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 A B S T R A C T

Rogue patterns associated with multiple roots of Adler–Moser polynomials under general multiple large 
parameters of single-power form are studied in integrable systems. It is first shown that the multiplicity of any 
multiple root in any Adler–Moser polynomial is a triangular number (i.e., its multiplicity is equal to 𝑛(𝑛+1)∕2
for a certain integer 𝑛). Then, it is shown that corresponding to a nonzero multiple root of the Adler–Moser 
polynomial, a triangular rogue cluster would appear on the spatial–temporal plane. This triangular rogue 
cluster comprises 𝑛(𝑛+1)∕2 fundamental rogue waves forming a triangular shape, and space–time locations of 
fundamental rogue waves in this triangle are a linear transformation of the Yablonskii–Vorob’ev polynomial 
𝑄𝑛(𝑧)’s root structure. In the special case where this multiple root of the Adler–Moser polynomial is zero, the 
associated rogue pattern is found to be an 𝑛th order rogue wave in the 𝑂(1) neighborhood of the spatial–
temporal origin. These general results are demonstrated on two integrable systems: the nonlinear Schrödinger 
equation and the generalized derivative nonlinear Schrödinger equation. For these equations, asymptotic 
predictions of rogue patterns are compared with true rogue solutions and good agreement between them 
is illustrated. The present results generalize the earlier ones in the literature where only one of the parameters 
was assumed large. Extension of these results to generic multiple large parameters of dual-power form is also 
discussed.
1. Introduction

Rogue waves, also known as freak waves, monster waves and ex-
treme waves, are unusually large and suddenly appearing surface waves 
in the sea [1,2]. Since they appear and disappear without warning, 
they can be dangerous to ships, even to large ones. In order to un-
derstand the mathematical and physical mechanisms of these waves, 
an important theoretical discovery was that the nonlinear Schrödinger 
(NLS) equation that governs one-dimensional wave-packet propagation 
in the ocean admits rational solutions that show rogue-like behav-
iors [3–9]. Since the NLS equation also governs wave propagation in 
many other physical systems such as optics and plasma, this implies 
that rogue waves could appear in those other physical systems as well. 
Such predictions were subsequently verified in experiments of optics, 
water waves and plasma [10–14], which significantly deepened our 
understanding of physical rogue events. Due to this success, rogue wave 
solutions in many other integrable equations have also been derived, 
and some of those solutions have been observed in experiments as well 
(see [15] for a review).

Pattern formation of rogue waves is an important issue as this 
information could allow for the prediction of later rogue wave events 
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from earlier wave forms. In the NLS equation, some interesting pat-
terns of rogue solutions were numerically plotted in [16], but this 
numerical plotting quickly became difficult as the order of the solution 
increased. A new discovery we made in the past few years was that, 
clear rogue patterns in the NLS equation would appear when internal 
parameters in its rogue wave solutions get large, and such rogue 
patterns could be predicted asymptotically by the root structures of 
certain special polynomials [17,18]. If a single internal parameter is 
large, the rogue pattern would be predicted by the root structure of 
a certain Yablonskii–Vorob’ev hierarchy polynomial, with each sim-
ple root inducing a fundamental rogue wave in the spatial–temporal 
plane and a multiple zero root inducing a lower-order rogue wave 
in the neighborhood of the spatial–temporal origin [17]. If multiple 
internal parameters are large in single-power form, then the rogue 
pattern would be related to the root structure of a certain Adler–Moser 
polynomial [18]. Specifically, it was shown in [18] that if this Adler–
Moser polynomial admits only simple roots, then the rogue pattern 
would be a dilation of this Adler–Moser polynomial’s root structure, 
with each of its simple roots generating a fundamental rogue wave 
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in the spatial–temporal plane. But if this Adler–Moser polynomial 
admits multiple roots, the corresponding rogue fields for these multiple 
roots were not resolved in [18] and remain an open question. In a 
different parameter regime of multiple large internal parameters in 
dual-power form with special coefficient values, this question of rogue 
patterns induced by a multiple root of the Adler–Moser polynomial was 
investigated recently in [19]. It was shown that a nonzero multiple 
root of the Adler–Moser polynomial could induce various rogue shapes 
such as lower-order rogue waves and shapes associated with root 
structures of Yablonskii–Vorob’ev hierarchy polynomials. But those 
dual-power parameters in [19] do not include the single-power param-
eters we considered in [18] due to special choices of their dual-power 
coefficients.

In this paper, we study rogue patterns associated with multiple roots 
of Adler–Moser polynomials under general multiple large parameters of 
single-power form in integrable systems and finish the work we started 
in [18]. We first show that the multiplicity of any multiple root in any 
Adler–Moser polynomial is a triangular number (i.e., its multiplicity 
is equal to 𝑛(𝑛 + 1)∕2 for a certain integer 𝑛). We then show that 
corresponding to a nonzero multiple root of the Adler–Moser polyno-
mial, a triangular rogue cluster would appear on the spatial–temporal 
plane. This triangular rogue cluster comprises 𝑛(𝑛 + 1)∕2 fundamental 
rogue waves forming a triangular shape, and space–time locations of 
fundamental rogue waves in this triangle are a linear transformation 
of the Yablonskii–Vorob’ev polynomial 𝑄𝑛(𝑧)’s root structure. In the 
special case where this multiple root of the Adler–Moser polynomial 
is zero, we show that the associated rogue pattern is an 𝑛th order 
rogue wave in the 𝑂(1) neighborhood of the spatial–temporal origin. 
We demonstrate these general results on two integrable systems: the 
NLS equation and the generalized derivative nonlinear Schrödinger 
(GDNLS) equations. For these equations, we compare our asymptotic 
predictions of rogue patterns with true rogue solutions and show good 
agreement between them. Our results generalize the earlier ones in [17] 
where only one of the parameters was assumed large. At the end of this 
article, we show that these results still remain valid for generic multiple 
large parameters of dual-power form.

2. The objective

To help the reader better understand the objective of this paper, we 
use the NLS equation as an example. This equation is

i𝑢𝑡 +
1
2
𝑢𝑥𝑥 + |𝑢|2𝑢 = 0.

General rogue waves in this equation, in their simplest explicit form, 
were derived in [17] and will be reproduced in Section 4 of this article. 
These rogue waves at the 𝑁th order contain 𝑁 − 1 free irreducible 
complex parameters, 𝑎3, 𝑎5,… , 𝑎2𝑁−1. If a single parameter in these 
rogue waves is large, the pattern of the resulting rogue wave would 
be determined by the root structure of a certain Yablonskii–Vorob’ev 
hierarchy polynomial, as we have shown in [17]. If multiple parameters 
are large and of the single-power form 𝑎2𝑗+1 = 𝜅𝑗𝐴2𝑗+1, where 𝐴 ≫
1 is a large positive constant and (𝜅1, 𝜅2,… , 𝜅𝑁−1) are 𝑂(1) complex 
constants not being all zero, then we have shown in [18] that the 
relevant polynomial is the Adler–Moser polynomial 𝛩𝑁 (𝑧; 𝜅1,… , 𝜅𝑁−1), 
and each simple root of this polynomial would induce a fundamental 
rogue wave in the spatial–temporal plane. What was not addressed 
in [18] was that when this Adler–Moser polynomial admits multiple 
roots, what rogue patterns would be induced by these multiple roots 
on the spatial–temporal plane? Let us give two concrete examples.

The first example is where this multiple root is nonzero, and we 
chose (𝜅1, 𝜅2, 𝜅3, 𝜅4) = (1, 59∕45, 377∕189, 89∕27). In this case, the root 
structure of the corresponding Adler–Moser polynomial is shown in Fig. 
1(a). This root structure contains a root 𝑧 = 1 of multiplicity six as 
marked by a red dot, together with nine other simple roots marked by 
blue dots. When the 𝑎2𝑗+1 parameters in the 5th-order NLS rogue wave 
are chosen as 𝜅 𝐴2𝑗+1 with 𝐴 = 10, the modulus of this rogue wave 
𝑗

2 
is plotted in Fig.  1(b). One can easily recognize that each simple root 
corresponds to a fundamental rogue wave as we have shown previously 
in [18]. Then, the remaining wave field as marked by a black dashed 
box would correspond to this nonzero root of multiplicity six, and our 
goal now is to determine this wave field inside the black box at large 
𝐴 values.

The second example is where the multiple root is zero, and we 
chose (𝜅1, 𝜅2, 𝜅3, 𝜅4) = (1, 1, 1, 4∕3). In this case, the root structure of the 
corresponding Adler–Moser polynomial is displayed in Fig.  1(c). This 
root structure contains a root 𝑧 = 0 of multiplicity three as marked by 
a red dot, together with twelve other simple roots marked by blue dots. 
When the 𝑎2𝑗+1 parameters in the 5th-order NLS rogue wave are chosen 
as 𝜅𝑗𝐴2𝑗+1 with 𝐴 = 6, the modulus of this rogue wave is plotted in Fig. 
1(d). One can easily recognize that each simple root corresponds to a 
fundamental rogue wave as [18] has shown. Thus, the remaining wave 
field as marked by a black dashed box would correspond to this zero 
root of multiplicity three, and our goal now is to determine this wave 
field inside the black box at large 𝐴 values.

These two examples are just very specific cases for illustration pur-
poses. Our goal in this paper is not restricted to these specific cases. We 
will determine the rogue wave fields corresponding to a multiple root of 
the Adler–Moser polynomial for arbitrary multiple large parameters of 
single-power form (i.e., for arbitrary 𝜅𝑗 values). Moreover, we will do 
so not only for the NLS equation, but also for many other integrable 
equations such as the derivative NLS equations and the Boussinesq 
equation.

3. Preliminaries

We first introduce Schur polynomials 𝑆𝑗 (𝒙), where 𝒙 =
(

𝑥1, 𝑥2,…
)

. 
These polynomials are defined by 
∞
∑

𝑗=0
𝑆𝑗 (𝒙)𝜖𝑗 = exp

( ∞
∑

𝑖=1
𝑥𝑖𝜖

𝑖

)

, (3.1)

or more explicitly, 

𝑆𝑗 (𝒙) =
∑

𝑙1+2𝑙2+⋯+𝑚𝑙𝑚=𝑗

( 𝑚
∏

𝑖=1

𝑥𝑙𝑖𝑖
𝑙𝑖!

)

. (3.2)

In particular, 𝑆0(𝒙) = 1 and 𝑆1(𝒙) = 𝑥1. We also define 𝑆𝑗 (𝒙) ≡ 0 when 
𝑗 < 0.

Next, we introduce two types of special polynomials that will be 
important for our work.

3.1. Yablonskii–Vorob’ev polynomials and their root structures

Yablonskii–Vorob’ev polynomials arose in rational solutions of the 
second Painlevé equation (PII) [20,21]. 
𝑤′′ = 2𝑤3 + 𝑧𝑤 + 𝛼, (3.3)

where the prime denotes derivative to the variable 𝑧, and 𝛼 is an 
arbitrary constant. It has been shown that this PII equation admits 
rational solutions if and only if 𝛼 = 𝑁 is an integer. In this case, the 
rational solution is unique and is given by

𝑤(𝑧;𝑁) = 𝑑
𝑑𝑧

ln
𝑄𝑁−1(𝑧)
𝑄𝑁 (𝑧)

, 𝑁 ≥ 1, (3.4)

𝑤(𝑧; 0) = 0, 𝑤(𝑧; −𝑁) = −𝑤(𝑧;𝑁), (3.5)

and the polynomials 𝑄𝑁 (𝑧), now called the Yablonskii–Vorob’ev poly-
nomials, are constructed by the following recurrence relation 
𝑄𝑁+1𝑄𝑁−1 = 𝑧𝑄2

𝑁 − 4
[

𝑄𝑁𝑄
′′
𝑁 − (𝑄′

𝑁 )2
]

, (3.6)

with 𝑄0(𝑧) = 1 and 𝑄1(𝑧) = 𝑧. Later, a determinant expression for 
these polynomials was found in [22]. Let 𝑝𝑗 (𝑧) be the special Schur 
polynomial defined by 
∞
∑

𝑝𝑗 (𝑧)𝜖𝑗 = exp
(

𝑧𝜖 − 4
3
𝜖3
)

, (3.7)

𝑗=0
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Fig. 1. (a) Root structure of an Adler–Moser polynomial with a nonzero multiple root. (b) An NLS rogue pattern |𝑢(𝑥, 𝑡)| associated with (a)’s root structure. (c) 
Root structure of another Adler–Moser polynomial with a zero multiple root. (d) An NLS rogue pattern |𝑢(𝑥, 𝑡)| associated with (c)’s root structure. Parameters 
used to generate these graphs are provided inside the text. In (a) and (c), simple roots are marked by blue dots, multiple roots marked by red dots with their 
multiplicities indicated by a number beside them, and −6 ≤ ℜ(𝑧),ℑ(𝑧) ≤ 6, where ℜ and ℑ represent the real and imaginary parts of a complex number 
respectively. In (b), −55 ≤ 𝑥, 𝑡 ≤ 55; and in (d), −35 ≤ 𝑥, 𝑡 ≤ 35. Black dashed boxes in (b) and (d) mark the regions of the wave fields which are the focus of the 
present investigation.
and 𝑝𝑗 (𝑧) ≡ 0 if 𝑗 < 0. Then, Yablonskii–Vorob’ev polynomials 𝑄𝑁 (𝑧)
are given by the 𝑁 ×𝑁 determinant [22] 

𝑄𝑁 (𝑧) = 𝑐𝑁

|

|

|

|

|

|

|

|

|

𝑝1(𝑧) 𝑝0(𝑧) ⋯ 𝑝2−𝑁 (𝑧)
𝑝3(𝑧) 𝑝2(𝑧) ⋯ 𝑝4−𝑁 (𝑧)
⋮ ⋮ ⋮ ⋮

𝑝2𝑁−1(𝑧) 𝑝2𝑁−2(𝑧) ⋯ 𝑝𝑁 (𝑧)

|

|

|

|

|

|

|

|

|

, (3.8)

where 𝑐𝑁 =
∏𝑁

𝑗=1(2𝑗 − 1)!!. This determinant is a Wronskian since we 
can see from Eq. (3.7) that 𝑝′𝑗 (𝑧) = 𝑝𝑗−1(𝑧). The 𝑄𝑁 (𝑧) polynomial is 
monic with integer coefficients and has degree 𝑁(𝑁 + 1)∕2 [23]. The 
first few such polynomials are
𝑄2(𝑧) = 𝑧3 + 4,

𝑄3(𝑧) = 𝑧6 + 20𝑧3 − 80,

𝑄4(𝑧) = 𝑧(𝑧9 + 60𝑧6 + 11200),

𝑄5(𝑧) = 𝑧15 + 140𝑧12 + 2800𝑧9 + 78400𝑧6 − 3136000𝑧3 − 6272000.

