁 (𝑧) hierarchy in the complex 𝑧 plane with 2 ≤ 𝑁 ≤ 4 and 𝑚 = 2, 4, 5, 7.

The first column of this figure (with 𝑚 = 2), for roots of Okamoto polynomials 𝑄𝑁(𝑧), exhibits
“double triangles” as reported in Ref. [62]. We caution the reader that sides of these double trian-
gles are not exactly straight; thus, our use of the term “double triangles” is only in an approximate
sense. The second column of this figure, for roots of𝑄[4]

𝑁 (𝑧) polynomials, exhibit a “square” shape
with curved sides, intricate interiors, and some very close roots. The third column, for roots
of 𝑄[5]

𝑁 (𝑧), exhibits a pentagon shape; while the fourth column, for roots of 𝑄[7]
𝑁 (𝑧), exhibits a

heptagon shape. Compared to root shapes of the Yablonskii–Vorob’ev polynomial hierarchy, the
present double-triangle and square shapes are new. The pentagon and heptagon shapes are not
new, as they have appeared in the Yablonskii–Vorob’ev hierarchy before.54,55,63 However, com-
pared to pentagons and heptagons of Yablonskii–Vorob’ev-hierarchy roots, the current pentagons
and heptagons of Okamoto-hierarchy roots have different interiors.
In Figure 2, we plot root structures of the𝑅[𝑚]

𝑁 (𝑧)hierarchy in the complex planewith 2 ≤ 𝑁 ≤ 4

and 𝑚 = 2, 4, 5, 7. Shapes of these roots are somewhat similar to their counterparts for 𝑄[𝑚]
𝑁 (𝑧)

 14679590, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12573, W
iley O

nline L
ibrary on [12/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



68 YANG and YANG

F IGURE 2 Root structures of the 𝑅[𝑚]
𝑁 (𝑧) polynomial hierarchy for 2 ≤ 𝑁 ≤ 4 and𝑚 = 2, 4, 5, 7. In all

panels, −7 ≤ Re(𝑧), Im(𝑧) ≤ 7.

in the previous figure, but plenty of differences also exist between them. One difference is that
while the first column of Figure 1 exhibits two separate triangles, the first column of the current
figure exhibits two triangles that are joined together at the base to form a rhombus. Another dif-
ference is that interior roots in the second column of the current figure are more orderly than
their counterparts in Figure 1. A third difference is that even though shapes of roots in the fourth
columns of the two figures are quite similar to each other, zero roots in corresponding panels actu-
ally have different multiplicities. For example, the zero root has multiplicity 5 in the upper panel
of the fourth column of Figure 1, but has multiplicity 2 in the corresponding panel of Figure 2.
The aim of this paper is to show that geometric shapes of certain types of rogue waves in inte-

grable systems are closely related with root structures of Okamoto polynomial hierarchies. For
this purpose, we present such rogue waves in two integrable systems below.

2.3 Rogue waves in the Manakov system

The Manakov system is68

(i𝜕𝑡 + 𝜕2𝑥)𝑢1 + (𝜖1|𝑢1|2 + 𝜖2|𝑢2|2)𝑢1 = 0,

(i𝜕𝑡 + 𝜕2𝑥)𝑢2 + (𝜖1|𝑢1|2 + 𝜖2|𝑢2|2)𝑢2 = 0,
(19)

where the nonlinear coefficients 𝜖1 = ±1 and 𝜖2 = ±1. These equations govern many physical
processes such as the interaction of two incoherent light beams in crystals,28,29,69 transmission
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YANG and YANG 69

of light in randomly birefringent optical fibers,27,70,71 and evolution of two-component Bose–
Einstein condensates.72,73 Integrability of this system can be found in Ref. [68] for 𝜖1 = 𝜖2 and
in Ref. [74] for arbitrary (𝜖1, 𝜖2) values.
Rogue waves in the Manakov system are rational solutions that satisfy the following boundary

conditions:

𝑢1(𝑥, 𝑡) → 𝜌1𝑒
i(𝑘1𝑥+𝜔1𝑡), 𝑥, 𝑡 → ±∞,

𝑢2(𝑥, 𝑡) → 𝜌2𝑒
i(𝑘2𝑥+𝜔2𝑡), 𝑥, 𝑡 → ±∞,

(20)

where (𝑘1, 𝑘2) and (𝜔1, 𝜔2) are wave numbers and frequencies of the two components in the
plane-wave background, and (𝜌1, 𝜌2) are their amplitudes that will be set real positive using phase
invariance of the system. Parameters of the background plane wave satisfy the following relations:

𝜔1 = 𝜖1𝜌
2
1 + 𝜖2𝜌

2
2 − 𝑘21,

𝜔2 = 𝜖1𝜌
2
1 + 𝜖2𝜌

2
2 − 𝑘22.

(21)

Due to Galilean invariance of theManakov system, we can set 𝑘1 = −𝑘2 without loss of generality.
In this case, 𝜔1 = 𝜔2.
Rogue waves in the Manakov system have been derived in Refs. [30–34, 55] by various meth-

ods. Some of those waves, whose 𝜏 functions are determinants of Schur polynomials with index
jumps of two, are asymptotically related to the Yablonski–Vorob’ev polynomial hierarchy when
one of the internal free parameters in such waves is large.55 The rogue waves that are asymptoti-
cally related to Okamoto hierarchies under a large internal parameter turn out to be those whose
𝜏 functions are determinants of Schur polynomials with index jumps of three. This asymptotic
connection between such rogue waves and Okamoto hierarchies naturally arises, since Okamoto-
hierarchy polynomials are also determinants of Schur polynomials with index jumps of three (see
Equations (7)–(8)), similar to those rogue waves. In this case, when an internal parameter in such
rogue waves is large, the rogue-wave determinants with Schur-polynomial elements simplify to
Okamoto-hierarchy polynomials under proper scalings (details on this will be seen in Section 5
later).
In the framework of Darboux transformation, Manakov rogue waves in the form of determi-

nants of Schur polynomials with index jumps of three would arise when the underlying 3 × 3

scattering matrix admits a triple eigenvalue. Derivation of such rogue waves by Darboux trans-
formation can be found in Refs. [32–34]. However, those rogue from Darboux transformation are
not general nor explicit for asymptotic analysis. Thus, we will first present explicit and general
expressions of those rogue waves, which we will derive by the bilinear method.
Before presenting our rogue-wave expressions, we need to introduce elementary Schur

polynomials. These polynomials 𝑆𝑗(𝒙)with x = (𝑥1, 𝑥2, …) are defined by the generating function

∞∑
𝑗=0

𝑆𝑗(𝒙)𝜖
𝑗 = exp

(
∞∑
𝑗=1

𝑥𝑗𝜖
𝑗

)
, (22)

or more explicitly,

𝑆0(x) = 1, 𝑆1(𝒙) = 𝑥1, 𝑆2(𝒙) =
1

2
𝑥21 + 𝑥2, … , 𝑆𝑗(𝒙) =

∑
𝑙1+2𝑙2+⋯+𝑚𝑙𝑚=𝑗

⎛⎜⎜⎝
𝑚∏
𝑗=1

𝑥
𝑙𝑗
𝑗

𝑙𝑗!

⎞⎟⎟⎠. (23)
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70 YANG and YANG

In addition, we define 𝑆𝑗(x) = 0 when 𝑗 < 0.
Our Manakov rogue waves whose 𝜏 functions are determinants of Schur polynomials with

index jumps of three are given by the following theorem.

Theorem 3. When the nonlinear coefficients in the Manakov system (19) are 𝜖1 = 𝜖2 = 1, and
background amplitudes and wave numbers in the boundary conditions (20) satisfy the following
constraints:

𝜌1 = 𝜌2 =
√
2|𝑘1 − 𝑘2|, 𝑘1 ≠ 𝑘2, (24)

the algebraic equation

 ′
1(𝑝) = 0, (25)

where

1(𝑝) =
𝜌21

𝑝 − i𝑘1
+

𝜌21
𝑝 − i𝑘2

+ 2𝑝, (26)

would admit a double root

𝑝0 =

√
3

2
(𝑘1 − 𝑘2) +

i

2
(𝑘1 + 𝑘2). (27)

In this case, the Manakov system (19) under boundary conditions (20) would admit nonsingular
(𝑁1,𝑁2)th-order rogue wave solutions

𝑢1,𝑁1,𝑁2
(𝑥, 𝑡) = 𝜌1

𝑔1,𝑁1,𝑁2

𝑓𝑁1,𝑁2

𝑒i(𝑘1𝑥+𝜔1𝑡), (28)

𝑢2,𝑁1,𝑁2
(𝑥, 𝑡) = 𝜌1

𝑔2,𝑁1,𝑁2

𝑓𝑁1,𝑁2

𝑒i(𝑘2𝑥+𝜔2𝑡), (29)

where𝑁1 and𝑁2 are arbitrary nonnegative integers,

𝑓𝑁1,𝑁2
= 𝜎0,0, 𝑔1,𝑁1,𝑁2

= 𝜎1,0, 𝑔2,𝑁1,𝑁2
= 𝜎0,1, (30)

𝜎𝑛,𝑘 is given by the following 2 × 2 block determinant

𝜎𝑛,𝑘 = det

(
𝜎
[1,1]
𝑛,𝑘

𝜎
[1,2]
𝑛,𝑘

𝜎
[2,1]
𝑛,𝑘

𝜎
[2,2]
𝑛,𝑘

)
, (31)

𝜎
[𝐼,𝐽]
𝑛,𝑘

=
(
𝜙
(𝑛,𝑘, 𝐼,𝐽)
3𝑖−𝐼, 3𝑗−𝐽

)
1≤𝑖≤𝑁𝐼, 1≤𝑗≤𝑁𝐽

, (32)

the matrix elements in 𝜎[𝐼,𝐽]
𝑛,𝑘

are defined by

𝜙
(𝑛,𝑘,𝐼,𝐽)
𝑖,𝑗

=

min(𝑖,𝑗)∑
𝜈=0

[ |𝑝1|2
(𝑝0 + 𝑝∗0)

2

]𝜈
𝑆𝑖−𝜈(x+𝐼 (𝑛, 𝑘) + 𝜈s) 𝑆𝑗−𝜈(x−𝐽 (𝑛, 𝑘) + 𝜈s∗), (33)
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YANG and YANG 71

vectors x+𝐼 (𝑛, 𝑘) = (𝑥+1,𝐼 , 𝑥
+
2,𝐼 , …) and x

−
𝐽 (𝑛, 𝑘) = (𝑥−1,𝐽, 𝑥

−
2,𝐽, …) are defined by

𝑥+𝑟,𝐼(𝑛, 𝑘) = 𝑝𝑟𝑥 +

(
𝑟∑
𝑙=0

𝑝𝑙𝑝𝑟−𝑙

)
(i𝑡) + 𝑛𝜃𝑟 + 𝑘𝜆𝑟 + 𝑎𝑟,𝐼 , if 𝑟 mod 3 ≠ 0, (34)

𝑥−𝑟,𝐽(𝑛, 𝑘) = 𝑝∗𝑟 𝑥 −

(
𝑟∑
𝑙=0

𝑝∗
𝑙
𝑝∗
𝑟−𝑙

)
(i𝑡) − 𝑛𝜃∗𝑟 − 𝑘𝜆∗𝑟 + 𝑎∗𝑟,𝐽 , if 𝑟 mod 3 ≠ 0, (35)

𝑥+𝑟,𝐼(𝑛, 𝑘) = 𝑥−𝑟,𝐽(𝑛, 𝑘) = 0, if 𝑟 mod 3 = 0, (36)

the asterisk “*” represents complex conjugation, and 𝜃𝑟, 𝜆𝑟, and 𝑠𝑟 are coefficients from the expansions

ln

[
𝑝 (𝜅) − i𝑘1
𝑝0 − i𝑘1

]
=

∞∑
𝑟=1

𝜃𝑟𝜅
𝑟, ln

[
𝑝 (𝜅) − i𝑘2
𝑝0 − i𝑘2

]
=

∞∑
𝑟=1

𝜆𝑟𝜅
𝑟, (37)

ln

[
1

𝜅

(
𝑝0 + 𝑝∗0

𝑝1

)(
𝑝(𝜅) − 𝑝0
𝑝(𝜅) + 𝑝∗0

)]
=

∞∑
𝑟=1

𝑠𝑟𝜅
𝑟, (38)

the function 𝑝(𝜅) is defined by the equation

1[𝑝(𝜅)] =
1(𝑝0)

3

[
𝑒𝜅 + 2𝑒−𝜅∕2 cos

(√
3

2
𝜅

)]
, (39)

𝑝𝑟 = 𝑝(𝑟)(0)∕𝑟!, with the superscript “(𝑟)” denoting the 𝑟th derivative of 𝑝(𝜅), and

(𝑎1,1, 𝑎2,1, 𝑎4,1, 𝑎5,1, … , 𝑎3𝑁1−1, 1), (𝑎1,2, 𝑎2,2, 𝑎4,2, 𝑎5,2, … , 𝑎3𝑁2−2, 2) (40)

are free complex constants.

The proof of this theoremwill be provided in Appendix C. Graphs for some simple solutions in
this theorem will be illustrated in Section 2.6 later. Note that for other (𝜖1, 𝜖2) values, these rogue
waves as determinants with index jumps of three will not exist.

Remark 1. Regarding the polynomial degree of 𝜎𝑛,𝑘 in the above theorem, we can show, by
rewriting 𝜎𝑛,𝑘 into a larger determinant similar to what was done in Ref. [11], that

deg(𝜎𝑛,𝑘) = 2
[
𝑁1(𝑁1 − 𝑁2 + 1) + 𝑁2

2

]
(41)

in both 𝑥 and 𝑡.

Remark 2. The algebraic equation (25) is a quartic equation. Under parameter conditions (24),
this quartic equation admits two double roots, one being 𝑝(1)0 = 𝑝0, and the other being 𝑝

(2)
0 =

−𝑝∗0 . If we replace 𝑝0 by 𝑝
(2)
0 in Equations (33)–(39), the resulting functions (28)–(29) are still

Manakov rogue waves. However, these other Manakov rogue waves are equivalent to those given
in Theorem 3 when parameters (𝑎𝑟,1, 𝑎𝑟,2) in them are properly related. See Remark 2 in Ref. [59]
for details.

Remark 3. Regarding coefficients 𝑠𝑟 defined in the expansion (38), we can show that 𝑠𝑟 = 0 for
𝑟mod 3 ≠ 0. In addition, if we normalize 𝑘2 = −𝑘1 through a Galilean transformation to the
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72 YANG and YANG

Manakov system, then 𝑠𝑟 would be specific numbers without parameter dependence. Proofs of
these facts will be given in Appendix D. In the latter case, the first few values of these 𝑠𝑟 numbers
are found to be

𝑠1 = 𝑠2 = 0, 𝑠3 = −
1

40
, 𝑠4 = 𝑠5 = 0, 𝑠6 =

1669

1814400
, 𝑠7 = 𝑠8 = 0, 𝑠9 = −

6047

133056000
,

𝑠10 = 𝑠11 = 0, … . (42)

Remark 4. There are three functions of 𝑝(𝜅) that satisfy Equation (39), and these three functions
are related as 𝑝(𝜅𝑒i2𝑗𝜋∕3), where 𝑗 = 0, 1, 2. We can choose any one of these three functions in the
above theorem and keep complex parameters 𝑎𝑟,𝐼 free without loss of generality. See Remark 3 in
Ref. [59] for details. The choice of these three 𝑝(𝜅) functions is made by the choice of the 𝑝1 value
in 𝑝(𝜅)’s Taylor expansion. This 𝑝1 is any one of the three cubic roots of a certain constant. After
𝑝1 is picked, 𝑝(𝜅) will be uniquely determined.

2.4 Rogue waves in the three-wave resonant interaction system

The (1+1)-dimensional three-wave resonant interaction system is

(𝜕𝑡 + 𝑐1𝜕𝑥)𝑢1 = 𝜖1𝑢
∗
2𝑢

∗
3 ,

(𝜕𝑡 + 𝑐2𝜕𝑥)𝑢2 = 𝜖2𝑢
∗
1𝑢

∗
3 , (43)

(𝜕𝑡 + 𝑐3𝜕𝑥)𝑢3 = 𝜖3𝑢
∗
1𝑢

∗
2 ,

where (𝑐1, 𝑐2, 𝑐3) are group velocities of the three waves, and (𝜖1, 𝜖2, 𝜖3) are real-valued nonlin-
ear coefficients. To remove ambiguity, we order the three group velocities as 𝑐1 > 𝑐2 > 𝑐3, and
make 𝑐3 = 0 by choosing a coordinate system that moves with velocity 𝑐3. The nonlinear coeffi-
cients 𝜖𝑛 can be normalized to ±1 by variable scalings. In addition, we can fix 𝜖1 = 1 without loss
of generality.
Rogue waves in this three-wave interaction system are rational solutions that approach plane-

wave backgrounds as 𝑥, 𝑡 → ±∞, that is,

𝑢1(𝑥, 𝑡) → 𝜌1𝑒
i(𝑘1𝑥+𝜔1𝑡), 𝑥, 𝑡 → ±∞,

𝑢2(𝑥, 𝑡) → 𝜌2𝑒
i(𝑘2𝑥+𝜔2𝑡), 𝑥, 𝑡 → ±∞,

𝑢3(𝑥, 𝑡) → i𝜌3𝑒
−i[(𝑘1+𝑘2)𝑥+(𝜔1+𝜔2)𝑡], 𝑥, 𝑡 → ±∞,

(44)

where (𝑘1, 𝑘2) and (𝜔1, 𝜔2) are wave numbers and frequencies of the first two waves, and
(𝜌1, 𝜌2, 𝜌3) are the complex amplitudes of the three waves. Parameters of these plane waves satisfy
the following relations:

𝜌1(𝜔1 + 𝑐1𝑘1) = −𝜖1𝜌
∗
2𝜌

∗
3,

𝜌2(𝜔2 + 𝑐2𝑘2) = −𝜖2𝜌
∗
1𝜌

∗
3, (45)

𝜌3(𝜔1 + 𝜔2) = 𝜖3𝜌
∗
1𝜌

∗
2.

In this article, we assume that 𝜌1, 𝜌2, and 𝜌3 are all nonzero. In view of the phase invariance,
we can normalize 𝜌1 and 𝜌2 to be real. Then the above relations show that 𝜌3 is real as well.
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YANG and YANG 73

In addition, the gauge invariance allows us to impose a restriction on the four parameters
(𝑘1, 𝑘2, 𝜔1, 𝜔2), such as fixing one of them as zero, or equating 𝑘1 = 𝑘2, or equating 𝜔1 = 𝜔2,
without any loss of generality. Under such a restriction, wave number and frequency parameters
(𝑘1, 𝑘2, 𝜔1, 𝜔2) would be fully determined from the three real background-amplitude parameters
(𝜌1, 𝜌2, 𝜌3) through Equations (45).
General rogue-wave solutions in the three-wave interaction system (43) have been derived by

the bilinear method in Ref. [59]. To present these rogue waves, we introduce notations

𝛾1 ≡ 𝜖1
𝜌2𝜌3
𝜌1

, 𝛾2 ≡ 𝜖2
𝜌1𝜌3
𝜌2

, 𝛾3 ≡ 𝜖3
𝜌1𝜌2
𝜌3

, (46)

and

2(𝑝) =

(
𝛾1𝑐2

𝛾3(𝑐2 − 𝑐1)

)
1

𝑝
−

(
𝛾2𝑐1

𝛾3(𝑐2 − 𝑐1)

)
1

𝑝 − i
− 𝑝. (47)

Then, rogue waves in the three-wave system whose 𝜏 functions are determinants of Schur
polynomials with index jumps of three are given by the following theorem.

