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ABSTRACT

We report new rogue wave patterns whose wave crests form closed or open curves in the spatial plane, which we call rogue curves, in the
Davey–Stewartson I equation. These rogue curves come in various striking shapes, such as rings, double rings, and many others. They emerge
from a uniform background (possibly with a few lumps on it), reach high amplitude in such striking shapes, and then disappear into the same
background again. We reveal that these rogue curves would arise when an internal parameter in bilinear expressions of the rogue waves is
real and large. Analytically, we show that these rogue curves are predicted by root curves of certain types of double-real-variable polynomials.
We compare analytical predictions of rogue curves to true solutions and demonstrate good agreement between them.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0210867

Rogue waves are currently at the frontier of research in many
physical fields due to their intriguing nature and potential dam-
age. Shapes of rogue waves, especially in higher spatial dimen-
sions, are an important question. Previously reported rogue
waves in two spatial dimensions were primarily line and multi-
line rogue waves. Here, we report much wider varieties of
rogue shapes in two spatial dimensions, in the context of the
Davey–Stewartson I equation for water surface evolution. These
shapes include not only open curves but also closed curves such
as rings and knots, as well as a mixture of open and closed curves.
The appearance of these novel and diverse rogue shapes is fasci-
nating, and they offer more diverse possibilities for physical rogue
events. Mathematically, we show that these new rogue shapes
could be analytically described through root curves of certain
types of double-real-variable polynomials, thus establishing a new
connection between rogue waves and special polynomials.

I. INTRODUCTION

Evolution of a two-dimensional wave packet on water of
finite depth is governed by the Benney–Roskes–Davey–Stewartson
equation.1–3 In the shallow water limit, this equation is integrable
(see Ref. 3 and the references therein). This integrable equation is
sometimes just called the Davey–Stewartson (DS) equation in the

literature. The DS equation is divided into two types, DSI and DSII,
which correspond to the strong surface tension and weak surface
tension, respectively.3

Rogue waves are large spontaneous and unexpected wave exci-
tations. They mysteriously appear from a certain background (uni-
form or not), rise to high amplitudes, and then retreat back to
the same background again. Due to their mysterious nature, a lot
of experimental work has been done on rogue waves in diverse
physical systems, such as water waves,4–8 optical waves,9–12 plasma,13

Bose-Einstein condensates,14 and acoustics.15

Theoretically, many such rogue waves can be described by
rational solutions of certain integrable equations, such as the non-
linear Schrödinger (NLS) equation and the Manakov system. Those
rational solutions constitute theoretical rogue waves, and their
expressions have been derived in a wide variety of integrable sys-
tems, including the NLS equation,16–22 the Manakov system,23–27 and
many others.

Rogue waves in DSI have been studied in Ref. 28. It was found
that the fundamental rogue waves have wave crests in straight lines
in the spatial plane. Certain higher-order rogue waves describe the
nonlinear interaction of multiple fundamental rogue waves, while
some other higher-order rogue waves exhibit parabola-shaped wave
crests in the spatial plane.

In this paper, we report new rogue patterns whose wave crests
form closed or open curves in the spatial plane, which we call rogue
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curves. These rogue curves come in various interesting shapes, such
as rings, double rings, and many others. They arise from a uniform
background (possibly with a few lumps on it), reach high amplitude
in such interesting shapes, and then disappear into the same back-
ground again. We will present these rogue curves in the context of
the DSI equation. Importantly, we find that such rogue curves would
appear when an internal parameter in bilinear expressions of the
rogue waves is real and large. Performing large-parameter asymp-
totic analysis, we show that these rogue curves can be predicted by
root curves of certain types of double-real-variable polynomials. We
compare our analytical predictions of rogue curves to true solutions
and demonstrate good agreement between them.

II. PRELIMINARIES

The Davey–Stewartson-I (DSI) equation is

iAt = Axx + Ayy + (ε|A|2 − 2Q)A,

Qxx − Qyy = ε(|A|2)xx,
(2.1)

where ε = ±1 is the sign of nonlinearity. In the two-dimensional
surface water wave context where it was first derived,2,3 A is the com-
plex envelope function of the surface wave packet, and Q is the real
potential function of the velocity field.

Rogue wave solutions in this equation have been presented in
Ref. 28. But those solutions involve differential operators and are
not explicit. Explicit expressions of those rogue waves and their
proof will be presented in the Appendix. These rogue waves in the
appendix (and in Ref. 28) contain various types of solutions, such
as multi-rogue waves and higher-order rogue waves, depending on
whether the spectral parameters in them are the same or different.
In addition, those solutions contain many free internal parameters.
In this article, we consider the higher-order rogue waves where all
the spectral parameters are the same, and those internal free param-
eters are under certain restrictions. Explicit expressions of these
higher-order rogue waves are much simpler. To present these solu-
tions, we first introduce elementary Schur polynomials Sn(x) with
x = (x1, x2, . . .), which are defined by the generating function

∞
∑

n=0

Sn(x)ε
n = exp

( ∞
∑

k=1

xkε
k

)

. (2.2)

We also define Sn = 0 if n < 0. Then, these higher-order rogue
waves are given by the following lemma.

Lemma 1. The Davey–Stewartson I equation (2.1) admits
higher-order nonsingular rogue wave solutions

A3(x, y, t) =
√

2
g

f
, (2.3)

Q3(x, y, t) = 1 − 2ε
(

log f
)

xx
, (2.4)

where 3 = (n1, n2, . . . , nN) is an order-index vector, N is the length
of3, each ni is a free nonnegative integer, n1 < n2 < · · · < nN,

f = τ0, g = τ1, (2.5)

τk = det
1≤i,j≤N

(

m(k)
i,j

)

, (2.6)

the matrix elements m(k)
i,j of τk are defined by

m(k)
i,j =

min(ni ,nj)
∑

ν=0

1

4ν
Sni−ν[x

+(k)+ νs]Snj−ν[x
−(k)+ νs], (2.7)

vectors x
±(k) =

(

x±
1 , x±

2 , . . .
)

are

x+
r (k) = (−1)r

r!p
x−1 + (−2)r

r!p2
x−2 + 1

r!
px1 + 2r

r!
p2x2 + kδr,1 + ar,

(2.8)

x−
r (k) = (−1)r

r!p
x−1 + (−2)r

r!p2
x2 + 1

r!
px1 + 2r

r!
p2x−2 − kδr,1 + a∗

r ,

(2.9)

x1 = 1

2
(x + y), x−1 = 1

2
ε(x − y),

x2 = −1

2
it, x−2 = 1

2
it,

(2.10)

p is a free real nonzero constant, δr,1 is the Kronecker delta function
which is equal to 1 when r = 1 and 0 otherwise, s = (0, s2, 0, s4, . . .)
are coefficients from the expansion

ln

[

2

κ
tanh

κ

2

]

=
∞
∑

r=1

srκ
r, (2.11)

the asterisk “*” represents complex conjugation, and a1, a2, . . . , anN

are free complex constants.
This lemma will be proved at the end of the Appendix.
These higher-order rogue wave solutions contain a lot of free

parameters: a free real parameter p, N free order-index nonneg-
ative integers (n1, n2, . . . , nN), and nN free complex parameters
a1, a2, . . . , anN

. The free complex parameter a1 can be absorbed into
(x, t) or (y, t) through a coordinate shift. In addition, under the vari-
able transformation of Q → Q + ε|A|2, x ↔ y, and ε → −ε, the
DSI equation (2.1) is invariant. Thus, we will set

ε = 1, a1 = 0, (2.12)

in this article without loss of generality. In addition, we denote a =
(0, a2, . . . , anN

).