Root structures of Yablonskii–Vorob’ev polynomials will be impor-
tant to us. It was shown in [24] that all roots of 𝑄𝑁 (𝑧) are simple. It was 
further shown in [23,25,26] that these simple roots form a triangular 
shape (the three edges of this triangular shape are not completely 
straight; but we will still call it a triangle for simplicity). To illustrate, 
we display these triangular root patterns of 𝑄𝑁 (𝑧) for 2 ≤ 𝑁 ≤ 5 in Fig. 
2.

3.2. Adler–Moser polynomials

Adler–Moser polynomials were proposed by Adler and Moser [27], 
who expressed rational solutions of the Korteweg–de Vries equation 
in terms of those polynomials. In a different context of point vortex 
dynamics, it was discovered unexpectedly that the zeros of these poly-
nomials also form stationary vortex configurations when the vortices 
have the same strength but positive or negative orientations [28,29].
3 
Adler–Moser polynomials 𝛩𝑁 (𝑧) can be written as a determinant
[29] 

𝛩𝑁 (𝑧) = 𝑐𝑁

|

|

|

|

|

|

|

|

|

𝜃1(𝑧) 𝜃0(𝑧) ⋯ 𝜃2−𝑁 (𝑧)
𝜃3(𝑧) 𝜃2(𝑧) ⋯ 𝜃4−𝑁 (𝑧)
⋮ ⋮ ⋮ ⋮

𝜃2𝑁−1(𝑧) 𝜃2𝑁−2(𝑧) ⋯ 𝜃𝑁 (𝑧)

|

|

|

|

|

|

|

|

|

, (3.9)

where 𝜃𝑗 (𝑧) are Schur polynomials defined by 
∞
∑

𝑗=0
𝜃𝑗 (𝑧)𝜖𝑗 = exp

(

𝑧𝜖 +
∞
∑

𝑖=1
𝜅𝑖𝜖

2𝑖+1

)

, (3.10)

𝜃𝑗 (𝑧) ≡ 0 if 𝑗 < 0, and 𝜅𝑗 (𝑗 ≥ 1) are arbitrary complex constants. Note 
that our 𝜅𝑗 constant is slightly different from that in [29] by a factor 
of −1∕(2𝑗 + 1), and this different parameter definition will be more 
convenient for our purpose. The determinant in (3.9) is a Wronskian 
since we can see from Eq. (3.10) that 𝜃′𝑗 (𝑧) = 𝜃𝑗−1(𝑧). In addition, the 
𝛩𝑁 (𝑧) polynomial is monic with degree 𝑁(𝑁 +1)∕2, which can be seen 
by noticing that the highest 𝑧 term of 𝜃𝑗 (𝑧) is 𝑧𝑗∕𝑗!, and the determinant 
in (3.9) with 𝜃𝑗 (𝑧) replaced by its highest 𝑧 term can be explicitly 
calculated as 𝑧𝑁(𝑁+1)∕2 [9]. Adler–Moser polynomials 𝛩𝑁 (𝑧) reduce to 
Yablonskii–Vorob’ev polynomials 𝑄𝑁 (𝑧) when we set 𝜅1 = −4∕3 and 
the other 𝜅𝑗 zero. Thus, Adler–Moser polynomials are generalizations 
of Yablonskii–Vorob’ev polynomials. They are also generalizations of 
Yablonskii–Vorob’ev polynomial hierarchies where only one of the 𝜅𝑗
constants is nonzero [17].

The first few Adler–Moser polynomials are
𝛩2(𝑧; 𝜅1) = 𝑧3 − 3𝜅1,

𝛩3(𝑧; 𝜅1, 𝜅2) = 𝑧6 − 15𝜅1𝑧3 + 45𝜅2𝑧 − 45𝜅21 ,

𝛩4(𝑧; 𝜅1, 𝜅2, 𝜅3) = 𝑧10 − 45𝜅1𝑧7 + 315𝜅2𝑧5 − 1575𝜅3𝑧3

+4725𝜅1𝜅2𝑧2 − 4725𝜅31𝑧 + 4725(𝜅1𝜅3 − 𝜅22 ),

𝛩 (𝑧; 𝜅 , 𝜅 , 𝜅 , 𝜅 ) = 𝑧15 − 105𝜅 𝑧12 + 1260𝜅 𝑧10 + 1575𝜅2𝑧9
5 1 2 3 4 1 2 1
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Fig. 2. Root structures of Yablonskii–Vorob’ev polynomials 𝑄𝑁 (𝑧) for 𝑁 = 2, 3, 4, 5 (from left to right). In all panels, −6 ≤ ℜ(𝑧),ℑ(𝑧) ≤ 6.
−14175𝜅3𝑧8 + 14175𝜅1𝜅2𝑧7

−33075(𝜅31 − 3𝜅4)𝑧6 − 297675(𝜅22 + 𝜅1𝜅3)𝑧
5 + 1488375𝜅21𝜅2𝑧

4

−496125(2𝜅41 − 3𝜅2𝜅3 + 3𝜅1𝜅4)𝑧3 + 4465125𝜅1(𝜅1𝜅3 − 𝜅22 )𝑧
2

−1488375(𝜅31𝜅2 + 3𝜅23 − 3𝜅2𝜅4)𝑧

+1488375(𝜅51 − 3𝜅32 + 6𝜅1𝜅2𝜅3 − 3𝜅21𝜅4).

3.3. Multiplicity of multiple roots in Adler–Moser polynomials

Root structures of Adler–Moser polynomials are important for rogue 
patterns when the underlying rogue wave possesses multiple large 
internal parameters. Indeed, we have shown in [15,18] that for a wide 
range of integrable equations such as the NLS equation, the derivative 
NLS equations, the Boussinesq equation and others, every simple root 
of the underlying Adler–Moser polynomial gives rise to a fundamental 
rogue wave whose space–time location is linearly dependent on the 
value of this simple root. Thus, our focus in this paper will be on 
multiple roots of Adler–Moser polynomials and the rogue patterns they 
create, as we have explained in Section 2 earlier. Since Adler–Moser 
polynomials contain free complex parameters {𝜅𝑗}, by choosing those 
parameters judiciously, multiple roots can be easily created in these 
polynomials. We give three examples below.

Our three examples are 𝛩5(𝑧; 𝜅1, 𝜅2, 𝜅3, 𝜅4) polynomials with the 
following three sets of parameter values, 

(𝜅1, 𝜅2, 𝜅3, 𝜅4) =
(

1, 59
45
, 377
189

, 89
27

)

, (3.11)

(𝜅1, 𝜅2, 𝜅3, 𝜅4) =
( 1
3
, 1
5
, 1
7
, 1
9

)

, (3.12)

and 
(𝜅1, 𝜅2, 𝜅3, 𝜅4) =

(

1, 1, 1, 4
3

)

. (3.13)

Root structures for these three 𝛩5(𝑧; 𝜅1, 𝜅2, 𝜅3, 𝜅4) polynomials are dis-
played in Fig.  3(a, b, c) respectively. It is seen that in the first case 
(3.11), this polynomial has a root 𝑧 = 1 of multiplicity 6, plus 9 other 
simple roots which form two opposing arcs on the two sides of the 𝑧 = 1
root in the complex plane. In the second case (3.12), this polynomial 
has a root 𝑧 = 1 of multiplicity 10, plus 5 other simple roots which form 
an arc on the left side of the 𝑧 = 1 root. In the third case (3.13), this 
polynomial has a zero root of multiplicity 3, plus 12 other simple roots 
which form a complex shape surrounding the zero root. In all three 
examples, a multiple root appears, and this multiple root is nonzero in 
the first two cases and zero in the last case. We note that the first and 
third examples have been mentioned in Section 2, see Fig.  1(a,c).

One may notice that multiplicities of the multiple roots in these 
three examples are 3, 6 and 10, which are all triangular numbers, 
i.e., numbers of the form 𝑗(𝑗+1)∕2 for a certain integer 𝑗. This is not an 
accident. Indeed, we will show that the multiplicity of every multiple 
root in any Adler–Moser polynomial is a triangular number. This result 
is presented in the following theorem.
4 
Theorem 1.  The multiplicity of every multiple root in any Adler–Moser 
polynomial is a triangular number.

This result is important for the prediction of rogue patterns associ-
ated with Adler–Moser polynomials, as we will see in later sections. Its 
proof is given below.

3.3.1. Row echelon form of a special matrix
To prove Theorem  1, we first introduce a lemma on the row echelon 

form of a special 𝑁 × 2𝑁 matrix 

𝐇 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ℎ1 1
ℎ3 ℎ2 ℎ1 1
ℎ5 ℎ4 ℎ3 ℎ2 ℎ1 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

ℎ2𝑁−1 ℎ2𝑁−2 ℎ2𝑁−3 ℎ2𝑁−4 ℎ2𝑁−5 ℎ2𝑁−6 ⋯ ℎ1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (3.14)

where ℎ1, ℎ2,… , ℎ2𝑁−1 are complex constants. Unwritten elements in 
this matrix are all zero.

A matrix is in row echelon form if

(i) All rows having only zero entries are at the bottom;
(ii) The leading entry (that is, the left-most nonzero entry) of every 

nonzero row is on the right of the leading entry of every row 
above.

These two conditions imply that all entries in a column below a leading 
entry are zeros.

Every matrix 𝐇 can be reduced to a row echelon form 𝐇̂ through 
two types of elementary row operations,

(i) interchange two rows;
(ii) multiply a row by a nonzero number and then add it to a lower 

row.

The process to reduce 𝐇 to its row echelon form 𝐇̂ is called Gaussian 
elimination. In matrix notations, 𝐇 and its row echelon form 𝐇̂ are 
related as 
𝐏𝐇 = 𝐋𝐇̂, (3.15)

where 𝐏 is a permutation matrix which records type-i row operations, 
and 𝐋 is a lower triangular matrix with ones on the diagonal, which 
records type-ii row operations.

It turns out that the row echelon form 𝐇̂ of the special matrix 𝐇 in 
Eq. (3.14) has a special structure, and this special structure is presented 
in the following lemma.

Lemma 1.  The row echelon form 𝐇̂ of the 𝑁 ×2𝑁 matrix 𝐇 in Eq. (3.14) 
has the following special structure 

𝐇̂ =
(

𝐀 𝐂
𝟎 𝐁

)

, (3.16)

where 𝐀 is a 𝑘× 𝑘 upper triangular matrix with nonzero diagonal elements, 
𝑘 is the number of the first consecutive columns of 𝐇 that are linearly 
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Fig. 3. Roots of Adler–Moser polynomials 𝛩5(𝑧; 𝜅1, 𝜅2, 𝜅3, 𝜅4). The parameter values of (𝜅1, 𝜅2, 𝜅3, 𝜅4) for panels (a)–(c) are given in Eqs. (3.11)–(3.13) respectively. 
In all plots, a multiple root is marked by a red dot with its multiplicity indicated by a number beside it. Simple roots are marked by blue dots. In all panels, 
−6 ≤ ℜ(𝑧),ℑ(𝑧) ≤ 6.
independent, 𝐁 is a (𝑁 −𝑘) × (2𝑁 −𝑘) matrix of the following staired form 

𝐁 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 𝛽 … … … … … … … … …
0 𝛽 … … … … … … …

0 𝛽 … … … … …
⋱ ⋱ ⋱ ⋱ ⋮

0 𝛽 …

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (3.17)

i.e., the 𝑖th row of matrix 𝐁 starts with 2𝑖−1 zeros, followed by 𝛽 and then 
other row elements, and 𝛽 ≠ 0.

Proof of this lemma will be provided in the Appendix.

3.3.2. Proof of Theorem  1

Proof.  Now, we are ready to prove Theorem  1.
Suppose 𝑧0 is a multiple root of the Adler–Moser polynomial 𝛩𝑁 (𝑧). 

Let us denote 

𝑧 = 𝑧0 + 𝑧̂, 𝛩𝑁 (𝑧) = 𝛩𝑁 (𝑧̂). (3.18)

Then, 𝑧̂ = 0 is a multiple root of the polynomial 𝛩𝑁 (𝑧̂). When 𝑧 = 𝑧0+ 𝑧̂
is substituted into Eq. (3.10), we get 
∞
∑

𝑗=0
𝜃𝑗 (𝑧)𝜖𝑗 = 𝑒𝑧̂𝜖 exp

(

𝑧0𝜖 +
∞
∑

𝑖=1
𝜅𝑖𝜖

2𝑖+1

)

. (3.19)

From Eq. (3.10), we see that 

exp

(

𝑧0𝜖 +
∞
∑

𝑖=1
𝜅𝑖𝜖

2𝑖+1

)

=
∞
∑

𝑗=0
ℎ𝑗𝜖

𝑗 , (3.20)

where ℎ𝑗 = 𝜃𝑗 (𝑧0). Using this expansion and the Taylor expansion of 
𝑒𝑧̂𝜖 , we get from Eq. (3.19) that 

𝜃𝑗 (𝑧) =
𝑗
∑

𝑖=0
ℎ𝑗−𝑖

𝑧̂𝑖

𝑖!
. (3.21)

Thus,

⎛

⎜

⎜

⎜

⎜

⎝

𝜃1(𝑧) 𝜃0(𝑧) ⋯ 𝜃2−𝑁 (𝑧)
𝜃3(𝑧) 𝜃2(𝑧) ⋯ 𝜃4−𝑁 (𝑧)
⋮ ⋮ ⋮ ⋮

𝜃2𝑁−1(𝑧) 𝜃2𝑁−2(𝑧) ⋯ 𝜃𝑁 (𝑧)

⎞

⎟

⎟

⎟

⎟

⎠𝑁×𝑁

= 𝐇

⎛

⎜

⎜

⎜

⎜

⎝

1 0 ⋯ 0
𝑧̂ 1 ⋯ 0
⋮ ⋮ ⋮ ⋮

𝑧̂2𝑁−1

(2𝑁−1)!
𝑧̂2𝑁−2

(2𝑁−2)! ⋯ 𝑧̂𝑁

𝑁!

