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ABSTRACT

Large-time patterns of general higher-order lump solutions in the Kadomtsev-Petviashvili I (KP-I) equation are investigated.
It is shown that when the index vector of the general lump solution is a sequence of consecutive odd integers starting from
one, the large-time pattern in the spatial (x, y)-plane generically would comprise fundamental lumps uniformly distributed on
concentric rings. For other index vectors, the large-time pattern would comprise fundamental lumps in the outer region as
described analytically by the nonzero-root structure of the associated Wronskian-Hermite polynomial, together with possible
fundamental lumps in the inner region that are uniformly distributed on concentric rings generically. Leading-order predictions
of fundamental lumps in these solution patterns are also derived. The predicted patterns at large times are compared to true
solutions, and good agreement is observed.

1 | Introduction surface tension parameter. If T > 1/3, which corresponds to thin
sheets of water, this equation is called KP-I. In this case, rescaling

The Kadomtsev-Petviashvili (KP) equation was derived as a variables by

two-dimensional generalization of the Korteweg—de Vries equa-

tion for the evolution of weakly nonlinear plasma waves and

shallow water waves [1, 2]. In the water wave context, this y= é, t=— 2z - f=-2 (T - %) u (12)
equation reads [2] 3 (T _ }) T-
3
1
2ft+3ffx+ §_T fxxx +fyy=0’ (11)
x and dropping the hats, this equation is converted to the standard
form
where the spatial coordinate x is relative to a certain moving
frame, y is the transverse spatial coordinate, ¢ is time, f(x,y,t)
represents the water surface elevation, and T is a dimensionless (u; + 6un, +uyy, ), — 3u,, =0. (1.3)
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Note that the KP-I equation also arises in other branches
of physics, such as nonlinear optics [3] and Bose-Einstein
condensates [4, 5].

The KP-I equation (1.3) is solvable by the inverse scattering
transform [6, 7]. It admits stable fundamental lump solutions
that are bounded rational functions decaying in all spatial
directions [8-10]. These lumps are the counterparts of solitons
in the Korteweg-de Vries equation. In the water wave context,
these lumps physically correspond to dips on the water surface
due to the negative sign in the f scaling above. The KP-I
equation also admits a broad class of rational solutions that
describe the interactions of these lumps. If individual lumps have
distinct asymptotic velocities, they would pass through each other
without change in velocities or phases [9, 10]. But if they have the
same asymptotic velocities, they would undergo novel anomalous
scattering, where the lumps would separate from each other in
new spatial directions that are very different from their original
incoming directions [11-13]. In this paper, we are concerned with
this latter type of solutions, which we will call higher-order lumps
(they are also called multipole lumps in the literature [12, 13]).

Explicit expressions of higher-order lumps have been derived
by a wide variety of methods before [11-23]. In addition, large-
time patterns for special classes of these higher-order lumps have
also been investigated [17, 20, 23-25]. Of particular interest to
us are the analytical results in [23], where we showed that for
a certain class of higher-order lumps, when the index vector is
a sequence of consecutive odd integers starting from one, the
solution pattern at large time would comprise fundamental lumps
arranged in a triangular shape, which is described analytically
by the root structure of an Yablonskii-Vorob’ev polynomial. For
other index vectors, the solution pattern at large time would
comprise fundamental lumps arranged in a nontriangular shape
in the outer region, which is described analytically by the
nonzero-root structure of the associated Wronskian-Hermite
polynomial, together with possible fundamental lumps arranged
in a triangular shape in the inner region, which is described
analytically by the root structure of an Yablonskii-Vorob’ev
polynomial (this inner region would appear when the associated
Wronskian-Hermite polynomial has a zero root).

In this paper, we investigate large-time patterns of general higher-
order lump solutions in the KP-I equation. We show that when
the index vector of the general lump solution is a sequence of
consecutive odd integers starting from one, the large-time pattern
generically would comprise fundamental lumps uniformly dis-
tributed on concentric rings (in other words, these fundamental
lumps would form regular polygons with the same center).
This concentric-ring pattern strongly contrasts the triangular
pattern of special higher-order lumps considered in [23] and is
quite surprising. We also show that on these concentric rings,
the fundamental lumps separate from each other in propor-
tion to |t|™/@™D where m is a positive integer that takes
on different values on different rings. For other index vectors,
we show that the large-time pattern of a general higher-order
lump solution would comprise fundamental lumps in the outer
region as described analytically by the nonzero-root structure
of the associated Wronskian-Hermite polynomial, together with
possible fundamental lumps in the inner region that are uni-
formly distributed on concentric rings generically. Leading-order

predictions of fundamental lumps in these solution patterns are
also derived. Our predicted patterns at large times are compared
to true solutions, and good agreement is observed.

This paper is structured as follows. In Section 2, we present
explicit algebraic expressions of higher-order lumps, which is
the starting point of our analysis. In Section 3, we present our
analytical predictions of generic lump patterns at large time
when the index vector is a sequence of consecutive odd integers
starting from one, and verify these predictions quantitatively by
two examples. In Section 4, we prove our analytical predictions
of lump patterns given in Section 3. In Section 5, we present our
analytical predictions of generic lump patterns at large time for
other index vectors, and verify these predictions quantitatively by
two examples. In Section 6, we prove our analytical predictions of
lump patterns stated in Section 5. Section 7 concludes the paper
with discussions on nongeneric lump patterns.

2 | Preliminaries

Explicit expressions of higher-order lumps in KP-I have been
derived in [23] by the KP hierarchy reduction method. Since the
KP-Iequation (1.3) is invariant under the Galilean transformation
[17, 26]

(x,y,t) = (x + 2ky + 12k*t, y + 12kt, t) 21

for an arbitrary real constant k, and also invariant under variable
rescalings

(x,y,t,u) = (ax,a’y,a’t,a*u) (2.2)
for an arbitrary nonzero real constant o, we can normalize the
spectral parameter p in those higher-order lumps to be unity [23].

In that case, introducing elementary Schur polynomials S, (x)
with x = (x,, X, ...), which are defined by the generating function

Z S (x)ek = exp (Z x,,e"), (2.3)
k=0 n=1

and defining S;(x) = 0 when k < 0, explicit expressions of those
higher-order lumps are reproduced in the following lemma.

Lemma 1. General Nth order lumps of the KP-I equation (1.3)
are

up(x,y,t) =2021Ino, (2.4)
where
o(x,y,t) = ISQ%N (my;), (2.5)
min(n;,n;)
m ;= Z 478, ,(x" +vs+a) Snj—v ((x*)* +vs* + a}?),
v=0
(2.6)

N is an arbitrary positive integer, A = (n,, n,,...ny) is an index
vector of arbitrary positive integers, the asterisk “*” represents
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complex conjugation, the vector x* = (x{r X5, ) is defined by

L1 2k 3k
Xp= Xt gyt H(—4)t, 2.7)

the vector s = (s;, S,, ...) is defined through the expansion

isjcxj =In [é tanh(%)], (2.8)
j=1

internal parameters a; are
4, = (a1, G s Uiy ) (2.9
anda;; (1 <i <N,1 < j <n)arefree complex constants.

Without loss of generality, we require (n,, n,, ... ny) to be distinct
integers [23].

The fundamental lump can be derived by taking N = 1andn, =1
in the above lemma. Through a shift of the (x, y)-axes, we can
normalize a,; = 1. Then, the formula for this fundamental lump
is

u,(x,y,t) =2021In <(x —120) +4y* + %)

16[1 — 4(x — 12t)* + 16y?
= [ (x )" +16y ]. (2.10)
[1+4(x—12t)2 +16y2]2

Its graph is a single main hump centered at (x, y) = (12¢,0) with
peak amplitude 16.

3 | Concentric Rings of Lumps at Large Times for
A=(1,3,..,2N -1)

In our earlier paper [23], we have shown that in the special case
of parameter regimes where q; ; in Equation (2.9) is independent
of the i index, that is, a,; = a,; = --- = a,, ;, then patterns of
higher-order lumps in Lemma 1 at large times would comprise
fundamental lumps arranged in nontriangular shapes in the
outer region, whose locations are determined analytically by the
nonzero-root structure of the underlying Wronskian-Hermite
polynomial, together with fundamental lumps arranged in trian-
gular shapes in the inner region, whose locations are determined
analytically by the root structure of the underlying Yablonskii-
Vorob’ev polynomial. Outer nontriangular lumps are present
when A #(1,3,...,2N — 1) and absent when A =(1,3,...,2N —
1), while inner triangular lumps are present if the underlying
Wronskian-Hermite polynomial admits a zero root and absent if
that polynomial has no zero root.

Our interest in this paper is to identify new patterns of higher-
order lumps at large times. We will show that in the more general
parameter regime where q;; is dependent on the i index, that is,
{a;1,1 <i < N} are not all the same, concentric rings of funda-
mental lumps would generically appear. These concentric rings
of fundamental lumps mean certain numbers of fundamental
lumps that are uniformly distributed on concentric circles of
the (x,y)-plane (when the y-direction is properly stretched). In
other words, these fundamental lumps are located at vertices

of multiple regular polygons with the same center. When A =
(1,3,...,2N — 1), these concentric rings of fundamental lumps are
the only solution patterns in the spatial (x, y)-plane, while when
A #(1,3,...,2N — 1), we may get these concentric rings of lumps
in the inner region, together with certain numbers of fundamen-
tal lumps in the outer region. Since the A = (1, 3, ...,2N — 1) case
is simpler, we will treat it first.

3.1 | Notations and Our Assumption
Before describing our results, we introduce some notations.
First, we define [a] as the largest integer less than or equal to a.

We also define the following matrices:

D = diag(a,,,a,,,05,,...,0a5,), 3.1)
1 0 0 0
11! 1 0 0
F= % % 1 ol . G2
1 1 1
N-1)! (N-2)! N-3) o
G =Mat,; ;.y(g;;) = F'DF. (3.3)

Notice that both F and G are lower triangular matrices.

In addition, we introduce the following [N /2] minors of the G
matrix,

M, = det G,

N+1-r<i<N, 1<j<r

r=1,2,..,[N/2]. (3.4)

These minors are determinants of square submatrices in the
lower left corner of matrix G.

With the above notations, our only assumption in this section is
the following.