III. ROGUE CURVES

To demonstrate rogue curves in DSI, we first show two exam-
ples. In the first example, we choose

p = 1, 3 = (1, 4), a = (0, 0, 0, 5000). (3.1)

The corresponding solution |A3(x, y, t)| from Lemma 1 at four time
values of t = −3, −1, 0, and 3 is shown in Fig. 1. It is seen that
a rogue wave in the shape of two separate curves symmetric with
respect to the x-axis arises from the uniform background in the (x, y)

plane. These rogue curves reach a peak amplitude of 3
√

2 at t = 0,
and then retreat to the same uniform background again. The shapes
of these rogue curves are not parabolas but more complex, and their
appearance is mysterious.
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FIG. 1. A rogue curve (|A3(x, y, t)|) in the DSI equation at four time values of t = −3,−1, 0, and 3 for parameter choices in Eq. (3.1). In all panels, −500 ≤ x ≤ 500 and
−30 ≤ y ≤ 30.

An even more interesting example comes when we choose

p = 1, 3 = (2, 3), a = (0, 0, 2000), (3.2)

and the corresponding solution |A3(x, y, t)| from Lemma 1 at four
time values of t = −4, −2, 0, and 4 is shown in Fig. 2. It is seen that
at large times (t = ±4), the solution contains two lumps on the uni-
form background. But at the intermediate time of t = −2, a rogue
wave whose crests form a closed curve in the (x, y) plane starts to
appear between the two lumps (we call this rogue closed curve a

rogue ring). This rogue ring reaches a peak amplitude of 3
√

2 at
t = 0, after which it starts to disappear and becomes invisible when
t = 4. The appearance of this rogue ring is more mysterious.

How can we understand these rogue curves? In particular, how
can we analytically predict the shapes and locations of these rogue
curves? This will be done in Sec. IV.

IV. ASYMPTOTIC PREDICTION OF ROGUE CURVES

It turns out that these rogue curves in Sec. III can be predicted
by root curves of certain types of double-real-variable polynomials.
So we introduce such polynomials and their root curves first.

A. Special double-real-variable polynomials and their

root curves

We introduce a class of special polynomials in two real vari-
ables (z1, z2), which can be written as a determinant

P
[m]
3 (z1, z2) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S [m]
n1
(z1, z2) S

[m]
n1−1(z1, z2) · · · S

[m]
n1−N+1(z1, z2)

S [m]
n2
(z1, z2) S

[m]
n2−1(z1, z2) · · · S

[m]
n2−N+1(z1, z2)

...
...

...
...

S [m]
nN
(z1, z2) S

[m]
nN−1(z1, z2) · · · S

[m]
nN−N+1(z1, z2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

(4.1)

where S [m]
k (z1, z2) are Schur polynomials in two variables defined by

∞
∑

k=0

S
[m]
k (z1, z2)ε

k = exp
(

z2ε + z1ε
2 + εm

)

, m ≥ 3, (4.2)

3 = (n1, n2, . . . , nN) is an order-index vector, and S
[m]
k (z1, z2) ≡ 0

if k < 0. This determinant is a Wronskian (in z2) since we can see

FIG. 2. A rogue ring (|A3(x, y, t)|) in the DSI equation at four time values of t = −4,−2, 0, and 4 for parameter choices in Eq. (3.2). In all panels, −500 ≤ x ≤ 500 and
−10 ≤ y ≤ 40.
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from Eq. (4.2) that

∂

∂z2

S
[m]
k (z1, z2) = S

[m]
k−1(z1, z2). (4.3)

A few such polynomials are given below by choosing specific m and
3 values,

m = 4,3 = (1, 4), P
[m]
3 (z1, z2) =

(

z4
2 + 4z1z

2
2 − 4z2

1 − 8
)

/8,

(4.4)

m = 3,3 = (2, 3), P
[m]
3 (z1, z2) =

(

z4
2 + 12z2

1 − 12z2

)

/12, (4.5)

m = 4,3 = (2, 4), P
[m]
3 (z1, z2)= z2

(

z4
2 + 4z1z

2
2 + 12z2

1 − 24
)

/24,

(4.6)

m = 5,3 = (4, 5),
(4.7)

P
[m]
3 (z1, z2) =

(

z8
2 + 16z1z

6
2 + 120z2

1z
4
2 + 720z4

1 − 480z3
2

− 2880z1z2

)

/2880.

By setting

P
[m]
3 (z1, z2) = 0 (4.8)

for real values of (z1, z2), we get root curves of this equation in the
(z1, z2) plane. Let us denote these root curve solutions as

z2 = R3,m(z1). (4.9)

For the above four examples ofP [m]
3 (z1, z2), their root curves are dis-

played in Fig. 3. As one can see, these root curves may be an open
curve, as in the first example, or a closed curve, as in the second and
fourth examples, or a mixture of open and closed curves, as in the
third example. For closed curves, they can be a single loop as in the
second example or a connected double loop as in the fourth example.
Other varieties of these curves are also possible for other examples

of P [m]
3 (z1, z2), such as disconnected double loops and so on.

On a root curve, there may exist some special points where

∂P
[m]
3 (z1, z2)

∂z2

= 0. (4.10)

Such special points will be important to us, and we will call them
exceptional points of the root curve. These exceptional points sat-
isfy both Eqs. (4.8) and (4.10). To easily see where these exceptional
points are located on a root curve, it is helpful to consider the
dynamical system

dz2

dt
= P

[m]
3 (z1, z2), (4.11)

where z2 is treated as a real function of time t and z1 is treated as a
real parameter. For this dynamical system, the root curve (4.9) gives
its bifurcation diagram, while Eq. (4.10) is the bifurcation condi-
tion on this diagram. From this point of view, it is then clear that
the exceptional points of the root curve are the bifurcation points
of this root curve (when this root curve is viewed as a bifurcation
diagram). This realization then makes it very easy to identify excep-
tional points of the root curve. For example, on the root curve in
the second panel of Fig. 3, the left and right edge points of the curve
are exceptional points because saddle-node bifurcations occur there
(at a saddle-node bifurcation, the slope dz2/dz1 of the root curve
is infinite). The root curve in the third panel of Fig. 3 has four
exceptional points. Two of them are in the lower and upper half
planes where saddle-node bifurcations occur (i.e., where the slopes
are infinite), while the other two are on the z1 axis where pitch-
fork bifurcations occur. The root curve in the fourth panel of Fig. 3
also has four exceptional points; three of them are where saddle-
node bifurcations occur, while the fourth one is at the intersection
between the upper and lower loops where a transcritical bifurcation
occurs. The first panel of Fig. 3 does not have exceptional points
since no bifurcation occurs here.

One may notice that the first two root curves in Fig. 3 resemble
the shapes of rogue curves in Figs. 1 and 2. Indeed, the root curve of

P
[m]
3 (z1, z2) turns out to be closely related to certain rogue curves in

DSI, as we will show in Subsection IV B.

FIG. 3. Root curves z2 = R3,m(z1) of the double-real-variable polynomial P
[m]
3 (z1, z2) in the (z1, z2) plane for parameter choices in Eqs. (4.4)–(4.7), from left to right,

respectively.
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B. Asymptotic prediction of rogue curves under one

large internal parameter

In this subsection, we analytically predict the shapes of rogue
waves in DSI. For this purpose, we make the following restrictions
on parameters in DSI’s rogue waves in Lemma 1.

1. p = 1.
2. For a certain m ≥ 3, am is real, am � 1 when m is even and

|am| � 1 when m is odd, and the other aj values in a are O(1)
and complex.