⎞

⎟

⎟

⎟

⎟

⎠2𝑁×𝑁

, (3.22)

where 𝐇 is the 𝑁 × 2𝑁 matrix given in Eq. (3.14) with ℎ𝑗 = 𝜃𝑗 (𝑧0). 
Utilizing the matrix relation (3.15) as well as Lemma  1, we find that 
5 
the right side of the above equation is equal to 𝐏−1𝐋𝐌, where 

𝐌 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑎11 +⋯ 0 +⋯ ⋯
𝑎22𝑧̂ +⋯ 𝑎22 +⋯ ⋯
⋮ ⋮ ⋮

𝑎𝑘𝑘
𝑧̂𝑘−1

(𝑘−1)! +⋯ 𝑎𝑘𝑘
𝑧̂𝑘−2

(𝑘−2)! +⋯ ⋯

𝛽 𝑧̂𝑘+1

(𝑘+1)! +⋯ 𝛽 𝑧̂
𝑘

𝑘! +⋯ ⋯

𝛽 𝑧̂𝑘+3

(𝑘+3)! +⋯ 𝛽 𝑧̂𝑘+2

(𝑘+2)! +⋯ ⋯

⋮ ⋮ ⋮

𝛽 𝑧̂𝑘+1+2(𝑁−𝑘−1)

(𝑘+1+2(𝑁−𝑘−1))! +⋯ 𝛽 𝑧̂𝑘+2(𝑁−𝑘−1)

(𝑘+2(𝑁−𝑘−1))! +⋯ ⋯

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3.23)

In this 𝐌 matrix, the terms ‘‘⋯’’ are terms of higher powers in 𝑧̂, and 
each next column of 𝐌 is the 𝑧̂ derivative of its previous column. It 
is important for us to point out that this form of 𝐌 is crucial in our 
analysis, and Lemma  1 played a critical role in its derivation. Then, 
using Eqs. (3.9), (3.18) and (3.22), we find that 
𝛩𝑁 (𝑧̂) = 𝑐𝑁 det(𝐏)−1 det(𝐌), (3.24)

where the fact of det(𝐋) = 1 has been utilized since the diagonal 
elements of the lower triangular matrix 𝐋 are all one. The multiplicity 
of the 𝑧̂ = 0 root in 𝛩𝑁 (𝑧̂) is determined by the lowest power term 
of 𝑧̂ in 𝛩𝑁 (𝑧̂). This lowest-power term of 𝑧̂ is obtained by keeping 
only the first term of each element in the above 𝐌 matrix (3.23). The 
determinant of such a reduced 𝐌 matrix, that we denote as 𝐌0, can be 
easily seen as

det(𝐌0) = 𝛽𝑁−𝑘
𝑘
∏

𝑗=1
𝑎𝑗𝑗

× det

⎛

⎜

⎜

⎜

⎜

⎝

𝑧̂ 1 0 0 0 ⋯
𝑧̂3

3!
𝑧̂2

2!
𝑧̂ 1 0 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑧̂2(𝑁−𝑘)−1

(2(𝑁−𝑘)−1)!
𝑧̂2(𝑁−𝑘)−2

(2(𝑁−𝑘)−2)!
𝑧̂2(𝑁−𝑘)−3

(2(𝑁−𝑘)−3)!
𝑧̂2(𝑁−𝑘)−4

(2(𝑁−𝑘)−4)!
𝑧̂2(𝑁−𝑘)−5

(2(𝑁−𝑘)−5)!
⋯

⎞

⎟

⎟

⎟

⎟

⎠

(3.25)

= 𝛽𝑁−𝑘

( 𝑘
∏

𝑗=1
𝑎𝑗𝑗

)

𝑐−1𝑁0
𝑧̂𝑁0(𝑁0+1)∕2, (3.26)

where 𝑁0 = 𝑁 −𝑘. Here, the last step was calculated using a technique 
in [9]. Thus, the lowest power term of 𝑧̂ in 𝛩𝑁 (𝑧̂) is proportional to 
𝑧̂𝑁0(𝑁0+1)∕2, which means that the multiplicity of the 𝑧̂ = 0 root in 
𝛩𝑁 (𝑧̂), or equivalently, the multiplicity of the 𝑧0 root in 𝛩𝑁 (𝑧), is equal 
to 𝑁0(𝑁0+1)∕2, which is a triangular number. This completes the proof 
of Theorem  1. □

3.3.3. An alternative proof of Theorem  1
During the review of this manuscript, a referee pointed out that 

Theorem  1 can be proved more easily in a very different way. We will 
present this proof below and comment on its pros and cons relative to 
our earlier proof.
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This alternative proof utilizes the existing results that Adler–Moser 
polynomials are intimately related to trivial-monodromy potentials
[27], and trivial-monodromy potentials have double poles with triangu-
lar coefficients [30]. Indeed, it was shown in [27] through constructive 
calculations that the Schrödinger operator 

𝐿𝑛 ≡ − 𝑑2

𝑑𝑧2
+ 𝑢𝑛(𝑧) (3.27)

with 𝑢𝑛(𝑧) = −2 𝑑2

𝑑𝑧2
ln𝛩𝑛(𝑧) has trivial monodromy, i.e., all solutions 

to 𝐿𝑛𝜓 = 𝜆𝜓 are meromorphic in 𝑧 for all complex numbers 𝜆. For a 
trivial-monodromy potential 𝑢(𝑧), its Laurent expansion near a pole 𝑧0
was shown in [30] as 

𝑢(𝑧) =
𝑗(𝑗 + 1)
(𝑧 − 𝑧0)2

+ regular terms, (3.28)

where 𝑗 is a positive integer. Combining these two results, one can 
easily show that the multiplicity of a multiple root in the Adler–Moser 
polynomial 𝛩𝑛(𝑧) must be a triangular number. Suppose 𝑧0 is a root of 
𝛩𝑛(𝑧) of multiplicity 𝑚. Then, 
𝛩𝑛(𝑧) = (𝑧 − 𝑧0)𝑚𝑔(𝑧), (3.29)

where 𝑔(𝑧) is a polynomial with 𝑔(𝑧0) ≠ 0. Substituting this expression 
into the definition of 𝑢𝑛(𝑧) above, we get 

𝑢𝑛(𝑧) = −2 𝑑
2

𝑑𝑧2
[𝑚 ln(𝑧 − 𝑧0) + ln 𝑔(𝑧)] = 2𝑚

(𝑧 − 𝑧0)2
+ regular terms. (3.30)

Comparing this equation with (3.28), we then see that 𝑚 = 𝑗(𝑗 + 1)∕2. 
Thus the multiplicity of the root 𝑧0 is a triangular number.

This proof of Theorem  1 is much simpler than our earlier proof. 
The reason it is simpler is that it utilized the existing highly nontrivial 
results in [27,30], while our earlier proof is a direct and self-contained 
one without using prior knowledge.

If our goal in this paper were only to prove Theorem  1 regarding 
the multiplicity of roots in Adler–Moser polynomials, then our direct 
proof could be cut completely in favor of this simpler alternative 
proof. However, our main goal in this paper is to determine rogue 
patterns associated with multiple roots of Adler–Moser polynomials 
(see later sections). In this determination, the simpler proof above 
utilizing trivial-monodromy results are not helpful. Instead, our direct 
proof utilizing Lemma  1 proves to be very useful. In fact, one will easily 
see that our direct proof of Theorem  1 and our determination of rogue 
patterns in later sections (such as the proof of Theorem  2 in Section 4.3) 
have a lot in common and are counterparts of each other. We think this 
intimate connection between our direct proof of Theorem  1 and our 
later determination of rogue patterns is important. A similar connection 
in Yablonskii–Vorob’ev-related rogue patterns has been observed in our 
earlier paper [17], and we believe such connection will arise again in 
other rogue-pattern problems. Thus, we choose to keep this direct proof 
of Theorem  1 so that the reader can see and appreciate this connection.

4. Triangular rogue clusters associated with nonzero multiple 
roots of Adler–Moser polynomials in the NLS equation

The NLS equation 

i𝑢𝑡 +
1
2
𝑢𝑥𝑥 + |𝑢|2𝑢 = 0 (4.1)

arises in numerous physical situations such as water waves and op-
tics [31–33]. Since this equation admits Galilean and scaling invari-
ances, we can set the boundary conditions of its rogue waves as 𝑢(𝑥, 𝑡) →
𝑒i𝑡 as 𝑥, 𝑡 → ±∞. Under these boundary conditions, compact expressions 
of general rogue waves in the NLS equation are given by [17] 
𝑢𝑁 (𝑥, 𝑡) =

𝜎1
𝜎0
𝑒i𝑡, (4.2)

where 
𝜎𝑛 = det

(

𝜙(𝑛)
)

, (4.3)

1≤𝑖,𝑗≤𝑁 2𝑖−1,2𝑗−1

6 
𝜙(𝑛)
𝑖,𝑗 =

min(𝑖,𝑗)
∑

𝜈=0

1
4𝜈
𝑆𝑖−𝜈 (𝒙+(𝑛) + 𝜈𝒔) 𝑆𝑗−𝜈 (𝒙−(𝑛) + 𝜈𝒔), (4.4)

vectors 𝒙±(𝑛) = (

𝑥±1 , 𝑥
±
2 ,…

) are defined by 

𝑥±1 = 𝑥 ± i𝑡 ± 𝑛, 𝑥±2𝑗 = 0, 𝑥+2𝑗+1 =
𝑥 + 22𝑗 (i𝑡)
(2𝑗 + 1)!

+ 𝑎2𝑗+1, 𝑥−2𝑗+1 =
(

𝑥+2𝑗+1
)∗
,

(4.5)

with 𝑗 ≥ 1 and the asterisk * representing complex conjugation, 𝒔 =
(0, 𝑠2, 0, 𝑠4,…) are coefficients from the expansion 
∞
∑

𝑗=1
𝑠𝑗𝜆

𝑗 = ln
[ 2
𝜆
tanh

(𝜆
2

)]

, (4.6)

and 𝑎3, 𝑎5,… , 𝑎2𝑁−1 are free irreducible complex constants.
When 𝑁 = 1, the above solution is 𝑢1(𝑥, 𝑡) = 𝑢̂1(𝑥, 𝑡) 𝑒i𝑡, where 

𝑢̂1(𝑥, 𝑡) = 1 −
4(1 + 2i𝑡)

1 + 4𝑥2 + 4𝑡2
. (4.7)

This is the fundamental rogue wave in the NLS equation that was 
discovered by Peregrine in [3] and is now called the Peregrine wave 
in the literature. This wave has a single hump of amplitude 3, flanked 
by two dips on each side of the 𝑥 direction. For higher 𝑁 values and 
large internal parameters, various rogue patterns would appear.

Patterns of these rogue waves 𝑢𝑁 (𝑥, 𝑡) under a single large internal 
parameter 𝑎2𝑗+1 were studied in our earlier work [17]. It was shown 
that those patterns are predicted by root structures of the Yablonskii–
Vorob’ev polynomial hierarchy. If multiple internal parameters in these 
rogue waves are large and of the single-power form 

𝑎2𝑗+1 = 𝜅𝑗𝐴
2𝑗+1, 1 ≤ 𝑗 ≤ 𝑁 − 1, (4.8)

where 𝐴 ≫ 1 is a large positive constant and (𝜅1, 𝜅2,… , 𝜅𝑁−1) are 
𝑂(1) complex constants not being all zero, it was shown in our recent 
work [18] that the corresponding rogue patterns are predicted by 
the root structure of the Adler–Moser polynomial 𝛩𝑁 (𝑧; 𝜅1,… , 𝜅𝑁−1). 
Specifically, it was shown that if all roots of this Adler–Moser polyno-
mial are simple, then the rogue pattern would comprise fundamental 
(Peregrine) rogue waves whose locations on the (𝑥, 𝑡) plane are propor-
tional to the values of these roots. But if the Adler–Moser polynomial 
admits multiple roots, the rogue pattern was not resolved in [18]. In 
this case, while each simple root of the Adler–Moser polynomial would 
still give rise to a Peregrine wave on the (𝑥, 𝑡) plane, what wave pattern 
on the (𝑥, 𝑡) plane would be induced by a multiple root is still a key open 
question.

This multiple-root question was considered recently in [19]. In their 
work, the multiple large parameters {𝑎2𝑗+1} were taken in a dual-power 
form 𝜅𝑗𝐴2𝑗+1 + 𝜆𝑗𝐴 or 𝜅𝑗𝐴2𝑗+1 + 𝜆𝑗𝐴2𝑗−1, where the coefficients 𝜅𝑗 and 
𝜆𝑗 were taken as special values. For instance, in the 𝜅𝑗𝐴2𝑗+1 + 𝜆𝑗𝐴
form, they took 𝜅𝑗 = 𝑧2𝑗+10 ∕(2𝑗 + 1) and all of 𝜆𝑗 (with the exception 
of at most one) as 𝜆𝑗 = −[ℜ(𝑧0) + 22𝑗 iℑ(𝑧0)]∕(2𝑗 + 1)!, where 𝑧0 is 
a nonzero root of the Adler–Moser polynomial 𝛩𝑁 (𝑧; 𝜅1,… , 𝜅𝑁−1). In 
the 𝜅𝑗𝐴2𝑗+1 +𝜆𝑗𝐴2𝑗−1 form, they restricted to fourth-order rogue waves 
𝑢4(𝑥, 𝑡) (𝑁 = 4), and their (𝜅𝑗 , 𝜆𝑗 ) values for this case were more 
complicated and thus will not be reproduced here (the reader is referred 
to [19] for their expressions). It is important to recognize that their 
dual-power parameter forms do not include our single-power form (4.8) 
since their coefficients 𝜆𝑗 are never all zero.