Assumption 1. We assume that

M,
M, #0, r=1,2,..,[N/2]-1; —2
My 2141
0, when N is odd,
3.5
# —g, when N is even. (35)
This  assumption  holds for  generic  values of

(@11, 05,057, 5ay ).
The consequence of this assumption is that, the [N /2] x [N /2]
submatrix in the lower left corner of G would admit the following

factorization:

Gnii-(v/2)sisn, 1<j<iny2) = AB, (3.6)
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where
1 a5, a1 N /2]
Ao 0 1 o{Z,If\I/Zl ’
0 o0 0 1
0 0 Bina1in 21
B=| ' , (3.7)
0 B Banya
61,1 ﬁl,z ﬁl,[N/z]
and «; ;, 8; ; are complex constants. In particular,
M,
ﬁl,l = Ml’ ﬁr,r = M > 1 <r S [N/Z] (38)
r=1

Under Assumption 1, §,,#0 for 1<r<[N/2]-1, and
Bin/21v/2) # Owhen N is odd and Sy 51 n/2) +4/3 # 0 when N is
even. The factorization (3.6) is similar to Gauss elimination, but
starting from the bottom row of the matrix up instead of from the
top row down. This unconventional matrix factorization turns
out to be important for our current problem.

We note that in our previous work [23], {a;;,1 <i < N} are all
the same. In that case, G is a diagonal matrix and thus M, =0,
violating the above assumption. Thus, this assumption means
that we are now dealing with a new parameter regime different
from [23].

3.2 | Main Results

Under Assumption 1, our main results on lump patterns for A =
(1,3, ...,2N — 1) atlarge times are given in the following theorem.

Theorem 1. IfA=(1,3,..,2N — 1) with N > 1 and Assump-
tion 1 holds, then when |t| > 1, the higher-order lump solution
up(x,y,t) in Lemma 1 would split into N(N + 1)/2 fundamental
lumps on the (x,y)-plane. These fundamental lumps are asymp-
totically located uniformly on [N /2] concentric rings centered
at (x,y) = (12t,0), with one of them also located in the O(1)
neighborhood of the ring center when N is odd. The rth ring
(counting from outside with 1 <r <[N/2]) contains 2N — 1 —
4(r — 1) fundamental lumps u,(x — Xy, y — Yo, t), where u,(x, y, t)
is given in Equation (2.10), and its (x,, y,)-positions (relative to the
ring center (x,y) = (12t,0)) are given by the equation

N-1-2(r-1) _ 1
Xy + 21y, = 2, (—12t) V1= (1 + O(Itl N-1-4G-) )) (3.9)

Here, z, is every one of the (2N —1—4(r —1))th roots of
=B 2N =1 4@ — )N (2N — 3 — 4(r — 1)!1, except in the case
of even N and on its [N /2]th (innermost) ring, in which case z,
is every one of the cubic roots of —(Bin /a1 n/2) +4/3)3111. Written
mathematically, we have the following solution asymptotics:

1
uA(x’y’t)=ul(x_xoay_y0)+0<|t|_2N7174(r71) ’ |t| >1,
(3.10)

where 1 <r < [N/2], and (x,,y,) is as given above for each of the
stated roots z,,.

The proof of this theorem will be given in the next section. Note
that since §,, # 0 for 1 <r < [N/2] =1 and By v/ +4/3 #
0 under Assumption 1, all roots z, mentioned in this theorem
are nonzero.

This theorem indicates when A = (1, 3,...,2N — 1), the solution
pattern of higher-order lumps at large time is a set of [N/2]
concentric rings of fundamental lumps in the generic case where
Assumption 1 holds. This strongly contrasts the case when
internal parameters {q; ;} are independent of the i index, in which
case the solution pattern is a triangular pattern of fundamental
lumps as we have reported earlier in [23].

We should point out that these rings of lumps are not circular
on the (x,y)-plane. Indeed, we can see from Equation (3.9)
that the locations (x,,y,) of these lumps are not on a circle.
Rather, (x,, 2y,) of those lumps are on a circle. Thus, these rings
are ellipses which are longer along the x-direction than the y-
direction by a factor of 2. We call them rings rather than ellipses
for simplicity. In later graphs of this paper (see Figures 1 and 2
for instance), the lumps seem to be on a circle at large times, but
that is only because our x interval is twice as long as the y interval
there, that is, we have stretched the y-direction by a factor of two.

Notice that the leading-order positions of these fundamental
lumps on the rings, as given in Equation (3.9), are determined
only by the first elements {a;;} of the internal parameter
vectors a;. This is not surprising, since any Schur polynomial
S, (x* +vs + a;) is affected most by its first element x; + a; ;.

The above theorem shows that, of these [N /2] concentric rings,
the outermost ring (with r = 1) contains 2N — 1 fundamental
lumps u,(x — xy, ¥ — ¥y, t), where u,(x,y,t) is given in Equa-
tion (2.10), and its (x,, y,)-positions (relative to the ring center
(x,y) = (12t,0)) are given by

N-1 1
Xy + 2iy, =z0(—1zt)z~f1(1+o(|rrM)>, (.11)

with z, being every one of the (2N — 1)th roots of —3, ;(2N —
DI(2N — 3)!I. The second outermost ring (with r = 2) contains
2N -5 fundamental lumps u,(x — x,, ¥ — Yo, t), Wwhose (X, y,)-
positions relative to the ring center (x,y) = (12¢,0) are given

by
N3 L
X + 2y, = 2o (—126) 255 (1 + O(ltl W )) (B12)

with z, being every one of the (2N — 5)th roots of —3,,(2N —
S5)!I(2N — 7)!!, and so on. For each next ring inward, the number
of fundamental lumps on it decreases by 4. When N is odd,
the innermost ring (with » = [N /2]) contains five fundamental
lumps, whose (x,, ¥,)-positions are given by

2 1
Xy + 2y, =ZO(—12t)5<1+O<|t|_3>>, (.13)

with z, being every one of the quintic roots of —fy /21 n/2)5!3!.
In this case, there is an additional fundamental lump in the O(1)
neighborhood of the ring center. When N is even, the innermost
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FIGURE 1 | The true solution u,(x,y,t) with A = (1,3, 5,7,9) at time values of t = —2000, —2, —0.2,0, 2, and 2000. Internal parameters are given
in Equation (3.15), with the other elements of parameter vectors as zero. The axis £ = x — 12¢ is the moving x-coordinate.

FIGURE 2 | Leading-order predictions of lump patterns from Theorem 1 for the solution of Figure 1 at large times of t = +2000.

ring (with r = [N /2]) contains three fundamental lumps, whose
(X0, ¥o)-positions are given by

1 1
X, + 2iy, =ZO(—12t)5<1+O<|t|_5>>, (3.14)

with z, being every one of the cubic roots of —(By /2 n/21 +
4/3)3!!1111. In this case, there is no additional fundamental lump
at the ring center.

Theorem 1 also shows that, when N is odd, the locations of
fundamental lumps on the concentric rings at large times t = +t,

are the same, because N — 1 — 2(r — 1) is even in this case and
N-1-2(r-1)

thus (—12¢t)2v-1-4-D is the same for t = +t,. But when N is even,
the locations of fundamental lumps on the concentric rings at

large time ¢ = t, would be antisymmetric to those at large time t =
N-1-2(r-1)
—t,, since N — 1 —2(r — 1) is odd now and thus (—12¢)2N-1-4¢-1

50f22

85U8017 SUOWILLIOD BAIFe81D) 3|qedldde au Aq peusenob ae ssjoe YO ‘@SN Jo s8I 10} Afeid 1 8UIIUO 8|1\ UO (SUOHIPUOD-pUE-SIBYWI0D" A3 |IMA g ]BU UO//STNY) SUORIPUOD PUe SWwi | 8L} 88S *[5202/T0/20] Uo Areiqi8ulluo A8|IM ‘0000, Wdes/TTTT OT/I0P/W00" A3 1M Afe.q 1 Bul|uo//:Sdy W04 papeo|umoq ‘T ‘S0z ‘0656297T



is opposite of each other for ¢t = +¢t,. This means that when N
is odd, the locations of fundamental lumps on concentric rings
at large times +t, would be the same, that is, there would be no
change of lump positions on the rings as time increases from large
negative to large positive. But when N is even, the locations of
fundamental lumps on concentric rings at large times +¢, would
be antisymmetric to each other, that is, a change of lump positions
on the rings would occur as time increases from large negative
to large positive. This difference regarding lump positions on the
rings for odd and even N will be seen in Figures 1, 2 and 4, 5.

Equation (3.9) of the above theorem reveals that at large time |¢|,
fundamental lumps on the rth ring separate from each other in
N-1-2(r-1)
proportion to |¢|2¥-1-4-1 . Thus, by choosing N and r properly,
we can get separation rates of |¢|2=+1 for any positive integer m,
such as |t]'/3, |t]>/°, |t]?/7, and so on. This contrasts the results in
[23] for special internal-parameter values, where the separation
rate of fundamental lumps is only |¢|*/3. In [13], it was reported
that at large time, fundamental lumps in the higher-order lump
complex separate from each other in proportion to |¢|%, where é <

q< 1.0our separation rates from the above theorem are consistent
with this g range, but they are more specific with the form of g as
m/(2m + 1), not any real number between 1/3 and 1/2.

Regarding the fundamental lump in the O(1) neighborhood of the
ring center for odd N, Theorem 1 did not provide an asymptotic
prediction for its position. Actually, large-time prediction of its
position can be made by slightly modifying the calculations
leading to Equation (3.9). This modification is necessary since the
position of the center lump is O(1) from the ring center, unlike
lumps on the rings whose positions are O(|¢|?) away from the ring
center with 1/3 < g < 1/2. This difference means that slightly
different asymptotic calculations are in order for the position of
the center lump. With a little algebra, we can show that this
prediction can be obtained from a slightly modified submatrix of
G. Specifically, we take the bottom left ([N /2] + 1) x ([N/2] + 1)
submatrix of G in Equation (3.3), and increase its two matrix
elements adjacent to its top-right corner (i.e., its (1,[N/2]) and
(2,[N/2] + 1) elements) by 4/3 and call this new matrix G. Then,
we perform the AB factorization to this new matrix G similar
to Equation (3.6). Then, the leading-order position (x,, y,) of the
center lump would be predicted by X, + 2iy, = =By /2101821415
where Sy /5141 [n/2}+1 18 from the B matrix of that factorization, and
the error of this (x,,y,) prediction is O(|¢|!). This prediction of
the center lump was not written into Theorem 1 because we do
not want it to distract the reader’s attention from the main focus
of the paper, which is the concentric rings of lumps.