Theorem 4 59. In the soliton-exchange case where (𝜖1, 𝜖2, 𝜖3) = (1, −1, 1), and under parameter
conditions

𝜌2 = ±

√
𝑐1
𝑐2
𝜌1, 𝜌3 = ±

√
𝑐1 − 𝑐2
𝑐2

𝜌1, (48)

the algebraic equation

 ′
2(𝑝) = 0 (49)

admits a double root 𝑝0 = (
√
3 + i)∕2. In this case, the three-wave interaction system (43) under

boundary conditions (44) admits nonsingular (𝑁1,𝑁2)th-order rogue-wave solutions

𝑢1,𝑁1,𝑁2
(𝑥, 𝑡) = 𝜌1

𝑔1,𝑁1,𝑁2

𝑓𝑁1,𝑁2

𝑒i(𝑘1𝑥+𝜔1𝑡), (50)

𝑢2,𝑁1,𝑁2
(𝑥, 𝑡) = 𝜌2

𝑔2,𝑁1,𝑁2

𝑓𝑁1,𝑁2

𝑒i(𝑘2𝑥+𝜔2𝑡), (51)

𝑢3,𝑁1,𝑁2
(𝑥, 𝑡) = i𝜌3

𝑔3,𝑁1,𝑁2

𝑓𝑁1,𝑁2

𝑒−i[(𝑘1+𝑘2)𝑥+(𝜔1+𝜔2)𝑡], (52)

where𝑁1 and𝑁2 are arbitrary nonnegative integers,

𝑓𝑁1,𝑁2
= 𝜎0,0, 𝑔1,𝑁1,𝑁2

= 𝜎1,0, 𝑔2,𝑁1,𝑁2
= 𝜎0,−1, 𝑔3,𝑁1,𝑁2

= 𝜎−1,1, (53)

𝜎𝑛,𝑘 is given by the following 2 × 2 block determinant

𝜎𝑛,𝑘 = det

(
𝜎
[1,1]
𝑛,𝑘

𝜎
[1,2]
𝑛,𝑘

𝜎
[2,1]
𝑛,𝑘

𝜎
[2,2]
𝑛,𝑘

)
, (54)

𝜎
[𝐼,𝐽]
𝑛,𝑘

=
(
𝜙
(𝑛,𝑘, 𝐼,𝐽)
3𝑖−𝐼, 3𝑗−𝐽

)
1≤𝑖≤𝑁𝐼, 1≤𝑗≤𝑁𝐽

, (55)
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74 YANG and YANG

the matrix elements in 𝜎[𝐼,𝐽]
𝑛,𝑘

are defined by

𝜙
(𝑛,𝑘,𝐼,𝐽)
𝑖,𝑗

=

min(𝑖,𝑗)∑
𝜈=0

[ |𝑝1|2
(𝑝0 + 𝑝∗0)

2

]𝜈
𝑆𝑖−𝜈(x+𝐼 (𝑛, 𝑘) + 𝜈s) 𝑆𝑗−𝜈(x−𝐽 (𝑛, 𝑘) + 𝜈s∗), (56)

vectors x+𝐼 (𝑛, 𝑘) = (𝑥+1,𝐼 , 𝑥
+
2,𝐼 , …) and x

−
𝐽 (𝑛, 𝑘) = (𝑥−1,𝐽, 𝑥

−
2,𝐽, …) are defined by

𝑥+𝑟,𝐼(𝑛, 𝑘) = (𝛼𝑟 − 𝛽𝑟) 𝑥 + (𝑐1𝛽𝑟 − 𝑐2𝛼𝑟) 𝑡 + 𝑛𝜃𝑟 + 𝑘𝜆𝑟 + 𝑎𝑟,𝐼 , if 𝑟 mod 3 ≠ 0, (57)

𝑥−𝑟,𝐽(𝑛, 𝑘) = (𝛼∗𝑟 − 𝛽∗𝑟 ) 𝑥 + (𝑐1𝛽
∗
𝑟 − 𝑐2𝛼

∗
𝑟 ) 𝑡 − 𝑛𝜃∗𝑟 − 𝑘𝜆∗𝑟 + 𝑎∗𝑟,𝐽 , if 𝑟 mod 3 ≠ 0, (58)

𝑥+𝑟,𝐼(𝑛, 𝑘) = 𝑥−𝑟,𝐽(𝑛, 𝑘) = 0, if 𝑟 𝑚𝑜𝑑 3 = 0, (59)

𝛼𝑟, 𝛽𝑟, 𝜃𝑟, 𝜆𝑟 and the vector s = (𝑠1, 𝑠2, …) are defined through the expansions

𝛾1
𝑐1 − 𝑐2

(
1

𝑝(𝜅)
−

1

𝑝0

)
=

∞∑
𝑟=1

𝛼𝑟𝜅
𝑟, (60)

𝛾2
𝑐1 − 𝑐2

(
1

𝑝(𝜅) − i
−

1

𝑝0 − i

)
=

∞∑
𝑟=1

𝛽𝑟𝜅
𝑟, (61)

ln
𝑝 (𝜅)

𝑝0
=

∞∑
𝑟=1

𝜆𝑟𝜅
𝑟, ln

𝑝 (𝜅) − i

𝑝0 − i
=

∞∑
𝑟=1

𝜃𝑟𝜅
𝑟, (62)

ln

[
1

𝜅

(
𝑝0 + 𝑝∗0

𝑝1

)(
𝑝(𝜅) − 𝑝0
𝑝(𝜅) + 𝑝∗0

)]
=

∞∑
𝑟=1

𝑠𝑟𝜅
𝑟, (63)

the function 𝑝(𝜅) that appears in Equations (60)–(63) is defined by the equation

2[𝑝(𝜅)] =
2(𝑝0)

3

[
𝑒𝜅 + 2𝑒−𝜅∕2 cos

(√
3

2
𝜅

)]
, (64)

2(𝑝) is given by Equation (47), or equivalently,

2(𝑝) = −

(
1

𝑝
+

1

𝑝 − i
+ 𝑝

)
(65)

in view of the parameter constraints (48), 𝑝1 ≡ (𝑑𝑝∕𝑑𝜅)|𝜅=0, and
(𝑎1,1, 𝑎2,1, 𝑎4,1, 𝑎5,1, … , 𝑎3𝑁1−1, 1), (𝑎1,2, 𝑎2,2, 𝑎4,2, 𝑎5,2, … , 𝑎3𝑁2−2, 2) (66)

are free complex constants.

We note that the above rogue expressions are a bit simpler than those presented in Ref. [59],
because 𝑥+𝑟,𝐼(𝑛, 𝑘) and 𝑥

−
𝑟,𝐽(𝑛, 𝑘) for 𝑟-indices of 𝑟mod3 = 0 have been set as zero here. The reason

for this simplification is analogous to that explained in Appendix A of Ref. [54] in a different set-
ting.We also note that therewas a typo in the 𝛽𝑟 expansion equation (35) of Ref. [59], where 𝑐2 − 𝑐1
there should have been 𝑐1 − 𝑐2. That typo has been fixed in our current 𝛽𝑟 expansion equation (61).
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YANG and YANG 75

As in the Manakov case, the quartic equation (49) under parameter conditions (48) also admits
another double root −𝑝∗0 = (−

√
3 + i)∕2, but that other double root does not lead to new rogue

solutions.59 In addition, from the expansion (63) for 𝑠𝑟, we find numerically that

𝑠1 = 𝑠2 = 0, 𝑠3 = −
1

40
−

√
3

324
i, 𝑠4 = 𝑠5 = 0, 𝑠6 =

14321

16329600
+

√
3

4320
i, 𝑠7 = 𝑠8 = 0, … . (67)

So, 𝑠𝑟 = 0when 𝑟mod 3 ≠ 0here aswell. This fact will also be proved inAppendixD. The previous
Remark 4 holds here too.

2.5 Special rogue solutions to be studied

Rogue waves in Theorems 3 and 4 for the Manakov and three-wave-interaction systems with
general (𝑁1,𝑁2) values contain a wide variety of solutions that exhibit different wave patterns.
In this article, we will only study rogue waves in these two theorems where 𝑁1 = 0 or 𝑁2 =

0. In these cases, the 2 × 2 block determinants in Equations (31) and (54) reduce to a single-
block determinant, which makes our analysis a little simpler. For convenience, we introduce the
terminology:

∙ Q-type 𝑁th-order rogue waves: rogue waves in Theorems 3 and 4 where 𝑁1 = 𝑁 (> 0) and
𝑁2 = 0;

∙ R-type 𝑁th-order rogue waves: rogue waves in Theorems 3 and 4 where 𝑁1 = 0 and
𝑁2 = 𝑁 (> 0).

The reason for the word choices of “Q-type” and “R-type” here is that the underlying rogue waves
will be related to 𝑄[𝑚]

𝑁 (𝑧) and 𝑅[𝑚]
𝑁 (𝑧) polynomials, respectively, as we will show later.

For Q-type 𝑁th-order rogue waves, 𝜎𝑛,𝑘 in Equations (31) and (54) becomes

𝜎
(𝑄)
𝑛,𝑘

=
(
𝜙
(𝑛,𝑘)
3𝑖−1, 3𝑗−1

)
1≤𝑖,𝑗≤𝑁

, (68)

and for R-type 𝑁th-order rogue waves, 𝜎𝑛,𝑘 in Equations (31) and (54) is

𝜎
(𝑅)
𝑛,𝑘

=
(
𝜙
(𝑛,𝑘)
3𝑖−2, 3𝑗−2

)
1≤𝑖,𝑗≤𝑁

, (69)

where 𝜙(𝑛,𝑘)
𝑖,𝑗

is given by Equation (33) for theManakov system and (56) for the three-wave system,
but with indices 𝐼 and 𝐽 removed. Internal parameters are (𝑎1, 𝑎2, 𝑎4, 𝑎5, … , 𝑎3𝑁−1) for Q-type
waves, and (𝑎1, 𝑎2, 𝑎4, 𝑎5, … , 𝑎3𝑁−2) for R-type waves. We normalize 𝑎1 = 0 by a shift of the (𝑥, 𝑡)
axes. Then, internal complex parameters in these roguewaves are (𝑎2, 𝑎4, 𝑎5, … , 𝑎3𝑁−1) forQ-type,
and (𝑎2, 𝑎4, 𝑎5, … , 𝑎3𝑁−2) for R-type.Notice that this parameter vector does not contain (𝑎3, 𝑎6, … ).
As we will see later, this explains why Okamoto hierarchy polynomials 𝑄[𝑚]

𝑁 (𝑧) and 𝑅[𝑚]
𝑁 (𝑧) with

𝑚 = 3, 6, … are irrelevant to our rogue pattern studies.
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76 YANG and YANG

2.6 Lowest-order Q-type and R-type rogue waves

The lowest-order Q-type andR-type roguewaves are thosewhere𝑁 = 1. For theManakov system,
the lowest-order R-type rogue wave can be obtained from Theorem 3 and further simplified as

𝑢1(𝑥, 𝑡) = �̂�1(𝑥, 𝑡) 𝑒
i(𝑘1𝑥+𝜔1𝑡), 𝑢2(𝑥, 𝑡) = �̂�2(𝑥, 𝑡) 𝑒

i(𝑘2𝑥+𝜔2𝑡), (70)

where

�̂�1(𝑥, 𝑡) = 𝜌1

(
𝑥 + 2i𝑝0𝑡 + �̂�1

)(
𝑥 − 2i𝑝∗0𝑡 − �̂�∗1

)
+ 𝜁0|𝑥 + 2i𝑝0𝑡|2 + 𝜁0

, (71)

�̂�2(𝑥, 𝑡) = 𝜌1

(
𝑥 + 2i𝑝0𝑡 + �̂�1

)(
𝑥 − 2i𝑝∗0𝑡 − �̂�∗1

)
+ 𝜁0|𝑥 + 2i𝑝0𝑡|2 + 𝜁0

, (72)

and

�̂�1 =
1

𝑝0 − i𝑘1
, �̂�1 =

1

𝑝0 − i𝑘2
, 𝜁0 =

1

(𝑝0 + 𝑝∗0)
2
. (73)

This rogue wave is a ratio of degree-2 polynomials in 𝑥 and 𝑡, which is the simplest among
all rogue waves in the Manakov system. Thus, we will call it the fundamental Manakov rogue
wave. If we choose background wave numbers as 𝑘2 = −𝑘1, which is always possible through a
Galilean transformation, then 𝑝0 would be real, see Equation (27). In this case, it is easy to see
that this fundamental rogue wave admits the symmetry of �̂�2(𝑥, 𝑡) = �̂�1(−𝑥, 𝑡), that is, �̂�2(𝑥, 𝑡)
would be a mirror image of �̂�1(𝑥, 𝑡) around the 𝑡-axis in the (𝑥, 𝑡) plane. To illustrate, let we take
𝑘1 = −𝑘2 = 1∕

√
12, which we will also use later in Section 4.1. Then, the explicit expression of

this fundamental Manakov rogue wave is

�̂�1(𝑥, 𝑡) =

√
2

3

𝑥2 + 𝑡2 − i(3𝑡 −
√
3𝑥) − 2

𝑥2 + 𝑡2 + 1
, �̂�2(𝑥, 𝑡) =

√
2

3

𝑥2 + 𝑡2 − i(3𝑡 +
√
3𝑥) − 2

𝑥2 + 𝑡2 + 1
. (74)

This solution is plotted in the left column of Figure 3. It is seen that both the |𝑢1| and |𝑢2| compo-
nents of this solution have a single elongated hump of equal amplitude, and orientations of these
two humps are opposite of each other with respect to the vertical axis.
The lowest-order Q-typeManakov rogue wave can also be obtained from Theorem 3. This solu-

tion is a ratio of polynomials of degree 4 in 𝑥 and 𝑡, and it contains an irreducible free complex
parameter 𝑎2. When we choose 𝑘1 = −𝑘2 = 1∕

√
12, this solution with 𝑎2 = 0 is

𝑢1(𝑥, 𝑡) = 𝜌1
𝑔1(𝑥, 𝑡)

𝑓(𝑥, 𝑡)
𝑒i(𝑘1𝑥+𝜔1𝑡), 𝑢2(𝑥, 𝑡) = 𝜌1

𝑔2(𝑥, 𝑡)

𝑓(𝑥, 𝑡)
𝑒i(𝑘2𝑥+𝜔2𝑡), (75)

where 𝜌1 =
√
2∕3, and

𝑓(𝑥, 𝑡) = 4 + 𝑡4 + 8𝑥2 + 4𝑥3 + 𝑥4 + 2𝑡2(10 + 6𝑥 + 𝑥2),

𝑔1(𝑥, 𝑡) = −2 − 6i
√
3 − 6i𝑡3 + 𝑡4 − 4i

√
3𝑥 + (−1 + 3i

√
3)𝑥2 + (4 + 2i

√
3)𝑥3 + 𝑥4

+ 6𝑡
[
−i + 3

√
3 + (−3i +

√
3)𝑥 − i𝑥2

]
+ 𝑡2

[
5 + 9i

√
3 + 2(6 + i

√
3)𝑥 + 2𝑥2

]
,

𝑔2(𝑥, 𝑡) = −2 + 6i
√
3 − 6i𝑡3 + 𝑡4 + 4i

√
3𝑥 + (−1 − 3i

√
3)𝑥2 + (4 − 2i

√
3)𝑥3 + 𝑥4

− 6𝑡
[
i + 3

√
3 + (3i +

√
3)𝑥 + i𝑥2

]
+ 𝑡2

[
5 − 9i

√
3 + 2(6 − i

√
3)𝑥 + 2𝑥2

]
.
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YANG and YANG 77

F IGURE 3 Lowest-order Q-type and R-type Manakov rogue waves (𝑁 = 1) for 𝑘1 = −𝑘2 = 1∕
√
12. Left

column: R-type in Equation (74). Middle column: Q-type with 𝑎2 = 0 in Equation (75). Right column: Q-type with
𝑎2 = 5 + 5i. In all panels, −15 ≤ 𝑥, 𝑡 ≤ 15.

This solution is plotted in the middle column of Figure 3. It is seen that the profile of this solution
is more complicated.
If 𝑎2 ≠ 0, the expression for this lowest-order Q-type solution would be more lengthy and will

not be produced in this article. When we take 𝑎2 = 5 + 5i, this solution is plotted in the right
column of Figure 3.We can see that this solution splits approximately into two fundamental Man-
akov rogue waves. Notice that this splitting occurs when the internal parameter |𝑎2| is large. In
the next section, we will present an analytical theory that can asymptotically predict this split-
ting of the solution into fundamental rogue waves under a large internal parameter. With that
theory, the solution graph in the right column of Figure 3 would be analytically understood
(simply speaking, this splitting is due to the Okamoto polynomial 𝑄[2]

1 (𝑧) = 𝑧2 + 2 having two
simple roots).
For the three-wave system, the lowest-order R-type rogue wave can be obtained from

Theorem 4, which can be further simplified as

𝑢1(𝑥, 𝑡) = �̂�1(𝑥, 𝑡) 𝑒
i(𝑘1𝑥+𝜔1𝑡), 𝑢2(𝑥, 𝑡) = �̂�2(𝑥, 𝑡) 𝑒

i(𝑘2𝑥+𝜔2𝑡), 𝑢3(𝑥, 𝑡) = �̂�3(𝑥, 𝑡) 𝑒
−i[(𝑘1+𝑘2)𝑥+(𝜔1+𝜔2)𝑡],

(76)

where

�̂�1(𝑥, 𝑡) = 𝜌1
�̂�1

𝑓
, �̂�2(𝑥, 𝑡) = 𝜌2

�̂�2

𝑓
, �̂�3(𝑥, 𝑡) = i𝜌3

�̂�3

𝑓
,

𝑓 =
|||(�̂�1 − 𝛽1)𝑥 + (𝑐1𝛽1 − 𝑐2�̂�1)𝑡

|||2 + 𝜁0,

�̂�1 =
[
(�̂�1 − 𝛽1)𝑥 + (𝑐1𝛽1 − 𝑐2�̂�1)𝑡 + �̂�1

] [
(�̂�∗1 − 𝛽∗1 )𝑥 + (𝑐1𝛽

∗
1 − 𝑐2�̂�

∗
1)𝑡 − �̂�∗1

]
+ 𝜁0,

�̂�2 =
[
(�̂�1 − 𝛽1)𝑥 + (𝑐1𝛽1 − 𝑐2�̂�1)𝑡 − �̂�1

] [
(�̂�∗1 − 𝛽∗1 )𝑥 + (𝑐1𝛽

∗
1 − 𝑐2�̂�

∗
1)𝑡 + �̂�∗1

]
+ 𝜁0,
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78 YANG and YANG

�̂�3 =
[
(�̂�1 − 𝛽1)𝑥 + (𝑐1𝛽1 − 𝑐2�̂�1)𝑡 − �̂�1 + �̂�1

] [
(�̂�∗1 − 𝛽∗1 )𝑥 + (𝑐1𝛽

∗
1 − 𝑐2�̂�

∗
1 )𝑡 + �̂�∗1 − �̂�∗1

]
+ 𝜁0,

�̂�1 = −
𝛾1

𝑝20(𝑐1 − 𝑐2)
, 𝛽1 = −

𝛾2
(𝑝0 − i)2(𝑐1 − 𝑐2)

, �̂�1 =
1

𝑝0 − i
, �̂�1 =

1

𝑝0
, 𝜁0 =

1

(𝑝0 + 𝑝∗0)
2
. (77)

This roguewave is a ratio of polynomials of degree 2 in 𝑥 and 𝑡, which is the lowest possible degree
of all rogue waves in the three-wave system. Thus, it will be called the fundamental rogue wave
of the three-wave system. The graph of this solution, with parameter values of 𝑐1 = 1, 𝑐2 = 0.5,
and 𝜌1 = 1, has been displayed in Ref. [59] (see the top row of Figure 5 there). Thus, it will not be
plotted here to avoid repetition.
The lowest-order Q-type rogue wave in the three-wave system can also be obtained from Theo-

rem 4. As in the Manakov case, this solution is a ratio of polynomials of degree 4 in 𝑥 and 𝑡, and it
contains an irreducible free complex parameter 𝑎2. For parameter values of 𝑐1 = 1, 𝑐2 = 0.5, and
𝜌1 = 1, this solution with 𝑎2 = 10 + 10i has been plotted in Ref. [59] (upper row of Figure 6 there).
It was seen that this solution splits into two fundamental roguewaves, similar to theManakov case
(see the right column of Figure 3). The analytical reason for this splitting will become clear in the
next section (since the Okamoto polynomial 𝑄[2]

1 (𝑧) = 𝑧2 + 2 contains two simple roots). If 𝑎2 is
not large (in magnitude), this splitting will not occur, and the resulting solution would exhibit a
more complicated profile due to strong interference between the two fundamental rogue waves
in close proximity, akin to the middle column of Figure 3 of the Manakov case.

3 ROGUEWAVE PATTERNS UNDER A LARGE PARAMETER IN
THEMANAKOV AND THREE-WAVE SYSTEMS

Now, we consider solution patterns of Q-type and R-type rogue waves in the Manakov and three-
wave-interaction systems when a single complex internal parameter 𝑎𝑚 in them is large (in
magnitude), where 2 ≤ 𝑚 ≤ 3𝑁 − 1 for Q-type, and 2 ≤ 𝑚 ≤ 3𝑁 − 2 for R-type. In both cases,
𝑚mod3 ≠ 0.

3.1 Rogue-pattern results in the Manakov system

Our results on patterns of Q-type and R-type rogue waves in the Manakov system under a large
internal parameter are summarized in the following two theorems.

Theorem 5. For the Q-type𝑁th-order rogue wave [𝑢1,𝑁,0(𝑥, 𝑡), 𝑢2,𝑁,0(𝑥, 𝑡)] in the Manakov system,
suppose |𝑎𝑚| ≫ 1 and all other internal parameters are𝑂(1). In addition, suppose all nonzero roots
of 𝑄[𝑚]

𝑁 (𝑧) are simple. Then, the following asymptotics for this rogue wave holds.