The focus of this paper is to treat large parameters of the single-
power form (4.8) with arbitrary coefficients {𝜅𝑗}, as we have described 
in Section 2 in less-mathematical language. In other words, we study 
a different parameter regime here from [19]. Due to this different 
parameter regime, the rogue fields we will report for multiple roots 
of Adler–Moser polynomials will be very different from those reported 
in [19]. For instance, it was reported in [19] that pentagon and 
heptagon shapes as well as lower-order rogue waves could arise due to 
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nonzero multiple roots of Adler–Moser polynomials. In our case, none 
of that can happen (see Section 4.1).

In our parameter regime, rogue patterns induced by a zero multiple 
root and a nonzero multiple root prove to be very different (see 
Section 2 and Fig.  1 for examples). In this section, we treat the case 
where this multiple root is nonzero. The case of this multiple root being 
zero will be treated in Section 6 later.

4.1. Prediction of a triangular rogue cluster for a nonzero multiple root of 
the adler–moser polynomial

Now, we consider NLS rogue waves with large internal parame-
ters (4.8) for general {𝜅𝑗} values. In this case, if the Adler–Moser 
polynomial 𝛩𝑁 (𝑧; 𝜅1,… , 𝜅𝑁−1) admits a nonzero multiple root 𝑧0 of 
multiplicity 𝑁0(𝑁0 + 1)∕2, then we will show that this multiple root 
would induce a triangular rogue cluster on the (𝑥, 𝑡) plane. This cluster 
comprises 𝑁0(𝑁0 + 1)∕2 Peregrine waves whose (𝑥, 𝑡) locations are 
linearly related to the triangular root structure of the Yablonskii–
Vorob’ev polynomial 𝑄𝑁0

(𝑧). Details of these results are presented in 
the following theorem.

Theorem 2.  For the NLS rogue wave 𝑢𝑁 (𝑥, 𝑡) with multiple large internal 
parameters of the single-power form (4.8), suppose the corresponding Adler–
Moser polynomial 𝛩𝑁 (𝑧; 𝜅1,… , 𝜅𝑁−1) admits a nonzero multiple root 𝑧0 of 
multiplicity 𝑁0(𝑁0 + 1)∕2. Then, a triangular rogue cluster will appear on 
the (𝑥, 𝑡) plane. This rogue cluster comprises 𝑁0(𝑁0 + 1)∕2 Peregrine waves 
𝑢̂1(𝑥 − 𝑥0, 𝑡 − 𝑡0) 𝑒i𝑡 forming a triangular shape, where 𝑢̂1(𝑥, 𝑡) is given in 
Eq. (4.7), and positions (𝑥0, 𝑡0) of these Peregrine waves are given by 
𝑥0 + i 𝑡0 = 𝑧0𝐴 + 𝑧̂0𝛺𝐴1∕3, (4.9)

with 𝛺 ≡
[

−
(

𝑧0 + 3iℑ
(

𝑧0
))

∕8
]1∕3 and 𝑧̂0 being every one of the 𝑁0(𝑁0 +

1)∕2 simple roots of the Yablonskii–Vorob’ev polynomial 𝑄𝑁0
(𝑧). The error 

of this Peregrine wave approximation is 𝑂(𝐴−1∕3). Expressed mathemati-
cally, when (𝑥 − 𝑥0)2 + (𝑡 − 𝑡0)2 = 𝑂(1), we have the following solution 
asymptotics 
𝑢𝑁 (𝑥, 𝑡; 𝑎3, 𝑎5,… , 𝑎2𝑁−1) = 𝑢̂1(𝑥 − 𝑥0, 𝑡 − 𝑡0) 𝑒i𝑡 + 𝑂

(

𝐴−1∕3) . (4.10)

The proof of this theorem will be provided later in this section.
Theorem  2 states that the wave pattern induced by a nonzero 

multiple root of the Adler–Moser polynomial 𝛩𝑁 (𝑧) is a triangular 
rogue cluster. The reason for this triangular shape of the cluster is 
that the Yablonskii–Vorob’ev polynomial’s root structure is triangu-
lar (see Fig.  2). As we can see from Eq. (4.9), each root 𝑧̂0 of the 
Yablonskii–Vorob’ev polynomial 𝑄𝑁0

(𝑧) gives rise to a Peregrine wave, 
and positions (𝑥0, 𝑡0) of these Peregrine waves are given through a 
linear mapping of 𝑄𝑁0

(𝑧)’s root structure (notice that 𝛺 in Eq. (4.9) is 
nonzero when 𝑧0 ≠ 0). Since the root structure of Yablonskii–Vorob’ev 
polynomials has a triangular shape [23,25,26], their linear mapping is 
triangular as well. Hence, the rogue cluster is triangular.

4.2. Numerical verification of the analytical prediction in Theorem  2

In this subsection, we use two examples to numerically verify the 
theoretical predictions in Theorem  2.

Example 1. In our first example, we choose 𝑁 = 5 and (𝜅1, 𝜅2, 𝜅3, 𝜅4)
as in Eq. (3.11). When 𝐴 = 10, the true rogue wave 𝑢5(𝑥, 𝑡) with 
internal parameters (4.8) is plotted in Fig.  4(a). It is seen that the wave 
field contains 9 Peregrine waves forming two opposing arcs, which 
closely mimic the two arcs of simple roots in the root structure of 
𝛩5(𝑧; 𝜅1, 𝜅2, 𝜅3, 𝜅4) shown in Fig.  3(a). This is what we already expected 
from our earlier work [18]. Our current interest is the wave cluster 
between those two arcs, which is highlighted by a black dashed box 
in that panel. This wave cluster is associated with the multiple root 
𝑧 = 1 in the root structure of 𝛩 (𝑧; 𝜅 , 𝜅 , 𝜅 , 𝜅 ) of Fig.  3(a), which 
0 5 1 2 3 4
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Theorem  2 is predicting for parameters (4.8) with large 𝐴. This cluster 
looks triangular with 6 main humps. But these 6 humps are not well 
separated, thus they are not ready to be compared with Theorem 
2’s predictions yet. The reason these 6 humps are not well separated 
can be understood from Eq. (4.9) of Theorem  2, which shows that 
the distances between the predicted Peregrine waves are of 𝑂(𝐴1∕3). 
Right now, 𝐴 = 10, thus these distances are not large, leading to the 
predicted Peregrine humps staying close together. Theorem  2 predicts 
that better hump separation would be achieved for larger 𝐴 values. For 
this reason, we will choose 𝐴 = 200 to do the comparison. For this 
larger 𝐴 value, the wave cluster corresponding to the multiple root 
𝑧0 = 1 is plotted in Fig.  4(b). We see that this cluster is well resolved 
now, and it comprises 6 well-separated humps forming a triangular 
pattern, with each hump being an approximate Peregrine wave. In 
panel (c), we show the leading-order analytical prediction of |𝑢5(𝑥, 𝑡)| in 
the region of (b) from Theorem  2. Here, the leading-order prediction is 
a collection of 6 Peregrine waves whose (𝑥0, 𝑡0) locations are obtained 
from Eq. (4.9). We see that this analytical prediction closely resembles 
the true solution. To verify the 𝑂(𝐴−1∕3) error decay of our prediction, 
we show in (d) the error of this prediction versus the 𝐴 value. Here, 
the error is measured as the distance between the true and predicted 
locations of the Peregrine wave marked by a white arrow in panel (b), 
and the location of the Peregrine wave is numerically determined as 
the position of its peak amplitude. By comparing this error curve to the 
theoretical decay rate of 𝐴−1∕3, we see that this error indeed decays as 
𝑂(𝐴−1∕3) at large 𝐴. Thus, Theorem  2 is fully confirmed.

Example 2.  In our second example, we choose 𝑁 = 5 and (𝜅1, 𝜅2, 𝜅3, 𝜅4)
as in Eq. (3.12). When 𝐴 = 15, the true rogue wave 𝑢5(𝑥, 𝑡) with internal 
parameters given in Eq. (4.8) is plotted in Fig.  5(a). It is seen that the 
left side of the wave field contains 5 Peregrine waves forming an arc, 
which closely mimics the arc of 5 simple roots in the root structure 
of 𝛩5(𝑧; 𝜅1, 𝜅2, 𝜅3, 𝜅4) shown in Fig.  3(b), as we would expect from our 
earlier work [18]. Our current interest is the wave cluster on the right 
side of the wave field, which we have highlighted by a black dashed 
box in that panel. This cluster is associated with the multiple root 
𝑧0 = 1 in the root structure of 𝛩5(𝑧; 𝜅1, 𝜅2, 𝜅3, 𝜅4) of Fig.  3(b), which 
Theorem  2 is predicting. We see that this cluster is triangular with 
10 main humps, some of which not well-separated. Thus, to compare 
this cluster with our predictions, we use a larger value of 𝐴 = 200
instead (as we did in Example  1). For this larger 𝐴 value, the wave 
cluster corresponding to the multiple root 𝑧0 = 1 is plotted in Fig.  4(b). 
This cluster comprises 10 well-separated humps forming a triangular 
pattern, with each hump being an approximate Peregrine wave. In 
panel (c), we show the leading-order analytical prediction of |𝑢5(𝑥, 𝑡)| in 
the region of (b) from Theorem  2. We see that this analytical prediction 
closely resembles the true solution, confirming the predictive power of 
Theorem  2. We have also verified the 𝑂(𝐴−1∕3) error decay similar to 
what we did in Example  1, but details will be omitted for brevity.

4.3. Proof of Theorem  2

Now, we prove Theorem  2 on the asymptotic prediction of a tri-
angular rogue cluster for a nonzero simple root in the Adler–Moser 
polynomial for the NLS equation.

Proof. We first rewrite the 𝜎𝑛 determinant (4.3) into a 3𝑁 × 3𝑁
determinant [9] 

𝜎𝑛 =
|

|

|

|

|

𝐎𝑁×𝑁 Φ𝑁×2𝑁
−Ψ2𝑁×𝑁 𝐈2𝑁×2𝑁

|

|

|

|

|

, (4.11)

where 

𝛷 = 2−(𝑗−1)𝑆
[

𝒙+ + (𝑗 − 1)𝒔
]

, 𝛹 = 2−(𝑖−1)𝑆 𝒙− + (𝑖 − 1)𝒔 . (4.12)
𝑖,𝑗 2𝑖−𝑗 𝑖,𝑗 2𝑗−𝑖 [ ]
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Fig. 4. (a) A true 5th-order NLS rogue wave |𝑢5(𝑥, 𝑡)| for internal parameters (4.8) with (𝜅1, 𝜅2, 𝜅3, 𝜅4) given in Eq. (3.11) and 𝐴 = 10. The black dashed box marks 
the wave cluster of our interest. (b) Zoom-in of this cluster for a larger 𝐴 value of 𝐴 = 200. (c) Leading-order analytical prediction of this cluster in (b) from 
Theorem  2. The (𝑥, 𝑡) intervals are −55 ≤ 𝑥, 𝑡 ≤ 55 for panel (a) and 188 ≤ 𝑥 ≤ 214, −13 ≤ 𝑡 ≤ 13 for panels (b) and (c). (d) Error of the leading-order prediction 
versus 𝐴 for the Peregrine wave marked by a white arrow in panel (b) (the theoretical decay rate of 𝐴−1∕3 is also plotted for comparison).
Fig. 5. (a) A true 5th-order NLS rogue wave |𝑢5(𝑥, 𝑡)| for internal parameters (4.8) with (𝜅1, 𝜅2, 𝜅3, 𝜅4) given in Eq. (3.12) and 𝐴 = 15. The black dashed box marks 
the wave cluster of our interest. (b) Zoom-in of this cluster for a larger 𝐴 value of 𝐴 = 200. (c) Leading-order analytical prediction of this cluster in (b) from 
Theorem  2. The (𝑥, 𝑡) intervals are −60 ≤ 𝑥, 𝑡 ≤ 60 for panel (a) and 186 ≤ 𝑥 ≤ 218, −16 ≤ 𝑡 ≤ 16 for panels (b) and (c).
To prove Theorem  2, we need to perform asymptotic analysis to this 
𝜎𝑛 determinant for large 𝐴. For this purpose, we notice that 𝒙+ =
(

𝑥+1 , 0, 𝑥
+
3 , 0,…

)

, where 𝑥+1 , 𝑥+3 ,…  are given in Eq. (4.5) which contain 
internal parameters 𝑎3, 𝑎5,… . When these internal parameters are of 
the form (4.8) with 𝐴 ≫ 1, and 𝑥, 𝑡 = 𝑂(𝐴) or smaller, we define (𝑥𝑐 , 𝑡𝑐 )
by 𝑥𝑐 + i𝑡𝑐 = 𝑧0𝐴 and split 𝒙+ as
𝒙+ = 𝒘 + 𝒙̂+, (4.13)
8 
𝒘 ≡ (𝑥𝑐 + i𝑡𝑐 , 0, 𝑎3, 0, 𝑎5, 0,…) = (𝑧0𝐴, 0, 𝜅1𝐴3, 0, 𝜅2𝐴5, 0,…), (4.14)
𝒙̂+ ≡ (𝑥̂+1 , 0, 𝑥̂

+
3 + 𝑏3, 0, 𝑥̂+5 + 𝑏5, 0,…), (4.15)

𝑥̂+1 ≡ 𝑥̂ + i𝑡 + 𝑛, 𝑥̂+2𝑗+1 ≡
𝑥̂ + 22𝑗 (i𝑡)
(2𝑗 + 1)!