3.3 | Numerical Verifications of Theorem 1

Now, we numerically verify Theorem 1 on two examples.

Example 1. In our first example, we take N =5; so A =
(1,3,5,7,9). Internal parameters are taken as

(@11,021, 031, 841,051) = (0,1,1,1,-1), (3.15)

with the other elements of parameter vectors a; (1 < i < 5) taken
as zero. The true solution from Lemma 1 at six time values of

t = —2000,-2,—-0.2,0,2, and 2000 is plotted in Figure 1. It is
seen that at t = —2000, the solution splits into two concentric
rings with nine and five fundamental lumps evenly distributed
on them, respectively, plus another fundamental lump located at
the ring center. As time increases to —2, these 15 fundamental
lumps get close to each other, and the shape formed by them has
changed as well. As time increases further to —0.2 and 0, these
15 fundamental lumps merge with each other and form some
high spikes. However, as time further increases to 2, the merged
solution splits up into 15 fundamental lumps again in a quasi-
trapezoid shape. When time continues to increase to 2000, these
15 fundamental lumps evolve into two concentric rings with nine
and five fundamental lumps on them, plus another fundamental
lump located at the ring center, similar to the pattern at ¢t =
—2000. In particular, the relative positions of fundamental lumps
on the two concentric rings at t = +2000 are roughly the same.

Now, we use Theorem 1 to analytically predict the solution of
Figure 1 at large times of ¢ = +2000. That theorem predicts that
the solution of Figure 1 at large times would split into two
concentric rings with nine and five fundamental lumps on them,
respectively, together with a fundamental lump near the ring
center. To determine analytical predictions of lump positions on
these two rings, we notice from the parameter choices (3.15) that
D = diag(0, 1,1, 1, —1). Then, the 2 X 2 submatrix at the lower left
corner of matrix G from Equation (3.3) and its factored B matrix
from Equation (3.6) are

1 4
c 0 0 -3

Gucics, 1<j<2 = 1 1) B= 1 1l (3.16)
8 3 )

This shows that 8,, = —1/8 and §,, = —4/9. Notice that the
above submatrix of G satisfies our Assumption 1. Using these
values, we can obtain leading-order predictions of lump positions
on these two rings from Equation (3.9) with N =5 and r = 1, 2.
These predicted solutions at large times of t = +£2000 are plotted
in Figure 2 (the center lump whose position is predicted by
the last paragraph of the previous subsection is also shown for
completeness). Comparing these predictions with true solutions
at t = 2000 in Figure 1, we can see that the predictions agree
with true solutions very well.

Next, we quantitatively compare predicted and true solutions at
various time values in order to verify the decay rate of relative
errors on fundamental lumps’ positions in Equation (3.9). For
this purpose, the density plot of the true higher-order lump
solution in Figure 1 at t = 2000 is displayed in Figure 3a. We
then pick a fundamental lump on the inner ring (marked by a
horizontal white arrow), and a fundamental lump on the outer
ring (marked by a vertical white arrow). For each fundamen-
tal lump, we numerically determine at each large time ¢ the
relative error of prediction for its position, which is defined
as \/(xo,true - x0)2 + (yo,true - .))0)2/\/(-)‘:0,”146)2 + (yO,true)z’ where
(Xo.trues Yo.rue) is the true location of the lump (relative to the ring
center (x,y) = (12¢,0)), and (x,, y,) is its leading-order prediction
from Equation (3.9). The graphs of this relative error versus time
t for these two fundamental lumps are plotted in Figure 3b,c,
respectively. For the lump on the inner ring (with N = 5and r =
2), the predicted relative error from Equation (3.9) is O(|¢|™'/°),
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FIGURE 3 | Verification of the decay rate of relative error in leading-order predictions of fundamental lumps’ positions in Equation (3.9) of

Theorem 1 for the example of Figure 1 with A = (1, 3, 5,7,9). (a) Density plot of the true higher-order lump solution in Figure 1 at t = 2000. (b) Relative
error versus time f for the location of the lump on the inner ring marked by a horizontal arrow in (a) (the predicted |¢|~'/5 decay is plotted as a dashed
line for comparison). (c) Relative error versus time ¢ for the location of the lump on the outer ring marked by a vertical arrow in (a) (the predicted A

decay is plotted as a dashed line for comparison).

while for the lump on the outer ring (with N = 5 and r = 1), the
predicted relative error from Equation (3.9) is O(|t|~/°). These
predicted decay rates are plotted as dashed lines in panels (b) and
(c), respectively, as well. We can see from these panels that the
true decay rates indeed agree with the predictions at large time,
which quantitatively confirms Theorem 1.

Example 2. In our second example, we take N = 6; so A =
(1,3,5,7,9,11). Internal parameters a, ..., @, are taken as

(al,la ay1,037,047,057, as,l) =(0,1,1,1,-1,-1), G17)
(az,z, Qa35,04,,0s5,, aa,z) =(1,i,2,3i,4),

with the other elements of parameter vectors a; (1 < i < 6) taken
as zero. The true solution from Lemma 1 at six time values of
t = —5000, -5,-0.5,0, 5, and 5000 is plotted in Figure 4. It is
seen that at t = —5000, the solution splits into three concentric
rings with 11, 7, and 3 fundamental lumps evenly distributed on
them, respectively. As time increases to —5 and —0.5, these 21
fundamental lumps get close to each other, and the shape formed
by them has changed as well. As time increases further to 0,
these 21 fundamental lumps merge with each other and form
several high spikes. As time further increases to 5, the merged
solution splits up into 21 fundamental lumps again. When time
continues to increase to 5000, these 21 fundamental lumps evolve
into three concentric rings with 11, 7, and 3 fundamental lumps
on them again. This lump pattern at ¢ = 5000 is similar to that at
t = —5000. However, we should notice that the relative positions
of fundamental lumps on the three rings at t = —5000 and 5000
are different (unlike Example 1 in Figure 1).

Now, we use Theorem 1 to analytically predict the solution of
Figure 4 at large times of ¢t = +5000. Since N =6 here, that
theorem predicts that the solution of Figure 4 at large times would
split into three concentric rings, with 11, 7, and 3 fundamental
lumps on them, respectively. To determine analytical predictions
of lump positions on these rings, we notice from the parameter
choices (3.17) that D = diag(0,1,1,1,—1,—1). Then, the 3x3
submatrix of G from Equation (3.3) and its factored B matrix from

Equation (3.6) are
1 20
3 0 0 0 0o - >
1 1 1 1
Gicice, 1<j<3 = 3 73 -1}, B=]o0 9
3 1 2 3 1 2
0 4 3 0 4 3
(3.18)

This shows that §,, = %, Bonr = i, and B;; = —%. Notice that
the above submatrix of G satisfies our Assumption 1. Using
these values, we can obtain leading-order predictions of lump
positions on these three rings from Equation (3.9) with N = 6 and
r =1,2,3. These predicted solutions at large times of t = +5000
are plotted in Figure 5. Comparing these predictions with true
solutions at t = +5000 in Figure 4, we can see that the predictions
agree with true solutions very well.

4 | Proofof Theorem 1 for Lump Patterns With
A=(13,..,2N —1)

Now, we prove Theorem 1.

First, we rewrite the determinant o in Equation (2.5) as a larger
3N X 3N determinant

Onxn Pwsan
o= ‘_%;XN IZNZN , (4.1)
where
@ = 2_(j_1)52i—j(x+ +(-Ds+a),
W, =205, ((x+)* +(i-Ds+ a;f). (4.2)

Performing the Laplace expansion to this larger determinant, we
get

det @

1<i,j<N

o= 1 4.3)

1<y <vy<---<YN<2N
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560 -280

FIGURE 4 | The true solution us(x,y,t) with A =(1,3,5,7,9,11) at time values of ¢t = —5000, -5, 0.5, 0, 5, and 5000. Internal parameters are
taken as in Equation (3.17), with the other elements of parameter vectors as zero. The axis X = x — 12t is the moving x-coordinate.

(=5000

FIGURE 5 | Leading-order predictions of lump patterns from Theorem 1 for the solution of Figure 4 at large times of ¢ = +£5000.

When [t| > 1, |S, (x" + vs + a;) | > 1. In this case, the highest ¢-
power term of o comes from the index choice of v; = j in this
Laplace expansion, that is,

2

o~ , |e] > 1. (4.4)

det &, ;

1<i,j<N

Now, we analyze the large-time asymptotics of this o determinant
for the index vector A = (1,3,...,2N —1). For this purpose, we

introduce a moving x-coordinate
X =x-12t. (4.5)
Then, the elements x; in Equation (2.7) become

.12k
X, = Hx + Hly + Ty, (4.6)
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where
12(1 - 3"*1)t

T, = o

4.7
In particular,
xf=x+2y, T,=-12t, T5=-16t. (4.8)

For A =(1,3,...,2N — 1), the vector a; has length n; = 2i — 1. Let
us define parameters c; ; by

Z ¢; €/ =exp (Z aw—ef>, (4.9
= =

with a;; =0 when j > n;. Then, using the definition of Schur
polynomials, we get the relation
k

S (xt +vs+a;) = Z C; Sy (" +vs). (4.10)
j=0
When /%2 + y2 = O(|t]9), <q< %,wehave
S (xt +vs) ~ S (h), [t|>1, (4.11)
S1(v) + g1,150(v)
S3(v) + T28,150(V) + g2,5,(V)

o~F|:

Son—a(V) + Tév_ng—l,ISO(v) + Té\]_sgzv—l,zsz(v) + -
Sono1 (V) + Té\]ilgN,lso(V) + Tglfng,zsz(V) + -

where h = (x],T,,T;,0,0,...). Splitting h as (0,7,,0,0,..)+V,
with
v = (x},0,T5,0,0,...), (4.12)

we can use the definition of Schur polynomials to show that
[k/2]

Sthy =)

j=0

},—!Zsk_2 (V). (4.13)

Now, we use the above results to derive the highest power term of
|t] in the o determinant (4.1).