1. In the outer region on the (𝑥, 𝑡) plane, where
√
𝑥2 + 𝑡2 = 𝑂(|𝑎𝑚|1∕𝑚), this rogue wave asymptot-

ically separates into𝑀𝑄 isolated fundamental rogue waves, where𝑀𝑄 is given in Equation (18).
These fundamental rogue waves are [�̂�1(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒

i(𝑘1𝑥+𝜔1𝑡), �̂�2(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒
i(𝑘2𝑥+𝜔2𝑡)],

where [�̂�1(𝑥, 𝑡), �̂�2(𝑥, 𝑡)] are given in Equations (71)–(72), and their positions (�̂�0, 𝑡0) are given by

�̂�0 =
1

ℜ(𝑝0)
ℜ

[
𝑝∗0
𝑝1

(
𝑧0𝑎

1∕𝑚
𝑚 − Δ𝑄

)]
, (78)
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YANG and YANG 79

𝑡0 =
1

2ℜ(𝑝0)
ℑ

[
1

𝑝1

(
𝑧0𝑎

1∕𝑚
𝑚 − Δ𝑄

)]
, (79)

where ℜ and ℑ represent the real and imaginary parts of a complex number, 𝑧0 is each of the
𝑀𝑄 nonzero simple roots of 𝑄

[𝑚]
𝑁 (𝑧), and Δ𝑄 is a 𝑧0-dependent 𝑂(1) quantity whose formula will

be given by Equation (126) in later text. The error of this fundamental rogue wave approximation
is𝑂(|𝑎𝑚|−1∕𝑚). Expressed mathematically, when |𝑎𝑚| ≫ 1 and (𝑥 − �̂�0)

2 + (𝑡 − 𝑡0)
2 = 𝑂(1), we

have the following solution asymptotics:

𝑢1,𝑁,0(𝑥, 𝑡) = �̂�1(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒
i(𝑘1𝑥+𝜔1𝑡) + 𝑂(|𝑎𝑚|−1∕𝑚),

𝑢2,𝑁,0(𝑥, 𝑡) = �̂�2(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒
i(𝑘2𝑥+𝜔2𝑡) + 𝑂(|𝑎𝑚|−1∕𝑚). (80)

2. If zero is a root of the Okamoto-hierarchy polynomial𝑄[𝑚]
𝑁 (𝑧), then in the neighborhood of the ori-

gin (the inner region), where 𝑥2 + 𝑡2 = 𝑂(1), [𝑢1,𝑁,0(𝑥, 𝑡), 𝑢2,𝑁,0(𝑥, 𝑡)] is approximately a lower
(𝑁1𝑄,𝑁2𝑄)th-order rogue wave [𝑢1,𝑁1𝑄,𝑁2𝑄

(𝑥, 𝑡), 𝑢2,𝑁1𝑄,𝑁2𝑄
(𝑥, 𝑡)] as given in Theorem 3, where

(𝑁1𝑄,𝑁2𝑄) are provided in Theorem 1. Internal parameters (�̂�1,1, �̂�2,1, �̂�4,1, �̂�5,1, … , �̂�3𝑁1𝑄−1, 1)

and (�̂�1,2, �̂�2,2, �̂�4,2, �̂�5,2, … , �̂�3𝑁2𝑄−2, 2) in this lower order rogue wave are related to those in the
original rogue wave as

�̂�𝑗,1 = �̂�𝑗,2 = 𝑎𝑗, 𝑗 = 1, 2, 4, 5, … . (81)

The error of this lower order rogue wave approximation is 𝑂(|𝑎𝑚|−1). Expressed mathematically,
when |𝑎𝑚| ≫ 1 and 𝑥2 + 𝑡2 = 𝑂(1),

𝑢1,𝑁,0(𝑥, 𝑡; 𝑎2, 𝑎4, 𝑎5, …) = 𝑢1,𝑁1𝑄,𝑁2𝑄
(𝑥, 𝑡; �̂�𝑗,1, �̂�𝑗,2, 𝑗 = 1, 2, 4, 5, … ) + 𝑂(|𝑎𝑚|−1),

𝑢2,𝑁,0(𝑥, 𝑡; 𝑎2, 𝑎4, 𝑎5, …) = 𝑢2,𝑁1𝑄,𝑁2𝑄
(𝑥, 𝑡; �̂�𝑗,1, �̂�𝑗,2, 𝑗 = 1, 2, 4, 5, … ) + 𝑂(|𝑎𝑚|−1). (82)

If zero is not a root of 𝑄[𝑚]
𝑁 (𝑧), then in the inner region, the solution [𝑢1,𝑁,0(𝑥, 𝑡), 𝑢2,𝑁,0(𝑥, 𝑡)]

approaches the uniform background [𝜌1𝑒i(𝑘1𝑥+𝜔1𝑡), 𝜌1𝑒i(𝑘2𝑥+𝜔2𝑡)] when |𝑎𝑚| ≫ 1.

Theorem 6. For the R-type𝑁th-order rogue wave [𝑢1,0,𝑁(𝑥, 𝑡), 𝑢2,0,𝑁(𝑥, 𝑡)] in the Manakov system,
suppose |𝑎𝑚| ≫ 1 and all other internal parameters are𝑂(1). In addition, suppose all nonzero roots
of 𝑅[𝑚]

𝑁 (𝑧) are simple. Then, the following asymptotics for this rogue wave holds.

1. In the outer region, where
√
𝑥2 + 𝑡2 = 𝑂(|𝑎𝑚|1∕𝑚), this rogue wave asymptotically separates

into 𝑀𝑅-isolated fundamental rogue waves, where 𝑀𝑅 is given in Equation (18). These fun-
damental rogue waves are [�̂�1(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒

i(𝑘1𝑥+𝜔1𝑡), �̂�2(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒
i(𝑘2𝑥+𝜔2𝑡)], where

[�̂�1(𝑥, 𝑡), �̂�2(𝑥, 𝑡)] are given in Equations (71)–(72), and their positions (�̂�0, 𝑡0) are given by

�̂�0 =
1

ℜ(𝑝0)
ℜ

[
𝑝∗0
𝑝1

(
𝑧0𝑎

1∕𝑚
𝑚 − Δ𝑅

)]
, (83)

𝑡0 =
1

2ℜ(𝑝0)
ℑ

[
1

𝑝1

(
𝑧0𝑎

1∕𝑚
𝑚 − Δ𝑅

)]
, (84)

where 𝑧0 is each of the𝑀𝑅 nonzero simple roots of𝑅
[𝑚]
𝑁 (𝑧), andΔ𝑅 is a 𝑧0-dependent𝑂(1) quantity

given by Equation (147) in later text. The error of this fundamental rogue wave approximation is
𝑂(|𝑎𝑚|−1∕𝑚). Expressed mathematically, when |𝑎𝑚| ≫ 1 and (𝑥 − �̂�0)

2 + (𝑡 − 𝑡0)
2 = 𝑂(1), we
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80 YANG and YANG

have the following solution asymptotics:

𝑢1,0,𝑁(𝑥, 𝑡) = �̂�1(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒
i(𝑘1𝑥+𝜔1𝑡) + 𝑂(|𝑎𝑚|−1∕𝑚),

𝑢2,0,𝑁(𝑥, 𝑡) = �̂�2(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒
i(𝑘2𝑥+𝜔2𝑡) + 𝑂(|𝑎𝑚|−1∕𝑚). (85)

2. If zero is a root of the Okamoto-hierarchy polynomial 𝑅[𝑚]
𝑁 (𝑧), then in the inner region,

where 𝑥2 + 𝑡2 = 𝑂(1), [𝑢1,0,𝑁(𝑥, 𝑡), 𝑢2,0,𝑁(𝑥, 𝑡)] is approximately a lower (𝑁1𝑅,𝑁2𝑅)th-order
rogue wave [𝑢1,𝑁1𝑅,𝑁2𝑅

(𝑥, 𝑡), 𝑢2,𝑁1𝑅,𝑁2𝑅
(𝑥, 𝑡)] as given in Theorem 3, where (𝑁1𝑅,𝑁2𝑅)

are provided in Theorem 2. Internal parameters (�̂�1,1, �̂�2,1, �̂�4,1, �̂�5,1, … , �̂�3𝑁1𝑅−1, 1) and
(�̂�1,2, �̂�2,2, �̂�4,2, �̂�5,2, … , �̂�3𝑁2𝑅−2, 2) in this lower order roguewave are related to those in the original
rogue wave as

�̂�𝑗,1 = �̂�𝑗,2 = 𝑎𝑗, 𝑗 = 1, 2, 4, 5, … . (86)

The error of this lower order rogue wave approximation is 𝑂(|𝑎𝑚|−1). Expressed mathematically,
when |𝑎𝑚| ≫ 1 and 𝑥2 + 𝑡2 = 𝑂(1),

𝑢1,0,𝑁(𝑥, 𝑡; 𝑎2, 𝑎4, 𝑎5, …) = 𝑢1,𝑁1𝑅,𝑁2𝑅
(𝑥, 𝑡; �̂�𝑗,1, �̂�𝑗,2, 𝑗 = 1, 2, 4, 5, … ) + 𝑂(|𝑎𝑚|−1),

𝑢2,0,𝑁(𝑥, 𝑡; 𝑎2, 𝑎4, 𝑎5, …) = 𝑢2,𝑁1𝑅,𝑁2𝑅
(𝑥, 𝑡; �̂�𝑗,1, �̂�𝑗,2, 𝑗 = 1, 2, 4, 5, … ) + 𝑂(|𝑎𝑚|−1). (87)

If zero is not a root of 𝑅[𝑚]
𝑁 (𝑧), then in the inner region, the solution [𝑢1,0,𝑁(𝑥, 𝑡), 𝑢2,0,𝑁(𝑥, 𝑡)]

approaches the uniform background [𝜌1𝑒i(𝑘1𝑥+𝜔1𝑡), 𝜌1𝑒i(𝑘2𝑥+𝜔2𝑡)] when |𝑎𝑚| ≫ 1.

Theorems 5 and 6 show that when the internal parameter |𝑎𝑚| is large, then in the outer region,
patterns of Q- and R-type Manakov rogue waves comprise isolated fundamental rogue waves,
which are the same with each other, except for their locations that are determined by root struc-
tures of𝑄[𝑚]

𝑁 (𝑧) and 𝑅[𝑚]
𝑁 (𝑧) polynomials through formulae (78)–(79) and (83)–(84). To the leading

order of these positions, that is, to𝑂(|𝑎𝑚|1∕𝑚), rogue patterns formed by these fundamental rogue
waves are linear transformations of the underlying root structures. However, the next-order cor-
rections of size 𝑂(1) to these leading-order terms, induced by Δ𝑄 and Δ𝑅 in Equations (78)–(79)
and (83)–(84), depend on the root 𝑧0 in a nonlinear way (see Equations (126) and (147) in later
text). These next-order nonlinear corrections will introduce deformations to rogue patterns and
make them look different from linear transformations of root structures, as we will see graphi-
cally in the next section. This behavior contrasts rogue patterns reported in Refs. [54, 55] for some
other types of rogue waves, where those patterns are just linear transformations of root structures
of the Yablonskii–Vorob’ev polynomial hierarchy, even after next-order position corrections are
included. We do note, though, that these nonlinear deformations of rogue patterns in the present
case are subdominant compared to the leading-order term, and will become less significant as|𝑎𝑚| gets larger. In other words, as |𝑎𝑚| increases, rogue patterns for Q- and R-type Manakov
rogue waves will look more and more like the linear transformation of root structures of 𝑄[𝑚]

𝑁 (𝑧)

and 𝑅[𝑚]
𝑁 (𝑧).

Theorems 5 and 6 also show that when the internal parameter |𝑎𝑚| is large, then in the inner
region, the original roguewave reduces to a lower order roguewave, or to the uniformbackground,
depending on whether zero is a root of 𝑄[𝑚]

𝑁 (𝑧) or 𝑅[𝑚]
𝑁 (𝑧). If zero is a root, then its multiplicity

will determine the order of this reduced rogue wave.
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YANG and YANG 81

In these theorems, which element 𝑎𝑚 in the internal parameter vector (𝑎2, 𝑎4, 𝑎5, …) is taken to
be large has profound consequences on the prediction of rogue patterns. Once the index𝑚 of the
large parameter 𝑎𝑚 is fixed, that choice determines not only the size of the outer region and the
convergence rates of predictions, but also the polynomial 𝑄[𝑚]

𝑁 (𝑧) or 𝑅[𝑚]
𝑁 (𝑧) whose roots predict

the locations of peaks of isolated fundamental rogue waves in the outer region. Since the outer
region is of size𝑂(|𝑎𝑚|1∕𝑚), we see that internal parameters 𝑎𝑚 with lower index numbers𝑚 have
a stronger effect on the solutions if the magnitudes of 𝑎𝑚 are fixed.
It may be interesting to notice from these theorems that in the outer region, both the Q-type

and R-type rogue waves, under a large internal parameter, split into a number of the lowest-order
R-type rogue waves (the fundamental rogue waves) only, never to the lowest-order Q-type rogue
waves. There are twoways to understand this. An intuitiveway is that, aswehave explained in Sec-
tion 2.6, the lowest-order R-type rogue wave (with 𝑁1 = 0 and 𝑁2 = 1) is the fundamental rogue
wave with degree-2 polynomials. The lowest-order Q-type rogue wave (with𝑁1 = 1 and𝑁2 = 0),
however, is a ratio of degree-4 polynomials. This latter solution should be viewed as a composi-
tion of two fundamental rogue waves, and it would split up into two separate fundamental rogue
waves when its internal parameter 𝑎2 is large (see Figure 3). A mathematical way to understand
this is that, as long as the nonzero roots in 𝑄

[𝑚]
𝑁 (𝑧) and 𝑅

[𝑚]
𝑁 (𝑧) are simple, then under a large

internal parameter, both the Q-type and R-type rogue waves in the outer region would reduce to
ratios of degree-2 polynomials (see Section 5), which can only be the fundamental rogue waves,
not the lowest-order Q-type rogue waves of degree-4 polynomials.

3.2 Rogue-pattern results in the three-wave-interaction system

Our results on Q-type and R-type rogue patterns in the three-wave-interaction system under a
large internal parameter are summarized in the following two theorems.

Theorem 7. For the Q-type𝑁th-order rogue wave [𝑢1,𝑁,0(𝑥, 𝑡), 𝑢2,𝑁,0(𝑥, 𝑡), 𝑢3,𝑁,0(𝑥, 𝑡)] in the three-
wave resonant interaction system, suppose |𝑎𝑚| ≫ 1 and all other internal parameters are 𝑂(1). In
addition, suppose all nonzero roots of 𝑄[𝑚]

𝑁 (𝑧) are simple. Then, the following asymptotics for this
rogue wave holds.

1. In the outer region, where
√
𝑥2 + 𝑡2 = 𝑂(|𝑎𝑚|1∕𝑚), this rogue wave asymptotically separates into

𝑀𝑄 isolated fundamental rogue waves, where 𝑀𝑄 is given in Equation (18). These fundamen-
tal rogue waves are [�̂�1(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒

i(𝑘1𝑥+𝜔1𝑡), �̂�2(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒
i(𝑘2𝑥+𝜔2𝑡), �̂�3(𝑥 − �̂�0, 𝑡 −

𝑡0) 𝑒
−i[(𝑘1+𝑘2)𝑥+(𝜔1+𝜔2)𝑡]], where [�̂�1(𝑥, 𝑡), �̂�2(𝑥, 𝑡), �̂�3(𝑥, 𝑡)] are given in Equation (77), and their

positions (�̂�0, 𝑡0) are given by

�̂�0 =

ℑ

[
𝑧0𝑎

1∕𝑚
𝑚 −Δ̂𝑄

𝑐1𝛽1−𝑐2𝛼1

]
ℑ

[
𝛼1−𝛽1

𝑐1𝛽1−𝑐2𝛼1

] , 𝑡0 =

ℑ

[
𝑧0𝑎

1∕𝑚
𝑚 −Δ̂𝑄

𝛼1−𝛽1

]
ℑ

[
𝑐1𝛽1−𝑐2𝛼1

𝛼1−𝛽1

] , (88)

where 𝑧0 is each of the𝑀𝑄 nonzero simple roots of 𝑄
[𝑚]
𝑁 (𝑧), (𝛼1, 𝛽1) are given in the expansions

(60)–(61), and Δ̂𝑄 is a 𝑧0-dependent𝑂(1) quantity given by Equation (162) in later text. The error
of this fundamental rogue wave approximation is𝑂(|𝑎𝑚|−1∕𝑚). Expressed mathematically, when
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82 YANG and YANG

|𝑎𝑚| ≫ 1 and (𝑥 − �̂�0)
2 + (𝑡 − 𝑡0)

2 = 𝑂(1), we have the following solution asymptotics:

𝑢1,𝑁,0(𝑥, 𝑡) = �̂�1(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒
i(𝑘1𝑥+𝜔1𝑡) + 𝑂(|𝑎𝑚|−1∕𝑚),

𝑢2,𝑁,0(𝑥, 𝑡) = �̂�2(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒
i(𝑘2𝑥+𝜔2𝑡) + 𝑂(|𝑎𝑚|−1∕𝑚),

𝑢3,𝑁,0(𝑥, 𝑡) = �̂�3(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒
−i[(𝑘1+𝑘2)𝑥+(𝜔1+𝜔2)𝑡] + 𝑂(|𝑎𝑚|−1∕𝑚). (89)

2. If zero is a root of the Okamoto-hierarchy polynomial 𝑄[𝑚]
𝑁 (𝑧), then in the inner region, where

𝑥2 + 𝑡2 = 𝑂(1), [𝑢1,𝑁,0(𝑥, 𝑡), 𝑢2,𝑁,0(𝑥, 𝑡), 𝑢3,𝑁,0(𝑥, 𝑡)] is approximately a lower (𝑁1𝑄,𝑁2𝑄)th-
order rogue wave [𝑢1,𝑁1𝑄,𝑁2𝑄

(𝑥, 𝑡), 𝑢2,𝑁1𝑄,𝑁2𝑄
(𝑥, 𝑡), 𝑢3,𝑁1𝑄,𝑁2𝑄

(𝑥, 𝑡)] as given in Theorem 4, where
(𝑁1𝑄,𝑁2𝑄) are provided in Theorem 1. Internal parameters (�̂�1,1, �̂�2,1, �̂�4,1, �̂�5,1, … , �̂�3𝑁1𝑄−1, 1)

and (�̂�1,2, �̂�2,2, �̂�4,2, �̂�5,2, … , �̂�3𝑁2𝑄−2, 2) in this lower order rogue wave are related to those in the
original rogue wave as

�̂�𝑗,1 = �̂�𝑗,2 = 𝑎𝑗, 𝑗 = 1, 2, 4, 5, … . (90)

The error of this lower order rogue wave approximation is 𝑂(|𝑎𝑚|−1). Expressed mathematically,
when |𝑎𝑚| ≫ 1 and 𝑥2 + 𝑡2 = 𝑂(1),

𝑢1,𝑁,0(𝑥, 𝑡; 𝑎2, 𝑎4, 𝑎5, …) = 𝑢1,𝑁1𝑄,𝑁2𝑄
(𝑥, 𝑡; �̂�𝑗,1, �̂�𝑗,2, 𝑗 = 1, 2, 4, 5, … ) + 𝑂(|𝑎𝑚|−1),

𝑢2,𝑁,0(𝑥, 𝑡; 𝑎2, 𝑎4, 𝑎5, …) = 𝑢2,𝑁1𝑄,𝑁2𝑄
(𝑥, 𝑡; �̂�𝑗,1, �̂�𝑗,2, 𝑗 = 1, 2, 4, 5, … ) + 𝑂(|𝑎𝑚|−1),

𝑢3,𝑁,0(𝑥, 𝑡; 𝑎2, 𝑎4, 𝑎5, …) = 𝑢3,𝑁1𝑄,𝑁2𝑄
(𝑥, 𝑡; �̂�𝑗,1, �̂�𝑗,2, 𝑗 = 1, 2, 4, 5, … ) + 𝑂(|𝑎𝑚|−1). (91)

If zero is not a root of 𝑄
[𝑚]
𝑁 (𝑧), then in the inner region, the solution [𝑢1,𝑁,0(𝑥, 𝑡),

𝑢2,𝑁,0(𝑥, 𝑡), 𝑢3,𝑁,0(𝑥, 𝑡)] approaches the uniform background [𝜌1𝑒
i(𝑘1𝑥+𝜔1𝑡), 𝜌2𝑒

i(𝑘2𝑥+𝜔2𝑡),

i𝜌3𝑒
−i[(𝑘1+𝑘2)𝑥+(𝜔1+𝜔2)𝑡]] when |𝑎𝑚| ≫ 1.

Theorem 8. For the R-type𝑁th-order rogue wave [𝑢1,0,𝑁(𝑥, 𝑡), 𝑢2,0,𝑁(𝑥, 𝑡), 𝑢3,0,𝑁(𝑥, 𝑡)] in the three-
wave resonant interaction system, suppose |𝑎𝑚| ≫ 1 and all other internal parameters are 𝑂(1). In
addition, suppose all nonzero roots of 𝑅[𝑚]

𝑁 (𝑧) are simple. Then, the following asymptotics for this
rogue wave holds.