, 𝑗 ≥ 1, (4.16)

𝑏2𝑗+1 ≡
𝑥𝑐 + 22𝑗 (i𝑡𝑐 )
(2𝑗 + 1)!

=
𝑧0 + (22𝑗 − 1)ℑ(𝑧0)i

(2𝑗 + 1)!
𝐴, 𝑗 ≥ 1, (4.17)
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𝐌 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑎1,1𝑆0 + 𝑎1,2𝑆1𝐴−1 +⋯ 1
2 (0 + 𝑎1,2𝑆0𝐴−1 +⋯) ⋯

𝑎2,2𝑆1 + 𝑎2,3𝑆2𝐴−1 +⋯ 1
2 (𝑎2,2𝑆0 + 𝑎2,3𝑆1𝐴−1 +⋯) ⋯

⋮ ⋮ ⋮
𝑎𝑘,𝑘𝑆𝑘−1 + 𝑎𝑘,𝑘+1𝑆𝑘𝐴−1 +⋯ 1

2 (𝑎𝑘,𝑘𝑆𝑘−2 + 𝑎𝑘,𝑘+1𝑆𝑘−1𝐴
−1 +⋯) ⋯

𝛽𝑆𝑘+1 + 𝑏1,3𝑆𝑘+2𝐴−1 +⋯ 1
2 (𝛽𝑆𝑘 + 𝑏1,3𝑆𝑘+1𝐴

−1 +⋯) ⋯

𝛽𝑆𝑘+3 + 𝑏2,5𝑆𝑘+4𝐴−1 +⋯ 1
2 (𝛽𝑆𝑘+2 + 𝑏2,5𝑆𝑘+3𝐴

−1 +⋯) ⋯
⋮ ⋮ ⋮
𝛽𝑆𝑘−1+2𝑁0

+ 𝑏𝑁0 ,2𝑁0+1𝑆𝑘+2𝑁0
𝐴−1 +⋯ 1

2 (𝛽𝑆𝑘−2+2𝑁0
+ 𝑏𝑁0 ,2𝑁0+1𝑆𝑘−1+2𝑁0

𝐴−1 +⋯) ⋯

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑁×2𝑁

, (4.28)

Box I. 
𝑥̂ ≡ 𝑥 − 𝑥𝑐 , 𝑡 ≡ 𝑡 − 𝑡𝑐 . (4.18)

From this 𝒙+ splitting and the definition of Schur polynomials, we see 
that 

𝑆𝑗 (𝒙+ + 𝜈𝒔) =
𝑗
∑

𝑖=0
𝑆𝑗−𝑖(𝒘)𝑆𝑖(𝒙̂+ + 𝜈𝒔), (4.19)

where 𝜈 is any integer. In addition, from the definition of functions 𝜃𝑗 (𝑧)
in Eq. (3.10), we see that 
𝑆𝑗 (𝒘) = 𝐴𝑗𝜃𝑗 (𝑧0). (4.20)

Let us denote 𝜃𝑗 (𝑧0) ≡ ℎ𝑗 . Then, using the above two relations, we can 
rewrite the Φ matrix as
Φ = 𝐅𝐆, (4.21)
𝐅 = Mat1≤𝑖≤𝑁, 1≤𝑗≤2𝑁

(

𝐴2𝑖−𝑗ℎ2𝑖−𝑗
)

= 𝐃1𝐇𝐃2, (4.22)

𝐆 = Mat1≤𝑖,𝑗≤2𝑁
(

2−(𝑗−1)𝑆𝑖−𝑗
[

𝒙̂+ + (𝑗 − 1)𝒔
])

, (4.23)

𝐃1 = diag(𝐴,𝐴3,… , 𝐴2𝑁−1), (4.24)
𝐃2 = diag(1, 𝐴−1,… , 𝐴1−2𝑁 ). (4.25)

Here, 𝐇 is the matrix given in Eq. (3.14) with ℎ𝑗 = 𝜃𝑗 (𝑧0), which is 
the same 𝐇 matrix as in the proof of Theorem  1. From Eq. (3.15) and 
Lemma  1, we get 𝐇 = 𝐏−1𝐋𝐇̂, where 𝐏 is a permutation matrix, 𝐋 is 
a lower triangular matrix with ones on the diagonal, and 𝐇̂ is a row 
echelon form given in Eq. (3.16). Thus, 
Φ = 𝐃1𝐏−1𝐋𝐇̂𝐃2𝐆. (4.26)

The key step of this proof is to utilize the special row echelon form 𝐇̂
in Eq. (3.16) of Lemma  1. Doing so, we find that we can rewrite the 
above Φ matrix as 
Φ = 𝐃1𝐏−1𝐋𝐃3𝐌, (4.27)

where 𝐃3 = diag(1, 𝐴−1,… , 𝐴1−𝑘, 𝐴−1−𝑘, 𝐴−3−𝑘,… , 𝐴1−2(𝑁−𝑘)−𝑘), 𝐌 is 
given in Box  I, 𝑘 is the number of the first few columns of 𝐇 that 
are linearly independent, 𝑁0 = 𝑁 − 𝑘, 𝑎𝑖,𝑗 and 𝑏𝑖,𝑗 are elements in 
the 𝐀 and 𝐁 matrices of Lemma  1, and 𝑆𝑗 is equal to 𝑆𝑗

(

𝒙̂+
) in the 

first column, equal to 𝑆𝑗
(

𝒙̂+ + 𝒔
) in the second column, and so on. 

Notice that the determinant of the 𝑁 × 𝑁 matrix comprising the first 
𝑁 columns of 𝐇 is just 𝛩𝑁 (𝑧0), the fact of 𝑧0 being a root of 𝛩𝑁 (𝑧)
means that these first 𝑁 columns of 𝐇 are linearly dependent. Thus, 
𝑘 < 𝑁 and 𝑁0 ≥ 1. This 𝐌 matrix above is similar to a matrix of the 
same name in the proof of Theorem  1. Since the 𝐇 matrix here (with 
ℎ𝑗 = 𝜃𝑗 (𝑧0)) is the same as that in the proof of Theorem  1, we see 
that 𝑁0(𝑁0 + 1)∕2 is the multiplicity of the 𝑧0 root in the Adler–Moser 
polynomial 𝛩𝑁 (𝑧; 𝜅1,… , 𝜅𝑁−1).

Matrices 𝐃1, 𝐏−1, 𝐋 and 𝐃3 in Eq. (4.27) are all 𝑁 ×𝑁 nonsingular 
constant matrices that are independent of the index 𝑛 of 𝜎𝑛. Because 
of that, they can all be factored out of the 𝜎𝑛 determinant (4.11) and 
cancel out from 𝜎1∕𝜎0 in the rogue wave formula (4.2). This means 
that in the 𝜎𝑛 determinant (4.11), Φ can be replaced by 𝐌. Similarly, 
Ψ in that 𝜎  determinant can be replaced by a counterpart matrix 𝐌̃
𝑛
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of 𝐌. Thus, the asymptotics of 𝜎𝑛 can be obtained from analyzing the 
asymptotics of 𝐌 and its counterpart 𝐌̃.

To proceed further, we will first use a heuristic approach to derive 
the leading order approximation of 𝑢𝑁 (𝑥, 𝑡). Afterwards, we will use a 
more rigorous analysis to justify that leading order approximation and 
derive its error estimates.

Our heuristic approach is as follows. As we will quickly see, rogue 
patterns induced by the multiple root 𝑧0 of the Adler–Moser polynomial 
𝛩𝑁 (𝑧) appear in the (𝑥̂, 𝑡) = 𝑂(𝐴1∕3) region of the (𝑥, 𝑡) plane. In this 
region, since (𝑥̂+1 , 𝑥̂+3 ,…) are all 𝑂(𝐴1∕3) and (𝑏3, 𝑏5,…) all 𝑂(𝐴), the 
expression for 𝒙̂+ in Eq. (4.15) indicates that 
𝑆𝑗 (𝒙̂+ + 𝜈𝒔) = 𝑂(𝐴𝑗∕3) (4.29)

for any fixed integer 𝜈. Thus, we see from Eq. (4.28) that at large 𝐴, 
all terms involving 𝐴−1 or its powers in the 𝐌 matrix are subdominant, 
and 
𝐌 ∼ 𝐌0, 𝐴 ≫ 1, (4.30)

where 𝐌0 is the matrix of 𝐌 with all terms involving 𝐴−1 and its powers 
neglected, i.e., 

𝐌0 =
(

𝐌𝑎 0
𝐌𝑐 𝐌𝑏

)

, (4.31)

𝐌𝑎 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑎1,1𝑆0 0 0 ⋯
𝑎2,2𝑆1

1
2𝑎2,2𝑆0 0 ⋯

⋮ ⋮ ⋱ ⋮
𝑎𝑘,𝑘𝑆𝑘−1

1
2𝑎𝑘,𝑘𝑆𝑘−2 ⋯ 1

2𝑘−1 𝑎𝑘,𝑘𝑆0

⎞

⎟

⎟

⎟

⎟

⎠𝑘×𝑘

, (4.32)

𝐌𝑏 = 𝛽Mat1≤𝑖≤𝑁−𝑘, 1≤𝑗≤2𝑁−𝑘
(

2−(𝑗−1)−𝑘𝑆2𝑖−𝑗
[

𝒙̂+ + (𝑗 − 1 + 𝑘)𝒔
])

, (4.33)

and 𝐌𝑐 is a matrix we do not write out since it is not needed. Note that 
in the above lower-triangular matrix 𝐌𝑎, 𝑆𝑗 is equal to 𝑆𝑗

(

𝒙̂+
) in the 

first column, equal to 𝑆𝑗
(

𝒙̂+ + 𝒔
) in the second column, and so on.

Using the above results and their counterparts for the Ψ component, 
and recalling that 𝑎1,1, 𝑎2,2,… , 𝑎𝑘,𝑘 and 𝛽 are all nonzero and 𝑆0 = 1, we 
see that the 𝜎𝑛 determinant (4.11) with its Φ replaced by 𝐌 and its Ψ
replaced by 𝐌’s counterpart 𝐌̃ is asymptotically equal to 
𝜎𝑛 ∼ 𝛼0𝜎̂𝑛, 𝐴 ≫ 1, (4.34)

where 𝛼0 is a certain nonzero constant, 

𝜎̂𝑛 =
|

|

|

|

|

𝐎𝑁0×𝑁0
Φ̂𝑁0×2𝑁0

−Ψ̂2𝑁0×𝑁0
𝐈2𝑁0×2𝑁0

|

|

|

|

|

, (4.35)

and 

𝛷̂𝑖,𝑗 = 2−(𝑗−1)𝑆2𝑖−𝑗
[

𝒙̂+ + (𝑗 − 1 + 𝑘)𝒔
]

, 𝛹̂𝑖,𝑗 = 2−(𝑖−1)𝑆2𝑗−𝑖 [𝒙̂− + (𝑖 − 1 + 𝑘)𝒔] .

(4.36)

During this calculation, an overall factor of 2−𝑘 has been scaled out 
from the 𝐌𝑏 matrix and its counterpart for the Ψ component. Using 
techniques of Ref. [17], we can remove the 𝑘 term in the above 
Eq. (4.36) without affecting the 𝜎̂  determinant. Then, the resulting 
𝑛
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𝜎̂𝑛 simply corresponds to the 𝑁0-th order rogue wave 𝑢𝑁0
(𝑥̂, 𝑡) with 

internal parameters (𝑏3, 𝑏5,… , 𝑏2𝑁0−1). Thus, we have 

𝑢𝑁 (𝑥, 𝑡; 𝑎3, 𝑎5,… , 𝑎2𝑁−1) ∼ 𝑢𝑁0
(𝑥̂, 𝑡; 𝑏3, 𝑏5,… , 𝑏2𝑁0−1) 𝑒

i(𝑡−𝑡), 𝐴 ≫ 1.

(4.37)

The phase term 𝑒i(𝑡−𝑡) here is induced by our notation in Eq. (4.2), 
which implies 𝑢𝑁 (𝑥, 𝑡) has phase 𝑒i𝑡 while 𝑢𝑁0

(𝑥̂, 𝑡) has phase 𝑒i𝑡. From 
Eq. (4.17), we see that internal 𝑏2𝑗+1 parameters in this 𝑁0-th order 
rogue wave 𝑢𝑁0

(𝑥̂, 𝑡) are nonzero and 𝑂(𝐴). The asymptotics of this 
𝑢𝑁0

(𝑥̂, 𝑡) has been studied in Sec. 6 of Ref. [17]. Since the current 
internal parameters satisfy the condition of 𝑏2𝑗+1 ≤ 𝑂(𝑏(2𝑗−1)∕33 ) for every 
𝑗 ≥ 2, results in Sec. 6 of Ref. [17] indicate that at large 𝐴, the solution 
𝑢𝑁0

(𝑥̂, 𝑡; 𝑏3, 𝑏5,… , 𝑏2𝑁0−1) would split into 𝑁0(𝑁0+1)∕2 Peregrine waves 
𝑢̂1(𝑥̂−𝑥̂0, 𝑡−𝑡0)𝑒i𝑡, where 𝑢̂1(𝑥, 𝑡) is given in Eq. (4.7), and positions (𝑥̂0, 𝑡0)
of these Peregrine waves are given by 𝑥̂0 + i𝑡0 = 𝑧̂0

(

−3𝑏3∕4
)1∕3, with 

𝑧̂0 being every one of the 𝑁0(𝑁0 + 1)∕2 simple roots of the Yablonskii–
Vorob’ev polynomial 𝑄𝑁0

(𝑧). Since 𝑏3 = [𝑧0 + 3ℑ(𝑧0)i]𝐴∕6, we then get 

𝑥̂0 + i𝑡0 = 𝑧̂0𝛺𝐴
1∕3, (4.38)

where 𝛺 is as defined in Theorem  2 and is nonzero. Recalling 𝑥̂ = 𝑥−𝑥𝑐
and 𝑡 = 𝑡 − 𝑡𝑐 with 𝑥𝑐 + i𝑡𝑐 = 𝑧0𝐴, we see that 𝑢̂1(𝑥̂ − 𝑥̂0, 𝑡 − 𝑡0) =
𝑢̂1(𝑥−𝑥0, 𝑡− 𝑡0), where (𝑥0, 𝑡0) are as given in Eq. (4.9). Then, Eq. (4.37) 
means that 
𝑢𝑁 (𝑥, 𝑡; 𝑎3, 𝑎5,… , 𝑎2𝑁−1) ∼ 𝑢̂1(𝑥 − 𝑥0, 𝑡 − 𝑡0) 𝑒i𝑡, 𝐴 ≫ 1 (4.39)

when (𝑥, 𝑡) are in the 𝑂(1) neighborhood of (𝑥0, 𝑡0).
The above derivation is heuristic for the following reason. The 

leading-order term 𝜎̂𝑛 in Eq. (4.34) turns out to nearly vanish around 
locations (4.38) where Peregrine waves are predicted. This fact can be 
seen from Ref. [17] or from the later text of this subsection. Because of 
that, it is crucial for us to show that the error terms which are neglected 
in the leading-order asymptotics (4.34) do not surpass or match that 
leading-order contribution in those regions. Since we did not estimate 
those errors and their relative contributions, the above calculation was 
heuristic and not rigorous.