Cases not satisfying these restrictions, i.e., when p 6= 1 and when am

is large negative for even m, would be treated in Sec. VII.
One may notice that the parameter choices (3.1) and (3.2) for

Figs. 1 and 2 meet these restrictions. In both cases, p = 1. In addi-
tion, in (3.1), a = (0, 0, 0, 5000), and a4 = 5000 is large positive. In
(3.2), a = (0, 0, 2000) and a3 = 2000 is large.

Under the above parameter restrictions, we will show that
rogue curves in DSI would appear, and their shapes in the (x, y)

plane would be predicted by the root curves of P
[m]
3 (z1, z2). To

present these results, we first introduce some definitions.
Let us define a curve y = yc(x) in the (x, y) plane, which we call

the critical curve, as

x = 2z1a
2/m
m , yc(x) = z2a

1/m
m , (4.12)

where (z1, z2) is every point on the root curve of P
[m]
3 (z1, z2).

Alternatively, the critical curve can be defined by the equation

P
[m]
3

(

x

2a
2/m
m

,
yc(x)

a
1/m
m

)

= 0 (4.13)

or

yc(x) = a1/m
m R3,m

(

x

2a
2/m
m

)

, (4.14)

using the notation in Eq. (4.9). This critical curve may also contain
exceptional points where

∂

∂yc

P
[m]
3

(

x

2a
2/m
m

,
yc

a
1/m
m

)

= 0. (4.15)

Such points are also bifurcation points of the critical curve when this
curve is viewed as a bifurcation diagram, because a dynamical sys-
tem point of view similar to Eq. (4.11) also applies here. It is easy to
see that an exceptional point (x(e), y(e)c ) of the critical curve is related

to an exceptional point (z(e)1 , z(e)2 ) of the root curve as

x(e) = 2a2/m
m z(e)1 , y(e)c = a1/m

m z(e)2 . (4.16)

Thus, the two exceptional points are simply related by a stretching
along the horizontal and vertical axes.

Under these definitions, we have the following theorem.
Theorem 1. Let A3(x, y, t) be a DSI’s rogue wave with order-

index vector3 = (n1, n2, . . . , nN) in Eq. (2.3) of Lemma 1. Under the
parameter restrictions mentioned above and when time t = O(1), we
have the following asymptotic result on the solution A3(x, y, t) in the
(x, y) plane for large |am|.
1. If (x, y) is not in the O(1) neighborhood of the critical curve

y = yc(x), then the solution A3(x, y, t) approaches the constant

background
√

2 as |am| → +∞.

2. If (x, y) is in the O(1) neighborhood of the critical curve y = yc(x),
but not in the O(1) neighborhood of its exceptional points, then
the solution A3(x, y, t) at large |am| would asymptotically form a
rogue curve AR(x, y, t), whose expression is

AR(x, y, t) =
√

2

[

1 + 4it − 1
[

y − yc(x)
]2 + 4t2 + 1

4

]

. (4.17)

The error of this rogue curve approximation is O(|am|−1/m).
Expressed mathematically, when (x, yc(x)) is not an exceptional
point of the critical curve and

∣

∣y(x)− yc(x)
∣

∣ = O(1), we have the
following solution asymptotics

A3(x, y, t) = AR(x, y, t)+ O
(

|am|−1/m
)

, |am| � 1. (4.18)

The proof of this theorem will be given in Sec. VI.
Notice that AR(x, y, t) in Eq. (4.17) is the same as the Pere-

grine rogue wave of the nonlinear Schrödinger equation (along the
y direction), except for a y-directional shift. The peak location of
|AR(x, y, t)| at each y value is at y = yc(x). All these peak locations
from different y values fall precisely on the critical curve y = yc(x).
Thus, we can say the critical curve y = yc(x) predicts the spatial
location of the rogue curve. The full rogue curve surrounding that
critical curve is predicted by the function AR(x, y, t). We will com-
pare these predictions to the true solutions of Figs. 1 and 2 in Sec. V.

The root curves of P [m]
3 (z1, z2) involved in Eq. (4.12) for those pre-

dictions are precisely the ones shown in the left two panels of Fig. 3.
In cases where the root curve is closed so that z1 of the root curve is
only on a limited interval (see the second panel of Fig. 3 for an exam-
ple), this AR(x, y, t) prediction would be only for a limited x interval
as well in view of Eq. (4.12). Outside that x interval, our prediction of
A3(x, y, t) would be the background value

√
2 as long as (x, y) is not

in the O(1) neighborhood of the critical curve y = yc(x), according
to the first statement of Theorem 1.

The only (x, y) places where Theorem 1 does not make a solu-
tion prediction are O(1) neighborhoods of the exceptional points on
the critical curve y = yc(x). In such special neighborhoods, a more
elaborate analysis than the ones to be employed in this article is
needed in order to predict the solution behavior there.

V. COMPARISON BETWEEN ANALYTICAL

PREDICTIONS AND TRUE SOLUTIONS

In this section, we compare analytical predictions of rogue
curves in Theorem 1 to true solutions.

First, parameter choices (3.1) and (3.2) for Figs. 1 and 2 meet
the assumptions of Theorem 1. Thus, we will compare Theorem 1’s
predictions on them to the true solutions shown in Figs. 1 and 2.

For the first parameter choices (3.1),

m = 4, am = 5000, 3 = (1, 4). (5.1)

In this case, the corresponding root curve of P [m]
3 (z1, z2) has been

plotted in the first panel of Fig. 3. Using that root curve, we
can obtain the predicted rogue curve AR(x, y, t) from Eqs. (4.12)
and (4.17). At four time values of t = −3, −1, 0, and 3, correspond-
ing to the time values chosen in Fig. 1, this AR(x, y, t) prediction is
plotted in Fig. 4. Comparing this figure to Fig. 1, we visually see that
they closely match each other.
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FIG. 4. Analytical predictions of the rogue curve for the parameter choices of (3.1) at four time values of t = −3,−1, 0, and 3. The (x, y) intervals here are the same as
those in Fig. 1 for easy comparison.

To further compare the predicted and true solutions in this
case, we set x = t = 0, and compare the true and predicted A(x, y, t)
solutions vs the y coordinate. This 1D comparison is shown in Fig. 5.
Again, this comparison shows very good agreement as well.

We have also verified the error decay rate of O(a−1/m
m ) in the

neighborhood of the critical curve in Theorem 1 for the rogue curve
solution in Fig. 1 by varying its large a4 parameter and measuring
the error between the prediction and the true solution. Details are
omitted.

Next, we compare the true solution in Fig. 2 to our prediction
for the second parameter choices (3.2). In this case,

m = 3, am = 2000, 3 = (2, 3), (5.2)

and the corresponding root curve of P [m]
3 (z1, z2) has been plotted in

the second panel of Fig. 3. Using that root curve, we obtain the pre-
dicted rogue curve AR(x, y, t) from Eqs. (4.12) and (4.17), which is
a rogue ring. This AR(x, y, t) prediction only holds for the x inter-
val of

(

2z1,La2/m
m , 2z1,Ra2/m

m

)

, where (z1,L, z1,R) is the z1 interval of the
underlying root curve in the second panel of Fig. 3. For this root
curve, z1,R = −z1,L = 32/3/2 ≈ 1.0400. Thus, the x interval of this

FIG. 5. The 1D comparison between the true rogue curve in Fig. 1 and its
prediction at x = t = 0. Solid orange: |A|; dashed blue: predicted |AR|.

AR(x, y, t) prediction is |x| < 60002/3 ≈ 330.19. Outside this x inter-

val, we will use the uniform background
√

2 prediction for A3(x, y, t)
according to the first statement of Theorem 1. At four time values
of t = −4, −2, 0, and 4, corresponding to the time values chosen in
Fig. 2, this rogue-ring AR(x, y, t) prediction is plotted in Fig. 6. Note
that in this example, the critical curve y = yc(x) contains two excep-
tional points, which correspond to the left and right edge points of
the rogue ring seen in the second and third panels of Fig. 6. Accord-
ing to Theorem 1, our predicted solutions in all four panels of Fig. 6
are not expected to be valid in the O(1) neighborhoods of those edge
points.