When 1 < |x| < O(|t]'/?), we can use relations (4.10)-(4.13) to
write the dominant terms of ® in Equation (4.1) as

Here, we have dropped certain subdominant terms in ® using the
fact that for any positive integer n and nonnegative integer k,

IT5" S0 (W < ISV, 1< |x]| < O(t]/?).  (4.18)

Note that this fact would not hold when |x]| = O(1) or |x]| >
O(|t|*?), with T;'S;(v) =0(S;(v)) when |x/|=0(1) as an
example. The above D matrix can be seen the same as that defined
in Equation (3.1) since c¢;; = a;;. The above 7 matrix can be
rewritten as

F = E"'FE, (4.19)

where E = diag (1, T, ..., T;(N_l)>, and F is as defined in Equa-

tion (3.2). Then, we have F!DF = E~'GE, where G is as defined
in Equation (3.3). Thus, @’s asymptotics (4.14) becomes

® ~ F[P, + E'GEP,|, [t|>1. (4.20)
This ® can be written out explicitly as
Z_ISU(V)
2! (Sz(V) + g2,251(V))
(4.21)

2! (SZN—4(V) + Tg\]_SgN—l,ZSI )+ )
27! (SZN—Z(V) + Tglfng,zsl(V) + )

4.1 | The Outermost Ring Case (r = 1)

We first prove Theorem 1 for the outermost ring of fundamental
lumps where r = 1.

In this case, under Assumption 1, gy, # 0 since gy, = M;. In
the last row and first column of the right matrix of the above
equation (4.21), we balance its first two terms S,y_,(v) and
T 'gn1So(v) as the leading-order terms. When x| = O(]t|)
with g > 1/3, Si(v) = ((x+)") Thus this balance gives x; =

N-1
|t]2v-1 ). Notice that - < - < % for N > 1. In this (x,y)-
2N—

region, it is easy to check that all the other g;; terms in (4.21) are
subdominant, and we have

® ~ FP, + DFP,, |t|>1, (4.14)
where S:(v) 2718,(v)
S3(v) 271S,(v)
1 0 0 &~ F|: :
T, 1 Son-3(V) 27'S5n_4(V)
F = H : ‘. . N 4.15 - -
: : o (4.15) Son-1(V) +T12V 1gN,lSO(V) 27180 (V) son
Ty Ty 2
1 N—21 ! (4.22)
(N-1)! (N-=-2) NN
D = diag(c;;, 0153155 Cr ) (416)  Forany xi = O(Jt|?) withq > 1/3,
1 k
P, = Mat, .y, 1<]<2N( Szz —j1- k(V)) k=1,2. (417) Se(v) ~ g(xf) : (4.23)
9 of 22
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Thus, if % > l, thatis, N > 2, then using this S, (v) asymptotics
and introducing the scaled variable

N-1 N-1

z= T;mxz' = Tz_m(ﬁ + 2iy), (4.24)
we can see from Equation (4.22) that

detN q’i,j ~ }’1T§Jl QN(Z;ﬁl,l)a (4.25)

1<i,j<

where the polynomial Q,(z;3) for an arbitrary integer n and
complex number § is defined as

z 1 e 0

2 Z 0

3! 2!

Q.(z;B) = det| : : P . (426)

z2n=3 z2n—4 Zh—2

(2n-3)! (2n-4)! o (n—-2)!
z2n—1 z2n=2 Zn

(2n-1)! + B (2n-2)! o ;

nxn

y, =27NON-D/2 and  p, = (N —1)N(N +1)/2(2N —1). This
Q,.(z; B) polynomial can be calculated as [27]

Zn(n+1)/2 Z(n—z)(n—l)/z

Q@p = +p : (“27)

n Kn—2

where x, = H;LI(Z j — 1!, and its nonzero roots are given by the
equation

z1 = —B(2n — DII(2n - 3)!, (4.28)
that is, they are the (2n — 1)th roots of —f(2n — 1)!!(2n — 3)!!.

Substituting the asymptotics (4.25) into the o asymptotics (4.4),
we get

o ~ 72 T, |Qu(z: 1) - (4.29)

Combining this ¢ asymptotics with Equation (2.4), we see that
when x| = O(|t|¥-1), that is, when /X2 + y2 = O(|t|5-1), the
solution u,(x,y,t) would be asymptotically zero in this region
at large |¢|, except when (X, y) is at or near the location (X, J,),
where

N-1

2o =T, ™ (%, + 2iy,) (4.30)

is a nonzero root of Qy(z; 8, 1), that s, z, is one of the 2N — 1)th
roots of —@; (2N — 1)!!(2N — 3)!!. This z, value matches the one
given in Theorem 1 forr = 1.

Next, we show that when (%, y) is at or near these (%, J,) loca-
tions, the solution u,(x, y,t) in Lemma 1 asymptotically reduces
to a fundamental lump. Near these locations, the asymptotics
(4.29) would break down since its Qy(z; 8, ;) term is near zero.
Thus, to obtain the correct o asymptotics there, we need to cal-
culate the next-order terms. By reviewing our prior asymptotics,

N-1
we can see that in these (%, y)-regions where x| = O(|t|2-1), the
terms which we have neglected in ®’s asymptotics (4.22) are terms

1
of relative order O(|¢|” 2v-1). Including such terms, we can see that

the full asymptotics of o’s Laplace expansion (4.3) is

o =7IT,|” {

Qiy(z; B11) + O(T; 7)

2

Qn(z;8,1)+0 (T;ﬁ )

2 -y _aN-1)
2N-1 2N-1
T, ™7 10 (T2 > ,

(4.31)

L1
4

where the middle term in the above asymptotics comes from
the Laplace expansion (4.3) for the index (v,,7v,,...,Vy) being
(1,2,...,N —1,N + 1), and the prime denotes differentiation with
respect to z. Expanding the Qy(z; ;) term around its nonzero
root z,, and replacing Qj,(z; 8, ;) by its dominant term Q},(z,; 51.1)
which is nonzero since each of the nonzero roots z, in Qy(z; 1,1)
is simple, we get

_AN-D 2 . . -
o=y, |T,|" v |Q;\](Z();ﬁl,l)| { (X = %) +2i(y — J)

xan Py 1
+ O(T;N*1> +Z+O<T2 21“) . (4.32)

The above equation can be rewritten as

pl_M ’ 2 A . 2 1
o=y T, - |QN(Z();51,1)| [(% = xp) +2i(y =yl + ~

4
__r
X (1 + o<T2 -1 )) (4.33)
where
N2 No1 1
Xo + 2iyy = %o + 21y + O<T22N1 ) =zoT,"! (1 + O<|T2|’m ))
(4.34)

Inserting this o asymptotics into Equation (2.4), we see that the
resulting solution u, (x, y, t) is

1
uA(x,y,t)=ul(x—xo,y—yo)+0(|tl_ﬁ>, (4.35)

which is asymptotically a fundamental lump located at the
(9, ¥o)-positions given in Equation (4.34). This proves Theorem 1
for the case of r = 1.

4.2 | The Second Outermost Ring Case (r = 2)

The outermost ring case with r =1 above pertains to x; =
N-1

(0] (Itlﬁ ) Now, we consider the case of r =2 in Theorem 1,

where x7 = O (|t|?) with g = ZNN—_35 > i Notice that this q is less

than 1/2. This case corresponds to the second outermost ring

of fundamental lumps. In this (x, y)-region, the matrix elements

in the last two rows and the first column of the right matrix of
Equation (4.21) have the following asymptotics:

Son—a(V) + Tév_ng—l,ISO(v) + Tév_3gN—1,zsz(V)

+ oo

1
TIZVing—l,ISO(V)(l + 0(|t|_m)>, (4.36)
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and

Son_1 (V) + Tév_lgN,lso(V) + Tgl_ng,zsz(V)

Repeating calculations similar to that for the r = 1 case, we can
N3
further show that when /%2 + y2 = O(|t|~v=5),

1
+ . :sz\lilgN,IS()(V)<1+0(|t|_ﬁ))y (4.37) uA(X,_V,t)=u1(x_xO,y_y0)+O<|t| 2N—5), (443)
while the upper N — 2 rows and first column of that matrix ~ Where
are dominated by their first term S,;_;(v). Using (4.37) and row Nos
operations to eliminate the leading-order term TY~2gy_;,S,(V) Xy + 21y, = ZOTzzsz (1 n O(Itl'ﬁ)). (4.44)
of (4.36) in Equation (4.21) and dropping subdominant terms, we
find that
S1(v) So(v) 0
S;(v) S,(v) Si(v)
det @;; ~y, det : : :
1<ij<N Son-5(V) Son-6(V) Son-7(V)
Son—s(V) + szv_Sﬁz,zSz(V) Son-a(V) + T§_352,2S1(V) Son-s(v) + TJZV_352,250(V)
ng_lﬁl,lso(v) 0 0 NN
S1(v) So(V) 0
S3(v)

= 7151,1T;V_1 det] :
Son-7(V)
Son—s(V) + Tﬁ"’3ﬁz,zSo(V)

where 8, =gy 1, — (8n-11/8n.1)8N2 = My/My, and M, is as
defined in Equation (3.4). This 8, , is the same §3,, as in the AB
factorization (3.6) and is nonzero under Assumption 1. Since x; =
O (]t]?) with g > 1/3, then using the S, (v) asymptotics (4.23), we
can employ similar techniques as used earlier to reduce the above
asymptotics to

dEtN (Di,j ~ YZngQN—Z(Z;ﬁZ,Z)’ (4.39)

1<i,j<

where z is the scaled variable

N-3 N-3

z= Tz_mxzr = T; N (% + 2iy), (4.40)

Y2 =711, and p, = N =1+ (N = 3)(N - 2)(N - 1)/2(2N - 5).
Then, the o asymptotics (4.4) becomes

2
g~ 7; |T,|22 |QN—2(Z;62,2)| . (4.41)

N-3
Because of this, when 4/X2+ y2 = 0O(|t|>n-), the solution
u,(x,y,t) would be asymptotically zero in this region at large |¢|,
except when (%, y) is at or near the location (%, ,), where

N-3

2o = T, 7 (%, + 2iJ)) (4.42)

isanonzero root of Qy_,(z; 8, ), thatis, z, is one of the 2N — 5)th
roots of —,,(2N — 5)!!(2N — 7)!!. This z, value matches the one
given in Theorem 1 for r = 2.

S,(v) S1(v)
: : s (4.38)
Son-s(V)  Son—o(V)

Son-6(V)  Soy_s(V) -+ (N=2)x(N—2)

That is, the solution u,(x,y,t) asymptotically reduces to a
fundamental lump located at the above (x,, y,)-positions. This
proves Theorem 1 for r = 2.