Next, we more carefully justify the above asymptotics (4.39) and 
derive its error estimates. In this process, we will not rely on our earlier 
results in Ref. [17], but will do all necessary calculations directly so that 
our treatment here is self-contained.

First, we split the 𝐌 matrix in Eq. (4.28) as 
𝐌 = 𝐌0 +𝐌1, (4.40)

where 𝐌0 is as given in Eq. (4.31). We also do a similar splitting for 
the counterpart matrix 𝐌̃ of the Ψ counterpart. In the (𝑥̂, 𝑡) = 𝑂(𝐴1∕3)
region, due to the asymptotics (4.29), we see that when (𝐌0)𝑖𝑗 ≠ 0, the 
matrix element (𝐌1)𝑖𝑗 of 𝐌1 is 𝑂(𝐴−2∕3) less than the corresponding 
matrix element (𝐌0)𝑖𝑗 of 𝐌0; and when (𝐌0)𝑖𝑗 = 0, (𝐌1)𝑖𝑗 is order of 
𝐴−1 or its higher power. Similar results hold for the counterpart 𝐌̃ in 
the Ψ component.

Then, we examine the matrix 𝐌0. This matrix comprises elements 
𝑆𝑗

(

𝒙̂+ + 𝜈𝒔
)

. When (𝑥̂, 𝑡) = 𝑂(𝐴1∕3), it is easy to see that 

𝑆𝑗 (𝒙̂+ + 𝜈𝒔) = 𝑆𝑗
(

𝑥̂+1 , 0, 𝑏3, 0, 0,…
) [

1 + 𝑂(𝐴−2∕3)
]

(4.41)

for any fixed integer 𝜈. The polynomial 𝑆𝑗
(

𝑥̂+1 , 0, 𝑏3, 0, 0,…
) is related 

to 𝑝𝑗 (𝑧) in Eq. (3.7) as 

𝑆𝑗
(

𝑥̂+1 , 0, 𝑏3, 0, 0,…
)

= 𝛺𝑗𝐴𝑗∕3𝑝𝑗 (𝑧̂), (4.42)

where 𝛺 is as defined in Theorem  2, and 𝑧̂ = 𝛺−1𝐴−1∕3(𝑥̂ + i𝑡 + 𝑛). 
Inserting (4.42) into (4.41), we get 
𝑆𝑗 (𝒙̂+ + 𝜈𝒔) = 𝛺𝑗𝐴𝑗∕3𝑝𝑗 (𝑧̂)

[

1 + 𝑂
(

𝐴−2∕3)] . (4.43)

Now, we use the above results (4.40), (4.43) and their
Ψ-counterparts to calculate 𝜎  in Eq. (4.11), with its Φ replaced by 
𝑛
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𝐌 and its Ψ replaced by 𝐌’s counterpart 𝐌̃. To proceed, we first use 
determinant identities and the Laplace expansion to rewrite that 𝜎𝑛 as 

𝜎𝑛 =
∑

1≤𝜇1<𝜇2<⋯<𝜇𝑁≤2𝑁
det

1≤𝑖,𝑗≤𝑁

(

𝐌𝑖,𝜇𝑗

)

× det
1≤𝑖,𝑗≤𝑁

(

𝐌̃𝜇𝑗 ,𝑖

)

. (4.44)

It is easy to see that the dominant contributions to this 𝜎𝑛 come from 
two index choices, one being 𝜇 = (1, 2,… , 𝑁), and the other being 
𝜇 = (1, 2,… , 𝑁−1, 𝑁+1), and the rest of the contributions are of relative 
order 𝐴−1∕3.

With the first index choice, in view of Eqs. (4.40), (4.43) and size 
discussions of 𝐌1’s elements above, the 𝐌𝑖,𝜇𝑗  determinant in Eq. (4.44) 
can be found as 
𝛼1𝐴

𝑁0(𝑁0+1)
6

[

𝑄𝑁0
(𝑧̂) + 𝑂

(

𝐴−2∕3)
]

, (4.45)

where 𝛼1 = 2−𝑁(𝑁−1)∕2𝛺𝑁0(𝑁0+1)∕2𝛽𝑁0 𝑐−1𝑁0

∏𝑘
𝑖=1 𝑎𝑖𝑖. Here, the leading-

order contribution to this determinant comes from approximating 𝐌
by 𝐌0 and approximating 𝑆𝑗 (𝒙̂+ + 𝜈𝒔) in 𝐌0 by its leading-order term 
in Eq. (4.43), and the 𝑂(𝐴−2∕3) error term in (4.45) comes from the 𝐌1
component of 𝐌 as well as the 𝑂(𝐴−2∕3) error term in (4.43). In view 
of the definitions of (𝑥̂0, 𝑡0) in Eq. (4.38), we can rewrite 𝑧̂ as 
𝑧̂ = 𝑧̂0 +𝛺−1𝐴−1∕3 [(𝑥̂ − 𝑥̂0) + i(𝑡 − 𝑡0) + 𝑛

]

. (4.46)

Then, expanding 𝑄𝑁0
(𝑧̂) around 𝑧̂ = 𝑧̂0, and recalling 𝑧̂0 is a simple 

root of the Yablonskii–Vorob’ev polynomial 𝑄𝑁0
(𝑧), i.e., 𝑄𝑁0

(𝑧̂0) = 0
and 𝑄′

𝑁0
(𝑧̂0) ≠ 0, we get 

𝑄𝑁0
(𝑧̂) = 𝛺−1𝐴−1∕3𝑄′

𝑁0
(𝑧̂0)

[

(𝑥̂ − 𝑥̂0) + i(𝑡 − 𝑡0) + 𝑛
] [

1 + 𝑂
(

𝐴−1∕3)] .

(4.47)

Inserting this equation into (4.45), the 𝐌𝑖,𝜇𝑗  determinant in Eq. (4.44) 
then becomes 

𝛼1𝛺
−1𝑄′

𝑁0
(𝑧̂0)

[

(𝑥̂ − 𝑥̂0) + i(𝑡 − 𝑡0) + 𝑛
]

𝐴
𝑁0(𝑁0+1)−2

6
[

1 + 𝑂
(

𝐴−1∕3)] .

(4.48)

Similarly, the 𝐌̃𝜇𝑗 ,𝑖 determinant in Eq. (4.44) can be found as 
(

𝛼1𝛺
−1𝑄′

𝑁0
(𝑧̂0)

)∗
[

(𝑥̂ − 𝑥̂0) − i(𝑡 − 𝑡0) − 𝑛
]

𝐴
𝑁0(𝑁0+1)−2

6
[

1 + 𝑂
(

𝐴−1∕3)] .

(4.49)

With the second index choice of 𝜇 = (1, 2,… , 𝑁 − 1, 𝑁 + 1), the 
leading-order contribution to the 𝐌𝑖,𝜇𝑗  determinant in Eq. (4.44) can 
be obtained by neglecting the 𝐌1 component of 𝐌 and approximating 
𝑆𝑗 (𝒙̂++𝜈𝒔) in 𝐌0 by its leading-order term in Eq. (4.43), and the relative 
error of this approximation is 𝑂(𝐴−2∕3). Thus, this 𝐌𝑖,𝜇𝑗  determinant is 
found as
1
2
𝛼1𝑐𝑁0

𝛺−1 det
1≤𝑖≤𝑁0

[

𝑝2𝑖−1(𝑧̂), 𝑝2𝑖−2(𝑧̂),⋯ , 𝑝2𝑖−(𝑁0−1)(𝑧̂), 𝑝2𝑖−(𝑁0+1)(𝑧̂)
]

× 𝐴
𝑁0(𝑁0+1)−2

6
[

1 + 𝑂
(

𝐴−2∕3)] . (4.50)

Since 𝑝2𝑖−(𝑁0+1)(𝑧̂) = 𝑝′2𝑖−𝑁0
(𝑧̂), this determinant is then equal to 

1
2
𝛼1𝛺

−1𝑄′
𝑁0

(𝑧̂)𝐴
𝑁0(𝑁0+1)−2

6
[

1 + 𝑂
(

𝐴−2∕3)] . (4.51)

Utilizing Eq. (4.46), this expression can be approximated as 
1
2
𝛼1𝛺

−1𝑄′
𝑁0

(𝑧̂0)𝐴
𝑁0(𝑁0+1)−2

6
[

1 + 𝑂
(

𝐴−1∕3)] . (4.52)

Similarly, the 𝐌̃𝜇𝑗 ,𝑖 determinant in Eq. (4.44) can be found as 
1
2

(

𝛼1𝛺
−1𝑄′

𝑁0
(𝑧̂0)

)∗
𝐴

𝑁0(𝑁0+1)−2
6

[

1 + 𝑂
(

𝐴−1∕3)] . (4.53)

Summarizing the above contributions, we find that the determinant 
𝜎𝑛 in Eq. (4.44) is calculated as

𝜎 = |𝛼 𝛺−1|2 |𝑄′ (𝑧̂ )|
2
𝐴

𝑁0(𝑁0+1)−2
3
𝑛 |

|

1 |

|

|

|

𝑁0 0 |

|
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×
[

(

𝑥̂ − 𝑥̂0
)2 +

(

𝑡 − 𝑡0
)2 − (2i)𝑛

(

𝑡 − 𝑡0
)

− 𝑛2 + 1
4

]

[

1 + 𝑂
(

𝐴−1∕3)] .

(4.54)

Then, inserting the above asymptotics into Eq. (4.2), we find that when 
(𝑥̂, 𝑡) is in the 𝑂(1) neighborhood of (𝑥̂0, 𝑡0

)

, i.e., when (𝑥, 𝑡) is in the 𝑂(1)
neighborhood of (𝑥0, 𝑡0) where (𝑥0, 𝑡0) are given in Eq. (4.9) of Theorem 
2,

𝑢𝑁 (𝑥, 𝑡; 𝑎3, 𝑎5,… , 𝑎2𝑁−1) =
𝜎1
𝜎0
𝑒i𝑡

= 𝑒i𝑡
(

1 −
4[1 + 2i(𝑡 − 𝑡0)]

1 + 4(𝑥̂ − 𝑥̂0)2 + 4(𝑡 − 𝑡0)2

)

+ 𝑂
(

𝐴−1∕3) , (4.55)

which is a Peregrine wave 𝑢̂1(𝑥 − 𝑥0, 𝑡 − 𝑡0)𝑒i𝑡, and the error of this 
Peregrine approximation is 𝑂 (

𝐴−1∕3). Theorem  2 is then proved. □

5. Triangular rogue clusters in the GDNLS equations

The normalized GDNLS equations are [34–37] 

i𝑢𝑡 +
1
2
𝑢𝑥𝑥 + i𝛾|𝑢|2𝑢𝑥 + i(𝛾 − 1)𝑢2𝑢∗𝑥 +

1
2
(𝛾 − 1)(𝛾 − 2)|𝑢|4𝑢 = 0, (5.1)

where 𝛾 is a real constant. These equations become the Kaup–Newell 
equation when 𝛾 = 2 [38], the Chen–Lee–Liu equation when 𝛾 =
1 [39], and the Gerdjikov–Ivanov equation when 𝛾 = 0 [40]. These 
GDNLS equations and their special versions govern a number of phys-
ical processes such as the propagation of circularly polarized nonlin-
ear Alfvén waves in plasmas [41,42], short-pulse propagation in a 
frequency-doubling crystal [43], and propagation of ultrashort pulses 
in a single-mode optical fiber [44,45].

Rogue waves in these equations satisfy the following normalized 
boundary conditions [37] 

𝑢(𝑥, 𝑡) → 𝑒i(1−𝛾−𝛼)𝑥−
1
2 i[𝛼

2+2(𝛾−2)𝛼+1−𝛾]𝑡, 𝑥, 𝑡 → ±∞, (5.2)

where 𝛼 > 0 is a free wave number parameter. Under these conditions, 
compact expressions of 𝑁th order rogue waves in the GDNLS equations 
(5.1) are given by [46]. 