Comparing our predicted solution in Fig. 6 to the true one in
Fig. 2, we visually see that the predicted rogue ring closely matches
the true one in its shape and location. We have checked that the
amplitudes on the predicted rogue ring closely match those on the
true ring as well. For instance, at x = t = 0, we have quantitatively
compared the predicted and true A(x, y, t) solutions vs y, similar to
what we have done in Fig. 5 for the first example. We have found
close agreement between prediction and the true solution in that 1D
comparison (details of this 1D comparison are omitted for brevity).

The predicted solution in Fig. 6 and the true one in Fig. 2 also
have notable differences though, and those differences are mostly at
or near the left and right edges of the rogue ring. At those edges,
the true solution shows a lump there, which is very narrow and
hardly visible at t = 0 but becomes wider and more visible as |t|
increases. The predicted solution, however, does not exhibit such
lumps. The reason for this difference is clearly due to the fact that
those edge points are exceptional points of the critical curve, where
our predicted solution does not hold according to Theorem 1. So,
there are no contradictions between the analytical theory and the
true solution here.

Next, we will do comparisons on two additional examples. The
third example is where the parameter choices are

p = 1, 3 = (2, 4), a = (0, 1, 2i, 5000). (5.3)

The corresponding true solution |A3(x, y, t)| at four time values of
t = −3, −1, 0, and 3 is plotted in the upper row of Fig. 7. It is seen
that a rogue curve in the shape of a heart intersected by a horizontal

Chaos 34, 073148 (2024); doi: 10.1063/5.0210867 34, 073148-6

Published under an exclusive license by AIP Publishing

 27 Septem
ber 2024 20:22:12

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 6. Analytical predictions of the rogue ring for the parameter choices of (3.2) at four time values of t = −4,−2, 0, and 4. The (x, y) intervals here are the same as those
in Fig. 2 for easy comparison.

line arises from a uniform background with four lumps on it. This
rogue curve reaches peak amplitude at approximately t = 0 and then
fades away to that same background afterwards. It is noted that at the
intersection between the “heart” and the horizontal line, the solution
remains nonsingular.

To compare this true solution to our prediction, we notice from
Eq. (5.1) that m = 4 here since a4 = 5000, which is the large param-

eter. The corresponding root curve for P [m]
3 (z1, z2), with m = 4 and

3 = (2, 4), has been plotted in the third panel of Fig. 3. Using that
root curve and the a4 value, we obtain the predicted rogue curve
AR(x, y, t) from Eqs. (4.12) and (4.17), which is plotted in the lower

row of Fig. 7 at the same time values of the upper row. It is seen
that the prediction matches the true solution pretty well. The main
differences between them are at the four lumps, which are clearly at
the exceptional points of the critical curve where the prediction in
Theorem 1 does not hold. Thus, such differences are not surprising.

The fourth example we examine is where the parameter choices
are

p = 1, 3 = (4, 5), a = (0, i, 2i, 3i, 20 000). (5.4)

The corresponding true solution |A3(x, y, t)| at three time values of
t = −2, 0, and 2 is plotted in the first three panels of Fig. 8. This time,

FIG. 7. Comparison on the rogue curve for the third example with parameter choices (5.1). Upper row: the true DSI solution |A3(x, y, t)| at time values of t = −3,−1, 0,
and 3. Lower row: theoretical predictions from Theorem 1 at the same time values. In all panels, −500 ≤ x ≤ 500 and −30 ≤ y ≤ 30.
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FIG. 8. Comparison on the rogue curve for the fourth example with parameter choices (5.2). Left three panels: the true DSI solution |A3(x, y, t)| at three time values of
t = −2, 0, and 2. Fourth panel: the underlying theoretical critical curve y = yc(x). In all panels, −250 ≤ x ≤ 250 and −25 ≤ y ≤ 37.

a double rogue ring in a knot configuration arises from a uniform
background with four lumps on it. This rogue curve reaches peak
amplitude at approximately t = 0 and then fades away to that same
background afterwards. At the self-crossing point of the knot, the
solution remains nonsingular.

To compare this true solution to our prediction, we see from
Eq. (5.2) that m = 5 since a5 = 20 000 is large here. The correspond-

ing root curve for P [m]
3 (z1, z2), with m = 5 and3 = (4, 5), has been

plotted in the last panel of Fig. 3. Using that root curve and the a5

value, the critical curve y = yc(x) for this case can be obtained, which
is shown in the last panel of Fig. 8. As we have mentioned earlier,
the critical curve y = yc(x) predicts the spatial location of the rogue
curve. When we compare this critical curve to the spatial location of
the true rogue curve in the second panel of Fig. 8, they again match
each other very well. The four lumps in the true solution are at the
exceptional points of the critical curve, where Theorem 1 does not
give an analytical prediction.

VI. PROOF OF ANALYTICAL PREDICTIONS IN

THEOREM 1

In this section, we prove the analytical predictions in
Theorem 1. Since ε = p = 1 and a1 = 0, we see from Lemma 1 that

x±
1 (k) = y ∓ 2it ± k, x+

2 =1

2
x + a2, x−

2 =
(

x+
2

)∗
,

x+
3 =1

6
y − 4

3
it + a3, x−

3 =(x+
3 )

∗
, (6.1)

and so on. According to the assumptions of Theorem 1, for a certain
integer m ≥ 3, am is real, am � 1 when m is even and |am| � 1 when
m is odd, and the other aj values in a are O(1) and complex. Suppose
x = O(a2/m

m ), y = O(a1/m
m ), t = O(1), and denote

x = 2z1a
2/m
m , y = z2a

1/m
m , (6.2)

where z1 and z2 are O(1) and both real since a1/m
m is real due to the

above assumptions on am. In this case,

Sn

[

x
+(k)+ νs

]

= Sn

(

y − 2it + k,
1

2
x + νs2 + a2, . . .

)

∼ Sn

(

y,
1

2
x, 0, . . . , 0, am, 0, . . .

)

= an/m
m Sn

(

ya−1/m
m ,

1

2
xa−2/m

m , 0, . . . , 0, 1, 0, . . .

)

= an/m
m Sn (z2, z1, 0, . . . , 0, 1, 0, . . .) . (6.3)

Recall from the definition of Schur polynomials (2.2) that

Sn (z2, z1, 0, . . . , 0, 1, 0, . . .) = S
[m]
n (z1, z2), (6.4)

where S [m]
n (z1, z2) is as defined in Eq. (4.2). Thus,

Sn

[

x
+(k)+ νs

]

∼ an/m
m S

[m]
n (z1, z2), |am| � 1. (6.5)

Similarly, we can also show that

Sn

[

x
−(k)+ νs

]

∼ an/m
m S

[m]
n (z1, z2), |am| � 1. (6.6)

Now, we rewrite the determinant τk in Eq. (2.6) as a larger
(N + nN + 1)× (N + nN + 1) determinant

τk =
∣

∣

∣

∣

ON×N 8N×(nN+1)

−9(nN+1)×N I(nN+1)×(nN+1)

∣

∣

∣

∣

, (6.7)

where

8i,j = 2−(j−1)Sni+1−j

(

x
+(k)+ (j − 1)s

)

,

(6.8)

9i,j = 2−(i−1)Snj+1−i

(

x
−(k)+ (i − 1)s

)

,

and vectors x
±(k) and s are as defined in Lemma 1. Using Laplace

expansion, this larger determinant (6.7) can be rewritten as

τk =
∑

0≤ν1<ν2<···<νN≤nN

det
1≤i,j≤N

(

1

2νj
Sni−νj(x

+(k)+ νjs)