4.3 | The Case of the Innermost Ring With Three
Fundamental Lumps (r = [N /2] for Even N)

For higher r values corresponding to rings closer to the ring
center, the proof of Theorem 1 proceeds with little modification.
We use lower rows of g; ; terms in the right matrix of (4.21) to
eliminate certain g; ; terms of small j in the higher rows of that
matrix, which is equivalent to the AB factorization (3.6). Then,
when x} = O(Jt]9) with g = ZNN__II__—T;__?) > 1/3, we can reduce
(4.21) to a simpler matrix so that det,; ;.y @; ; is asymptotically
proportional to Qy_,-,,(z; 8,,), with z being a certain scaled x;
variable. This would yield the results in Theorem 1 for higher r.

This process proceeds until we reach the r = [N/2]th ring for

NE220) Ly this case, xt = 0(|t['/?).
ON-1-4(r—1) 3

This case is special because the S, (v) asymptotics (4.23) does not
hold here. Indeed, now

even N, in which case

S;(v) = % +T,, (4.45)

where the two terms in it are of the same order in |¢f|. In this
special case, much of the previous calculations still holds, until
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we reach the following reduced asymptotics:

R S (v So(v
1<de£NfI> ~ )/[N/Z]Ts det 1( ) 0( ) .
LIS S3(V) + ToBin 21 v 2150(V)  SH(V)

(4.46)

which is the counterpart of Equation (4.38). Here, y|y ;) =
28 | W2 g and g = (N? — 4)/4. Since

+\2
S(v)=1, S)(v)= xr, S,(v) = > 2) s (4.47)
introducing the scaled variable
_1 1
z=T, x] =T, (% +2iy), (4.48)

we can easily find that the asymptotics (4.46) becomes

z 1
det @;; ~ J’[N/z]T " det 2
1<i,j<N + Bin/21in/21 + o

= Yy T5 " Qa2 B jarin ) + 4/3)- (4.49)

Here, the factor 4/3 comes from the ratio of T;/T,. Then, the o
asymptotics (4.4) becomes

2
g~ V[ZN/Z] |T2|2(p+1) Q, (Z;ﬁ[N/Z],[N/Z] + 4/3)) . (4.50)

This asymptotics shows that, when /%24 y? = O(|t|%), the
solution u,(x,y,t) would be asymptotically zero in this region
at large ||, except when (%, y) is at or near the location (X, J,),
where

1

2o =T, * (% + 2if,) (4.51)

is a nonzero root of Q, (z; By, n/2) + 4/3), that is, z, is one of
the cubic roots of —(8|x/2;n/2 +4/3)3!11!L. There are three such
(X, ¥,) locations since there are three such z, roots. Similarly as
before, we can further show that at each of these three locations,
the solution u,(x, y, t) asymptotically reduces to a fundamental
lump located at the (x,, y,)-positions specified in Theorem 1 for
the r = [N/2]th ring with even N. This finishes the proof of
Theorem 1.

5 | Lump Patterns at Large Times for
A#(1,3,..,2N =1)

In this section, we discuss patterns of higher-order lumps at large
times for A # (1, 3, ...,2N — 1) under general internal parameters
{a;} where q;, is dependent on the i index.

Let us first recall from Ref. [23] that if g, ; is independent of the
i index, when A =(1,3,...,2N — 1), the solutlon pattern would
comprise fundamental lumps arranged in triangular shapes,
which are described by root structures of the Yablonskii-Vorob’ev
polynomials; and when A # (1, 3,...,2N — 1), the solution pat-
tern would comprise fundamental lumps arranged in nontri-
angular shapes in the outer region, which are described by

nonzero-root structures of the associated Wronskian-Hermite
polynomials, together with possible fundamental lumps arranged
in triangular shapes in the inner region, which are described by
root structures of the Yablonskii-Vorob’ev polynomials.

Now, if a;; is dependent on the i index, we have shown in previous
sections that when A =(1,3,...,2N — 1), the solution pattern
would generically comprise fundamental lumps uniformly dis-
tributed on concentric rings. When A # (1, 3, ...,2N — 1), it turns
out that the solution pattern would comprise fundamental
lumps arranged in nontriangular shapes in the outer region,
which are described by nonzero-root structures of the associated
Wronskian-Hermite polynomials, together with possible funda-
mental lumps generically located on concentric rings in the inner
region. The analogy of this result to that in [23] is clear, except
that triangular shapes in [23] are replaced by concentric-ring
shapes now.

To describe our results when A # (1,3,...,2N — 1), let us first
remind the reader about Wronskian-Hermite polynomials. Let
g, (z) be polynomials defined by

Z qi(2)e" = exp (ze + €2). (5.1)

k=0

These q,(z) polynomials are related to Hermit polynomials
through simple variable scalings. Then, for any positive integer N
and index vector A = (n, n,, ..., ny), where {n;} are positive and
distinct integers, the Wronskian-Hermite polynomial W,(z) is
defined as the Wronskian of g, (z) polynomials

Wa(z)

= Wron|qy, (2), 4, (2), ..., 4ny (2)]. (5.2)

An important property of these Wronskian-Hermite polynomials
is that the shape formed by their nonzero roots is nontriangular
due to the quartet symmetry of their roots. In addition, the
multiplicity of the zero root in W,(z) is a triangular number
d(d + 1)/2, where

d= kodd - keven’
keven - kadd -1,
and k44, k..., are the numbers of odd and even elements in the
index vector (n,, n,, ..., Ny ), respectively.

when kodd - keuen > 0

(5.3)

when K,4q — Kepen < —1,

Regarding nonzero roots of Wronskian-Hermite polynomials, it
was conjectured that they are all simple [28]. If this conjecture
holds, then the Wronskian-Hermite polynomial W ,(z) would
contain

N

N(N -1 dd+1)
w= 2

2

(5.4)

. N N(N-1)
simple roots, where Y _ n; —

Wronskian-Hermite polynomial W, (z) [23].

is the degree of the

5.1 | Main Results

Our results on solution patterns of higher-order lumps at large
times for A # (1, 3,...,2N — 1) can now be described as follows.
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Theorem 2. IfA #(1,3,...,2N — 1) for any positive integer N,
d > 1 where d is as defined in Equation (5.3), and nonzero roots of
Wronskian-Hermite polynomials are all simple, then when |t| > 1,
the higher-order lump solution u,(x,y,t) in Lemma I would split
into Ny, fundamental lumps in the outer region, and d(d + 1)/2
fundamental lumps in the inner region under Assumption 2 of the
next subsection.

1. In the outer region, the (x,,Y,)-positions of these Ny, funda-
mental lumps u,(x — x,, ¥ — Y,,t) are given by the equation

x0+2iyo=z0(—12t)%<1+o(|t|*%)), (5.5)

where z, is each of the Ny, nonzero simple roots of W (z).

2. In the inner region, under Assumption 2 of the next subsection
(which holds generically for general internal parameter values),
these d(d + 1)/2 fundamental lumps will be located on [d /2]
concentric rings centered at (x,y) = (12t, 0), with one of them
also located in the O(1) neighborhood of the ring center when d
is odd. The rth ring (counting from outside with 1 < r < [d/2])
contains 2d — 1 — 4(r — 1) fundamental lumps u,(x — x,, y —
Yo, t), and their (x,,y,)-positions (relative to the ring center
(x,y) = (12t,0)) are given by the equation

d-1-2(r-1) _ 1
T e (k)]
(5.6)
where z, is every one of the (2d — 1 — 4(r — 1))-th roots of
—B,,(2d =1 —4(r — 1)1 (2d — 3 — 4(r — 1))!!, except in the
case of even d and on its [d/2]th (innermost) ring, in which
case z, is every one of the cubic roots of —(ﬁ[d/2|q|d/2| +
4/3)3111!1. Here, {ﬁ”, 1 <r < [r/2]} are complex parameters
whose formulas will be provided in the next subsection. Written
mathematically, we have the following solution asymptotics:

1
up(x,y,0) = uy(x — X0,y = yo) + O<|tl_2d+4<H> > [t] > 1,

(5.7)
where 1 <r < [d/2], and (x,,y,) is as given above for each of
the stated roots z,,.

The proof of this theorem will be given in the next section.

This theorem indicates that when A #(1,3,...,2N —1), the
solution pattern in the outer region of O(|t|'/?) is the same as
that in the special case of g; ; being independent of the index i as
considered in Ref. [23]. The reason is obviously that the leading-
order prediction formulas (5.5) for locations of fundamental
lumps in the outer region do not depend on the q;; parameter
values. In other words, this same leading-order outer-region
prediction applies to all higher-order lump solutions. As we have
seen in the special case of [23], this outer pattern is described by
the nonzero root structure of the underlying Wronskian-Hermite
polynomial and is nontriangular. As time moves from large
negative to large positive, this nontriangular pattern switches its
x- and y-directions. In addition, fundamental lumps in this outer
region separate from each other in proportion to |¢|/? at large
time. Since this outer region’s leading-order prediction for general
higher-order lumps is the same as that for special higher-order

lumps detailed in [23], we will not give much attention to this
part of the prediction in this paper.

The prediction of Theorem 2 for the inner region shows that, in
this inner region of O(|¢|?) with % <g< % the solution pattern
is similar to that stated in Theorem 1, that is, the pattern would
generically comprise fundamental lumps uniformly distributed
on concentric rings, plus another fundamental lump near the ring
center when d is odd. The main difference from Theorem 1 is
only that the number N would be changed to d, and the numbers
B, would be changed to ﬁA”. In this inner region, fundamental

lumps separate from each other in proportion to |t| 2=+, where m
is a certain positive integer that is different on different rings. By
choosing the d and r values properly, we can get separation rates

m
of |t|z=+1 for any positive integer m in this inner region.

Theorem 2 assumed that d > 1. If d = 0, there would not be any
fundamental lumps in the inner region. If d = 1, there would be
a single fundamental lump located in the O(1) neighborhood of
the wave center (x, y) = (12¢,0). In both cases, there are no rings
of lumps in the inner region.

5.2 | The Assumption and ﬁ” Values in Theorem 2

Theorem 2 was stated under some assumptions. It also involved
some complex parameters {§,,,1 < r < [r/2]}. We present these
assumptions and provide formulas for §, , in this subsection.

When d > 1, we can see from d’s definition (5.3) that there are two
cases: k,qq — Keven > 1 and K,.,, — Koqq > 2. In the former case,
there are more odd indices in A; while in the latter case, there
are more even indices in A.