𝑢𝑁 (𝑥, 𝑡) = 𝑒i(1−𝛾−𝛼)𝑥−
1
2 i[𝛼

2+2(𝛾−2)𝛼+1−𝛾]𝑡 (𝑓
∗
𝑁 )𝛾−1𝑔𝑁
𝑓 𝛾𝑁

, (5.3)

where 
𝑓𝑁 (𝑥, 𝑡) = 𝜎0,0, 𝑔𝑁 (𝑥, 𝑡) = 𝜎−1,1, (5.4)

𝜎𝑛,𝑘 = det
1≤𝑖,𝑗≤𝑁

(

𝜙(𝑛,𝑘)
2𝑖−1,2𝑗−1

)

, (5.5)

𝜙(𝑛,𝑘)
𝑖,𝑗 =

min(𝑖,𝑗)
∑

𝜈=0

1
4𝜈
𝑆𝑖−𝜈 (𝒙+(𝑛, 𝑘) + 𝜈𝒔)𝑆𝑗−𝜈 (𝒙−(𝑛, 𝑘) + 𝜈𝒔), (5.6)

the vectors 𝒙±(𝑛, 𝑘) = (

𝑥±1 , 𝑥
±
2 ,…

) are defined by

𝑥+1 = 𝑘 +
(

𝑛 + 1
2

)(

ℎ1 +
1
2

)

+
√

𝛼𝑥 +
[

√

𝛼(𝛼 − 1) + i𝛼
]

𝑡, (5.7)

𝑥−1 = −𝑘 −
(

𝑛 + 1
2

)(

ℎ∗1 +
1
2

)

+
√

𝛼𝑥 +
[

√

𝛼(𝛼 − 1) − i𝛼
]

𝑡, (5.8)

𝑥+2𝑗+1 = (𝑛 + 1
2
)ℎ2𝑗+1

+ 1
(2𝑗 + 1)!

{

√

𝛼𝑥 +
[

√

𝛼(𝛼 − 1) + 22𝑗 i𝛼
]

𝑡
}

+ 𝑎2𝑗+1, 𝑗 ≥ 1, (5.9)

𝑥−2𝑗+1 = −(𝑛 + 1
2
)ℎ∗2𝑗+1

+ 1
(2𝑗 + 1)!

{

√

𝛼𝑥 +
[

√

𝛼(𝛼 − 1) − 22𝑗 i𝛼
]

𝑡
}

+ 𝑎∗2𝑗+1, 𝑗 ≥ 1, (5.10)

𝑥±2𝑗 = 0, 𝑗 ≥ 1, (5.11)

𝒔 = (𝑠1, 𝑠2,…) is defined in Eq. (4.6), ℎ𝑗 (𝛼) are coefficients from the 
expansion 
∞
∑

ℎ𝑗𝜆
𝑗 = ln

(

i𝑒𝜆∕2 +
√

𝛼𝑒−𝜆∕2
√

)

, (5.12)

𝑗=1 i + 𝛼
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and 𝑎3, 𝑎5,… , 𝑎2𝑁−1 are free irreducible complex constants.
The fundamental GDNLS rogue wave is obtained when we take 

𝑁 = 1 in the above general solution. This fundamental rogue wave 
is 
𝑢1(𝑥, 𝑡) = 𝑢̂1(𝑥, 𝑡)𝑒

i(1−𝛾−𝛼)𝑥− 1
2 i[𝛼

2+2(𝛾−2)𝛼+1−𝛾]𝑡, (5.13)

where 

𝑢̂1(𝑥, 𝑡) =
(𝑓 ∗

1 )
𝛾−1𝑔1
𝑓 𝛾1

, (5.14)

the functions 𝑓1(𝑥, 𝑡) and 𝑔1(𝑥, 𝑡) are given from Eq. (5.4) as

𝑓1(𝑥, 𝑡) =
[ 1
2

(

ℎ1 +
1
2

)

+
√

𝛼𝑥 +
[

√

𝛼(𝛼 − 1) + i𝛼
]

𝑡
]

×
[

−1
2

(

ℎ∗1 +
1
2

)

+
√

𝛼𝑥 +
[

√

𝛼(𝛼 − 1) − i𝛼
]

𝑡
]

+ 1
4
, (5.15)

𝑔1(𝑥, 𝑡) =
[

1 − 1
2

(

ℎ1 +
1
2

)

+
√

𝛼𝑥 +
[

√

𝛼(𝛼 − 1) + i𝛼
]

𝑡
]

×
[

−1 + 1
2

(

ℎ∗1 +
1
2

)

+
√

𝛼𝑥 +
[

√

𝛼(𝛼 − 1) − i𝛼
]

𝑡
]

+ 1
4
, (5.16)

and ℎ1 = [i−
√

𝛼]∕[2(i+
√

𝛼)]. This wave has a single hump of amplitude 
3, flanked by two dips on its sides, and its intensity profile is slanted 
on the (𝑥, 𝑡) plane.

Patterns of these GDNLS rogue waves 𝑢𝑁 (𝑥, 𝑡) under a single large 
internal parameter 𝑎2𝑗+1 were studied in our earlier work [15,46]. 
It was shown that those patterns are predicted by root structures 
of the Yablonskii–Vorob’ev polynomial hierarchy. If multiple internal 
parameters in these rogue waves are large and of the single-power 
form (4.8), it was shown in [15] that the corresponding rogue patterns 
are predicted by the root structure of the Adler–Moser polynomial 
𝛩𝑁 (𝑧; 𝜅1,… , 𝜅𝑁−1). If all roots of this Adler–Moser polynomial are sim-
ple, then the rogue pattern would comprise fundamental rogue waves 
whose locations on the (𝑥, 𝑡) plane are a certain linear transformation 
to this polynomial’s root structure. When the Adler–Moser polynomial 
admits multiple roots, while each simple root of the polynomial would 
still give rise to a fundamental rogue wave on the (𝑥, 𝑡) plane, the wave 
pattern induced by a multiple root was not addressed in [15]. This 
question will be answered in this paper. Similar to the NLS case, rogue 
patterns induced by a zero multiple root and a nonzero multiple root 
are very different. In this section, we treat the nonzero multiple-root 
case. The zero multiple-root case will be treated in Section 6 later.

5.1. Prediction of a triangular rogue cluster and its proof for the GDNLS 
equations

In this section, we consider GDNLS rogue waves with large inter-
nal parameters (4.8) when the corresponding Adler–Moser polynomial 
𝛩𝑁 (𝑧; 𝜅1,… , 𝜅𝑁−1) admits a nonzero multiple root. If this root has 
multiplicity 𝑁0(𝑁0+1)∕2, then we will show that this root would induce 
a triangular rogue cluster on the (𝑥, 𝑡) plane. This cluster comprises 
𝑁0(𝑁0 + 1)∕2 fundamental rogue waves whose (𝑥, 𝑡) locations are lin-
early related to the triangular root structure of the Yablonskii–Vorob’ev 
polynomial 𝑄𝑁0

(𝑧). Details of our results are presented in the following 
theorem.

Theorem 3.  For the GDNLS rogue wave 𝑢𝑁 (𝑥, 𝑡) with multiple large in-
ternal parameters of the single-power form (4.8), suppose the corresponding 
Adler–Moser polynomial 𝛩𝑁 (𝑧; 𝜅1,… , 𝜅𝑁−1) admits a nonzero multiple root 
𝑧0 of multiplicity 𝑁0(𝑁0+1)∕2. Then, a triangular rogue cluster will appear 
on the (𝑥, 𝑡) plane. This rogue cluster comprises 𝑁0(𝑁0 + 1)∕2 fundamental 
rogue waves 𝑢̂1(𝑥−𝑥0, 𝑡−𝑡0)𝑒i(1−𝛾−𝛼)𝑥−

1
2 i
[

𝛼2+2(𝛾−2)𝛼+1−𝛾
]

𝑡 forming a triangular 
shape, where 𝑢̂1(𝑥, 𝑡) is given in Eq. (5.14), and positions (𝑥0, 𝑡0) of these 
fundamental rogue waves are given by 
√

𝛼𝑥0 +
[

√

𝛼(𝛼 − 1) + i𝛼
]

𝑡0 = 𝑧0𝐴 + 𝑧̂0𝛺𝐴1∕3, (5.17)

with 𝛺 ≡
[

−
(

𝑧0 + 3iℑ
[

𝑧0
])

∕8
]1∕3 and 𝑧̂0 being every one of the 𝑁0(𝑁0 +

1)∕2 simple roots of the Yablonskii–Vorob’ev polynomial 𝑄 (𝑧). The error 
𝑁0
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of this fundamental rogue wave approximation is 𝑂(𝐴−1∕3). Expressed 
mathematically, when (𝑥 − 𝑥0)2 + (𝑡 − 𝑡0)2 = 𝑂(1), we have the following 
solution asymptotics 

𝑢𝑁 (𝑥, 𝑡; 𝑎3, 𝑎5,… , 𝑎2𝑁−1) = 𝑢̂1(𝑥−𝑥0, 𝑡−𝑡0)𝑒
i(1−𝛾−𝛼)𝑥− 1

2 i[𝛼
2+2(𝛾−2)𝛼+1−𝛾]𝑡+𝑂

(

𝐴−1∕3) .

(5.18)

This theorem says that the wave pattern induced by a nonzero 
multiple root of the Adler–Moser polynomial 𝛩𝑁 (𝑧) is a triangular 
rogue cluster, similar to the NLS case. The reason for this triangular 
shape of the cluster is easy to see from Eq. (5.17). This equation 
shows that positions (𝑥0, 𝑡0) of fundamental rogue waves in this cluster 
are given through a linear mapping of the root structure 𝑧̂0 of the 
Yablonskii–Vorob’ev polynomial 𝑄𝑁0

(𝑧). Indeed, this linear mapping 
can be worked out more explicitly from Eq. (5.17) as 
[

𝑥0
𝑡0

]

=
[

𝑥𝑐
𝑡𝑐

]

+ 𝐁
[

ℜ(𝑧̂0)
ℑ(𝑧̂0)

]

, (5.19)

where 
[

𝑥𝑐
𝑡𝑐

]

= 𝐁0

[

ℜ(𝑧0)
ℑ(𝑧0)

]

, (5.20)

and

𝐁0 = 𝐴

[ 1
√

𝛼
− 𝛼−1

𝛼

0 1
𝛼

]

,

𝐁 = 𝐴1∕3

[ 1
√

𝛼
ℜ(𝛺) − 𝛼−1

𝛼 ℑ(𝛺) − 1
√

𝛼
ℑ(𝛺) − 𝛼−1

𝛼 ℜ(𝛺)
1
𝛼ℑ(𝛺) 1

𝛼ℜ(𝛺)

]

. (5.21)

In this linear map (5.19), the first term is a constant shift, and 𝐁 is 
a constant matrix. Since the root structure of all Yablonskii–Vorob’ev 
polynomials has a triangular shape [23,25,26], the rogue cluster of 
fundamental rogue waves obtained through this linear mapping is 
triangular as well.

Proof of Theorem  3.  The proof of this theorem is similar to that for 
the NLS equation in Section 4.3 and thus will only be sketched below.

We start by rewriting the 𝜎𝑛 determinant (5.5) into the 3𝑁 × 3𝑁
determinant (4.11), where Φ and Ψ are given by Eq. (4.12), except 
that the 𝒙± vectors are now different. Due to the expression of 𝑥+1  in 
Eq. (5.7), we define (𝑥𝑐 , 𝑡𝑐 ) by 
√

𝛼𝑥𝑐 +
[

√

𝛼(𝛼 − 1) + i𝛼
]

𝑡𝑐 = 𝑧0𝐴. (5.22)

Explicit expressions of (𝑥𝑐 , 𝑡𝑐 ) can be easily worked out and they are as 
given in Eq. (5.20).

Next, we split 𝒙+ as
𝒙+ = 𝒘 + 𝒙̂+, (5.23)
𝒘 ≡ (

√

𝛼𝑥𝑐 + [
√

𝛼(𝛼 − 1) + i𝛼]𝑡𝑐 , 0, 𝑎3, 0, 𝑎5, 0,…)

= (𝑧0𝐴, 0, 𝜅1𝐴3, 0, 𝜅2𝐴5, 0,…), (5.24)
𝒙̂+ ≡ (𝑥̂+1 , 0, 𝑥̂

+
3 + 𝑏3, 0, 𝑥̂+5 + 𝑏5, 0,…), (5.25)

𝑥̂+1 ≡ 𝑘 +
(

𝑛 + 1
2

)(

ℎ1 +
1
2

)

+
√

𝛼𝑥̂ +
[

√

𝛼(𝛼 − 1) + i𝛼
]

𝑡, (5.26)

𝑥̂+2𝑗+1 = (𝑛 + 1
2
)ℎ2𝑗+1

+ 1
(2𝑗 + 1)!

{

√

𝛼𝑥̂ +
[

√

𝛼(𝛼 − 1) + 22𝑗 i𝛼
]

𝑡
}

, 𝑗 ≥ 1, (5.27)

𝑏2𝑗+1 ≡
1

(2𝑗 + 1)!