)

× det
1≤i,j≤N

(

1

2νj
Sni−νj (x

−(k)+ νjs)

)

. (6.9)
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The highest power term of am in τk comes from the index choices of
νj = j − 1. Then, using Eqs. (6.5) and (6.6), we can readily show that
the highest am-power term of τk is

τk ∼ 2−N(N−1)a2β
m

[

P
[m]
3 (z1, z2)

]2

, |am| � 1, (6.10)

where P [m]
3 (z1, z2) is the double-real-variable polynomial defined in

Eq. (4.1), and β = (n1 + n2 + · · · + nN − N(N − 1)/2)/m. Insert-
ing this leading-order term of τk into Eq. (2.3), we see that the

solution A3(x, y, t) approaches
√

2 when |am| → ∞, except at or
near (x, y) locations where

P
[m]
3 (z1, z2) = 0, (6.11)

or equivalently,

P
[m]
3

(

x

2a
2/m
m

,
y

a
1/m
m

)

= 0 (6.12)

in view of the connection (6.2) between (z1, z2) and (x, y). The (x, y)
locations where Eq. (6.12) holds are the critical curve y = yc(x) as
defined earlier in Eqs. (4.13) and (4.14). Thus, if (x, y) is not in
the O(1) neighborhood of this critical curve, the solution A3(x, y, t)

approaches
√

2 for |am| � 1.
Next, we analyze the solution asymptotics in the O(1) neigh-

borhood of the critical curve. For this purpose, we denote
y = yc + ŷ, where ŷ = O(1). Then, a more refined asymptotics for
Sn

[

x
+(k)+ νs

]

is

Sn

[

x
+(k)+ νs

]

= Sn(y − 2it + k,
1

2
x + νs2 + a2, . . .) = Sn(yc + ŷ − 2it + k,

1

2
x, 0, . . . , 0, am, 0, . . . )

[

1 + O
(

a−2/m
m

)]

= an/m
m Sn

[

yca
−1/m
m + (ŷ − 2it + k)a−1/m

m ,
1

2
xa−2/m

m , 0, . . . , 0, 1, 0, . . .

]

[

1 + O
(

a−2/m
m

)]

= an/m
m Sn

[

z2 + (ŷ − 2it + k)a−1/m
m , z1, 0, . . . , 0, 1, 0, . . .

] [

1 + O
(

a−2/m
m

)]

. (6.13)

Here, the point (z1, z2) is on the root curve of P [m]
3 (z1, z2) = 0.

Now, we collect the dominant contributions in the Laplace expansion (6.9) for τk near the critical curve. There are two sources of
contributions which are of the same order in am, one from the index choices of νj = j − 1 and the other from the index choices of

(ν1, . . . , νN) = (0, 1, . . . , N − 2, N). For the first index choice, using the above asymptotics of Sn

[

x
+(k)+ νs

]

, we get

det
1≤i,j≤N

(

1

2νj
Sni−νj(x

+(k)+ νjs)

)
∣

∣

∣

∣

νj=j−1

= 2−N(N−1)/2aβmP
[m]
3

(

z1, z2 + (ŷ − 2it + k)a−1/m
m

) [

1 + O
(

a−2/m
m

)]

= 2−N(N−1)/2aβm

[

P
[m]
3 (z1, z2)+ ∂P3 (z1, z2)

∂z2

(

ŷ − 2it + k
)

a−1/m
m + · · ·

]

[

1 + O
(

a−2/m
m

)]

,

= 2−N(N−1)/2aβ−1/m
m

[

∂P
[m]
3 (z1, z2)

∂z2

(

ŷ − 2it + k
)

+ O
(

a−1/m
m

)

]

.

Similarly, we get

det
1≤i,j≤N

(

1

2νj
Sni−νj (x

−(k)+ νjs)

)
∣

∣

∣

∣

νj=j−1

= 2−N(N−1)/2 aβ−1/m
m

[

∂P
[m]
3 (z1, z2)

∂z2

(

ŷ + 2it − k
)

+ O
(

a−1/m
m

)

]

.

Therefore, the contribution to the Laplace expansion (6.9) from the νj = j − 1 indices is

τk|νj=j−1 = 2−N(N−1) a2β−2/m
m

(

∂P
[m]
3

∂z2

)2
(

ŷ − 2it + k
) (

ŷ + 2it − k
) [

1 + O
(

a−1/m
m

)]

. (6.14)

For the other index choice of (ν1, . . . , νN) = (0, 1, . . . , N − 2, N), using similar techniques and the relation (4.3), we get

τk|ν=(0,1,...,N−2,N) = 2−N(N−1)−2 a2β−2/m
m

(

∂P
[m]
3

∂z2

)2
[

1 + O
(

a−1/m
m

)]

. (6.15)

Combining these two dominant contributions, we get

τk = 2−N(N−1) a2β−2/m
m

(

∂P
[m]
3

∂z2

)2
[

(

ŷ − 2it + k
) (

ŷ + 2it − k
)

+ 1

4

]

[

1 + O
(

a−1/m
m

)]

. (6.16)
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Inserting this asymptotics of τk into Eq. (2.3) and recalling ŷ = y
− yc(x), we then get

A(x, y, t) =
√

2

[

1 + 4it − 1
[

y − yc(x)
]2 + 4t2 + 1

4

]

[

1 + O
(

a−1/m
m

)]

.

(6.17)

This is our asymptotic prediction of the A(x, y, t) solution near the
critical curve y = yc(x) as given in Theorem 1.

It is important to notice that the above predictions would
be invalid near exceptional points of the critical curve, where

∂P
[m]
3 /∂z2 = 0. Near such points, the dominant contribution (6.16)

to τk either vanishes or is of lower order in am, and a more advanced
calculation would be needed to calculate τk’s dominant contribution
there.

This completes the proof of Theorem 1.

VII. EXTENSIONS OF THEORETICAL PREDICTIONS

In Theorem 1, we restricted p = 1 and assumed that when m is
even, am would be large positive. In this section, we extend Theorem
1 to cases where p 6= 1 and am is large negative when m is even.

A. Asymptotic predictions for p 6=1

In this subsection, we discuss rogue curves when p 6= 1. Our
assumptions on parameters a are the same as before, i.e., for a certain
m ≥ 3, am is real, am � 1 when m is even, |am| � 1 when m is odd,
and the other aj values in a are O(1) and complex.

In this more general case,

x+
1 (k) = c11x + c12y − c13it + k, x+

2 =c21x + c22y − c23it + a2,
(7.1)

and so on, where

c11 = p − p−1

2
, c12 = p + p−1

2
, c13 = p2 + p−2, (7.2)

c21 = p + p−1

4
, c22 = p − p−1

4
, c23 = p2 − p−2. (7.3)

Then, for |am| � 1, |x| � 1, |y| � 1, and t = O(1), we have

Sn

[

x
+(k)+ νs

]

∼ Sn(c11x + c12y, c21x + c22y, 0, . . . , 0, am, 0, . . .).

Setting

c11x + c12y = z2a
1/m
m , c21x + c22y = z1a

2/m
m , (7.4)

we get

Sn

[

x
+(k)+ νs

]

∼ Sn

(

z2a
1/m
m , z1a

2/m
m , 0, . . . , 0, am, 0, . . .

)

= an/m
m Sn (z2, z1, 0, . . . , 0, 1, 0, . . .)