1. In the outer region, where
√
𝑥2 + 𝑡2 = 𝑂(|𝑎𝑚|1∕𝑚), this rogue wave asymptotically separates into

𝑀𝑅 isolated fundamental rogue waves, where 𝑀𝑅 is given in Equation (18). These fundamen-
tal rogue waves are [�̂�1(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒

i(𝑘1𝑥+𝜔1𝑡), �̂�2(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒
i(𝑘2𝑥+𝜔2𝑡), �̂�3(𝑥 − �̂�0, 𝑡 −

𝑡0) 𝑒
−i[(𝑘1+𝑘2)𝑥+(𝜔1+𝜔2)𝑡]], where [�̂�1(𝑥, 𝑡), �̂�2(𝑥, 𝑡), �̂�3(𝑥, 𝑡)] are given in Equation (77), and their

positions (�̂�0, 𝑡0) are given by

�̂�0 =

ℑ

[
𝑧0𝑎

1∕𝑚
𝑚 −Δ̂𝑅

𝑐1𝛽1−𝑐2𝛼1

]
ℑ

[
𝛼1−𝛽1

𝑐1𝛽1−𝑐2𝛼1

] , 𝑡0 =

ℑ

[
𝑧0𝑎

1∕𝑚
𝑚 −Δ̂𝑅

𝛼1−𝛽1

]
ℑ

[
𝑐1𝛽1−𝑐2𝛼1

𝛼1−𝛽1

] , (92)

where 𝑧0 is each of the𝑀𝑅 nonzero simple roots of 𝑅
[𝑚]
𝑁 (𝑧), (𝛼1, 𝛽1) are given in the expansions

(60)–(61), and Δ̂𝑅 is a 𝑧0-dependent 𝑂(1) quantity given by Equation (165) in the later text. The
error of this fundamental rogue wave approximation is 𝑂(|𝑎𝑚|−1∕𝑚). Expressed mathematically,
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YANG and YANG 83

when |𝑎𝑚| ≫ 1 and (𝑥 − �̂�0)
2 + (𝑡 − 𝑡0)

2 = 𝑂(1), we have the following solution asymptotics:

𝑢1,0,𝑁(𝑥, 𝑡) = �̂�1(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒
i(𝑘1𝑥+𝜔1𝑡) + 𝑂(|𝑎𝑚|−1∕𝑚),

𝑢2,0,𝑁(𝑥, 𝑡) = �̂�2(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒
i(𝑘2𝑥+𝜔2𝑡) + 𝑂(|𝑎𝑚|−1∕𝑚),

𝑢3,0,𝑁(𝑥, 𝑡) = �̂�3(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒
−i[(𝑘1+𝑘2)𝑥+(𝜔1+𝜔2)𝑡] + 𝑂(|𝑎𝑚|−1∕𝑚). (93)

2. If zero is a root of the Okamoto-hierarchy polynomial 𝑅[𝑚]
𝑁 (𝑧), then in the inner region, where

𝑥2 + 𝑡2 = 𝑂(1), [𝑢1,0,𝑁(𝑥, 𝑡), 𝑢2,0,𝑁(𝑥, 𝑡), 𝑢3,0,𝑁(𝑥, 𝑡)] is approximately a lower (𝑁1𝑅,𝑁2𝑅)th-
order rogue wave [𝑢1,𝑁1𝑅,𝑁2𝑅

(𝑥, 𝑡), 𝑢2,𝑁1𝑅,𝑁2𝑅
(𝑥, 𝑡), 𝑢3,𝑁1𝑅,𝑁2𝑅

(𝑥, 𝑡)] as given in Theorem 4, where
(𝑁1𝑅,𝑁2𝑅) are provided in Theorem 2. Internal parameters (�̂�1,1, �̂�2,1, �̂�4,1, �̂�5,1, … , �̂�3𝑁1𝑅−1, 1)

and (�̂�1,2, �̂�2,2, �̂�4,2, �̂�5,2, … , �̂�3𝑁2𝑅−2, 2) in this lower order rogue wave are related to those in the
original rogue wave as

�̂�𝑗,1 = �̂�𝑗,2 = 𝑎𝑗, 𝑗 = 1, 2, 4, 5, … . (94)

The error of this lower order rogue wave approximation is 𝑂(|𝑎𝑚|−1). Expressed mathematically,
when |𝑎𝑚| ≫ 1 and 𝑥2 + 𝑡2 = 𝑂(1),

𝑢1,0,𝑁(𝑥, 𝑡; 𝑎2, 𝑎4, 𝑎5, …) = 𝑢1,𝑁1𝑅,𝑁2𝑅
(𝑥, 𝑡; �̂�𝑗,1, �̂�𝑗,2, 𝑗 = 1, 2, 4, 5, … ) + 𝑂(|𝑎𝑚|−1),

𝑢2,0,𝑁(𝑥, 𝑡; 𝑎2, 𝑎4, 𝑎5, …) = 𝑢2,𝑁1𝑅,𝑁2𝑅
(𝑥, 𝑡; �̂�𝑗,1, �̂�𝑗,2, 𝑗 = 1, 2, 4, 5, … ) + 𝑂(|𝑎𝑚|−1),

𝑢3,0,𝑁(𝑥, 𝑡; 𝑎2, 𝑎4, 𝑎5, …) = 𝑢3,𝑁1𝑅,𝑁2𝑅
(𝑥, 𝑡; �̂�𝑗,1, �̂�𝑗,2, 𝑗 = 1, 2, 4, 5, … ) + 𝑂(|𝑎𝑚|−1). (95)

If zero is not a root of 𝑅
[𝑚]
𝑁 (𝑧), then in the inner region, the solution [𝑢1,0,𝑁(𝑥, 𝑡),

𝑢2,0,𝑁(𝑥, 𝑡), 𝑢3,0,𝑁(𝑥, 𝑡)] approaches the uniform background [𝜌1𝑒
i(𝑘1𝑥+𝜔1𝑡), 𝜌2𝑒

i(𝑘2𝑥+𝜔2𝑡),

i𝜌3𝑒
−i[(𝑘1+𝑘2)𝑥+(𝜔1+𝜔2)𝑡]] when |𝑎𝑚| ≫ 1.

Similar to the Manakov case, patterns of Q- and R-type rogue waves in the three-wave-
interaction system are linear transformations of root structures of 𝑄[𝑚]

𝑁 (𝑧) and 𝑅
[𝑚]
𝑁 (𝑧) to the

leading order, but are nonlinear transformations of those root structures when the next-order
position corrections are included. Most other comments we have made after Theorem 6 in the
previous subsection are valid here as well.
Proofs of these four theorems will be presented in Section 5.

4 COMPARISON BETWEEN ANALYTICAL PREDICTIONS AND
TRUE ROGUE SOLUTIONS

In this section, we compare our analytical predictions of rogue patterns in Theorems 5–8 to true
rogue solutions in the Manakov and three-wave-interaction systems.

4.1 Comparison in the Manakov system

For the Manakov system, we choose background wave numbers 𝑘1 = −𝑘2 = 1∕
√
12. Then back-

ground amplitudes are obtained from conditions (24) as 𝜌1 = 𝜌2 =
√
2∕3, and background wave

frequencies can be obtained from Equations (21).
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84 YANG and YANG

F IGURE 4 Predicted Q-type second-order Manakov rogue waves from Theorem 5. Each column is for a
rogue wave with a single large parameter 𝑎𝑚, whose value is indicated on top, and all other internal parameters
are set as zero. Top row: predicted (�̂�0, 𝑡0) locations by formulae (78)–(79) applied to all roots of 𝑄

[𝑚]
2 (𝑧). Middle

row: predicted |𝑢1(𝑥, 𝑡)|. Bottom row: predicted |𝑢2(𝑥, 𝑡)|. These (|𝑢1|, |𝑢2|) predictions are assembled as|𝑢(𝑝)
𝑘
(𝑥, 𝑡)| = |𝑢𝑘,𝑁1𝑄,𝑁2𝑄

(𝑥, 𝑡)| +∑𝑀𝑄

𝑗=1
(|�̂�𝑘(𝑥 − �̂�

(𝑗)

0 , 𝑡 − 𝑡
(𝑗)

0 )| − 𝜌𝑘), where 𝑘 = 1, 2, 𝑢𝑘,𝑁1𝑄,𝑁2𝑄
(𝑥, 𝑡) are the predicted

inner solutions on the right sides of Equations (82), and [�̂�(𝑗)0 , 𝑡
(𝑗)

0 ] are the predicted locations (78)–(79) of outer
fundamental rogue waves in the top row (with 𝑧0 ≠ 0). In all panels, −40 ≤ 𝑥, 𝑡 ≤ 40.

4.1.1 Q-type

First, we consider Q-type Manakov rogue waves. Specifically, we take 𝑁 = 2; thus, these are
second-order waves with three internal parameters (𝑎2, 𝑎4, 𝑎5). We set one of these parameters
large and the other parameters zero. Then, when that large parameter is chosen as one of

𝑎2 = 30i, 𝑎4 = 400, 𝑎5 = 3000i, (96)

the three predicted rogue waves from Theorem 5 are displayed in the three columns of Figure 4,
respectively. The top row of this figure shows the predicted (�̂�0, 𝑡0) locations by formulae (78)–
(79) applied to all roots of 𝑄[𝑚]

2 (𝑧). In these formulae, 𝑝0 = 1∕2 from Equation (27), (𝑝1, 𝑝2) =
(12−1∕3, 144−1∕3) from Equation (39), and Δ𝑄 is calculated from Equation (126). Note that
these (�̂�0, 𝑡0) predictions contain not only the dominant 𝑂(|𝑎𝑚|1∕𝑚) contribution, but also the
subdominant 𝑂(1) contribution.
According to Theorem 5, at each of the (�̂�0, 𝑡0) locations obtained from formulae

(78)–(79) for nonzero roots of 𝑄
[𝑚]
2 (𝑧), a fundamental Manakov rogue wave [�̂�1(𝑥 − �̂�0,
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YANG and YANG 85

F IGURE 5 True Q-type second-order Manakov rogue waves for the same parameters and (𝑥, 𝑡) intervals as
in Figure 4.

𝑡 − 𝑡0) 𝑒
i(𝑘1𝑥+𝜔1𝑡), �̂�2(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒

i(𝑘2𝑥+𝜔2𝑡)] is predicted, where [�̂�1(𝑥, 𝑡), �̂�2(𝑥, 𝑡)] are as given
in Equations (71)–(72). The amplitude fields of these predicted fundamental rogue waves are
plotted in the middle and bottom rows of Figure 4, respectively.
Theorem 5 also predicts that if zero is a root of𝑄[𝑚]

2 (𝑧), as is the case for𝑚 = 4 and 5, then in the
inner region, that is, the region near the (�̂�0, 𝑡0) location from formulae (78)–(79) with 𝑧0 = 0, a
lower (𝑁1𝑄,𝑁2𝑄)th-order rogue wave would appear. These (𝑁1𝑄,𝑁2𝑄) values are calculated from
Theorem 1 as

(𝑁1𝑄,𝑁2𝑄) = (0, 0), (1, 1), (0, 1), (97)

for the three solutions in Figure 4, respectively. The first set (0,0) indicates that zero is not a root
of 𝑄[2]

2 (𝑧); hence, no lower order rogue wave in the inner region. The third set (0,1) indicates that
the lower order rogue wave in the inner region is a fundamental rogue wave, wheeas the sec-
ond set (1,1) indicates that the rogue wave in the inner region is a nonfundamental rogue wave.
Internal parameters in these predicted lower (𝑁1𝑄,𝑁2𝑄)th-order rogue waves are all zero, due to
our choices of internal parameters in the original rogue waves and the 𝑠𝑗 values shown in Equa-
tion (42). Plotting these (𝑁1𝑄,𝑁2𝑄)th-order rogue waves, we get the center-region predictions in
the middle and bottom rows of Figure 4.
Looking at these predicted rogue solutions in Figure 4, we see that the large-𝑎2 solution exhibits

a skewed double-triangle, reminiscent of the double-triangle root structure of 𝑄[2]
2 (𝑧) in Figure 1.

The large-𝑎4 solution exhibits a square, reminiscent of the square-shaped root structure of𝑄
[4]
2 (𝑧)

in Figure 1. The large-𝑎5 solution exhibits a pentagon, reminiscent of the pentagon-shaped root
structure of𝑄[5]

2 (𝑧) in Figure 1. This pentagon-shaped rogue pattern has been seen in the NLS and
other equations before,9–11,55 but the double-triangle and square patterns are new.
Now, we compare these predictions to true solutions. The corresponding true solutions are

plotted directly from Theorem 3 and displayed in Figure 5. Comparing these true solution graphs
with the predicted ones in Figure 4, they clearly match each other very well.
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86 YANG and YANG

F IGURE 6 Decay of errors in our predictions of Theorem 5 for the outer and inner regions of the Q-type
second-order Manakov rogue wave with various large real values of 𝑎4, whereas the other internal parameters are
set as zero. (A) |𝑢1(𝑥, 𝑡)| of the true rogue wave with 𝑎4 = 400. (B) Decay of error versus 𝑎4 for the outer
fundamental rogue wave marked by the lower arrow in Panel (A), together with the |𝑎4|−1∕4 decay for
comparison. (C) Decay of error versus 𝑎4 at 𝑥 = 𝑡 = 0 of the inner region marked by the upper arrow in Panel (A),
together with the |𝑎4|−1 decay for comparison.
To quantitatively compare our prediction with the true solution and verify Theorem 5’s error

decay rates with the large parameter 𝑎𝑚, we choose 𝑎4 to be the large parameter, corresponding to
the second-column solution inFigures 4 and 5. For simplicity,we choose all𝑎4 to be real. As before,
the other two internal parameters (𝑎2, 𝑎5) in the roguewavewill be set as zero.Wewill vary this 𝑎4
value, from 400 to 400000, and for each value, wemeasure the errors of our prediction in the outer
and inner regions and then plot these errors versus 𝑎4. In the outer region, this error is defined
as the distance in the (𝑥, 𝑡) plane between the predicted and true positions of the fundamental
rogue wave marked by the lower arrow in Panel (A) of Figure 6. In the inner region, marked by
the upper arrow in Panel (A), the error is defined as the magnitude of the difference between the
predicted and true solution values at the origin 𝑥 = 𝑡 = 0. These error curves are plotted in Panels
(B) and (C), for the outer and inner regions, respectively. For comparison, decay rates of |𝑎4|−1∕4
and |𝑎4|−1 are also plotted in the corresponding panels. These error curves clearly show that the
error decay rate is |𝑎4|−1∕4 in the outer region and |𝑎4|−1 in the inner region, which fully agree
with our theoretical predictions in Theorem 5.

4.1.2 R-type

Next, we compare R-type rogue waves in the Manakov system. Here, we set 𝑁 = 3. Thus, these
are third-order waves with internal parameters (𝑎2, 𝑎4, 𝑎5, 𝑎7). We choose one of these parameters
large and the other parameters zero. Then, when that large parameter is chosen as one of

𝑎2 = 30i, 𝑎4 = 300, 𝑎5 = 1000i, 𝑎7 = 3000, (98)

the four predicted rogue waves from Theorem 6 are displayed in the four columns of Figure 7,
respectively. The top row of this figure shows the predicted (�̂�0, 𝑡0) locations by formulae (83)–
(84) applied to all roots of 𝑅[𝑚]

3 (𝑧). At each of the (�̂�0, 𝑡0) locations resulting from nonzero roots
of 𝑅[𝑚]

3 (𝑧), Theorem 6 predicts a fundamental Manakov rogue wave, whose amplitude fields are
plotted in the middle and bottom rows of Figure 7, respectively. Our prediction for the center
regions in these rows is based on Equation (87) of Theorem 6. In this prediction, the (𝑁1𝑅,𝑁2𝑅)
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YANG and YANG 87

F IGURE 7 Predicted R-type third-order Manakov rogue waves from Theorem 6. Each column is for a rogue
wave with a single large parameter 𝑎𝑚, whose value is indicated on top, and all other internal parameters are set
as zero. Top row: predicted (�̂�0, 𝑡0) locations by formulae (83)–(84) applied to all roots of 𝑅

[𝑚]
3 (𝑧). Middle row:

predicted |𝑢1(𝑥, 𝑡)|. Bottom row: predicted |𝑢2(𝑥, 𝑡)|. The (𝑥, 𝑡) intervals in the four columns are −46 ≤ 𝑥, 𝑡 ≤ 46,
−41 ≤ 𝑥, 𝑡 ≤ 41, −35 ≤ 𝑥, 𝑡 ≤ 35, and −28 ≤ 𝑥, 𝑡 ≤ 28, respectively.

values for these four rogue solutions are obtained from Theorem 2 as

(𝑁1𝑅,𝑁2𝑅) = (0, 1), (0, 1), (1, 2), (1, 0), (99)

respectively. These values show that the center region of the first two rogue solutions hosts a fun-
damental roguewave, whereas that region in the last two rogue solutions hosts a nonfundamental
rogue wave. Internal parameters in these predicted lower (𝑁1𝑅,𝑁2𝑅)th-order rogue waves of the
center region are all zero, due to our choices of internal parameters in the original rogue waves as
well as the 𝑠𝑗 values shown in Equation (42). Plotting these (𝑁1𝑅,𝑁2𝑅)th-order rogue waves from
Theorem 3, we get the center-region predictions in the middle and bottom rows of Figure 7.
These predicted rogue solutions in Figure 7 exhibit various patterns, such as a skewed and

deformed rhombus (first column), a deformed square (second column), a deformed pentagon
(third column), and a heptagon (last column). Of these patterns, rhombus-shaped and square-
shaped ones are new.
Now, we compare these predictions to true solutions. The corresponding true solutions are

plotted directly from Theorem 3 and displayed in Figure 8. These true solutions clearly match the
predicted ones in Figure 7 very well.
In addition to this visual agreement, we have also performed error analysis for predictions of

these R-type waves, similar to what we have done for Q-type waves in Figure 6. This error analysis
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88 YANG and YANG

F IGURE 8 True R-type third-order Manakov rogue waves for the same parameters and (𝑥, 𝑡) intervals as in
Figure 7.

confirmed the error decay rates we predicted in Theorem 6 for the outer and inner regions. Details
are omitted for brevity.

4.1.3 Higher order Manakov rogue patterns

Rogue patterns we have seen in Figures 4–5 for 𝑁 = 2 and Figures 7–8 for 𝑁 = 3 are relatively
simple. Using Theorems 5–6 and root structures of𝑄[𝑚]

𝑁 (𝑧) and𝑅[𝑚]
𝑁 (𝑧) polynomials in Figures 1–2,

we can predict more complex Manakov rogue patterns by increasing the order 𝑁.
As an example, we consider fourth-order R-type Manakov rogue waves. We take a single large

parameter 𝑎𝑚 as one of

𝑎2 = 40i, 𝑎4 = 400, 𝑎5 = 3000i, 𝑎7 = 60000, (100)

and the other internal parameters are set as zero. Then, our predictions of (�̂�0, 𝑡0) from formu-
lae (83)–(84) of Theorem 6 from roots of the 𝑅[𝑚]

4 (𝑧) polynomials are plotted in the upper row
of Figure 9. According to Theorem 6, each (�̂�0, 𝑡0) location away from the pattern center hosts
a fundamental rogue wave. The (�̂�0, 𝑡0) location near the pattern center, generated by the zero
root 𝑧0 = 0 of 𝑅[𝑚]

4 (𝑧) and appearing in the large-𝑎5 and 𝑎7 panels only, signals a rogue wave of
lower order (𝑁1𝑅,𝑁2𝑅), whose values are (0,1) and (2,2) for the large-𝑎5 and 𝑎7 cases, respectively.
This means that at the pattern center of large-𝑎5 and 𝑎7 panels, a fundamental rogue wave and a
nonfundamental (2,2)th-order rogue wave are predicted, respectively.
To verify these predictions, true solutions are plotted in the lower row of Figure 9. The

agreement between predicted and true solutions is obvious.
Predictions and confirmations for higher-order Q-type Manakov rogue waves can also be

obtained. In this case, a little caution is warranted. As one can see from Figure 1, a distinctive
feature of some 𝑄[𝑚]

𝑁 (𝑧) root structures is that some nonzero roots are extremely close to each
other, see the 𝑚 = 4 column with 𝑁 = 3 and 4. When that happens, in order for our asymptotic
theory to hold, the |𝑎𝑚| value would have to be chosen very large, so that the (�̂�0, 𝑡0) locations
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YANG and YANG 89

F IGURE 9 Comparison between predicted rogue patterns and true solutions for R-type fourth-order
Manakov rogue waves with a single large parameter 𝑎𝑚, as shown on the top of each column, and other internal
parameters are set as zero. Upper row: predicted (�̂�0, 𝑡0) locations by formulae (83)–(84) applied to all roots of
𝑅
[𝑚]
4 (𝑧). Lower row: true |𝑢1(𝑥, 𝑡)| solutions. In all panels, −64 ≤ 𝑥, 𝑡 ≤ 64.

from formulae (83)–(84) for those extremely close roots can be well separated in the (𝑥, 𝑡) plane
in order for them to host an isolated fundamental rogue wave each.

4.1.4 Effect of parameter size on rogue shapes

From the above comparisons, we have established that Manakov rogue patterns can be accurately
predicted by root structures of Okamoto-hierarchy polynomials through mappings (78)–(79) and
(83)–(84). The readermayhave noticed that rogue shapes in the above figures are often twisted and
less orderly, even though their corresponding root structures of Okamoto-hierarchy polynomials
are very orderly. For example, in the R-type third-order rogue wave of Figures 7–8 with large 𝑎4,
the upper-left and lower-left sides of rogue patterns are strongly bent in, resulting in an irregular
square, but the corresponding root structure of 𝑅[4]3 (𝑧) in Figure 2 is like a regular square.
The reason for this irregularity in Manakov rogue patterns is apparently due to the next-order

correction term inmappings (78)–(79) and (83)–(84) from the root structure of Okamoto-hierarchy
polynomials to rogue peak positions in the (𝑥, 𝑡) plane. While the leading term of 𝑂(|𝑎𝑚|1∕𝑚) in
those formulae is a linear mapping, the next-order correction term of𝑂(1) is a nonlinear mapping
in view of formulae (126) and (147). This nonlinear part of the mappings causes deformations in
rogue shapes and makes them irregular even if the underlying root structures are.
It is important to recognize that this next-order correction term is subdominant, and its relative

effect will get weaker when |𝑎𝑚| gets larger. Thus, if we increase |𝑎𝑚|, this irregularity in rogue
shape would diminish, and the rogue pattern would approach a linearly transformed root struc-
ture of Okamoto-hierarchy polynomials, which would be orderly if the underlying root structure
is. To confirm this prediction, we take that R-type third-order rogue wave of Figures 7–8 with
large 𝑎4, and vary its 𝑎4 value, with other internal parameters still set as zero. For three 𝑎4 values
of 30, 300, and 3000, predicted rogue locations (�̂�0, 𝑡0) from formulae (83)–(84) of Theorem 6 are
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90 YANG and YANG

F IGURE 10 Effect of parameter size 𝑎4 on R-type third-order Manakov rogue shapes (all other internal
parameters are set as zero). Upper row: predicted (�̂�0, 𝑡0) locations by formulae (83)–(84) applied to all roots of
𝑅
[4]
3 (𝑧). Lower row: true |𝑢1(𝑥, 𝑡)|. The (𝑥, 𝑡) intervals in the three columns are −41 ≤ 𝑥, 𝑡 ≤ 41, −41 ≤ 𝑥, 𝑡 ≤ 41,

and −70 ≤ 𝑥, 𝑡 ≤ 70, respectively.

plotted in the upper row of Figure 10, and true solutions (only the |𝑢1| part) are plotted in the
lower row. We see that when 𝑎4 = 30, both the predicted and true solutions are highly irregular,
almost random-like. But as 𝑎4 increases to 300, this irregularity is significantly reduced and is visi-
ble only at the upper-left and lower-left sides of the figure. When 𝑎4 further increases to 3000, this
irregularity is almost completely gone, and the rogue shape closely resembles the root structure
of 𝑅[4]3 (𝑧) as shown in Figure 2.