Before presenting our assumptions, we need to introduce some
notations which would differ for these two cases.

5.2.1 | Notations for the Case of k33 — K,pep, > 1

In this case, there are more odd indices than even indices
in A, and d = k,y; — k,pen, Where d is as defined in Equa-
tion (5.3). We group such indices such that n, <n, <--- <
N, are all odd indices, followed by A; <A, <--- <7,
which are all even indices, with k.4 + K,.., = N. That is, A =
(ny, Mgy eee s M 4> r Mgy e, Ay, ) This index grouping does not
affect the higher-order lump solution in Lemma 1.

We define four matrices

D, =diag(a,;,ay,, . A1) (5.8)
1 1 1
1"1{211 (l"l/%]*l)! (["1/12J*2)!
F=| 2l Gmay w2 (5.9)
1 1 1
IMeygg /21 (kg /210 (g /21-2) s
G=F'DF, (5.10)
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1 1 1
[ﬁ1{2]! (A /f]—l)! ([ﬁl/%]—Z)!
R = [Az/2]! ([Az/2]-1)! ([A2/2]-2)! (511)
1 1 1
mkeuen /21! (Mkeven /21-D! (mk?'-'ﬂ'" /22 kevenXkodd

Here, 1/k! = 0if k < 0. Note that the diagonal of the D, matrix is
the vector of a;; parameters for the odd indices of A, and the R
matrix has more columns than rows since k.43 > Kepen-

We also split matrices G and R as

G =[G,;,G,], R=[R},R,], (5.12)
where G,, R, each have k,,,,, columns, while G,, R, each have d
columns. Notice that R, is a square k,,,,, X K., matrix, while G,
has more rows (k,;,; rows) than columns. We further define

G=G,-GR/'R,, (5.13)

whichisak,,; X d matrix. In addition, we introduce the following
[d/2] minors of the G matrix,

= det (A},

Kodd+1-r<i<k,qq, 1<j<r

)

r=1,2,..,[d/2]. (5.14)

r

These minors are determinants of r X r submatrices in the lower
left corner of matrix G.

5.2.2 | Notations for the Case of k..., — k,qq > 2

In this case, there are more even indices than odd indices in
A, and d = k.., — koqa — 1, where d is as defined in Equa-
tion (5.3). Now, we group such indices such that n, <n, <
-+ < ny, - are all even indices, followed by A; < 7, < --- <y
which are all odd indices, with k,,,, + k,qq4 = N. That is, A =

(M1, Mgy e s 5 gy Ry s Ry

even’

In this case, we redefine matrices

We also split matrices G and R differently from (5.12) as
G =[Gy,G1,G;], R=[R;,R;,R;], (5.19)
where G, is G’s first column, G, its next k,;; columns, G, its

remaining d columns, R, is R’s first k.44 columns, R, its next d
columns, and R; its last column. We further define

G=G,-GR/'R,, (5.20)

which is now a k,,,, X d matrix. In addition, we introduce the
following [d /2] minors of this G matrix,

= det (A},

Kepen+1-7<i<kepen, 1<j<r

M,

r=1,2,..,[d/2]. (5.21)

These minors are determinants of r X r submatrices in the lower
left corner of matrix G.
5.2.3 | The Assumption and ﬁ” Values

Under the above notations, our assumption for Theorem 2 is the
following.

Assumption 2. We assume that

R M
M, #£0, r=12,..,[d/2]-1 —
Miq/2141
0, when d is odd,
5.22
# —g, when d is even, (522)

where M, is defined in Equation (5.14) for the case of k,gq — Koyen >
1 and in Equation (5.21) for the case of kyyen, — Koga > 2.

This assumption holds for generic values of (a, ;, a,;, a3, ...). But
it does not hold in the previous case studied in [23] where all
a;,’s were equal to each other. In that case, G is proportional to
an identity matrix and thus M, = 0, violating this assumption.
Because of that, the concentric-ring pattern of lumps in the inner
region as predicted by Theorem 2 does not apply to the previous
case of [23] (indeed the inner pattern in [23] was a triangular
shape of lumps instead).

D, =diag(a,,,ay,, ., A1) (5.15)
L L 1 Under Assumption 2, the [d/2] X [d/2] submatrix in the lower
(121 (im /211 (m/21-2) left corner of G defined in Equation (5.13) or (5.20) would admit
the following factorization
F=| 1o (Ima /211 (Ina/21-2) (5.16)
1 1 1 G1€+1—[d/2]gi51€, 1<j<[d/2] = AB, (5.23)
(hgen /2 (kg /20D (g /21-2) kevnkanen
. where k is equal to k,;; When K gy — kopen > 1 and equal to k.,
G=F D/F, (517) when k., — Koga > 2,
1 1 1 5
1 & e a 0 0
2 2ol (/2 - Szl Flarziiara
~ |0 1 - ey & :
R=| /2! ([A2/2]-1)! ([A2/2]-2)! (5.18) A= . , B= A R B
: : : : Baz  PBajdj
! ! ! 0 0 0 1 By Bz Bl,[d/z]
lggq /20 ([iygq /21-D0 ([Fageygq /21201 ko konen (5.24)
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and &; ;, 8; ; are complex constants. In particular,

M
r . 1<r<[d/2].

— (5.25)
Mr—l

Bl,l = Ml’ :ér,r =

Under Assumption 2, ﬁA,.,r #0 for 1<r<|[d/2]-1, and
Brajarjajz # 0 when d is odd and B4/ +4/3 # 0 when d is
even. These &J values are the ones mentioned in Theorem 2. One
can see that this AB factorization is the counterpart of a similar
factorization in Equation (3.6) for the A = (1,3, ...,2N — 1) case.

5.3 | Remarks on the Center-Lump Location for
0Odd Values of d

Theorem 2 predicts that when d is odd, there would also be a
fundamental lump lying in the O(1) region of the ring center
(x,y) = (12t,0). The asymptotic location of this center lump was
not provided in Theorem 2 because this is a minor point and we
do not want to spend much space on it. To derive its asymptotic
position, one only needs to slightly modify our calculations
leading to the asymptotic positions of fundamental lumps on
concentric rings. We will only mention the results below without
providing details.

When d > 1, we take the bottom left ([d/2] + 1) x ([d/2]+ 1)
submatrix of G in Equation (5.13) or (5.20), and increase its two
matrix elements adjacent to its top-right corner by 4/3 and call
this new matrix G. Then, we perform the AB factorization to this
new matrix G similar to Equation (5.23). Then, the leading-order
position (x,, y,) of the center lump would be predicted by x, +
21y = —Pjajaj+1,1d 241> WHETE Bg/2141[a/21+1 1S from the B matrix
of that factorization, and the error of this (x,,y,) prediction is
O(]t|™1). Notice that this result is similar to the A = (1, 3,...,2N —
1) case briefly described at the end of Section 3.2.

When d = 1, the situation is a little different. In this case, we
need to extend the F matrix in Equation (5.9) or (5.16) by one
column and call this new column F,. We also define a new
vector W = F~'F,, where F is the preextended square matrix.
Then, the leading-order position (x,, y,) of the center lump would

1 1 0 0\ (o0 0 o 1 1 0
1 1 0|llo i o L1
G= 21! 1 21! 1
- = 11 0 2 - =1
3 2 a2
121 41 1o o 2L L 1L
4! 3! 2! 4! 3! 2!

be predicted by x, + 2iy, = — (M, + (4/3)wy, ), where M, is as
defined in Equation (5.14) or (5.21), and wy,, is the last element of
the vector W. The error of this (x,, y,) prediction is O(|¢|™1).

5.4 | Numerical Verifications of Theorem 1

Now we use two examples to verify Theorem 2.

Example 3. In this example, we take N =5 with A=
(3,5,7,9,4), which falls into the case of k33 — k., > 1. Internal
parameters a, ..., as are taken as

(@11, 21, Q31 Qa1 as1) = (0,1, 2,21, —1), (5.26)
with the other elements of parameter vectors a; (1 < i < 5) taken
as zero. The true solution from Lemma 1 at six time values of
t = —2000, -3,-0.5,0,3, and 2000 is plotted in Figure 6. It is
seen that at t = —2000, the solution splits into 18 fundamental
lumps. Twelve of them are located in the outer region, forming
a quasi-rectangular shape. The other six are located in the inner
region, with five of them lying on a ring and the remaining lump
near the ring center. As time increases to —3, —0.5, and 0, these
18 fundamental lumps move close to each other and coalesce,
forming a high spike plus some low wave structures. As time
increases to 3, the coalesced solution splits up into 18 fundamental
lumps again. At ¢t = 2000, these 18 fundamental lumps evolve
into a clear pattern, with 12 of them located in the outer region
forming a quasi-rectangular shape that is rotated 90° from that
in the ¢ = —2000 solution. The remaining six fundamental lumps
are located in the inner region forming a ring of five fundamental
lumps plus another lump near the ring center, similar to that
in the t = —2000 solution. In addition, the relative positions of
fundamental lumps on the ring in the inner region at t = +2000
are roughly the same.

Now, we use Theorem 2 to analytically predict the solution
of Figure 6 at large times of ¢t = £2000. In this case, k,qq = 4
and k.., = 1. Thus, this belongs to the case of k33 — kepen > 1
with d = 3. The Wronskian-Hermite polynomial W, (z) for A =
(3,5,7,9,4) has 12 nonzero simple roots, which are approximately
+3.4177, +2.5684i, +1.3866 + 2.4091i, and +3.4609 + 2.1538i.
Theorem 2 then predicts that the solution of Figure 6 at large
times would split into 12 fundamental lumps in the outer region,
one ring with five fundamental lumps on it in the inner region,
plus another fundamental lump near the ring center. Locations
of those fundamental lumps in the outer region are predicted
by Equation (5.5), with z, being the above 12 roots. To predict
locations of fundamental lumps on the ring, we notice from
the parameter choices (5.26) and D;’s definition (5.8) that D, =
diag(0, i, 2, 2i). Thus, the G matrix from Equation (5.10) is

8 —8i 24 — 20i 48 — 361 48 — 48i
—8+8 —-24+20i —-48+36i —48+48i
= 7 . . . (5.27)
4—; 12 -9i 24 — 171 24 — 24i
—1+2 341 6451 —6+8i
and the R matrix from Equation (5.11) is
R =(1/2,1,1,0). (5.28)

Then, we can calculate the G matrix from Equation (5.13) and
get M, = Pri=-1+ Ei. Using this 5,; value, we can obtain
leading-order predictions of lump positions on this ring from
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FIGURE 6 | The true solution u,(x,y,t) with A = (3,5,7,9,4) at time values of t = —2000, —3, —0.5, 0, 3, and 2000. Internal parameters are taken
as in Equation (5.26), with the other elements of parameter vectors as zero. The axis X = x — 12¢ is the moving x-coordinate.