= an/m
m S

[m]
n (z1, z2). (7.5)

Similarly,

Sn

[

x
−(k)+ νs

]

∼ an/m
m S

[m]
n (z1, z2). (7.6)

Thus, using the Laplace expansion (6.9), we get

τk ∼ 2−N(N−1) a2β
m

[

P
[m]
3 (z1, z2)

]2

, |am| � 1, (7.7)

where β has been defined below Eq. (6.10). Inserting this leading-
order term of τk into Eq. (2.3), we see that the solution A3(x, y, t)

approaches
√

2 when |am| → ∞, except at or near (x, y) locations

where P [m]
3 (z1, z2) = 0, or equivalently,

P
[m]
3

(

c21x + c22y

a
2/m
m

,
c11x + c12y

a
1/m
m

)

= 0. (7.8)

This equation defines a critical curve where the rogue curve lies
for p 6= 1. Using the notation of Eq. (4.9), this critical curve can be
written as

c11x + c12y = ŷc(c21x + c22y), (7.9)

where

ŷc(x) ≡ a1/m
m R3,m

(

x

a
2/m
m

)

. (7.10)

This critical curve is the counterpart of Eq. (4.14) for the p = 1 case.
In the (x, y) plane, the shape of this critical curve is related to that of
the previous one for p = 1 through a linear transformation

(

x
y

)
∣

∣

∣

∣

p 6=1

=
(

2c21 2c22

c11 c12

)−1 (
x
y

)
∣

∣

∣

∣

p=1

. (7.11)

When (x, y) is in the O(1) neighborhood of this critical curve, we can
further determine the asymptotic prediction for the solution, simi-
lar to what we have done for the p = 1 case earlier. This predicted
solution is found to be

AR(x, y, t) =
√

2

[

1 + 2c13it − 1
[

c11x + c12y − ŷc(c21x + c22y)
]2 + c2

13t
2 + 1

4

]

+ O
(

|am|−1/m
)

. (7.12)

When we compare the leading-order term of this prediction with the
previous prediction (4.17) for p = 1 (at the same3 and a values), we
see that the current prediction (for p 6= 1) spatially is the previous
prediction of p = 1 under a linear (x, y) transformation (7.11), plus
a temporal rescaling. Thus, the current prediction can be viewed as
a skewed Peregrine rogue wave (along the c11x + c12y direction).

Similar to the p = 1 case, our predictions would be invalid in
the O(1) neighborhood of exceptional points of the critical curve.
These exceptional points are on the critical curve with the additional
condition that

∂

∂z2

P
[m]
3

(

c21x + c22y

a
2/m
m

,
c11x + c12y

a
1/m
m

)

= 0. (7.13)

It is easy to see that these exceptional points (x(e), y(e)c ) of the critical

curve are related to exceptional points (z(e)1 , z(e)2 ) of the root curve as

c21x
(e) + c22y

(e)
c = a2/m

m z(e)1 , c11x
(e) + c12y

(e)
c = a1/m

m z(e)2 . (7.14)

It is important to note that in the present p 6= 1 case, an exceptional
point of the critical curve may not be a bifurcation point of the crit-
ical curve when this critical curve is viewed as a bifurcation diagram
in the (x, y) plane, because the dynamical system point of view sim-
ilar to Eq. (4.11) does not apply here. For example, a saddle-node
bifurcation point (often an edge point) of the critical curve, in the
(x, y) plane, is generally not an exceptional point of the critical curve
when p 6= 1.
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FIG. 9. Comparison on the rogue curve with p 6= 1 with parameter choices (7.15). Upper row: the true DSI solution |A3(x, y, t)| at time values of t = −3,−1, 0, and 3.
Lower row: theoretical predictions in Sec. VII A at the same time values. In all panels, −500 ≤ x ≤ 500 and −100 ≤ y ≤ 100.

Now, we compare the above predictions with true solutions.
For this purpose, we choose parameters in the DSI solution of
Lemma 1 as

p = 6/5, 3 = (2, 3), a = (0, 0, 2000). (7.15)

The corresponding true solution |A3(x, y, t)| at four time values of
t = −3, −1, 0, and 3 is plotted in the upper row of Fig. 9. It is seen
that a rogue curve in the shape of an elongated ring arises from a
uniform background with two lumps on it. This rogue ring reaches

a peak amplitude of 3
√

2 at t = 0 and then fades away to that same
background afterwards.

Our predicted solution of A(x, y, t), from Eq. (7.12) near the

critical curve (7.9) and
√

2 away from this curve, is plotted in the
lower row of Fig. 9 at the same time values of the true solution in its
upper row. Comparing the predicted solution to the true solution,
we see that the predicted rogue ring closely matches the true one in
its shape and location. The main differences between the predicted
and true solutions are at the two lumps, which are located at the
exceptional points of the critical curve where our prediction does
not hold.

B. Extension to large negative am when m is even

In Theorem 1, we assumed that when m is even, am would be
large positive. It turns out that rogue curves can also arise in the case
of large negative am when m is even. We will generalize our earlier
results to this case in this subsection.

To study rogue curves for large negative am when m is even,
we will need to slightly modify the definition of double-real-variable

polynomials P [m]
3 (z1, z2). In this case, we define

P̂
[m]
3 (z1, z2) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ŝ [m]
n1
(z1, z2) Ŝ

[m]
n1−1(z1, z2) · · · Ŝ

[m]
n1−N+1(z1, z2)

Ŝ [m]
n2
(z1, z2) Ŝ

[m]
n2−1(z1, z2) · · · Ŝ

[m]
n2−N+1(z1, z2)

...
...

...
...

Ŝ [m]
nN
(z1, z2) Ŝ

[m]
nN−1(z1, z2) · · · Ŝ

[m]
nN−N+1(z1, z2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

(7.16)

where Schur polynomials Ŝ [m]
k (z1, z2) are defined slightly differently

from (4.2) as

∞
∑

k=0

Ŝ
[m]
k (z1, z2)ε

k = exp
(

z2ε + z1ε
2 − εm

)

, m ≥ 3, (7.17)

with the difference being a negative sign in front of εm on the right
side of the above equation. For p = 1, we define the critical curve
y = yc(x) as

P̂
[m]
3

(

x

2|am|2/m ,
yc(x)

|am|1/m
)

= 0. (7.18)

Then, following very similar calculations as presented in Sec. VI, we
can readily show that the results of Theorem 1 (for p = 1) would
remain valid, i.e., a rogue curve would appear near this critical
curve with its expression given by Eq. (4.17). For p 6= 1, the loca-
tion and expression of the rogue curve could be similarly obtained

from Sec. VII A by changing P [m]
3 to P̂

[m]
3 and am to |am| in Eq. (7.8).
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VIII. CONNECTIONS BETWEEN ROGUE CURVES FOR

DIFFERENT ORDER-INDEX VECTORS 3

In this section, we show that rogue curves for certain different
order-index vectors 3 = (n1, n2, . . . , nN) are related to each other,
using the theory of symmetric functions.29–31

For this purpose, it would be convenient to introduce the
Young diagram Y = (i1, i2, . . . , iN), or a partition, of length N, which
is a decomposition of a non-negative integer M given by a sequence
of descending non-zero numbers such that i1 ≥ i2 ≥ · · · ≥ iN
> 0 and |Y| := i1 + · · · + iN = M. The Schur function WY(x), for
vector x = (x1, x2, . . . ) and Young diagram Y = (i1, i2, . . . , iN), is
defined by

WY(x) = det
1≤j,k≤N

[Sij−j+k(x)], (8.1)

where elementary Schur polynomials Sj(x) are as defined in
Eq. (2.2).

The Young diagram Y = (i1, i2, . . . , iN) is often displayed as a
rectangular array of left-justified boxes such that the kth row from
the top contains ik boxes, k = 1, . . . , N. Thus, the Young diagram
consists of N rows and a total number of M boxes. The conjugate Y′

of a partition Y is a partition whose Young diagram is the transpose
of the original one obtained by interchanging its rows and columns.
Obviously, |Y| = |Y′| = M, (Y′)′ = Y. A partition Y is called self-
conjugate if Y = Y′.