4.2 Comparison in the three-wave system

Now, we consider the three-wave system. We choose velocity values as (𝑐1, 𝑐2, 𝑐3) = (1, 9∕20, 0),
and the first wave’s background amplitude 𝜌1 = 1. Then, the other two waves’ background ampli-
tudes can be derived from Equation (48) as 𝜌2 = 2

√
5∕3 and 𝜌3 =

√
11∕3 (we have taken the plus

signs). Wave numbers and frequencies of the three background waves can be determined from
Equation (45).

4.2.1 Q-type

We first compare Q-type rogue waves of the three-wave system and set 𝑁 = 2. Regarding their
three internal parameters (𝑎2, 𝑎4, 𝑎5), we choose one of them large and the other two zero. Then,
when that large parameter is taken as one of

𝑎2 = 40i, 𝑎4 = 300, 𝑎5 = 3000i, (101)

 14679590, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12573, W
iley O

nline L
ibrary on [12/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



YANG and YANG 91

F IGURE 11 Predicted Q-type second-order rogue waves from Theorem 7 in the three-wave system. Each
column shows a predicted rogue wave with a single large parameter 𝑎𝑚, whose value is indicated on top, and all
other internal parameters are set as zero. First row: predicted (�̂�0, 𝑡0) locations from formulae (88) applied to all
roots of 𝑄[𝑚]

2 (𝑧). Second row: predicted |𝑢1(𝑥, 𝑡)|. Third row: predicted |𝑢2(𝑥, 𝑡)|. Last row: predicted |𝑢3(𝑥, 𝑡)|.
The (𝑥, 𝑡) intervals in the three columns are −19 ≤ 𝑥, 𝑡 ≤ 19, −23 ≤ 𝑥, 𝑡 ≤ 23, and −25 ≤ 𝑥, 𝑡 ≤ 25, respectively.

the three predicted rogue waves from Theorem 7 are displayed in the three columns of Figure 11,
respectively. The first row of this figure shows the predicted (�̂�0, 𝑡0) locations from formulae (88)
applied to all roots of 𝑄[𝑚]

2 (𝑧). In these formulae, (𝛼1, 𝛽1) ≈ (−1.2632 + 1.8990i, 0.4558 + 0.9195i)

from the expansions (60)–(61), and Δ̂𝑄 is calculated from Equation (162). At each of the (�̂�0, 𝑡0)
locations resulting from nonzero roots of 𝑄[𝑚]

2 (𝑧), a fundamental rogue wave of the three-wave
system is predicted. Our prediction for the center regions is based on Equation (91) of Theorem 7.
In this prediction, the (𝑁1𝑄,𝑁2𝑄) values for these three rogue waves are the same as those given
in Equation (97) earlier. Internal parameters in these predicted lower (𝑁1𝑄,𝑁2𝑄)th-order rogue
waves in the center region are all zero, due to our choices of internal parameters in the original
roguewaves and the 𝑠𝑗 values shown in Equation (67). These predictions for (|𝑢1|, |𝑢2|, |𝑢3|) in the
outer and inner regions are assembled together similar to that explained in the caption of Figure 4
and plotted in the second to fourth rows of Figure 11, respectively.
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92 YANG and YANG

F IGURE 1 2 True Q-type second-order rogue waves of the three-wave system for the same parameters and
(𝑥, 𝑡) intervals as in Figure 11.

It is easy to see that these predicted rogue patterns in Figure 11, although being produced from
the root structures of 𝑄[𝑚]

2 (𝑧) polynomials in Figure 1, look totally different from those root struc-
tures. The reason is the nonlinear mapping of the next-order correction term in formulae (88),
which induces strong deformations to the linearly mapped result from the leading-order term in
(88). These deformations, under our current velocity choices of (𝑐1, 𝑐2, 𝑐3), aremuch stronger than
in the previousManakov case, at comparable 𝑎𝑚 values. As we have explained in Section 4.1.4 ear-
lier, if we significantly increase the |𝑎𝑚| values, these deformationswill becomeweaker, and rogue
patterns will approach linearly transformed root structures of Okamoto-hierarchy polynomials
and will thus be more recognizable.
To compare these predictions to true solutions, we plot in Figure 12 the corresponding true

solutions from Theorem 4. It is easy to see that the agreement is excellent, confirming the
validity of Theorem 7. This agreement also indicates that predictions from our Theorem 7
are highly accurate, even when rogue patterns are strongly deformed from Okamoto-hierarchy
root structures.

4.2.2 R-type

Next, we consider R-type rogue waves, and set 𝑁 = 3. Regarding their internal parameters
(𝑎2, 𝑎4, 𝑎5, 𝑎7), we choose one of them large, and the others zero. Then, when that large parameter
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YANG and YANG 93

F IGURE 13 Comparison between predicted and true R-type third-order rogue waves of the three-wave
system. Each column is for a rogue wave with a single large parameter 𝑎𝑚, whose value is indicated on top, and
all other internal parameters are set as zero. Top row: predicted (�̂�0, 𝑡0) locations by formulae (92) applied to all
roots of 𝑅[𝑚]

3 (𝑧). Middle row: predicted |𝑢1(𝑥, 𝑡)|. Third row: true |𝑢1(𝑥, 𝑡)|. The (𝑥, 𝑡) intervals in the four
columns are −21 ≤ 𝑥, 𝑡 ≤ 21, −23 ≤ 𝑥, 𝑡 ≤ 27, −24 ≤ 𝑥, 𝑡 ≤ 24, and −23 ≤ 𝑥, 𝑡 ≤ 23, respectively.

𝑎𝑚 is taken as one of

𝑎2 = 30i, 𝑎4 = 200, 𝑎5 = 600i, 𝑎7 = 5000, (102)

predicted rogue waves from Theorem 8 are displayed in the first two rows of Figure 13. The first
row of this figure shows the predicted (�̂�0, 𝑡0) locations by formulae (92) applied to all roots of
𝑅
[𝑚]
3 (𝑧). The second row shows the predicted amplitude fields |𝑢1| (the other two fields |𝑢2| and|𝑢3| are not shown for brevity). These amplitude fields in the outer region are predicted by the

fundamental rogue waves in Theorem 8, and these fields in the inner region are predicted by
the lower (𝑁1𝑅,𝑁2𝑅)th-order rogue waves with all-zero internal parameters, and their (𝑁1𝑅,𝑁2𝑅)

values are as given in Equation (99).
As in the earlier Q-case, predicted rogue patterns in Figure 13 also look very different from the

underlying root structures of 𝑅[𝑚]
3 (𝑧) polynomials in Figure 2.

In the bottom row of this same figure, the corresponding true solutions |𝑢1| fromTheorem 4 are
plotted. Again, perfect agreement is seen between our prediction and the true solution, confirming
the predictive power of our Theorem 8.
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94 YANG and YANG

5 PROOFS OF THEOREMS 5 TO 8

In this section, we prove Theorems 5–8 on rogue patterns in the Manakov and three-wave sys-
tems. Our proof is based on an asymptotic analysis of the two systems’ rogue wave solutions, or
equivalently, the determinant 𝜎𝑛,𝑘 in Equations (68)–(69), in the large |𝑎𝑚| limit.
Proof of Theorem 5 for the outer region. First, we use determinant identities and the Laplace
expansion to rewrite 𝜎(𝑄)

𝑛,𝑘
in Equation (68) as11

𝜎
(𝑄)
𝑛,𝑘

=
∑

0≤𝜈1<𝜈2<⋯<𝜈𝑁≤3𝑁−1

det
1≤𝑖,𝑗≤𝑁

[
(ℎ0)

𝜈𝑗𝑆3𝑖−1−𝜈𝑗 (𝒙
+(𝑛, 𝑘) + 𝜈𝑗𝒔)

]
× det

1≤𝑖,𝑗≤𝑁

[
(ℎ∗0)

𝜈𝑗𝑆3𝑖−1−𝜈𝑗 (𝒙
−(𝑛, 𝑘) + 𝜈𝑗𝒔

∗)
]
, (103)

whereℎ0 = 𝑝1∕(𝑝0 + 𝑝∗0).Weneed to derive the asymptotics of this𝜎
(𝑄)
𝑛,𝑘

when |𝑎𝑚| is large and the
other parameters 𝑂(1). In this parameter regime, when (𝑥, 𝑡) is in the outer region of

√
𝑥2 + 𝑡2 =

𝑂(|𝑎𝑚|1∕𝑚), we have
𝑆𝑗(𝒙

+(𝑛, 𝑘) + 𝜈𝒔) = 𝑆𝑗(𝑥
+
1 , 𝑥

+
2 , 𝜈𝑠3, 𝑥

+
4 , 𝑥

+
5 , 𝜈𝑠6, … , 𝑥+𝑚 + 𝜈𝑠𝑚,…) ∼ 𝑆𝑗(𝐯), (104)

where

𝐯 = (𝑝1𝑥 + 2𝑝0𝑝1i𝑡, 0, … , 0, 𝑎𝑚, 0, …). (105)

Here, the fact of 𝑠1 = 𝑠2 = 𝑠4 = 𝑠5 = 0 from Equation (42) has been used.
Next, we see from the definition (22) of Schur polynomials that

∞∑
𝑗=0

𝑆𝑗(𝐯)𝜖
𝑗 = 𝑒𝜖(𝑝1𝑥+2𝑝0𝑝1i𝑡)+𝜖

𝑚𝑎𝑚 . (106)

Introducing the scaled variable �̂� = 𝜖𝑎
1∕𝑚
𝑚 , we can write the right side of the above equation as

𝑒�̂�𝑧+�̂�
𝑚 , where

𝑧 = 𝑎
−1∕𝑚
𝑚 (𝑝1𝑥 + 2𝑝0𝑝1i𝑡). (107)

This 𝑒�̂�𝑧+�̂�𝑚 term is the same as the right side of Equation (6), except for a notational change
of 𝜖 to �̂�. Using that Equation (6) with 𝜖 changed to �̂� and combining the result with the above
equation (106), we get

∞∑
𝑗=0

𝑆𝑗(𝐯)𝜖
𝑗 =

∞∑
𝑗=0

𝑝
[𝑚]
𝑗

(𝑧) �̂�𝑗. (108)

Then, recalling �̂� = 𝜖𝑎
1∕𝑚
𝑚 , we arrive at the important relation

𝑆𝑗(𝐯) = 𝑎
𝑗∕𝑚
𝑚 𝑝

[𝑚]
𝑗

(𝑧). (109)

To proceed further, we notice that the highest order term of 𝑎𝑚 in Equation (103) for 𝜎(𝑄)
𝑛,𝑘

comes
from index choices of 𝜈𝑗 = 𝑗 − 1. For these index choices, using the formulae (104) and (109), as
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YANG and YANG 95

well as the definition of 𝑄[𝑚]
𝑁 (𝑧) in Equation (7), we find that

det
1≤𝑖,𝑗≤𝑁

[
𝑆3𝑖−1−𝜈𝑗 (𝒙

+(𝑛, 𝑘) + 𝜈𝑗𝒔)
]
= det

1≤𝑖,𝑗≤𝑁

[
𝑆3𝑖−𝑗

(
𝒙+(𝑛, 𝑘) + (𝑗 − 1)𝒔

)]
∼ 𝑐−1𝑁 𝑎

𝑁(𝑁+1)∕𝑚
𝑚 𝑄

[𝑚]
𝑁 (𝑧).

(110)

Similarly,

det
1≤𝑖,𝑗≤𝑁

[
𝑆3𝑖−1−𝜈𝑗 (𝒙

−(𝑛, 𝑘) + 𝜈𝑗𝒔
∗)

]
∼ 𝑐−1𝑁 (𝑎∗𝑚)

𝑁(𝑁+1)∕𝑚
𝑄
[𝑚]
𝑁 (𝑧∗). (111)

Thus,

𝜎
(𝑄)
𝑛,𝑘

∼ |𝛼|2 |𝑎𝑚|2𝑁(𝑁+1)∕𝑚|||𝑄[𝑚]
𝑁 (𝑧)

|||2, (112)

where 𝛼 = (ℎ0)
𝑁(𝑁−1)∕2𝑐−1𝑁 . Since this leading-order asymptotics of 𝜎(𝑄)

𝑛,𝑘
is independent of 𝑛 and

𝑘, it implies that, for |𝑎𝑚| ≫ 1, we would have 𝜎1,0∕𝜎0,0 ∼ 1 and 𝜎0,1∕𝜎0,0 ∼ 1, that is, the solution
[𝑢1,𝑁,0(𝑥, 𝑡), 𝑢2,𝑁,0(𝑥, 𝑡)]would be on the uniform background [𝜌1𝑒i(𝑘1𝑥+𝜔1𝑡), 𝜌1𝑒i(𝑘2𝑥+𝜔2𝑡)], except
when 𝑧 is near a root 𝑧0 of the polynomial 𝑄

[𝑚]
𝑁 (𝑧), where this leading-order asymptotics in (112)

vanishes. In terms of 𝑥 and 𝑡, this means that the solution [𝑢1,𝑁,0(𝑥, 𝑡), 𝑢2,𝑁,0(𝑥, 𝑡)] would be on
the uniform background, except when (𝑥, 𝑡) is in an 𝑂(1) neighborhood of the location (�̃�0, 𝑡0),
where

𝑧0 = 𝑎
−1∕𝑚
𝑚 (𝑝1�̃�0 + 2i𝑝0𝑝1𝑡0). (113)

Such (�̃�0, 𝑡0) locations are the leading-order terms of (�̂�0, 𝑡0) in Equations (78)–(79) of Theorem 5.
Due to the requirement of

√
𝑥2 + 𝑡2 = 𝑂(|𝑎𝑚|1∕𝑚), 𝑧0 should not be zero.

Next, we show that when (𝑥, 𝑡) is in an 𝑂(1) neighborhood of each of the (�̃�0, 𝑡0) locations
given by Equation (113), the Q-type Manakov rogue wave [𝑢1,𝑁,0(𝑥, 𝑡), 𝑢2,𝑁,0(𝑥, 𝑡)] approaches a
fundamental Manakov rogue wave that is located within 𝑂(1) distance from (�̃�0, 𝑡0). In order to
derive this more refined asymptotics, we need to calculate terms in Equation (103) whose order is
lower than |𝑎𝑚|2𝑁(𝑁+1)∕𝑚, since that highest order term (112) vanishes at (�̃�0, 𝑡0).
First, we denote

�̂�+2 (𝑥, 𝑡) = 𝑝2𝑥 + (2𝑝0𝑝2 + 𝑝21)(i𝑡), (114)

which are the dominant terms of 𝑥+2 (𝑥, 𝑡) in Equation (34) with the index “𝐼” removed, when
(𝑥, 𝑡) is in the outer region. Then, for (𝑥, 𝑡) in the neighborhood of (�̃�0, 𝑡0), we have a more refined
asymptotics for 𝑆𝑗(𝒙+(𝑛, 𝑘) + 𝜈𝒔) as

𝑆𝑗(𝒙
+(𝑛, 𝑘) + 𝜈𝒔) = 𝑆𝑗(𝑥

+
1 , 𝑥

+
2 , 𝜈𝑠3, 𝑥

+
4 , 𝑥

+
5 , 𝜈𝑠6, …, 𝑥

+
𝑚 + 𝜈𝑠𝑚,…)

=
[
𝑆𝑗(�̂�) + �̂�+2 (�̃�0, 𝑡0)𝑆𝑗−2(�̂�)

] [
1 + 𝑂(|𝑎𝑚|−2∕𝑚)] , |𝑎𝑚| ≫ 1,

(115)

where

�̂� =
(
𝑥+1 , 0, … , 0, 𝑎𝑚, 0, …

)
= (𝑝1𝑥 + 2𝑝0𝑝1i𝑡 + 𝑛𝜃1 + 𝑘𝜆1, 0, … , 0, 𝑎𝑚, 0, …). (116)

Here, the normalization of𝑎1 = 0 in𝑥+1 has been used, and the second equation in (115) is obtained
by using the definition (22) of Schur polynomials and splitting the 𝒙+(𝑛, 𝑘) + 𝜈𝒔 vector into �̂� and
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96 YANG and YANG

the rest. Polynomials 𝑆𝑗(�̂�) are related to 𝑝
[𝑚]
𝑗

(𝑧) in Equation (6) as

𝑆𝑗(�̂�) = 𝑎
𝑗∕𝑚
𝑚 𝑝

[𝑚]
𝑗

(�̂�), (117)

where �̂� = 𝑎
−1∕𝑚
𝑚 (𝑝1𝑥 + 2𝑝0𝑝1i𝑡 + 𝑛𝜃1 + 𝑘𝜆1).

Now, we derive leading order terms of 𝑎𝑚 in Equation (103) when (𝑥, 𝑡) is in the 𝑂(1) neigh-
borhood of (�̃�0, 𝑡0). These leading order terms come from two index choices, the first being
𝝂 = (0, 1, … ,𝑁 − 1), and the second being 𝝂 = (0, 1, … ,𝑁 − 2,𝑁).

(i) With the first index choice, in view of Equations (115)–(117), dominant contributions to the
first determinant involving 𝒙+(𝑛, 𝑘) in Equation (103) contain two parts. One part, coming
from the 𝑆𝑗(�̂�) term in Equation (115) for each element of that determinant, is

𝛼 𝑎
𝑁(𝑁+1)∕𝑚
𝑚 𝑄

[𝑚]
𝑁 (�̂�)

[
1 + 𝑂(|𝑎𝑚|−2∕𝑚)], (118)

where 𝛼 is given below Equation (112). Expanding 𝑄[𝑚]
𝑁 (�̂�) around �̂� = 𝑧0, where 𝑧0 is given

in Equation (113), and recalling 𝑄[𝑚]
𝑁 (𝑧0) = 0, we have

𝑄
[𝑚]
𝑁 (�̂�) = 𝑎

−1∕𝑚
𝑚 [𝑝1(𝑥 − �̃�0) + 2𝑝0𝑝1i(𝑡 − 𝑡0) + 𝑛𝜃1 + 𝑘𝜆1]

[
𝑄
[𝑚]
𝑁

]′
(𝑧0)

[
1 + 𝑂(|𝑎𝑚|−1∕𝑚)].

(119)

Inserting this equation into (118), this part of the contribution becomes

𝛼 𝑎
[𝑁(𝑁+1)−1]∕𝑚
𝑚 [𝑝1(𝑥 − �̃�0) + 2i𝑝0𝑝1(𝑡 − 𝑡0) + 𝑛𝜃1 + 𝑘𝜆1]

[
𝑄
[𝑚]
𝑁

]′
(𝑧0)

[
1 + 𝑂(|𝑎𝑚|−1∕𝑚)].

(120)

The other part of the contribution to the first determinant in Equation (103) comes from the
𝑆𝑗−2(�̂�) term of (115) for each single column of that determinant and the 𝑆𝑗(�̂�) term for the
rest of the columns. This part of the contribution gives

�̂�+2 (�̃�0, 𝑡0)

𝑁∑
𝑗=1

det
1≤𝑖≤𝑁

[
𝑆3𝑖−1(�̂�), … , ℎ

𝑗−1
0 𝑆3𝑖−𝑗−2(�̂�), … , ℎ𝑁−10 𝑆3𝑖−𝑁(�̂�)

][
1 + 𝑂(|𝑎𝑚|−1∕𝑚)].

(121)

Here, the matrix of the determinant is (ℎ𝑗−10 𝑆3𝑖−𝑗(�̂�))1≤𝑖,𝑗≤𝑁 , except for its 𝑗th column, which
is ℎ𝑗−10 𝑆3𝑖−𝑗−2(�̂�) instead, that is, the index of the Schur polynomial in the 𝑗th column is
reduced by two. Replacing 𝑆𝑗(�̂�) by its leading-order term 𝑆𝑗(𝐯), utilizing the relation (109),
and further replacing 𝑧 by its leading-order term 𝑧0, the above contribution reduces to

𝛼𝑎
[𝑁(𝑁+1)−2]∕𝑚
𝑚 �̂�+2 (�̃�0, 𝑡0)

𝑁∑
𝑗=1

det
1≤𝑖≤𝑁

[
𝑝
[𝑚]
3𝑖−1

(𝑧0), … , 𝑝
[𝑚]
3𝑖−𝑗−2

(𝑧0), … , 𝑝
[𝑚]
3𝑖−𝑁

(𝑧0)
][
1 + 𝑂(|𝑎𝑚|−1∕𝑚)].

(122)

Since �̂�+2 (�̃�0, 𝑡0) = 𝑂(|𝑎𝑚|1∕𝑚), this contribution is of the same order as the previous contri-
bution in Equation (120). Combining these two contributions, the first determinant involving
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YANG and YANG 97

𝒙+(𝑛, 𝑘) in Equation (103) is found to be

𝛼 𝑎
[𝑁(𝑁+1)−1]∕𝑚
𝑚

[
𝑝1(𝑥 − �̃�0) + 2𝑝0𝑝1i(𝑡 − 𝑡0) + 𝑛𝜃1 + 𝑘𝜆1 + Δ𝑄

][
𝑄
[𝑚]
𝑁

]′
(𝑧0)

[
1 + 𝑂(|𝑎𝑚|−1∕𝑚)],

(123)

where

Δ𝑄 =
�̂�+2 (�̃�0, 𝑡0)

𝑎
1∕𝑚
𝑚

∑𝑁

𝑗=1
det1≤𝑖≤𝑁

[
𝑝
[𝑚]
3𝑖−1

(𝑧0), … , 𝑝
[𝑚]
3𝑖−𝑗−2

(𝑧0), … , 𝑝
[𝑚]
3𝑖−𝑁

(𝑧0)
]

[
𝑄
[𝑚]
𝑁

]′
(𝑧0)

. (124)

Denoting 𝜑𝑚 ≡ arg(𝑎1∕𝑚𝑚 ) and then using the (�̃�0, 𝑡0) expressions as obtained from Equa-
tion (113), we find that

�̂�+2 (�̃�0, 𝑡0)

𝑎
1∕𝑚
𝑚

=
𝑝2
𝑝1

𝑧0 +
i𝑝21

2ℜ(𝑝0)

ℑ
(
𝑧0 𝑒

𝑖𝜑𝑚∕𝑝1
)

𝑒𝑖𝜑𝑚
. (125)

Thus,

Δ𝑄 =

(
𝑝2
𝑝1

𝑧0 +
i𝑝2

1

2ℜ(𝑝0)

ℑ
(
𝑧0 𝑒

𝑖𝜑𝑚∕𝑝1
)

𝑒𝑖𝜑𝑚

)∑𝑁

𝑗=1
det1≤𝑖≤𝑁

[
𝑝
[𝑚]
3𝑖−1

(𝑧0), … , 𝑝
[𝑚]
3𝑖−𝑗−2

(𝑧0), … , 𝑝
[𝑚]
3𝑖−𝑁

(𝑧0)
]

[
𝑄
[𝑚]
𝑁

]′
(𝑧0)

.