1=—2000

1=2000

FIGURE 7 | Leading-order predictions of lump patterns from Theorem 2 for the solution of Figure 6 at large times of t = +2000.

Equation (5.6) with d = 3 and r = 1. These predicted outer-region
and inner-region-ring solutions at large times of ¢t = +2000 are
plotted in Figure 7 (the center lump whose position is predicted
by the remarks of Section 5.3 is also shown for completeness).
Comparing these predictions with true solutions at t = +£2000 in
Figure 6, we can see that the predictions agree with true solutions
very well.

Quantitative comparisons between the predicted and true solu-
tions in Example 3 at large times have also been made in order
to verify the decay rate of relative errors on fundamental lumps’
positions (5.6) of the inner ring. For this purpose, the density plot
of the true higher-order lump solution in Figure 6 at t = 2000 is
displayed in the left panel of Figure 8. We then pick a fundamental
lump on the inner ring that is marked by a vertical white arrow in
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FIGURE 8 | Verification of the decay rate of relative error in leading-order predictions of fundamental lumps’ positions in Equation (5.6) of

Theorem 2 for the example of Figure 6 with A = (3,5,7,9,4). The left panel shows the density plot of the higher-order lump solution in Figure 6 at

t = 2000. The right panel shows the relative error versus time ¢ for the location of the lump on the ring marked by a vertical white arrow in the left panel

(the predicted |¢|'/5 decay is also plotted as a dashed line for comparison).

that panel. For this fundamental lump, we numerically determine
at each large time ¢ the relative error of prediction (5.6) for
its position. The graph of this relative error versus time ¢ is
plotted in the right panel of Figure 8. The predicted relative error
from Equation (5.6) (with d =3 and r = 1) is O(|t|~/%). This
predicted decay rate is also plotted as a dashed line in the right
panel for comparison. We can see from this panel that the true
decay rate indeed agrees with the prediction at large time, which
quantitatively confirms Theorem 2.

Example 4. As the last example, we take N = 5 with A =
(2,4,6,8,10), which falls into the case of k,,,,, — k.44 > 2. Internal
parameters a,, ..., as are taken as

(al,h Ay1,037,047, a5,1) =(0,1,1,1,-1), (5.29)

with the other elements of parameter vectors a; (1 < i < 5) taken
as zero. The true solution from Lemma 1 at six time values of
t = —2000, -3, -0.3,0, 3, and 2000 is plotted in Figure 9. It is seen
that at t = —2000, the solution splits into 20 fundamental lumps.
Ten of them are located in the outer region, forming two disjoint
arc segments. The other 10 are located on two concentric rings of
seven and three fundamental lumps each in the inner region. As
time increases to —3, —0.3, and 0, these 20 fundamental lumps
move close to each other and coalesce, forming a high spike and
some low wave structures. As time increases to 3, the coalesced
solution splits up into 20 fundamental lumps again. At t = 2000,
these 20 fundamental lumps evolve into a clear pattern, with 10 of
them located in the outer region forming two disjoint arcs that are
rotated 90° from that in the = —2000 solution. The remaining 10
fundamental lumps are located on two concentric rings of seven
and three fundamental lumps each in the inner region similar to
the t = —2000 solution, but the relative positions of fundamental
lumps on these two rings in the inner region are different at
t = —2000 and 2000.

Now, we use Theorem 2 to analytically predict the solution
of Figure 9 at large times of t = +2000. In this case, k,;q =0
and k.., = 5. Thus, this belongs to the case of k.., — koqa > 2

with d = 4. The Wronskian-Hermite polynomial W, (z) for A =
(2,4,6,8,10) has 10 nonzero simple roots, which are approx-
imately +2.537203i, +2.487972 +1.879695i, and +1.142561 +
2.396560i. Theorem 2 then predicts that the solution of Figure 9
at large times would split into 10 fundamental lumps in the outer
region, and two rings with seven and three fundamental lumps,
respectively, in the inner region. Locations of those fundamental
lumps in the outer region are predicted by Equation (5.5) with
z, being the above 10 roots. To predict locations of fundamental
lumps on the two rings, we notice from the parameter choices
(5.29) and D, s definition (5.15) that D, = diag(0,1,1,1,-1). Thus,
the G matrix from Equation (5.17) is

-6 —-15 —-40 -120 -240
6 15 40 120 240

5 13
G = _2; -= —219 —60 —120]. (5.30)
2, 2y 40
31 11 35
- = 2 -5 -9
8 24 3

Both the R matrix from Equation (5.18) and the G, matrix from
Equation (5.19) are null. Thus, the G matrix in Equation (5.20) is
just the above G matrix with its first column removed. Then, the
2 X 2 submatrix at the lower left corner of G and its factored B

matrix from Equation (5.23) are
o 2%
=l 4 B) (3
- 24 - 3

This shows that 8, ; = —11/24 and 8,, = —20/33. Notice that the
above submatrix of G satisfies our Assumption 2. Using these
values, we can obtain leading-order predictions of lump positions
on these two rings from Equation (5.6) with d =4 and r = 1, 2.
These predicted solutions at large times of t = +£2000 are plotted
in Figure 10. Comparing these predictions with true solutions at
t = 2000 in Figure 9, we can see that the predictions agree with
true solutions very well.
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=3

t=2000

250

FIGURE 9 | The true solution u,(x,y,t) with A = (2,4, 6,8, 10) at time values of t = —2000, —3, = 0.3, 0, 3, and 2000. Internal parameters are taken
as in Equation (5.29), with the other elements of parameter vectors as zero. The axis X = x — 12t is the moving x-coordinate.

t=2000

A ~—
X S
\/—250
500

FIGURE 10 | Leading-order predictions of lump patterns from Theorem 2 for the solution of Figure 9 at large times of ¢ = +2000.

6 | Proof of Theorem 2 for Lump Patterns With
A#(1,3,..,2N —-1)

In this section, we prove Theorem 2. Our starting point is

to rewrite the determinant o in Equation (2.5) as a larger
determinant

: , (6.1)

where

®;; =208, (xt+ (- Ds+ay,
W, =205, () HG-Ds+a)), (62
and N =1+ max{n;,1 <i < N}. As we have mentioned in Sec-

tion 5.2, we only need to consider the two cases of k,;; — K,pen > 1
and K,y — Koqq > 2.
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6.1 | Prooffor the Case of kyqq — Kepen > 1

In this case, we regroup the odd indices together in the order
ny <n, <--- <ny,followed by even indices in the order #; <
M, <+ <FH, ., as we have done in Section 5.2.1. That is,
A= (5 s gy s e s Ay, )s With Ky, + Kogqg = N. As a conse-
quence, the first k ;4 rows of @ above correspond to odd indices,
and the last k,,,,, rows of @ correspond to even indices.

Let us define T,-dependent matrices

Tgﬂl/zl T£”1/2]*1 T&”“ZFZ
[n1 /2]t ([n1/2]-1)! ([n1/2]-2)!
= : : : : (6.3)
a7 [k qq /2171 Mg /212
T, dd T, dd T, dd
[ gq /210 (nkygy /21-D0 ([, /21-2)! Koga¥kodd
Tgfll/ll Tgﬁl/z]*l Tgll/Z]*Z
[A1/2]! ([A1/2]-1)! ([A1/2]-2)!
R = : : : : (6.4)
lﬂkeven /2] lﬁkevm /21-1 Mkeven /21-2
T ) T,
Ukggen 2D (kg 2-D! (g /2120 o o
— d; -1 -2 —(kodd—1)
E= d1&1g<1,T2 ,15%,..T, ) (6.5)

Here, T’z‘ /k! = 0ifk < 0. Notice that F and R are the counterparts
of T,-free matrices F and R defined in Equations (5.9) and (5.11).
We also split

R =[R,R,], E =diag(E,,E,), (6.6)
where R, has k,,,, columns, and

E, = diag(1,7;, 752, .. T; %),

E, = diag(Tz_k"““", Ty e T;“‘"dd‘“)dxd. (6.7)

Matrices (F, R,, R,) are related to (F,R,,R;) of Section 5.2.1 as
F=E,FE, R, =ERE, R,=ERE, (6.8)
where

2
E, = diag(Tg’”/ A qlraf2) | ploda! ]),
E, = diag(7"/%, T/, 1)), (6.9)

When 1 < |x}| < O(|t|*/?), we use relations (4.10)-(4.13) and
(4.18) to write the dominant terms of @ in Equation (6.1) as

Dripst kg TOWS ~ FP, + D, FP,, (6.10)

Plast k,,,,, rows ~ RP> + D RPs, (6.11)

where D, is as defined in Equation (5.8), and

P, =Mat, o, 1<t (27008, (V). k=1,2,3,

(6.12)
D, = diag(ay, ;111> Te,yys210 > N1 )- (6.13)

Notice that the diagonal of matrix D, is the vector of a;;
parameters for the even indices of A. We also split the matrix P,

as
P’
p= %) (6.14)
PZ

where P;u> is the first k,,,, rows of P,. Then, employing Equa-
tions (5.10), (5.12), and (6.8), we can rewrite the asymptotics (6.10)
and (6.11) of ® as

Pfirst Koqq TOWS ~ F(Pl + E_IGEPZ)

- r(P1 +EG,EPY + E-lGZEng”), (6.15)
and
Plast k,,,, rows ~ R,P” + R,P) + D,RP;
=R, {p;") +E]'R;'R,E,P! + E;'R;'D,REP, } (6.16)
Thus,
©. <F 0] ><P1 +E'G,E,P + E"'G,E,P! )
0 R,/\P" +E'R;'R,E,P" + E;'R,'D,REP, /'

(6.17)

The key step of this proof is to use the lower P(Z”) block of the
above right matrix to eliminate the upper E‘lGlElP(z“) term of
that matrix through row operations, which does not affect the o
determinant in Equation (6.1). From this step, we get

1A~ 1 _ —
o (F O\ Ph+E 'GE,P) — E"'G,R;'D,REP;
0 R, J\PY +E'R;'R,E,P” + E;'R;'D,REP; )’

(6.18)
where G is as defined in Equation (5.13).