A well known result from the theory of symmetric functions29–31

is the following involution symmetry among Schur functions of a
given partition Y and its conjugate Y′:

WY′(x) = WY(ω(x)), ω(xj) = (−1)j−1xj. (8.2)

For example, when

Y = (3, 2) = ,

the conjugate partition Y′ is

Y′ = (2, 2, 1) = .

The associated Schur functions are

WY(x) = x5
1

24
+ x3

1x2

6
+ x1x

2
2

2
− x2

1x3

2
+ x2x3 − x1x4 (8.3)

and

WY′(x) = x5
1

24
− x3

1x2

6
+ x1x

2
2

2
− x2

1x3

2
− x2x3 + x1x4, (8.4)

which satisfy the involution symmetry (8.2).

Now, we relate the P
[m]
3 (z1, z2) and P̂

[m]
3 (z1, z2) polynomials

introduced earlier in Eqs. (4.1) and (7.16) to these Schur functions. It

is easy to see that for3 = (n1, n2, . . . , nN) with n1 < n2 < · · · < nN,

P
[m]
3 (z1, z2) = WY(x), (8.5)

where the Young diagram Y = (i1, i2, . . . , iN) is given by

iN−(j−1) = nj − (j − 1), j = 1, . . . , N, (8.6)

and x = (z2, z1, 0, . . . , 1, 0, . . . ) with 1 in its mth element. Similarly,

P̂
[m]
3 (z1, z2) = WY(x̂), where x̂ = (z2, z1, 0, . . . , −1, 0, . . . ) with −1

in its mth element. We define the conjugate 3′ of the order-index
vector 3 as one whose Young diagram is the conjugate of 3’s
Young diagram. For example, when 3 = (4, 5), Y = (4, 4). Thus,
Y′ = (2, 2, 2, 2) and 3′ = (2, 3, 4, 5). 3 is called self-conjugate if
3 = 3′.

Due to the involution symmetry (8.2) of Schur functions, we
find that

P
[m]

3′ (z1, z2) = P
[m]
3 (−z1, z2), when m isodd. (8.7)

This means that root curves for the index vector3 and its conjugate
vector3′ are related as a mirror reflection in z1. Then, in view of the
connection (4.12) between rogue curves of DSI and root curves of

P
[m]
3 (z1, z2), we conclude that when p = 1, m is odd and am real and

large in magnitude, the rogue curve AR(x, y, t) of DSI for the order-
index vector 3 would be a mirror reflection of the rogue curve in
the x variable for the conjugate order-index vector3′, i.e.,

AR(x, y, t)|3 = AR(−x, y, t)|3′ , when p = 1, m is odd in large |am|.
(8.8)

For self-conjugate 3 where 3′ = 3, its rogue curve would be
symmetric in x.

To verify this connection (8.8), we take p = 1 and 3 = (4, 5).
As we have mentioned earlier, for this 3, its conjugate is
3′ = (2, 3, 4, 5). For these two order-index vectors 3 and 3′, we
choose the same parameter vector a = (0, 0, 0, 0, 20000), where a5

is real and large. Then, rogue curves |A| for these 3 and 3′ at t = 0

FIG. 10. Confirmation of symmetry (8.8) between rogue curves |A| for the
order-index vector3 = (4, 5) (left) and its conjugate3′ = (2, 3, 4, 5) (right) with
p = 1, a = (0, 0, 0, 0, 20000), and t = 0. These rogue curves are obtained from
Lemma 1. In both panels, −250 ≤ x ≤ 250 and −25 ≤ y ≤ 37.
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FIG. 11. Confirmation of symmetry (8.9) between rogue curves |A| for the
order-index vector 3 = (2, 4), a = (0, 0, 0, 5000) (left), and its conjugate
3′ = (1, 3, 4), a = (0, 0, 0,−5000) (right) with p = 1 and t = 0. These rogue
curves are obtained from Lemma 1. In both panels, −500 ≤ x ≤ 500 and
−30 ≤ y ≤ 30.

can be obtained from Lemma 1, which are displayed in Fig. 10. One
can see that these curves are indeed a mirror reflection of each other
in x, confirming the above symmetry (8.8).

When m is even in the large real am parameter (in magnitude),
rogue curves for 3 and 3′ are also related, but the am parameter
for 3 and 3′ should have opposite signs, i.e., the symmetry now
becomes

AR(x, y, t)|3,am = AR(−x, y, t)|3′ ,−am ,
(8.9)

when p = 1, m is even in large |am|.
We note that except for am, the other O(1) parameters in the vectors
a = (0, a2, . . . , anN

) for these two rogue waves of 3 and 3′ do not
need to be opposite of each other and can be totally independent of
each other. The connection (8.9) can be seen from the symmetry

P
[m]

3′ (z1, z2) = P̂
[m]
3 (−z1, z2), when m is even, (8.10)

which comes from the involution symmetry (8.2) when m is even.

Here, P̂ [m]
3 is as defined in Eq. (7.16).

To verify this rogue curve connection (8.9), we take p = 1 and
3 = (2, 4). For this 3, its conjugate is 3′ = (1, 3, 4). For these two
order-index vectors 3 and 3′, we choose a = (0, 0, 0, 5000) for 3
and (0, 0, 0, −5000) for 3′, whose a4 parameters are real and oppo-
site of each other. Then, rogue curves |A| for these two sets of
parameters at t = 0 can be obtained from Lemma 1, which are dis-
played in Fig. 11. One can see that these curves are indeed a mirror
reflection of each other in x, confirming the above symmetry (8.9).

When p 6= 1, rogue curves for 3 and 3′ would be related
through the symmetry (8.8) or (8.9) under a linear transformation,
which can be seen from Eq. (7.11).

IX. CONCLUSIONS AND DISCUSSIONS

In this article, we have reported new rogue wave patterns
whose wave crests form closed or open curves in the spatial plane

in the Davey–Stewartson I equation. The shapes of these rogue
curves, such as rings, double rings, and others, are striking, and
their appearance in the Davey–Stewartson I equation is a signifi-
cant phenomenon. Analytically, we reveal that such rogue curves
would appear when an internal parameter in bilinear expressions
of the rogue waves is real and large. Performing large-parameter
asymptotic analysis, we have discovered that these rogue curves can
be predicted by root curves of certain types of double-real-variable
polynomials. We have also compared our analytical predictions of
rogue curves to true solutions and demonstrated good agreement
between them.

Robustness of these rogue curves under weak perturbations is
a significant question that merits future studies. For rogue waves
in the NLS equation and some other (1 + 1)-dimensional inte-
grable systems, this robustness question has been investigated before
(see Refs. 32–34, for instance), and it was found that the under-
lying rogue waves could survive weak perturbations. It would
be interesting to see whether similar conclusions apply for these
(2 + 1)-dimensional rogue curves as well.

Another interesting question is whether these rogue curves
would also appear in other (2 + 1)-dimensional integrable systems,
such as the (2 + 1)-dimensional three-wave resonant interaction
system. This question will be left to future studies.
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APPENDIX: EXPRESSIONS OF GENERAL RATIONAL

SOLUTIONS IN DSI

General rational solutions (including rogue waves) in the
Davey–Stewartson I equation (2.1) were derived in Ref. 28, but
those solutions involved differential operators and were not explicit.
In this appendix, we present explicit expressions of these general
rational solutions and their brief proof.