(126)

Here, the determinant inside the summation of the above formula is the determinant of
𝑄
[𝑚]
𝑁 (𝑧0), that is, det1≤𝑖,𝑗≤𝑁[𝑝

[𝑚]
3𝑖−𝑗

(𝑧0)], except that the subindices of its 𝑗th columnare reduced
by two. This Δ𝑄 is an 𝑂(1) quantity that is dependent on𝑚,𝑁, 𝑧0, 𝜑𝑚, 𝑝0, 𝑝1, and 𝑝2. Absorb-
ing this Δ𝑄 term into (�̃�0, 𝑡0) in Equation (123), we find that the contribution to the first
determinant in Equation (103) under the first index choice of 𝝂 = (0, 1, … ,𝑁 − 1) is

𝛼 𝑎
[𝑁(𝑁+1)−1]∕𝑚
𝑚

[
𝑝1(𝑥 − �̂�0) + 2𝑝0𝑝1i(𝑡 − 𝑡0) + 𝑛𝜃1 + 𝑘𝜆1

][
𝑄
[𝑚]
𝑁

]′
(𝑧0)

[
1 + 𝑂(|𝑎𝑚|−1∕𝑚)],

(127)

where (�̂�0, 𝑡0) are given in Equations (78)–(79) of Theorem 5.
Similarly, the second determinant involving𝒙−(𝑛, 𝑘) in Equation (103) under the first index

choice of 𝝂 = (0, 1, … ,𝑁 − 1) contributes the term

𝛼∗ (𝑎∗𝑚)
[𝑁(𝑁+1)−1]∕𝑚

[
𝑝∗
1(𝑥 − �̂�0) − 2𝑝∗

0𝑝
∗
1 i(𝑡 − 𝑡0) − 𝑛𝜃∗1 − 𝑘𝜆∗1

][
𝑄
[𝑚]
𝑁

]′
(𝑧∗0)

[
1 + 𝑂(|𝑎𝑚|−1∕𝑚)].

(128)

(ii) Under the second index choice of 𝝂 = (0, 1, … ,𝑁 − 2,𝑁) in Equation (103), the leading-
order contribution to the first determinant involving 𝒙+(𝑛, 𝑘) can be calculated from the
asymptotics (104) and the relation (109) as

ℎ
𝑁(𝑁−1)∕2+1

0 𝑎
[𝑁(𝑁+1)−1]∕𝑚
𝑚 det

1≤𝑖≤𝑁

[
𝑝
[𝑚]
3𝑖−1

(𝑧0), 𝑝
[𝑚]
3𝑖−2

(𝑧0), … , 𝑝
[𝑚]

3𝑖−(𝑁−1)
(𝑧0), 𝑝

[𝑚]
3𝑖−𝑁−1

(𝑧0)
][
1 + 𝑂(|𝑎𝑚|−1∕𝑚)].

(129)
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98 YANG and YANG

Recalling 𝑝[𝑚]
𝑗−1

(𝑧) = [𝑝
[𝑚]
𝑗

]′(𝑧), the above contribution can be rewritten as

ℎ0 𝛼 𝑎
[𝑁(𝑁+1)−1]∕𝑚
𝑚

[
𝑄
[𝑚]
𝑁

]′
(𝑧0)

[
1 + 𝑂(|𝑎𝑚|−1∕𝑚)]. (130)

Similarly, the second determinant involving 𝒙−(𝑛, 𝑘) in Equation (103) contributes

ℎ∗0 𝛼
∗(𝑎∗𝑚)

[𝑁(𝑁+1)−1]∕𝑚
[
𝑄
[𝑚]
𝑁

]′
(𝑧∗0)

[
1 + 𝑂(|𝑎𝑚|−1∕𝑚)]. (131)

Summarizing the above contributions to Equation (103), we find that

𝜎
(𝑄)

𝑛,𝑘
(𝑥, 𝑡) = |𝛼|2 ||||[𝑄[𝑚]

𝑁

]′
(𝑧0)

||||
2|𝑎𝑚|[𝑁(𝑁+1)−1]∕𝑚 ×

([
𝑝1(𝑥 − �̂�0) + 2i𝑝0𝑝1(𝑡 − 𝑡0) + 𝑛𝜃1 + 𝑘𝜆1

]
×

[
𝑝∗
1(𝑥 − �̂�0) − 2i𝑝∗

0𝑝
∗
1(𝑡 − 𝑡0) − 𝑛𝜃∗1 − 𝑘𝜆∗1

]
+ |ℎ0|2) [

1 + 𝑂(|𝑎𝑚|−1∕𝑚)]. (132)

Under our assumption of all nonzero roots of 𝑄[𝑚]
𝑁 (𝑧) being simple, [𝑄[𝑚]

𝑁 ]′(𝑧0) ≠ 0. Thus,
the above leading-order asymptotics for 𝜎(𝑄)

𝑛,𝑘
(𝑥, 𝑡) does not vanish. It is easy to see that this

expression of 𝜎(𝑄)
𝑛,𝑘

(𝑥, 𝑡), combined with Equations (28)–(30), gives a fundamental rogue wave
[�̂�1(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒

i(𝑘1𝑥+𝜔1𝑡), �̂�2(𝑥 − �̂�0, 𝑡 − 𝑡0) 𝑒
i(𝑘2𝑥+𝜔2𝑡)] as given in Theorem 5, and the error

of this fundamental rogue wave prediction is𝑂(|𝑎𝑚|−1∕𝑚). This completes the proof of Theorem 5
for the outer region. □

Proof of Theorem 5 for the inner region. To analyze the large-𝑎𝑚 behavior of Q-typeManakov rogue
waves in the inner region, where 𝑥2 + 𝑡2 = 𝑂(1), we first rewrite the 𝜎(𝑄)

𝑛,𝑘
determinant (68) into a

4𝑁 × 4𝑁 determinant11

𝜎
(𝑄)
𝑛,𝑘

=
||||| 𝐎𝐍×𝐍 Φ𝑁×3𝑁

−Ψ3𝑁×𝑁 𝐈3𝑁×3𝑁

|||||, (133)

where

Φ𝑖,𝑗 =

(
𝑝1

𝑝0 + 𝑝∗
0

)𝑗−1

𝑆3𝑖−𝑗[𝒙
+(𝑛, 𝑘) + (𝑗 − 1)𝒔], Ψ𝑖,𝑗 =

(
𝑝∗
1

𝑝0 + 𝑝∗
0

)𝑖−1

𝑆3𝑗−𝑖[𝒙
−(𝑛, 𝑘) + (𝑖 − 1)𝒔∗].

(134)
Defining 𝒚± to be the vector 𝒙± without the 𝑎𝑚 term, that is, let

𝒙+ = 𝒚+ + (0, … , 0, 𝑎𝑚, 0, …), 𝒙− = 𝒚− + (0, … , 0, 𝑎∗𝑚, 0, …), (135)

it is easy to see from the definition (22) of Schur polynomials that the Schur polynomials of 𝒙±
are related to those of 𝒚± as

𝑆𝑗(𝒙
+ + 𝜈𝒔) =

[𝑗∕𝑚]∑
𝑙=0

𝑎𝑙𝑚
𝑙!
𝑆𝑗−𝑙𝑚(𝒚

+ + 𝜈𝒔), 𝑆𝑗(𝒙
− + 𝜈𝒔∗) =

[𝑗∕𝑚]∑
𝑙=0

(𝑎∗𝑚)
𝑙

𝑙!
𝑆𝑗−𝑙𝑚(𝒚

− + 𝜈𝒔∗). (136)

The reader is reminded that the notation of [𝑎] represents the largest integer less than or equal to
𝑎. Using these relations, we express matrix elements of Φ and Ψ in Equation (133) through Schur
polynomials 𝑆𝑗(𝒚+ + 𝜈𝒔), 𝑆𝑗(𝒚− + 𝜈𝒔∗), and powers of 𝑎𝑚 and 𝑎∗𝑚.
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YANG and YANG 99

Next, we perform row operations to theΦmatrix in order to remove certain power terms of 𝑎𝑚.
For this purpose, we notice that when 𝑚 = 3𝑗 + 1 (𝑗 ≥ 1), coefficients of the highest 𝑎𝑚 power
terms in Φ’s first column are proportional to

�̂�2, �̂�5, … , �̂�3𝑗−1, �̂�1, �̂�4, … , �̂�3𝑗−2, �̂�0, �̂�3, … , �̂�3𝑗, (137)

and repeating, where �̂�𝑗 ≡ 𝑆𝑗(𝒚
+ + 𝜈𝒔).When𝑚 = 3𝑗 + 2 (𝑗 ≥ 0), these coefficients of the highest

𝑎𝑚 power terms in Φ’s first column are proportional to

�̂�2, �̂�5, … , �̂�3𝑗−1, �̂�0, �̂�3, … , �̂�3𝑗, �̂�1, �̂�4, … , �̂�3𝑗+1, (138)

and repeating. In the second and higher columns of Φ, elements are of the same form as those in
the first column, except that the index 𝑗 of every �̂�𝑗 in them decreases by one with each higher
column, and �̂�𝑗 ≡ 0 for 𝑗 < 0. Using the first 𝑚 rows, we perform row operations to remove the
highest powers of 𝑎𝑚 from the second𝑚 rows, leaving the second highest power terms of 𝑎𝑚 with
coefficients proportional to �̂�𝑗+𝑚, where �̂�𝑗 is the highest 𝑎𝑚-power coefficient of each element
just being removed. Then, we use the first 𝑚 rows and the resulting second 𝑚 rows to eliminate
the highest and second highest power terms of 𝑎𝑚 from the third𝑚 rows, leaving the third highest
power terms of 𝑎𝑚 with coefficients proportional to �̂�𝑗+2𝑚 in them. This process is continued to
all later rows of Φ. Similar column operations are also applied to the matrix Ψ in Equation (133).
After these row and column operations, we then keep only the highest remaining power of

𝑎𝑚 in each matrix element of Φ and the highest remaining power of 𝑎∗𝑚 in each matrix element
of Ψ. Using these manipulations and the sequence structures in Equations (137) and (138), for
𝑚 mod 3 = 1 and 2, respectively, we find that 𝜎(𝑄)

𝑛,𝑘
in (133) is asymptotically reduced to

𝜎
(𝑄)
𝑛,𝑘

= 𝛽 |𝑎𝑚|𝐾||||||
𝐎(𝐍𝟏𝐐+𝐍𝟐𝐐)×(𝐍𝟏𝐐+𝐍𝟐𝐐) Φ̂(𝑁1𝑄+𝑁2𝑄)×�̂�

−Ψ̂�̂�×(𝑁1𝑄+𝑁2𝑄)
𝐈�̂�×�̂�

||||||
[
1 + 𝑂(|𝑎𝑚|−1)], (139)

where 𝛽 is an (𝑚,𝑁)-dependent nonzero constant, 𝐾 is an (𝑚,𝑁)-dependent positive integer,
(𝑁1𝑄,𝑁2𝑄) are nonnegative integers given in Theorem 1, �̂� = max(3𝑁1𝑄, 3𝑁2𝑄 − 1),

Φ̂ =

⎛⎜⎜⎜⎝
Φ̂
(1)

𝑁1𝑄×�̂�

Φ̂
(2)

𝑁2𝑄×�̂�

⎞⎟⎟⎟⎠ , Ψ̂ =

(
Ψ̂
(1)

�̂�×𝑁1𝑄
Ψ̂
(2)

�̂�×𝑁2𝑄

)
, (140)

Φ̂
(𝐼)
𝑖,𝑗

= (ℎ0)
−(𝑗−1)𝑆3𝑖−𝐼

[
𝒚+(𝑛, 𝑘) + (𝑗 − 1 + 𝜈0)𝒔

]
, (141)

Ψ̂
(𝐽)
𝑖,𝑗

= (ℎ∗0)
−(𝑖−1)𝑆3𝑗−𝐽[𝒚

−(𝑛, 𝑘) + (𝑖 − 1 + 𝜈0)𝒔
∗], (142)

and 𝜈0 = 𝑁 − 𝑁1𝑄 − 𝑁2𝑄. Since the constant factor 𝛽 |𝑎𝑚|𝐾 in (139) does not affect the Manakov
solution and can be dropped, the remaining determinant in (139) can be rewritten as

𝜎
(𝑄)
𝑛,𝑘

= det

(
𝜎
[1,1]
𝑛,𝑘

𝜎
[1,2]
𝑛,𝑘

𝜎
[2,1]
𝑛,𝑘

𝜎
[2,2]
𝑛,𝑘

)[
1 + 𝑂(|𝑎𝑚|−1)], (143)

𝜎
[𝐼,𝐽]
𝑛,𝑘

=
(
𝜙
(𝑛,𝑘, 𝐼,𝐽)
3𝑖−𝐼, 3𝑗−𝐽

)
1≤𝑖≤𝑁𝐼𝑄, 1≤𝑗≤𝑁𝐽𝑄

, (144)
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100 YANG and YANG

where the matrix elements in 𝜎[𝐼,𝐽]
𝑛,𝑘

are defined by

𝜙
(𝑛,𝑘,𝐼,𝐽)
𝑖,𝑗

=

min(𝑖,𝑗)∑
𝜈=0

[ |𝑝1|2
(𝑝0 + 𝑝∗0)

2

]𝜈
𝑆𝑖−𝜈

(
𝒚+(𝑛, 𝑘) + 𝜈0𝒔 + 𝜈𝒔

)
𝑆𝑗−𝜈(𝒚

−(𝑛, 𝑘) + 𝜈0𝒔
∗ + 𝜈𝒔∗). (145)

The largest index 𝑗 of 𝑆𝑗 involved in the above reduced solution is max(3𝑁1𝑄 − 1, 3𝑁2𝑄 − 2). It
is easy to see from Theorem 1 thatmax(3𝑁1𝑄 − 1, 3𝑁2𝑄 − 2) < 𝑚. Thus, the above solution only
depends on 𝑆𝑗 polynomialswith 𝑗 < 𝑚, andhence, only depends on 𝑦±

𝑗
(𝑛, 𝑘)with 𝑗 < 𝑚. From the

definition (135), we see that 𝑦±
𝑗
(𝑛, 𝑘) = 𝑥±

𝑗
(𝑛, 𝑘) when 𝑗 < 𝑚. This means that in Equation (145),

𝒚±(𝑛, 𝑘) can be replaced by 𝒙±(𝑛, 𝑘). Finally, we lump each constant 𝜈0𝑠𝑗 into 𝑎𝑗 of 𝑥+𝑗 (𝑛, 𝑘), and
similarly lump each 𝜈0𝑠∗𝑗 into 𝑎

∗
𝑗
of 𝑥−

𝑗
(𝑛, 𝑘). When 𝑗 mod 3 = 0, 𝑥±

𝑗
(𝑛, 𝑘) = 0 per Theorem 3 and

does not contain 𝑎𝑗 . In such a case, we just lump 𝜈0𝑠𝑗 into 𝑥+𝑗 (𝑛, 𝑘) and 𝜈0𝑠
∗
𝑗
into 𝑥−

𝑗
(𝑛, 𝑘), which

eventually can be eliminated from the solution for the same reason we did in Equation (36) of
Theorem 3. After these treatments, the above determinant in (143) becomes a (𝑁1𝑄,𝑁2𝑄)th-order
Manakov rogue wave [𝑢1,𝑁1𝑄,𝑁2𝑄

(𝑥, 𝑡), 𝑢2,𝑁1𝑄,𝑁2𝑄
(𝑥, 𝑡)] as given in Theorem 3, whose internal

parameters (�̂�1,1, �̂�2,1, �̂�4,1, �̂�5,1, … , �̂�3𝑁1𝑄−1, 1) and (�̂�1,2, �̂�2,2, �̂�4,2, �̂�5,2, … , �̂�3𝑁2𝑄−2, 2) are related to
those in the original rogue wave as

�̂�𝑗,1 = �̂�𝑗,2 = 𝑎𝑗 + 𝜈0𝑠𝑗, 𝑗 = 1, 2, 4, 5, … , (146)

which is the same as the relation (81) in Theorem 5 since 𝑠𝑗 = 0 for 𝑗mod 3 ≠ 0 (see Remark 3
and Appendix D). The error of this lower order rogue wave approximation is𝑂(|𝑎𝑚|−1) in view of
Equation (143). This completes the proof of Theorem 5 for the inner region. □

Proof of Theorem 6. The proof of Theorem 6 for R-type Manakov rogue waves is very similar to
that for Theorem 5. For that reason, we will only list the differences here.
In the outer region, due to the different matrix indices in Equation (69) for R-type rogue waves,

the corresponding polynomials whose roots give leading-order locations of fundamental rogue
waves are naturally R-type Okamoto hierarchy polynomials 𝑅[𝑚]

𝑁 (𝑧). The remaining difference is
the calculation of the next-order position shift, that is, the formula for Δ𝑅 in Equations (83)–(84).
Repeating earlier calculations for the different R-type matrix indices, we can easily find that

Δ𝑅 =

(
𝑝2
𝑝1

𝑧0 +
i𝑝2

1

2ℜ(𝑝0)

ℑ
(
𝑧0 𝑒

𝑖𝜑𝑚∕𝑝1
)

𝑒𝑖𝜑𝑚

)∑𝑁

𝑗=1
det1≤𝑖≤𝑁

[
𝑝
[𝑚]
3𝑖−1−1

(𝑧0), … , 𝑝
[𝑚]
3𝑖−𝑗−1−2

(𝑧0), … , 𝑝
[𝑚]
3𝑖−𝑁−1

(𝑧0)
]

[
𝑅
[𝑚]
𝑁

]′
(𝑧0)

.

(147)

Here, the determinant inside the summation of the above formula is the determinant of 𝑅[𝑚]
𝑁 (𝑧0),

that is, det1≤𝑖,𝑗≤𝑁[𝑝
[𝑚]
3𝑖−𝑗−1

(𝑧0)], except that subindices of its 𝑗th column are reduced by two.