Notice that the first row of matrix P; is all zero, and its later ith
row (i > 1)isjust the (i — 1)th row of P,. Assuch, when |x]| > 1,
it is easy to see that the term E~'G,R;'D,REP; in the upper
row block of the above right matrix is subdominant to P, and
can be asymptotically neglected at large |¢|. Thus, Equation (6.18)
reduces to

F 0)\/P, +E'GE,P
D~ :
0 R,/\P" +E'R;'R,E,P_ + E;'R;'D,REP,

(6.19)

We also use P, in the first row block of the above right matrix to
eliminate the P; term in the second row block of the above right
matrix in view of the simple relation between P, and P; men-
tioned above. This operation would introduce only subdominant
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terms to the existing E;lRl‘leEng) term in the second row block
as well when |x; | > 1. Thus, we can asymptotically neglect that
P, term in the second row block and reduce (6.19) to

F 0[P, +E'GE,P)
® ~ w o) (6.20)
0 R, /\PY +E 'R;'R,E,P

To proceed further, we see from Equation (4.18) that the
EIIRI‘IRZEQPED term in the above right matrix is subdominant

to its P;w term, which reduces Equation (6.20) to

F O)\/P, +E'GE,P)
e~ %, )\ po . (6.21)

In addition, when |x}| < O(|t|'/?), in the first k,,,, rows of the
upper row block of the above right matrix, the E*lﬁEZP;’) term is
subdominant to P, and can be asymptotically neglected. Then,
when calculating the determinant of the ®,;;.y matrix, the
lower row block P;“) with k,,,, rows and those first k,,,, rows in
the upper row block P, + E‘l(A}EZP(ZI) all cancel out, and we get

det @, ~detFdetR, det (Y, +E;'G,E,Y,), (6.22)
5] 2

1<i,j<N
where
Yy = Mat, g 1<j<a (279700 1k (W), (6.23)
and
G, = Matkeuen+1§i§k(,dd,lsjsda (6.24)

is the lower dxd submatrix of G. Notice that this Y, +
E;lf}zEzYz matrix is of the same form as Equation (4.20) of
Section 4. Then, following the same calculations as in the proof of
Theorem 1 after Equation (4.20), we can prove Theorem 2, where
5’” in that theorem comes from the factorization (5.23) for the
lower left corner submatrix of G (which is the same factorization
for the lower left corner submatrix of G, above).

6.2 | Prooffor the Case of k,ep, — Kogq > 2

In this case, there are more even indices than odd ones in A. Our
starting point is still the determinant in Equation (6.1). As we did
in Section 5.2.2, we now group the even indices together in the
order n; <n, <--- <ny, ., followed by odd indices in the order
Ny <Ay <o <Ay Thatis, A = (ny, ..., > Ay, s Ay, ), With
Keven + Koqa = N. As a consequence, the first k,,,,, rows of @ above
correspond to even indices, and the last k,;; rows of ® correspond

to odd indices.

Now we redefine T,-dependent matrices

Tgﬁl/Zl Tgle/z]—l Tgﬁl/ZH
[ /2]! (A /21-1)! (7 /21-2)!
R = : : : : (6.26)
Ti’ikadd /21 Tiﬁk”dd /21-1 Téﬂkodd /21-2
(g /2D (g /21-D0 (Ui gy /21-2) oo
. -1 -2 —(keven—1)
E = diag(1,7;', 752 . T; )- (6.27)
We also split

R = [Rl s RZ’ RS]’ E= diag(EOa E] s E2)7 (628)

where R, has k44 columns, R, has d columns, R, has 1 column,
and

By=1, B, =diag(T;",75%.. 1,4,

E, = diag<T2—(kodd+1>, Ty bodatd | Tz—(km—n) ) (6.29)
dxd

Matrices (F,R{,R,,R;) are related to (F,R;,R,,R;) of Equa-
tions (5.16) and (5.19) as

F=EFE, R,=T,ERE, R,=T,ERE,
R, =T," VE,R,, (6.30)
where

By = diag(T}"/?, 702/, 1),
: li/2] plig/2] likegg /2]
E, = diag( T}/, 71/, ;o). (6.31)

When 1 < |x]| < O(|t|'/?), we use relations (4.10)-(4.13) and
(4.18) to write the dominant terms of ® in Equation (6.1) as

Pfirst k,,,, rows ~ P2 + D FP;, (6.32)

even

Plast k,,, rows ~ RP1 + DRP,, (6.33)

where P, is as defined in Equation (6.12), and

D, =diag(ay,,,, 111> Ak, 4210+ A1 )- (6.34)

The diagonal of this D, is the vector of a; , parameters for the odd
indices of A. We split matrices P, and P; as

P 0

P, =|P"™| P,=|P"| (6.35)
(®) (m)
Pl le

(m)
1

P(lb) the single last row of P;, and 0 a single row of zeros. Then,
employing Equations (5.17), (5.19), and (6.30), we can rewrite the

where P(lt) is the first k,4q rows of P,, P." the next d rows of P,

/2 /2 rim /22 asymptotics (6.32) and (6.33) of ® as
[n1 /21t ([n1/2]-1! ([n1/2]-2)!
F= : 5 : (6.25) Pfirst k,,,, rows ~ (P> + E"'GEP;)
I
Mhgpen /21 (g /21-D (g /212! eosonschonn = T’(PZ + E‘lGlEngo + E“GZEZP(I"’)>, (6.36)
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and

(t) -1p-— (m)
Plast k,,, rows ~ R1 {P1 +E['R{'R,E,P,
+T,""E;'R;'R;P}” + T;"E;'R;'D,REP, } - (637)

We see from Equation (4.18) that the T, Keven E;lR;1R3P(1b) term in
Equation (6.37) is subdominant compared to Pﬁt). Thus, we can
neglect that term and get

o (T © P, +E'G,E,P" + E1G,E,P"
0 R /\P" +E'R;'R,E,P{™ + T;'E;'R;'D,REP, )

(6.38)

Now, we use the lower sz) block of the above right matrix to
eliminate the upper E’1G1E1P<1’) term of that matrix through
row operations, which does not affect the o determinant in
Equation (6.1). From this step we get

o (F O\ P+ E'GE,P!"” - T;'E"'G,R;'D,REP,
0 R, /\P" +E'R;'R,E,P"” + T;'E;'R;'D,REP,
(6.39)
where G is as defined in Equation (5.20).

Following similar steps as before, the above asymptotics can be

reduced to
F O0)\(/P,+E'GE,P"
O ~ . (6.40)
0 R, J\p¥

In addition, when x| < O(|t|*/?), in the first k,gq + 1 rows of
the upper row block of the above right matrix, the E‘lﬁEzPYm
term is subdominant to P, and can be asymptotically neglected.
Then, when calculating the determinant of the ®,; ;.y matrix,
the lower row block P§[> of k,44 rows and those first k,;; + 1 rows
in the upper row block of the above right matrix all cancel out,
and we get

det @;; ~det7 detR, det (Y, +E;'G,EY,), (6.41)

1<ij<
where Y is as defined in Equation (6.23), and
G, = Maty, ,, ocick, e 1<j<d0 (6.42)

is the lower d x d submatrix of G. The above Y, + E;lf‘;zEzY2
matrix is of the same form as Equation (4.20) of Section 4. Then,
following the same calculations as in the proof of Theorem 1
after Equation (4.20), we can prove Theorem 2, where ,3,,, in that
theorem comes from the factorization (5.23) for a submatrix of G.

7 | Summary and Discussion

In this paper, we have analytically studied large-time patterns
of general higher-order lump solutions in the KP-I equation.
We have shown that when the index vector of the general
lump solution is a sequence of consecutive odd integers starting
from one, the large-time pattern generically would comprise
fundamental lumps uniformly distributed on concentric rings. In

addition, the fundamental lumps on these rings separate from
each other in proportion to |¢|™/@"+D  where m is a positive
integer that takes on different values on different rings. For other
index vectors, we have shown that the large-time pattern of a
general higher-order lump would comprise fundamental lumps
in the outer region as described analytically by the nonzero-
root structure of the associated Wronskian-Hermite polynomial,
together with possible fundamental lumps in the inner region
that are uniformly distributed on concentric rings generically.
Leading-order predictions of fundamental lumps in these solu-
tion patterns have also been derived. Our predicted patterns at
large times have been compared to true solutions, and good
agreement has been obtained.

Earlier in [23], large-time patterns of special higher-order lump
solutions in the KP-I equation were determined. Those lump
solutions were special because their internal parameters a; ; were
required to be independent of the i index. By comparing the
results of this paper with those in [23], the biggest difference is
that the triangular patterns as reported in [23] for those special
higher-order lumps are now replaced by concentric-ring patterns
for generic general higher-order lumps. This big difference in
wave patterns for special and generic general cases is a surprise.

A mathematical difference between the special case of [23] and
the current generic general case is that, the triangular pattern in
[23] was described analytically by the root structure of a certain
Yablonskii-Vorob’ev polynomial, but the concentric-ring pattern
here is described analytically by the root structure of a simpler
two-term polynomial in Equation (4.27). Roots of the Yablonskii—
Vorob’ev polynomial do not have explicit formulas, but roots of
that two-term polynomial in (4.27) do. Thus, the polynomials
used for the prediction of lump patterns are simpler in the
generic general case than in the special case. This mathematical
difference is also a surprise.

We emphasize that these concentric-ring lump patterns would
appear for generic internal parameters of higher-order lumps
which meet Assumption 1 or 2 of this paper. If internal param-
eters do not meet such generic assumptions, large-time solution
patterns would be different. One known example is the special
parameters in [23] which do not meet such assumptions, and the
corresponding lump patterns are triangular instead of concentric
rings. As another example, suppose the index vector is A =
(1,3,5,7,9). Assumption 1 for this case requires M; # 0and M, #
0. If our internal parameters only meet the former condition of
M, # 0 but not the latter condition of M, # 0, that is, if M; # 0
but M, = 0 now, then the large-time pattern of the solution would
not be concentric rings as shown in Figure 2, but a single ring of
nine fundamental lumps plus a triangle of six fundamental lumps
inside the ring. For these nongeneric internal parameters, their
large-time solution patterns can also be asymptotically predicted
using techniques of this paper, but this will not be pursued in
this paper.
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