Lemma 2. The Davey–Stewartson I equation (2.1) admits
rational solutions

A3(x, y, t) =
√

2
g

f
, (A1)

Q3(x, y, t) = 1 − 2ε
(

log f
)

xx
, (A2)

where N is a positive integer, 3 = (n1, n2, . . . , nN) is an order-index
vector, each ni is a nonnegative integer, n1 < n2 < · · · < nN,

f = τ0, g = τ1, (A3)

τk = det
1≤i,j≤N

(

m(k)
i,j

)

, (A4)

the matrix elements m(k)
i,j of τk are defined by

m(k)
i,j =

min(ni ,nj)
∑

ν=0

(

1

pi + p∗
j

)[

pip
∗
j

(pi + p∗
j )

2

]ν

Sni−ν[x
+
i,j(k)+ νsi,j + ai]

× Snj−ν[x
−
j,i(k)+ νs

∗
j,i + a

∗
j ], (A5)

vectors x
±
i,j(k) =

(

x±
1,i,j, x

±
2,i,j, . . .

)

are

x+
r,i,j(k) = (−1)r

r!pi

x−1 + (−2)r

r!p2
i

x−2 + 1

r!
pix1 + 2r

r!
p2

i x2 + kδr,1 − cr,i,j,

(A6)

x−
r,i,j(k) = (−1)r

r!p∗
i

x−1 + (−2)r

r!(p∗
i )

2
x2 + 1

r!
p∗

i x1

+ 2r

r!
(p∗

i )
2x−2 − kδr,1 − c∗

r,i,j, (A7)

x1 = 1

2
(x + y), x−1 = 1

2
ε(x − y),

x2 = −1

2
it, x−2 = 1

2
it,

(A8)

pi are free non-purely-imaginary complex constants, δr,1 is the Kro-
necker delta function, si,j = (s1,i,j, s2,i,j, . . .), cr,i,j and sr,i,j are coefficients
from the expansions

ln

[

pie
κ + p∗

j

pi + p∗
j

]

=
∞
∑

r=1

cr,i,jκ
r,

(A9)

ln

[

pi + p∗
j

κ

(

eκ − 1

pieκ + p∗
j

)]

=
∞
∑

r=1

sr,i,jκ
r,

vectors ai are

ai =
(

ai,1, ai,2, . . . , ai,ni

)

, (A10)

and ai,j (1 ≤ i ≤ N, 1 ≤ j ≤ ni) are free complex constants.

Note. In the above lemma, rogue waves would be obtained
when all pi are real. If pi are not real, the rational solutions (2.3)–(2.4)
would be soliton or multi-solitons on a constant background, not
rogue waves.28

Proof. From the appendix of Ref. 28, we know that DSI would
admit the following solutions:

A3(x, y, t) =
√

2
g

f
, Q3(x, y, t) = 1 − 2ε

(

log f
)

xx
, (A11)

where 3 = (n1, n2, . . . , nN), N is the length of 3, each ni is a
nonnegative integer, n1 < n2 < · · · < nN,

f = τ0, g = τ1, (A12)

τk = det
1≤i,j≤N

(

m(k)
i,j

)

, (A13)

if the matrix element m(k)
i,j of τk and its associated functions ϕ(k)i and

ψ
(k)
j satisfy the following differential and difference relations:

∂x1m(k)
i,j = ϕ

(k)
i ψ

(k)
j ,

∂x2m(k)
i,j = ϕ

(k+1)
i ψ

(k)
j + ϕ

(k)
i ψ

(k−1)
j ,

∂x−1m(k)
i,j = −ϕ(k−1)

i ψ
(k+1)
j ,

∂x−2m(k)
i,j = −ϕ(k−2)

i ψ
(k+1)
j − ϕ

(k−1)
i ψ

(k+2)
j ,

m(k+1)
i,j = m(k)

i,j + ϕ
(k)
i ψ

(k+1)
j ,

∂xνϕ
(k)
i = ϕ

(k+ν)
i ,

∂xνψ
(k)
j = −ψ (k−ν)

j , (ν = 1, 2, −1, −2),



























































(A14)

and τk satisfies the conjugation condition

τ ∗
k = τ−k. (A15)

Here, variables (x−1, x−2, x1, x2) are related to (x, y, t) by Eq. (A8). To
derive rational solutions of DSI, we choose

m(k)
i,j =

(

p∂p

)ni

(ni)!

(

q∂q

)nj

(nj)!

[

1

p + q

(

−p

q

)k

eξi+ηj

] ∣

∣

∣

∣

∣

p=pi , q=qj

, (A16)

where

ξi = 1

p2
x−2 + 1

p
x−1 + px1 + p2x2 +

∞
∑

r=1

ar,i lnr

(

p

pi

)

, (A17)

ηj = − 1

q2
x−2 + 1

q
x−1 + qx1 − q2x2 +

∞
∑

r=1

a∗
r,j lnr

(

q

qj

)

, (A18)

pi are free complex constants, qi = p∗
i , and ar,i (r = 1, 2, . . . ) are

free complex constants. For this choice of m(k)
i,j and its associated

functions,

ϕ
(k)
i =

(

p∂p

)ni

(ni)!
pkeξi

∣

∣

∣

∣

∣

p=pi

, ψ
(k)
j =

(

q∂q

)nj

(nj)!
(−q)−keηj

∣

∣

∣

∣

∣

q=qj

,

we can readily check that these functions satisfy the differential and
difference relations (A14). In addition, since qi = p∗

i , x∗
±1 = x±1, and
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x∗
±2 = −x±2, we can see that τk in Eq. (A13) satisfies the conjuga-

tion condition (A15). Thus, the resulting rational functions (A11)
are DSI’s solutions. These rational solutions are equivalent to those
presented in Ref. 28. The main difference between them is a simpler
parameterization here, which will lead to simpler explicit solution
expressions.

The next step is to remove the differential operators in
Eq. (A16) and derive explicit expressions for the matrix element

m(k)
i,j . The procedure to do this is very similar to that we used in

Ref. 36 for deriving expressions of rogue waves in Theorem 2 of
that paper associated with two simple roots of a certain algebraic

equation. Performing such calculations, we can show that m(k)
i,j is as

given in Eq. (A5) of Lemma 2 [the reader may notice that the form

of m(k)
i,j in Eq. (A5) and definitions of cr,i,j and sr,i,j in Eq. (A9) are sim-

ilar to their counterparts in Theorem 2 of Ref. 36]. This completes
the brief proof of Lemma 2.

Lemma 1 in the main text is a special case of Lemma 2. To get
Lemma 1, we set all pi to be the same and real in Lemma 2 and denote
pi = p, where p is a real nonzero parameter. In addition, we require
ai,j in Eq. (A10) to be independent of the i index. In this case, since
the length of vector ai is ni, and n1 < n2 < · · · < nN, then, each ai

for i < N is just a truncation of the longest vector a3. Since every ai

can be extended to the full a3, and the extended parts are dummy
parameters which do not appear in the actual solution formulae, by
performing this ai extension, we can say all {ai} vectors are the same
in this case and thus denote

ai = a = (a1, a2, a3, . . . , anN
).

Under the above parameter restrictions, cr,i,j and sr,i,j in Lemma 2 are
independent of the (i, j) indices, i.e., cr,i,j = cr and sr,i,j = sr. Similarly,
x

±
i,j are independent of the (i, j) indices too. In addition, the sj expan-

sion in Eq. (A9) reduces to (2.11) in Lemma 1. We further lump the
a vector in Eq. (A5) into x

+ and the a
∗ vector into x

−. In addition,
we lump the cr parameter in Eq. (A6) into ar and the c∗

r parameter
into a∗

r . After these treatments, we obtain Lemma 1 from Lemma 2.
Nonsingularity of these solutions in Lemma 1 has been proved in
Appendix C of Ref. 35 for real nonzero p. �
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