In the inner region, where 𝑥2 + 𝑡2 = 𝑂(1), we also rewrite the 𝜎(𝑅)
𝑛,𝑘

determinant (69) into a 4𝑁 ×

4𝑁 determinant, and then use relations (136) to rewrite every matrix element of Φ and Ψ into
powers of 𝑎𝑚 and 𝑎∗𝑚, respectively. For R-type rogue waves, when𝑚 = 3𝑗 + 1 (𝑗 ≥ 1), coefficients
of the highest 𝑎𝑚 power terms in Φ’s first column are proportional to

�̂�1, �̂�4, … , �̂�3𝑗−2, �̂�0, �̂�3, … , �̂�3𝑗, �̂�2, �̂�5, … , �̂�3𝑗−1, (148)
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YANG and YANG 101

and repeating, and when𝑚 = 3𝑗 + 2 (𝑗 ≥ 0), these coefficients are proportional to

�̂�1, �̂�4, … , �̂�3𝑗+1, �̂�2, �̂�5, … , �̂�3𝑗−1, �̂�0, �̂�3, … , �̂�3𝑗, (149)

and repeating. Using these sequence structures and performing the same row and column oper-
ations as described earlier to remove certain high powers of 𝑎𝑚 in the Φ and Ψ matrices, we
find that 𝜎(𝑅)

𝑛,𝑘
can be asymptotically reduced to (139)–(142), except that (𝑁1𝑄,𝑁2𝑄) are replaced

by (𝑁1𝑅,𝑁2𝑅) as given in Theorem 2, and (𝛽, 𝐾) are different constants. The rest of the proof is the
same as before, and Theorem 6 is then proved. □

Proof of Theorem 7. The proof of Theorem 7 for Q-type rogue patterns in the three-wave-
interaction system is very similar to that of Theorem 5 for theManakov system. In the outer region
where

√
𝑥2 + 𝑡2 = 𝑂(|𝑎𝑚|1∕𝑚) at large |𝑎𝑚|,

𝑆𝑗(𝒙
+(𝑛, 𝑘) + 𝜈𝒔) = 𝑆𝑗(𝑥

+
1 , 𝑥

+
2 , 𝜈𝑠3, 𝑥

+
4 , 𝑥

+
5 , 𝜈𝑠6, … , 𝑥+𝑚 + 𝜈𝑠𝑚,…) ∼ 𝑆𝑗(𝐯), (150)

where

𝐯 = [(𝛼1 − 𝛽1)𝑥 + (𝑐1𝛽1 − 𝑐2𝛼1)𝑡, 0, … , 0, 𝑎𝑚, 0, …]. (151)

Following similar calculations as in the proof of Theorem 5, we find that the highest power term
of 𝑎𝑚 in 𝜎(𝑄)

𝑛,𝑘
of the three-wave system is

𝜎
(𝑄)
𝑛,𝑘

∼ |𝛼|2 |𝑎𝑚|2𝑁(𝑁+1)∕𝑚|||𝑄[𝑚]
𝑁 (𝑧)

|||2, (152)

where 𝛼 = (ℎ0)
𝑁(𝑁−1)∕2𝑐−1𝑁 , ℎ0 = 𝑝1∕(𝑝0 + 𝑝∗0), and

𝑧 = 𝑎
−1∕𝑚
𝑚 [(𝛼1 − 𝛽1)𝑥 + (𝑐1𝛽1 − 𝑐2𝛼1)𝑡]. (153)

Thus, the solution [𝑢1,𝑁,0(𝑥, 𝑡), 𝑢2,𝑁,0(𝑥, 𝑡), 𝑢3,𝑁,0(𝑥, 𝑡)]would be on the uniform background (44),
except at or near (𝑥, 𝑡) locations (�̃�0, 𝑡0) where

𝑧0 = 𝑎
−1∕𝑚
𝑚 [(𝛼1 − 𝛽1)�̃�0 + (𝑐1𝛽1 − 𝑐2𝛼1)𝑡0] (154)

is a root of the polynomial𝑄[𝑚]
𝑁 (𝑧), and such (�̃�0, 𝑡0) locations are the leading-order terms of (�̂�0, 𝑡0)

in Equation (88) of Theorem 7.
We can further show thatwhen (𝑥, 𝑡) is in the𝑂(1)neighborhood of each of the (�̃�0, 𝑡0) locations

given by Equation (154), the Q-type three-wave rogue solution approaches a fundamental rogue
wave that is located within 𝑂(1) distance from (�̃�0, 𝑡0). For this purpose, we denote

�̂�+2 (𝑥, 𝑡) = (𝛼2 − 𝛽2)𝑥 + (𝑐1𝛽2 − 𝑐2𝛼2)𝑡, (155)

which are the dominant terms of 𝑥+2 (𝑥, 𝑡) in Equation (57) with the index “𝐼” removed, when (𝑥, 𝑡)
is in the outer region. Then, for (𝑥, 𝑡) in the𝑂(1) neighborhood of (�̃�0, 𝑡0), we have a more refined
asymptotics for 𝑆𝑗(𝒙+(𝑛, 𝑘) + 𝜈𝒔) as

𝑆𝑗(𝒙
+(𝑛, 𝑘) + 𝜈𝒔) =

[
𝑆𝑗(�̂�) + �̂�+2 (�̃�0, 𝑡0)𝑆𝑗−2(�̂�)

] [
1 + 𝑂(|𝑎𝑚|−2∕𝑚)] , |𝑎𝑚| ≫ 1, (156)
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102 YANG and YANG

�̂� =
(
𝑥+1 , 0, … , 0, 𝑎𝑚, 0, …

)
, (157)

𝑥+1 = (𝛼1 − 𝛽1)𝑥 + (𝑐1𝛽1 − 𝑐2𝛼1)𝑡 + 𝑛𝜃1 + 𝑘𝜆1. (158)

Here, the normalization of𝑎1 = 0has been utilized.Next, we again rewrite𝜎(𝑄)
𝑛,𝑘

in Equation (68) as
(103). Then the contribution to the first determinant in Equation (103) from the first index choice
of 𝜈𝑗 = 𝑗 − 1 can be similarly calculated as

𝛼 𝑎
[𝑁(𝑁+1)−1]∕𝑚
𝑚

[
(𝛼1 − 𝛽1)(𝑥 − �̃�0) + (𝑐1𝛽1 − 𝑐2𝛼1)(𝑡 − 𝑡0) + 𝑛𝜃1 + 𝑘𝜆1 + Δ̂𝑄

]
×

[
𝑄
[𝑚]
𝑁

]′
(𝑧0)

[
1 + 𝑂(|𝑎𝑚|−1∕𝑚)], (159)

where

Δ̂𝑄 =
�̂�+2 (�̃�0, 𝑡0)

𝑎
1∕𝑚
𝑚

∑𝑁

𝑗=1
det1≤𝑖≤𝑁

[
𝑝
[𝑚]
3𝑖−1

(𝑧0), … , 𝑝
[𝑚]
3𝑖−𝑗−2

(𝑧0), … , 𝑝
[𝑚]
3𝑖−𝑁

(𝑧0)
]

[
𝑄
[𝑚]
𝑁

]′
(𝑧0)

. (160)

As in the definition ofΔ𝑄 in Equation (126), the determinant inside the summation of the above Δ̂𝑄

formula is the determinant of 𝑄[𝑚]
𝑁 (𝑧0), that is, det1≤𝑖,𝑗≤𝑁[𝑝

[𝑚]
3𝑖−𝑗

(𝑧0)], except that indices of its 𝑗th

column are reduced by two. Denoting 𝜑𝑚 ≡ arg(𝑎1∕𝑚𝑚 ) as before, and using the (�̃�0, 𝑡0) expressions
as obtained from Equation (154), we get

�̂�+2 (�̃�0, 𝑡0)

𝑎
1∕𝑚
𝑚

= 𝑒−i𝜑𝑚

⎡⎢⎢⎢⎣(𝛼2 − 𝛽2)
ℑ

[
𝑧0𝑒

i𝜑𝑚

𝑐1𝛽1−𝑐2𝛼1

]
ℑ

[
𝛼1−𝛽1

𝑐1𝛽1−𝑐2𝛼1

] + (𝑐1𝛽2 − 𝑐2𝛼2)
ℑ

[
𝑧0𝑒

i𝜑𝑚

𝛼1−𝛽1

]
ℑ

[
𝑐1𝛽1−𝑐2𝛼1

𝛼1−𝛽1

]⎤⎥⎥⎥⎦. (161)

Thus,

Δ̂𝑄 = 𝑒−i𝜑𝑚

⎡⎢⎢⎢⎣(𝛼2 − 𝛽2)
ℑ

[
𝑧0𝑒

i𝜑𝑚

𝑐1𝛽1−𝑐2𝛼1

]
ℑ

[
𝛼1−𝛽1

𝑐1𝛽1−𝑐2𝛼1

] + (𝑐1𝛽2 − 𝑐2𝛼2)
ℑ

[
𝑧0𝑒

i𝜑𝑚

𝛼1−𝛽1

]
ℑ

[
𝑐1𝛽1−𝑐2𝛼1

𝛼1−𝛽1

]⎤⎥⎥⎥⎦
×

∑𝑁

𝑗=1
det1≤𝑖≤𝑁

[
𝑝
[𝑚]
3𝑖−1

(𝑧0), … , 𝑝
[𝑚]
3𝑖−𝑗−2

(𝑧0), … , 𝑝
[𝑚]
3𝑖−𝑁

(𝑧0)
]

[
𝑄
[𝑚]
𝑁

]′
(𝑧0)

, (162)

which is an 𝑂(1) quantity. Absorbing this Δ̂𝑄 term into (�̃�0, 𝑡0) in Equation (159), we find that the
contribution to the first determinant in Equation (103) under the first index choice of 𝜈𝑗 = 𝑗 − 1

is

𝛼 𝑎
[𝑁(𝑁+1)−1]∕𝑚
𝑚

[
(𝛼1 − 𝛽1)(𝑥 − �̂�0) + (𝑐1𝛽1 − 𝑐2𝛼1)(𝑡 − 𝑡0) + 𝑛𝜃1 + 𝑘𝜆1

][
𝑄
[𝑚]
𝑁

]′
(𝑧0)

[
1 + 𝑂(|𝑎𝑚|−1∕𝑚)],

(163)

where (�̂�0, 𝑡0) are given in Equation (88) of Theorem 7. The contribution to the first determi-
nant in Equation (103) under the second index choice of 𝝂 = (0, 1, … ,𝑁 − 2,𝑁) can be found the
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YANG and YANG 103

same as that in Equation (130). Using these results and similar ones for the second determinant
in Equation (103), we find that

𝜎
(𝑄)
𝑛,𝑘

(𝑥, 𝑡) = |𝛼|2 ||||[𝑄[𝑚]
𝑁

]′
(𝑧0)

||||
2|𝑎𝑚|[𝑁(𝑁+1)−1]∕𝑚

×
{ [

(𝛼1 − 𝛽1)(𝑥 − �̂�0) + (𝑐1𝛽1 − 𝑐2𝛼1)(𝑡 − 𝑡0) + 𝑛𝜃1 + 𝑘𝜆1
]

×
[
(𝛼∗1 − 𝛽∗1 )(𝑥 − �̂�0) + (𝑐1𝛽

∗
1 − 𝑐2𝛼

∗
1)(𝑡 − 𝑡0) − 𝑛𝜃∗1 − 𝑘𝜆∗1

]
+ |ℎ0|2}[

1 + 𝑂(|𝑎𝑚|−1∕𝑚)]. (164)

This expression of 𝜎(𝑄)
𝑛,𝑘

(𝑥, 𝑡), combined with Equations (50)–(53), gives a fundamental rogue wave
of the three-wave system as given in Theorem 7, and the error of this prediction is 𝑂(|𝑎𝑚|−1∕𝑚).
In the inner region, where 𝑥2 + 𝑡2 = 𝑂(1), the proof for Theorem 7 is identical to that for The-

orem 5. The reason is that Manakov rogue waves and three-wave ones in Theorems 3 and 4 have
the same solution structures, except for minor differences in the 𝒙± vectors, but the proof of The-
orem 5 for the inner region does not rely on the contents of the 𝒙± vectors. Theorem 7 is then
proved. □

Proof of Theorem 8. In the outer region of R-type rogue waves in the three-wave system, following
procedures very similar to that in the proof of Theorem 7, we can show that the solution separates
into𝑀𝑅 isolated fundamental rogue waves, whose positions are given by Equation (92), with

Δ̂𝑅 = 𝑒−i𝜑𝑚

⎡⎢⎢⎢⎣(𝛼2 − 𝛽2)
ℑ

[
𝑧0𝑒

i𝜑𝑚

𝑐1𝛽1−𝑐2𝛼1

]
ℑ

[
𝛼1−𝛽1

𝑐1𝛽1−𝑐2𝛼1

] + (𝑐1𝛽2 − 𝑐2𝛼2)
ℑ

[
𝑧0𝑒

i𝜑𝑚

𝛼1−𝛽1

]
ℑ

[
𝑐1𝛽1−𝑐2𝛼1

𝛼1−𝛽1

]⎤⎥⎥⎥⎦
×

∑𝑁

𝑗=1
det1≤𝑖≤𝑁

[
𝑝
[𝑚]
3𝑖−1−1

(𝑧0), … , 𝑝
[𝑚]
3𝑖−𝑗−1−2

(𝑧0), … , 𝑝
[𝑚]
3𝑖−𝑁−1

(𝑧0)
]

[
𝑅
[𝑚]
𝑁

]′
(𝑧0)

. (165)

As in the definition of Δ𝑅 in Equation (147), the determinant inside the summation of the above
Δ̂𝑅 formula is the determinant of 𝑅

[𝑚]
𝑁 (𝑧0), that is, det1≤𝑖,𝑗≤𝑁[𝑝

[𝑚]
3𝑖−𝑗−1

(𝑧0)], except that indices of
its 𝑗th column are reduced by two. The error of this fundamental rogue wave approximation is
𝑂(|𝑎𝑚|−1∕𝑚). The proof for the inner region is identical to that in the proof of Theorem 6. □

6 CONCLUSION

In this article, we have reported new types of rogue patterns associated with Okamoto polynomial
hierarchies in theManakov and three-wave-interaction systems. These rogue patterns exhibit new
shapes such as double triangles, rhombuses, and squares, and they arise when one of the internal
free parameters in the roguewave solutions gets large. The shapes of these patterns are analytically
predicted from root structures of Okamoto-hierarchy polynomials through a mapping, which is
linear to the leading order but nonlinear to the next order. Due to the nonlinear part of this map-
ping, rogue patterns are often deformed, sometimes strongly deformed, from Okamoto-hierarchy
root structures. Our analytical predictions of rogue patterns have been compared to true solutions,
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104 YANG and YANG

and excellent agreement has been observed, evenwhen rogue patterns are strongly deformed from
Okamoto-hierarchy root structures.
To put these results in perspective, let us recall rogue patterns associated with the Yablonskii–

Vorob’ev polynomial hierarchy, which we reported earlier in Refs. [54, 55]. In those cases, rogue
patternswere linear transformations of Yablonskii–Vorob’ev-hierarchy root structures, evenwhen
the next-order correction term was included. As a consequence, rogue patterns in Refs. [54,
55] were very recognizable from Yablonskii–Vorob’ev-hierarchy root structures. In the current
Okamoto case, the associated rogue patterns are deformed from Okamoto-hierarchy root struc-
tures, because the mapping between them is nonlinear when the next-order correction term of
size 𝑂(1) is accounted for. These shape deformations may make the rogue pattern less recogniz-
able from Okamoto-hierarchy root structures, unless the underlying parameter is very large so
that the next-order nonlinear correction in the mapping becomes insignificant.
Although we have only demonstrated these Okamoto-hierarchy-related rogue patterns in the

Manakov and three-wave-interaction systems, these patterns will definitely also arise in other
integrable systems, as long as such systems admit roguewaveswhose 𝜏-function determinants can
be expressed through Schur polynomials 𝑆𝑗 with index jumps of 3. The reason is that such 𝑆𝑗 poly-
nomials, under a large internal parameter, can be related to Schur polynomials 𝑝[𝑚]

𝑗
(𝑧) defined

in Equation (6) through a scaling (109) at the leading order. Since Okamoto-hierarchy polynomi-
als are determinants of 𝑝[𝑚]

𝑗
(𝑧) polynomials with index jumps of three (see Equations (7)–(8)),

rogue waves expressed as determinants of Schur polynomials 𝑆𝑗 with index jumps of 3 then are
naturally linked to Okamoto-hierarchy polynomials. In the Darboux transformation framework,
rogue waves in the form of determinants of Schur polynomials with index jumps of 3 would arise
when the underlying scattering matrix admits a triple eigenvalue. Many other integrable systems
possess such rogue waves, such as the coupled Hirota equations75 and the two-component long-
wave-short-wave resonant interaction system.76 Thus, rogue patterns we reported in this article
will arise in all such systems and are universal as well.
In the end, we mention the connection of our rogue-pattern results to pole locations of rational

solutions in Painlevé hierarchies. It is known that roots of the Yablonskii–Vorob’ev polynomial
hierarchy give pole locations of rational solutions to the Painlevé-II hierarchy.63 Thus, our earlier
work in Refs. [54, 55] established a connection between rogue patterns and pole structures of the
Painlevé-II hierarchy. In this work, we linked rogue patterns to roots of the Okamoto hierarchies.
It is known that roots of the original Okamoto polynomials give pole locations of certain ratio-
nal solutions to the original Painlevé IV equation.60–62 Just as the Yablonskii–Vorob’ev case, we
expect roots of the Okamoto hierarchies to give pole locations of certain rational solutions to the
Painlevé-IV hierarchy. Then, our results in this article established a connection between rogue
patterns and pole structures of the Painlevé-IV hierarchy. In a different problem of wave break-
ing in the semiclassical NLS equation, it has been shown in Ref. [77] that locations for isolated
copies of Peregrine solutions that are generated in a wedge near the point of gradient catastro-
phe are determined by pole locations of the tritronqueé solution to the Painlevé I equation, and
a similar result has also been shown for the semiclassical sine-Gordon equation.78 Given these
connections between wave patterns and pole locations of Painlevé I, II, and IV equations or their
hierarchies, it is likely that connections between wave patterns and pole locations of the other
Painlevé equations or their hierarchies would appear in the future too.
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APPENDIX A
In this appendix, we provide an alternative definition of Okamoto-hierarchy polynomials𝑄[𝑚]

𝑁 (𝑧)

and 𝑅[𝑚]
𝑁 (𝑧) by Schur functions associated with Young diagrams.63,79,80

A Young diagram 𝑌 = (𝑖1, 𝑖2, … , 𝑖𝑙), or a partition, of length 𝑙, is a sequence of descend-
ing nonzero numbers such that 𝑖1 ≥ 𝑖2 ≥ ⋯ ≥ 𝑖𝑙 > 0. The Schur function 𝑠𝑌(x), for vector x =
(𝑥1, 𝑥2, … ) and Young diagram 𝑌 = (𝑖1, 𝑖2, … , 𝑖𝑙), is defined by

𝑠𝑌(𝐱) = det
1≤𝑗,𝑘≤𝑙

[𝑆𝑖𝑗−𝑗+𝑘(𝐱)], (A1)

where elementary Schur polynomials 𝑆𝑗(x) are as defined in Equation (22). Using these notations,
Okamoto-hierarchy polynomials 𝑄[𝑚]

𝑁 (𝑧) can be written as

𝑄
[𝑚]
𝑁 (𝑧) =

𝑠𝑌(𝑧, 0, … , 0, 1𝑚, 0, … )

𝑠𝑌(1, 0, 0, … )
, (A2)

where 𝑌 = (2𝑁, 2𝑁 − 2,… , 4, 2), and 1𝑚 means that 1 is in the 𝑚th position of that vector.
Similarly, Okamoto-hierarchy polynomials 𝑅[𝑚]

𝑁 (𝑧) can be written as

𝑅
[𝑚]
𝑁 (𝑧) =

𝑠𝑌(𝑧, 0, … , 0, 1𝑚, 0, … )

𝑠𝑌(1, 0, 0, … )
, (A3)

where 𝑌 = (2𝑁 − 1, 2𝑁 − 3,… , 3, 1).

APPENDIX B
In this appendix, we prove Theorems 1 and 2 regarding roots of Okamoto polynomial hierar-
chies 𝑄[𝑚]

𝑁 (𝑧) and 𝑅
[𝑚]
𝑁 (𝑧). The two proofs are similar. Thus, we will only present the proof for

Theorem 1 below.
First, we derive the multiplicity of the zero root in 𝑄

[𝑚]
𝑁 (𝑧). For this purpose, we define the

Schur polynomial 𝑝[𝑚]
𝑗

(𝑧; 𝑎) as

∞∑
𝑗=0

𝑝
[𝑚]
𝑗

(𝑧; 𝑎)𝜖𝑗 = exp [𝑧𝜖 + 𝑎𝜖𝑚], (B1)
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YANG and YANG 109

where 𝑎 is a constant, and 𝑝[𝑚]
𝑗

(𝑧; 𝑎) ≡ 0 when 𝑗 < 0. Through these 𝑝[𝑚]
𝑗

(𝑧; 𝑎) polynomials, we
define the following polynomials:

𝑄
[𝑚]
𝑁 (𝑧; 𝑎) = 𝑐𝑁

||||||||||||

𝑝
[𝑚]
2 (𝑧; 𝑎) 𝑝

[𝑚]
1 (𝑧; 𝑎) ⋯ 𝑝

[𝑚]
3−𝑁(𝑧; 𝑎)

𝑝
[𝑚]
5 (𝑧; 𝑎) 𝑝

[𝑚]
4 (𝑧; 𝑎) ⋯ 𝑝

[𝑚]
6−𝑁(𝑧; 𝑎)

⋮ ⋮ ⋮ ⋮

𝑝
[𝑚]
3𝑁−1(𝑧; 𝑎) 𝑝

[𝑚]
3𝑁−2(𝑧; 𝑎) ⋯ 𝑝

[𝑚]
2𝑁 (𝑧; 𝑎)

||||||||||||
, (B2)

where 𝑐𝑁 is given in Equation (4). It is easy to see that 𝑝[𝑚]
𝑗

(𝑧; 𝑎) is related to the polynomial

𝑝
[𝑚]
𝑗

(𝑧) in Equation (6) as

𝑝
[𝑚]
𝑗

(𝑧; 𝑎) = 𝑎𝑗∕𝑚𝑝
[𝑚]
𝑗

(�̂�), �̂� ≡ 𝑎−1∕𝑚𝑧. (B3)

Thus, the polynomial 𝑄[𝑚]
𝑁 (𝑧; 𝑎) is related to the Okamoto-hierarchy polynomial 𝑄[𝑚]

𝑁 (𝑧) in
Equation (8) as

𝑄
[𝑚]
𝑁 (𝑧; 𝑎) = 𝑎𝑁(𝑁+1)∕𝑚𝑄

[𝑚]
𝑁 (�̂�). (B4)

This equation tells us that every term in the polynomial 𝑄[𝑚]
𝑁 (𝑧; 𝑎) is a constant multiple of 𝑧𝑖𝑎𝑗 ,

where 𝑖 + 𝑚𝑗 = 𝑁(𝑁 + 1). Thus, to determine the multiplicity of the zero root �̂� = 0 in 𝑄
[𝑚]
𝑁 (�̂�),

which is the exponent 𝑖 of the lowest power of �̂� in𝑄[𝑚]
𝑁 (�̂�), we need to determine the term 𝑧𝑖𝑎𝑗 in

𝑄
[𝑚]
𝑁 (𝑧; 𝑎) where the power 𝑗 of 𝑎 is the highest. To do so, we first expand 𝑝[𝑚]

𝑗
(𝑧; 𝑎) into powers

of 𝑎 as

𝑝
[𝑚]
𝑗

(𝑧; 𝑎) =

[𝑗∕𝑚]∑
𝑙=0

𝑎𝑙

𝑙!(𝑗 − 𝑙𝑚)!
𝑧𝑗−𝑙𝑚. (B5)

This expansion can be obtained by splitting the right side of Equation (B1) into the product of two
exponentials and expanding both exponentials into Taylor series of 𝜖, and then collecting terms
of power 𝜖𝑗 in that product and equating them to 𝑝

[𝑚]
𝑗

(𝑧; 𝑎). Using the above relation, we can

express matrix elements in the determinant (B2) for 𝑄[𝑚]
𝑁 (𝑧; 𝑎) through powers of 𝑧 and 𝑎. Notice

that when𝑚 = 3𝑗 + 1 (𝑗 ≥ 1), coefficients of the highest 𝑎 power terms in the first column of that
determinant are proportional to

𝑧2, 𝑧5, … , 𝑧3𝑗−1, 𝑧1, 𝑧4, … , 𝑧3𝑗−2, 𝑧0, 𝑧3, … , 𝑧3𝑗, (B6)

and repeating, and when𝑚 = 3𝑗 + 2 (𝑗 ≥ 0), these coefficients are proportional to

𝑧2, 𝑧5, … , 𝑧3𝑗−1, 𝑧0, 𝑧3, … , 𝑧3𝑗, 𝑧1, 𝑧4, … , 𝑧3𝑗+1, (B7)

and repeating. In the second and higher columns of 𝑄[𝑚]
𝑁 (𝑧; 𝑎), elements are the same as those in

the first column, except that the power 𝑗 of every 𝑧𝑗 in them decreases by one with each higher
column, and 𝑧𝑗 ≡ 0 for 𝑗 < 0.
To obtain the highest power term of 𝑎 in the determinant𝑄[𝑚]

𝑁 (𝑧; 𝑎), we perform row operations
to this determinant to remove certain power terms of 𝑎. Specifically, using the first 𝑚 rows, we
perform row operations to remove the highest powers of 𝑎 from the second 𝑚 rows, leaving the
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110 YANG and YANG

second highest power terms of 𝑎 with coefficients proportional to 𝑧𝑗+𝑚, where 𝑧𝑗 is the highest
𝑎-power coefficient of each element just being removed. Then, we use the first 𝑚 rows and the
resulting second 𝑚 rows to eliminate the highest and second highest power terms of 𝑎 from the
third 𝑚 rows, leaving the third highest power terms of 𝑎 with coefficients proportional to 𝑧𝑗+2𝑚

in them. This process is continued to all later rows of 𝑄[𝑚]
𝑁 (𝑧; 𝑎).

After these row operations, we then keep only the highest remaining power term of 𝑎 in each
matrix element of 𝑄[𝑚]

𝑁 (𝑧; 𝑎). This reduced determinant will be the 𝑧𝑖𝑎𝑗 term in 𝑄[𝑚]
𝑁 (𝑧; 𝑎) where

the power 𝑗 of 𝑎 is the highest, and the corresponding power 𝑖 of 𝑧𝑖 in this term will be the mul-
tiplicity of the zero root in 𝑄[𝑚]

𝑁 (�̂�). Recalling the sequence structures in Equations (B6) and (B7),
for 𝑚 mod 3 = 1 and 2, respectively, we can readily calculate this reduced determinant and find
its 𝑧𝑖 term, where 𝑖 is equal to the quantity 𝑁𝑄 given in Equation (11) of Theorem 1.
One may notice the close resemblance between the above derivation for the zero root’s multi-

plicity in the Okamoto hierarchy polynomial 𝑄[𝑚]
𝑁 (𝑧), and the proof of Theorem 5 for the reduced

Q-type rogue wave in the inner region. Indeed, these two seemingly very different topics are
actually closely related.
Now, we prove the factorization formula (10) in Theorem 1. The definition (6) of the polynomial

𝑝
[𝑚]
𝑗

(𝑧) implies the symmetry

𝑝
[𝑚]
𝑗

(𝜔𝑧) = 𝜔𝑗𝑝
[𝑚]
𝑗

(𝑧), (B8)

where 𝜔 is any one of the 𝑚th root of 1, that is, 𝜔𝑚 = 1. This symmetry of 𝑝[𝑚]
𝑗

(𝑧) leads to the

symmetry of 𝑄[𝑚]
𝑁 (𝑧) as

𝑄
[𝑚]
𝑁 (𝜔𝑧) = 𝜔𝑁(𝑁+1)𝑄

[𝑚]
𝑁 (𝑧). (B9)

Since we have just established that the multiplicity of the zero root in 𝑄[𝑚]
𝑁 (𝑧) is𝑁𝑄, we can write

𝑄
[𝑚]
𝑁 (𝑧) = 𝑧𝑁𝑄𝑞

[𝑚]
𝑁 (𝑧), (B10)

where 𝑞
[𝑚]
𝑁 (𝑧) is a polynomial of 𝑧 with a nonzero constant term. The symmetry (B9) of the

polynomial 𝑄[𝑚]
𝑁 (𝑧) induces a symmetry for 𝑞[𝑚]

𝑁 (𝑧) as

𝑞
[𝑚]
𝑁 (𝜔𝑧) = 𝜔𝑁(𝑁+1)−𝑁𝑄𝑞

[𝑚]
𝑁 (𝑧). (B11)

It is easy to check that 𝑁(𝑁 + 1) − 𝑁𝑄 is a multiple of 𝑚. Hence, 𝜔𝑁(𝑁+1)−𝑁𝑄 = 1, and
consequently,

𝑞
[𝑚]
𝑁 (𝜔𝑧) = 𝑞

[𝑚]
𝑁 (𝑧). (B12)

This symmetry of 𝑞[𝑚]
𝑁 (𝑧) dictates that 𝑞[𝑚]

𝑁 (𝑧) can only be a polynomial of 𝜁 ≡ 𝑧𝑚. The form (10)
of the polynomial 𝑄[𝑚]

𝑁 (𝑧) is then proved.

APPENDIX C
In this appendix, we derive Manakov rogue waves presented in Theorem 3. This derivation is an
extension of our earlier derivation in Ref. [55] for a simpler type of Manakov rogue waves.

 14679590, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12573, W
iley O

nline L
ibrary on [12/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



YANG and YANG 111

Under the transformation,

𝑢1(𝑥, 𝑡) = 𝜌1
𝑔

𝑓
𝑒i(𝑘1𝑥+𝜔1𝑡), 𝑢2(𝑥, 𝑡) = 𝜌2

ℎ

𝑓
𝑒i(𝑘2𝑥+𝜔2𝑡), (C1)

where 𝑓 is real and (𝑔, ℎ) complex, and the Manakov system (19) can be converted into the
following bilinear equations:(

𝐷2
𝑥 + 𝜖1𝜌

2
1 + 𝜖1𝜌

2
1

)
𝑓 ⋅ 𝑓 = 𝜖1𝜌

2
1𝑔𝑔

∗ + 𝜖2𝜌
2
2ℎℎ

∗,(
𝑖𝐷𝑡 + 𝐷2

𝑥 + 2𝑖𝑘1𝐷𝑥

)
𝑔 ⋅ 𝑓 = 0,(

𝑖𝐷𝑡 + 𝐷2
𝑥 + 2𝑖𝑘2𝐷𝑥

)
ℎ ⋅ 𝑓 = 0.

(C2)

This bilinear system can be reduced from the following higher dimensional bilinear system in the
two-component Kadomtsev–Petviashvili (KP) hierarchy,81

(
1

2
𝐷𝑥𝐷𝑟 − 1)𝜏𝑛,𝑘 ⋅ 𝜏𝑛,𝑘 = −𝜏𝑛+1,𝑘 𝜏𝑛−1,𝑘,

(𝐷2
𝑥 − 𝐷𝑦 + 2𝑎𝐷𝑥)𝜏𝑛+1,𝑘 ⋅ 𝜏𝑛,𝑘 = 0,

(
1

2
𝐷𝑥𝐷𝑠 − 1)𝜏𝑛,𝑘 ⋅ 𝜏𝑛,𝑘 = −𝜏𝑛,𝑘+1 𝜏𝑛,𝑘−1,

(𝐷2
𝑥 − 𝐷𝑦 + 2𝑏𝐷𝑥)𝜏𝑛,𝑘+1 ⋅ 𝜏𝑛,𝑘 = 0,

(C3)

where 𝑛, 𝑘 are integers, 𝜏𝑛,𝑘 is a function of four independent variables (𝑥, 𝑦, 𝑟, 𝑠), 𝑎 = i𝑘1, and 𝑏 =

i𝑘2. For rogue waves, the solution 𝜏𝑛,𝑘 to these higher dimensional bilinear equations is chosen
as55

𝜏𝑛,𝑘 = det
1≤𝜈,𝜇≤𝑁

(
𝜙
(𝑛,𝑘)
𝑖𝜈,𝑗𝜇

)
, (C4)

where (𝑖1, 𝑖2, … , 𝑖𝑁) and (𝑗1, 𝑗2, … , 𝑗𝑁) are arbitrary sequences of indices, and the matrix element
𝜙
(𝑛,𝑘)
𝑖𝑗

is defined as

𝜙
(𝑛,𝑘)
𝑖𝑗

= 𝑖𝑗𝜙
(𝑛,𝑘), (C5)

𝜙(𝑛,𝑘) =
(𝑝 + 1)(𝑞 + 1)

2(𝑝 + 𝑞)

(
−
𝑝 − 𝑎

𝑞 + 𝑎

)𝑛(
−
𝑝 − 𝑏

𝑞 + 𝑏

)𝑘

𝑒𝜉+𝜂, (C6)

𝜉 = 𝑝𝑥 + 𝑝2𝑦 +
1

𝑝 − 𝑎
𝑟 +

1

𝑝 − 𝑏
𝑠 + 𝜉0(𝑝), (C7)

𝜂 = 𝑞𝑥 − 𝑞2𝑦 +
1

𝑞 + 𝑎
𝑟 +

1

𝑞 + 𝑏
𝑠 + 𝜂0(𝑞), (C8)

𝑖 =
1

𝑖!

[
𝑓1(𝑝)𝜕𝑝

]𝑖
, 𝑗 =

1

𝑗!

[
𝑓2(𝑞)𝜕𝑞

]𝑗
, (C9)

𝑝, 𝑞 are arbitrary complex constants, and 𝜉0(𝑝), 𝜂0(𝑞), 𝑓1(𝑝), 𝑓2(𝑞) are arbitrary functions of 𝑝 and
𝑞, respectively.
To reduce the higher dimensional bilinear system (C3) to the original system (C2), we need to

set

𝑓 = 𝜏0,0, 𝑔 = 𝜏1,0, ℎ = 𝜏0,1, 𝑦 = i𝑡, (C10)
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112 YANG and YANG

impose the dimension reduction condition(
2𝜕𝑥 + 𝜖1𝜌

2
1𝜕𝑟 + 𝜖2𝜌

2
2𝜕𝑠

)
𝜏𝑛,𝑘 = 𝐶 𝜏𝑛,𝑘, (C11)

where 𝐶 is some constant, and impose the conjugation condition

𝜏−𝑛,−𝑘 = 𝜏∗
𝑛,𝑘

. (C12)

The steps to meet these two conditions are the same as in Ref. [59] for rogue waves in the three-
wave resonant interaction system.
First, we consider the dimension reduction condition (C11). Here,(

2𝜕𝑥 + 𝜖1𝜌
2
1𝜕𝑟 + 𝜖2𝜌

2
2𝜕𝑠

)
𝜙
(𝑛,𝑘)
𝑖𝑗

= 𝑖𝑗[1(𝑝) + 2(𝑞)]𝜙
(𝑛,𝑘), (C13)

where

1(𝑝) =
𝜖1𝜌

2
1

𝑝 − 𝑎
+

𝜖2𝜌
2
2

𝑝 − 𝑏
+ 2𝑝, (C14)

and 2(𝑞) is the above 1(𝑝) function with 𝑝 switching to 𝑞 and (𝑎, 𝑏) switching to (−𝑎,−𝑏).
Suppose the algebraic equation  ′

1(𝑝) = 0 admits a nonimaginary double root 𝑝0, which hap-
pens under conditions (24), and the corresponding root 𝑝0 is given in Equation (27). In this
case, the dimension reduction condition (C11) would be satisfied if we choose 𝑓1(𝑝) to satisfy
the differential equation (

𝑓1(𝑝)𝜕𝑝
)3
1(𝑝) = 1(𝑝), (C15)

choose 𝑓2(𝑞) to satisfy a similar equation except to change the index above from 1 to 2 and change
𝑝 to 𝑞, and choose the 𝜏𝑛,𝑘 determinant (C4) as

𝜏𝑛,𝑘 = det

(
𝜏
[1,1]
𝑛,𝑘

𝜏
[1,2]
𝑛,𝑘

𝜏
[2,1]
𝑛,𝑘

𝜏
[2,2]
𝑛,𝑘

)
, (C16)

where

𝜏
[𝐼,𝐽]
𝑛,𝑘

= mat1≤𝑖≤𝑁𝐼,1≤𝑗≤𝑁𝐽

(
𝜙
(𝑛,𝑘)
3𝑖−𝐼, 3𝑗−𝐽

|||𝑝=𝑝0, 𝑞=𝑞0, 𝜉0=𝜉0𝐼 , 𝜂0=𝜂0𝐽
)
, 1 ≤ 𝐼, 𝐽 ≤ 2, (C17)

𝜙
(𝑛,𝑘)
𝑖,𝑗

is given by Equations (C5)–(C9), 𝑞0 = 𝑝∗0 , and 𝑁1,𝑁2 are nonnegative integers. The reason
for this can be found in Ref. [59].
The differential equation (C15) for 1(𝑝) is linear and homogeneous. Its solution under the

condition of 𝑝0 being a double root of  ′
1(𝑝) = 0 is59

1(𝑝) =
1(𝑝0)

3

(
1(𝑝) +

2√
1(𝑝)

cos

[√
3

2
ln1(𝑝)

])
, (C18)

where 1(𝑝) is defined through 𝑓1(𝑝) = 1(𝑝)∕
′
1(𝑝). From this equation, one can solve for

1(𝑝) from 1(𝑝) and then obtain 𝑓1(𝑝). But it turns out this explicit solving for 1(𝑝) and
𝑓1(𝑝) is not necessary for our goal of obtaining explicit expressions for matrix elements in
Equation (C16), see below.
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YANG and YANG 113

Regarding the conjugation condition (C12), it can be satisfied when we require 𝜂0,𝐼 = 𝜉∗0,𝐼 . To
introduce free parameters into these solutions, we set

𝜉0,𝐼 =

∞∑
𝑟=1

𝑎𝑟,𝐼 ln
𝑟
1(𝑝), 𝐼 = 1, 2, (C19)

where 𝑎𝑟,𝐼 are free complex constants.
Next, we remove the differential operators in the matrix elements (C5) and derive more explicit

expressions of rogue waves through Schur polynomials. This derivation is very similar to that
we did in Ref. [59] for the three-wave system. In fact, this derivation is a bit simpler now due to
our introduction of the extra factor (𝑝 + 1)(𝑞 + 1)∕2 in Equation (C6). Combining these steps, we
obtain the Manakov rogue wave expressions given in Theorem 3, except that the definitions for
𝑥+𝑟,𝐼(𝑛, 𝑘) and 𝑥

−
𝑟,𝐽(𝑛, 𝑘) are as given in Equations (34)–(35) for all 𝑟 indices, including those where

𝑟mod3 = 0.
But those 𝑥+𝑟,𝐼(𝑛, 𝑘) and 𝑥

−
𝑟,𝐽(𝑛, 𝑘)with 𝑟mod3 = 0 can be removed from the solution. This can

be done by using a technique similar to that employed in Appendix A of Ref. [54].
Regarding the regularity of solutions (28)–(29), they can be proved using arguments very similar

to that in Ref. [11].
After all these steps, Theorem 3 is then proved.

APPENDIX D
In this appendix, we prove that 𝑠𝑟 = 0 for 𝑟mod 3 ≠ 0 in Theorems 3 and 4.
The functions 1(𝑝) and 2(𝑝) in Theorems 3 and 4 can be written in a unified scaled form

(𝑝) =
𝑟

𝑝 − 𝑎
+

𝑟

𝑝 − 𝑏
+ 𝑝, (D1)

where 𝑎 and 𝑏 are distinct purely imaginary (or zero) constants, and 𝑟 is a real parameter. The sim-
ple scaling of 1(𝑝) and 2(𝑝) to (𝑝) does not affect the function 𝑝(𝜅) defined in Equations (39)
and (64) and thus does not affect the 𝑠𝑟 expansions in (38) and (63). When 𝑟 = −(𝑎 − 𝑏)2, which
is the case in Theorems 3 and 4, the function  ′(𝑝) can be factorized as

 ′(𝑝) =
[𝑝2 − (𝑎 + 𝑏)𝑝 + (𝑎2 − 𝑎𝑏 + 𝑏2)]2

(𝑝 − 𝑎)2(𝑝 − 𝑏)2
. (D2)

Thus,  ′(𝑝) has a double root 𝑝0 as chosen in Theorems 3 and 4. This double root satisfies the
equation

𝑝20 − (𝑎 + 𝑏)𝑝0 + (𝑎2 − 𝑎𝑏 + 𝑏2) = 0, (D3)

and its conjugate 𝑝∗0 satisfies the equation

𝑝∗20 + (𝑎 + 𝑏)𝑝∗0 + (𝑎2 − 𝑎𝑏 + 𝑏2) = 0 (D4)

since 𝑎 and 𝑏 are purely imaginary.
Equations (39) and (64) that define the function 𝑝(𝜅) in Theorems 3 and 4 can be written as

[𝑝(𝜅)] = (𝑝0)𝐸(𝜅), (D5)
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114 YANG and YANG

where

𝐸(𝜅) =
1

3

[
𝑒𝜅 + 2𝑒−𝜅∕2 cos

(√
3

2
𝜅

)]
=

1

3

(
𝑒𝜅 + 𝑒𝜔𝜅 + 𝑒𝜔

2𝜅
)
=

∞∑
𝑗=0

𝜅3𝑗

(3𝑗)!
, (D6)

and 𝜔 = 𝑒2i𝜋∕3. Notice that 𝐸(𝜅) contains only 𝜅3𝑗 powers. Inserting the functional form (D1)
of (𝑝) into the above equation (D5) and simplifying, we get the following cubic equation that
defines the function 𝑝(𝜅),

𝑝3 − (𝑎 + 𝑏 + 𝛼)𝑝2 + [𝑎𝑏 + 𝛼(𝑎 + 𝑏) + 2𝑟]𝑝 − [𝑟(𝑎 + 𝑏) + 𝛼𝑎𝑏] = 0, (D7)

where 𝛼 = (3𝑝0 − 𝑎 − 𝑏)𝐸(𝜅), and 𝑟 = −(𝑎 − 𝑏)2 as mentioned before.
The key idea of the proof is to show that [𝑝(𝜅) − 𝑝0]

3∕[𝑝(𝜅) + 𝑝∗0]
3 is a function of 𝐸(𝜅) only.

To do so, we utilize the above equation (D7) for 𝑝3 and Equations (D3)–(D4) for 𝑝20 and 𝑝∗20 to
calculate [𝑝(𝜅) − 𝑝0]

3 and [𝑝(𝜅) + 𝑝∗0]
3. After simple algebra, we find that

[𝑝(𝜅) − 𝑝0]
3 = (3𝑝0 − 𝑎 − 𝑏)[𝐸(𝜅) − 1][𝑝(𝜅) − 𝑎][𝑝(𝜅) − 𝑏], (D8)

[𝑝(𝜅) + 𝑝∗0]
3 =

[
(3𝑝0 − 𝑎 − 𝑏)𝐸(𝜅) + (3𝑝∗0 + 𝑎 + 𝑏)

]
[𝑝(𝜅) − 𝑎][𝑝(𝜅) − 𝑏]. (D9)

Thus,

[𝑝(𝜅) − 𝑝0]
3

[𝑝(𝜅) + 𝑝∗0]
3
=

(3𝑝0 − 𝑎 − 𝑏)[𝐸(𝜅) − 1]

(3𝑝0 − 𝑎 − 𝑏)𝐸(𝜅) + (3𝑝∗0 + 𝑎 + 𝑏)
, (D10)

which only depends on 𝐸(𝜅). When we insert the expansion 𝑝(𝜅) = 𝑝0 + 𝑝1𝜅 + 𝑝2𝜅
2 +⋯ into

this equation and equate coefficients of the 𝜅3 term, we further find that

𝑝31 =
1

18
(3𝑝0 − 𝑎 − 𝑏)(𝑝0 + 𝑝∗0)

2. (D11)

Finally, we put these results together and find that the 𝑠𝑟 expansions (38) and (63) in Theorems 3
and 4 are

∞∑
𝑟=1

𝑠𝑟𝜅
𝑟 =

1

3
ln

[
1

𝜅3

(
𝑝0 + 𝑝∗0

𝑝1

)3(
𝑝(𝜅) − 𝑝0
𝑝(𝜅) + 𝑝∗0

)3
]

=
1

3
ln

[
18(𝑝0 + 𝑝∗0)

𝜅3
𝐸(𝜅) − 1

(3𝑝0 − 𝑎 − 𝑏)𝐸(𝜅) + (3𝑝∗0 + 𝑎 + 𝑏)

]
. (D12)

Since the right side of this equation is a function of 𝜅3 only, we then conclude that 𝑠𝑟 = 0 for
𝑟mod 3 ≠ 0 in Theorems 3 and 4.
For the Manakov system in Theorem 3, if we normalize 𝑘2 = −𝑘1 through a Galilean

transformation, then 𝑎 = −𝑏 = i𝑘1 and 𝑝0 =
√
3𝑘1. In this case, the above equation reduces to

∞∑
𝑟=1

𝑠𝑟𝜅
𝑟 =

1

3
ln

[
12

𝜅3
𝐸(𝜅) − 1

𝐸(𝜅) + 1

]
, (D13)
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YANG and YANG 115

which gives 𝑠𝑟 values displayed in Equation (42). For the three-wave system in Theorem 4, we
have 𝑎 = 0, 𝑏 = i, and 𝑝0 = (

√
3 + i)∕2. In this case, the above equation (D12) reduces to

∞∑
𝑟=1

𝑠𝑟𝜅
𝑟 =

1

3
ln

[
36

√
3

𝜅3
𝐸(𝜅) − 1

(3
√
3 + i)𝐸(𝜅) + (3

√
3 − i)

]
, (D14)

which gives 𝑠𝑟 values displayed in Equation (67).
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