{

√

𝛼𝑥𝑐 +
[

√

𝛼(𝛼 − 1) + 22𝑗 i𝛼
]

𝑡𝑐
}

=
𝑧0 + (22𝑗 − 1)ℑ(𝑧0)i

(2𝑗 + 1)!
𝐴, 𝑗 ≥ 1, (5.28)

𝑥̂ ≡ 𝑥 − 𝑥𝑐 , 𝑡 ≡ 𝑡 − 𝑡𝑐 . (5.29)

Notice that these 𝑏2𝑗+1 values have the same final expressions as those 
in Eq. (4.17) of the NLS case. The rest of the calculations is almost 
12 
identical to that in the proof of Theorem  2 for the NLS equation, 
the reason being that the rogue solution’s structure (5.5)–(5.6) of the 
GDNLS equations is identical to (4.3)–(4.4) of the NLS equation. Based 
on the heuristic arguments over there, we similarly find that
𝑢𝑁 (𝑥, 𝑡; 𝑎3, 𝑎5,… , 𝑎2𝑁−1) ∼ 𝑢𝑁0

(𝑥̂, 𝑡; 𝑏3, 𝑏5,… , 𝑏2𝑁0−1)

× 𝑒i(1−𝛾−𝛼)(𝑥−𝑥̂)−
1
2 i[𝛼

2+2(𝛾−2)𝛼+1−𝛾](𝑡−𝑡), 𝐴 ≫ 1. (5.30)

Since internal 𝑏2𝑗+1 parameters in this 𝑁0-th order rogue wave 𝑢𝑁0
(𝑥̂, 𝑡)

are large and 𝑂(𝐴), the asymptotics of this rogue wave 𝑢𝑁0
(𝑥̂, 𝑡) can 

be obtained from Ref. [46] and Sec. 6 of Ref. [17] with very lit-
tle modification, and we find that at large 𝐴, this 𝑢𝑁0

(𝑥̂, 𝑡) would 
split into 𝑁0(𝑁0 + 1)∕2 fundamental rogue waves 𝑢̂1(𝑥̂ − 𝑥̂0, 𝑡 − 𝑡0)
𝑒i(1−𝛾−𝛼)𝑥̂−

1
2 i[𝛼

2+2(𝛾−2)𝛼+1−𝛾]𝑡, where 𝑢̂1(𝑥, 𝑡) is given in Eq. (5.14), and its 
positions (𝑥̂0, 𝑡0) are given by 
√

𝛼𝑥̂0 +
[

√

𝛼(𝛼 − 1) + i𝛼
]

𝑡0 = 𝑧̂0
(

−3𝑏3∕4
)1∕3 = 𝑧̂0𝛺𝐴

1∕3, (5.31)

with 𝑧̂0 being every one of the 𝑁0(𝑁0 + 1)∕2 simple roots of the 
Yablonskii–Vorob’ev polynomial 𝑄𝑁0

(𝑧) and 𝛺 as defined in Theorem 
3. Recalling 𝑥̂ = 𝑥 − 𝑥𝑐 and 𝑡 = 𝑡 − 𝑡𝑐 , we see that 𝑢̂1(𝑥̂ − 𝑥̂0, 𝑡 − 𝑡0) =
𝑢̂1(𝑥−𝑥0, 𝑡−𝑡0), where (𝑥0, 𝑡0) are as given in Eq. (5.17), and (5.30) then 
becomes 

𝑢𝑁 (𝑥, 𝑡; 𝑎3, 𝑎5,… , 𝑎2𝑁−1) ∼ 𝑢̂1(𝑥 − 𝑥0, 𝑡 − 𝑡0) 𝑒
i(1−𝛾−𝛼)𝑥− 1

2 i[𝛼
2+2(𝛾−2)𝛼+1−𝛾]𝑡, 𝐴 ≫ 1

(5.32)

when (𝑥, 𝑡) are in the 𝑂(1) neighborhood of (𝑥0, 𝑡0). Error estimates to 
the above asymptotics can be obtained in the same way as in the proof 
of Theorem  2, and we can see that this error is 𝑂(𝐴−1∕3). Theorem  3 is 
then proved. □

5.2. Numerical verification of analytical predictions in Theorem  3

Next, we use an example to numerically verify the theoretical 
predictions in Theorem  3 for the GDNLS equations.

Example 3. In our example, we choose 𝛾 = 2, 𝛼 = 16∕9, 𝑁 = 5, 
and (𝜅1, 𝜅2, 𝜅3, 𝜅4) as in Eq. (3.11). When 𝐴 = 8, the true rogue wave 
𝑢5(𝑥, 𝑡) with internal parameters given in Eq. (4.8) is plotted in Fig.  6(a). 
It is seen that the wave field contains two opposing arcs comprising 
5 and 4 fundamental GDNLS rogue waves each. These fundamental 
rogue waves are induced by simple roots in the root structure of 
𝛩5(𝑧; 𝜅1, 𝜅2, 𝜅3, 𝜅4) shown in Fig.  3(a), as has been explained in our 
earlier work [15]. Our current interest is the wave cluster between 
those two arcs, which is induced by the multiple root 𝑧0 = 1 in the 
root structure of 𝛩5(𝑧; 𝜅1, 𝜅2, 𝜅3, 𝜅4) in Fig.  3(a). This cluster comprises 
6 humps forming a triangle, but some of those 6 humps are not well 
separated. As done before, we will choose a larger 𝐴 value of 𝐴 =
150 to do the comparison between the true solution and Theorem  3’s 
predictions. For this larger 𝐴 value, the wave cluster corresponding to 
the multiple root 𝑧0 = 1 is plotted in Fig.  6(b). We see that this cluster 
comprises 6 well-separated humps forming a triangular pattern, with 
each hump being an approximate fundamental rogue wave. In panel 
(c), we show the leading-order analytical prediction of |𝑢5(𝑥, 𝑡)| in the 
region of (b) from Theorem  3. Here, the leading-order prediction is a 
collection of 6 fundamental rogue waves whose (𝑥0, 𝑡0) locations are 
obtained from Eq. (5.17). We see that this analytical prediction closely 
resembles the true solution. To verify the 𝑂(𝐴−1∕3) error decay of our 
prediction, we show in (d) the error of this prediction versus the 𝐴
value. Here, the error is measured as the distance between the true 
and predicted locations of the fundamental rogue wave marked by a 
white arrow in panel (b), and the location of the fundamental rogue 
wave is numerically determined as the position of its peak amplitude. 
By comparing this error curve to the theoretical decay rate of 𝐴−1∕3, we 
see that this error indeed decays as 𝑂(𝐴−1∕3) at large 𝐴. Thus, Theorem 
3 is fully confirmed.
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Fig. 6. (a) A true 5th-order GDNLS rogue wave |𝑢5(𝑥, 𝑡)| with 𝛾 = 2 and 𝛼 = 16∕9 for internal parameters (4.8) with (𝜅1, 𝜅2, 𝜅3, 𝜅4) given in Eq. (3.11) and 𝐴 = 8. 
(b) Zoom-in of the wave cluster induced by the multiple root 𝑧0 = 1 of 𝛩5(𝑧; 𝜅1, 𝜅2, 𝜅3, 𝜅4) for a larger 𝐴 value of 𝐴 = 150. (c) Leading-order analytical prediction 
of this cluster in (b) from Theorem  3. The (𝑥, 𝑡) intervals are −34 ≤ 𝑥, 𝑡 ≤ 34 for panel (a) and 104 ≤ 𝑥 ≤ 121, −8.5 ≤ 𝑡 ≤ 8.5 for panels (b) and (c). (d) Error of 
the leading-order prediction versus 𝐴 for the fundamental rogue wave marked by a white arrow in panel (b) (the theoretical decay rate of 𝐴−1∕3 is also plotted 
for comparison).
6. Rogue patterns associated with a zero multiple root in the 
Adler–Moser polynomial

In the past two sections, we determined rogue patterns induced by a 
nonzero multiple root in the Adler–Moser polynomial for the NLS and 
GDNLS equations. We showed that in both cases, a triangular rogue 
cluster would appear. If the multiple root of the Adler–Moser polyno-
mial is zero, the situation would be totally different. In this case, we 
will show that instead of a triangular rogue cluster, a lower-order rogue 
wave would appear in the 𝑂(1) neighborhood of the spatial–temporal 
origin. Details of these results for the NLS and GDNLS equations are 
presented in the following theorem.

Theorem 4.  For the NLS rogue wave 𝑢𝑁 (𝑥, 𝑡) in Eq. (4.2) and the GDNLS 
rogue wave 𝑢𝑁 (𝑥, 𝑡) in Eq. (5.3) with multiple large internal parameters 
of the single-power form (4.8), suppose the corresponding Adler–Moser 
polynomial 𝛩𝑁 (𝑧; 𝜅1,… , 𝜅𝑁−1) admits a zero multiple root of multiplicity 
𝑁0(𝑁0 +1)∕2. Then, a lower 𝑁0-th order rogue wave with all-zero internal 
parameters would appear in the 𝑂(1) neighborhood of the origin (𝑥, 𝑡) =
(0, 0), and the error of this lower-order rogue wave approximation is 𝑂(𝐴−1). 
Expressed mathematically, when 𝑥2 + 𝑡2 = 𝑂(1), we have the following 
rogue-wave asymptotics for the NLS and GDNLS equations, 
𝑢𝑁 (𝑥, 𝑡; 𝑎3, 𝑎5,… , 𝑎2𝑁−1) = 𝑢𝑁0

(𝑥, 𝑡; 0, 0,… , 0) + 𝑂
(

𝐴−1) . (6.1)

Proof.  These proofs for the NLS and GDNLS equations are almost 
identical. Thus, we will just prove it for the NLS equation below.

Suppose 𝛩𝑁 (𝑧; 𝜅1,… , 𝜅𝑁−1) admits a zero multiple root of multiplic-
ity 𝑁 (𝑁 +1)∕2, and 𝑥2+ 𝑡2 = 𝑂(1). We first rewrite the 𝜎  determinant 
0 0 𝑛

13 
(4.3) into a 3𝑁 × 3𝑁 determinant (4.11). Then, we split 𝒙+ as

𝒙+ = 𝒘 + 𝒙̂+, (6.2)
𝒘 ≡ (0, 0, 𝑎3, 0, 𝑎5, 0,…) = (0, 0, 𝜅1𝐴3, 0, 𝜅2𝐴5, 0,…), (6.3)
𝒙̂+ ≡ (𝑥̂+1 , 0, 𝑥̂

+
3 , 0, 𝑥̂

+
5 , 0,…), (6.4)

𝑥̂+1 ≡ 𝑥 + i𝑡 + 𝑛, 𝑥̂+2𝑗+1 ≡
𝑥 + 22𝑗 (i𝑡)
(2𝑗 + 1)!

, 𝑗 ≥ 1. (6.5)

This splitting is a special case of the earlier (4.13) with 𝑧0 = 0. Then, 
using the formulae (4.19)–(4.21) as well as the special row echelon 
form 𝐇̂ of matrix 𝐇 in Eq. (3.16), we can rewrite the Φ matrix in (4.11) 
as (4.27), where 𝐌 is given in Eq. (4.28) except that the 𝒙̂+ vector in 
𝑆𝑗

(

𝒙̂+ + 𝜈𝒔
) there should be updated to (6.4) now. The fact of zero 

being a root of 𝛩𝑁 (𝑧) guarantees that 𝑘 < 𝑁 and 𝑁0 ≥ 1 in the 𝐌 matrix 
(4.28). When 𝑥2 + 𝑡2 = 𝑂(1), 𝑆𝑗 (𝒙̂+ + 𝜈𝒔) = 𝑂(1). Thus, we still have the 
asymptotics (4.30), i.e., 𝐌 ∼ 𝐌0, where 𝐌0 is given in Eq. (4.31). From 
this asymptotics, we still get Eq. (4.34), i.e., 𝜎𝑛 ∼ 𝛼0𝜎̂𝑛, where 𝜎̂𝑛 is given 
in Eq. (4.35). Using techniques of Ref. [17], we can also remove the 𝑘
term in Eq. (4.36). Then, we see from Eq. (6.4) that the resulting 𝜎̂𝑛
now corresponds to the 𝑁0-th order rogue wave 𝑢𝑁0

(𝑥, 𝑡) with all-zero 
internal parameters, i.e., 

𝑢𝑁 (𝑥, 𝑡; 𝑎3, 𝑎5,… , 𝑎2𝑁−1) ∼ 𝑢𝑁0
(𝑥, 𝑡; 0, 0,… , 0), 𝐴 ≫ 1. (6.6)

Unlike the 𝑧0 ≠ 0 case in the proof of Theorem  2, the leading-order 
term 𝜎̂𝑛 of 𝜎𝑛 here does not vanish in the 𝑥2 + 𝑡2 = 𝑂(1) region. Thus, 
the above argument is no-longer heuristic but is reliable. Regarding the 
order of error in the approximation (6.6), since 𝑆𝑗 (𝒙̂+ + 𝜈𝒔) = 𝑂(1) in 
the 𝐌 matrix (4.28), we see that the approximation of 𝐌 by 𝐌0 has 
relative error of 𝑂(𝐴−1). This translates to an error of 𝑂(𝐴−1) in the 
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Fig. 7. (a) A true fifth order NLS rogue wave |𝑢5(𝑥, 𝑡)| for internal parameters (4.8) with (𝜅1, 𝜅2, 𝜅3, 𝜅4) = (1, 1, 1, 4∕3) and 𝐴 = 6. (b) Zoom-in of (a) in the 
(𝑥, 𝑡) = 𝑂(1) region. (c) Analytical prediction of this solution in the (𝑥, 𝑡) = 𝑂(1) region from Theorem  4. The (𝑥, 𝑡) intervals are −35 ≤ 𝑥, 𝑡 ≤ 35 for panel (a) and 
−5 ≤ 𝑥, 𝑡 ≤ 5 for panels (b) and (c). (d) Error of our predicted solution versus 𝐴 (the theoretical decay rate of 𝐴−1 is also plotted for comparison).
approximation (6.6) as well, hence Eq. (6.1) holds. This completes the 
proof of Theorem  4. □

Next, we use an NLS example to confirm Theorem  4. In this 
example, we take 𝑁 = 5 and (𝜅1, 𝜅2, 𝜅3, 𝜅4) = (1, 1, 1, 4∕3) as in 
Eq. (3.13). In this case, zero is a triple root of the Adler–Moser poly-
nomial 𝛩5(𝑧; 𝜅1, 𝜅2, 𝜅3, 𝜅4), see Fig.  3(c). When we take large internal 
parameters as (4.8) in the NLS equation with 𝐴 = 6, the true rogue wave 
is plotted in Fig.  7(a). The (𝑥, 𝑡) = 𝑂(1) region that is associated with 
the zero root of the Adler–Moser polynomial is zoomed in and shown in 
panel (b). In (c), the analytical prediction for this region from Theorem 
4 is displayed. This analytical prediction is a second-order rogue wave 
with zero internal parameters. As one can see, the predicted solution 
closely resembles the true solution in panel (b). In panel (d), the error 
of our approximation versus 𝐴 is plotted. Here, the error is measured 
as the absolute difference between the true solution and the predicted 
solution at the spatial–temporal location of (𝑥, 𝑡) = (0.5, 0.5). It can be 
seen that this error decays in proportion to 𝐴−1, which matches our 
prediction in Theorem  4.

We would like to point out that, in special cases such as when all 
{𝜅𝑗} are zero except for one of them, the error of this lower-order rogue 
wave approximation could be smaller. For example, if 𝜅1 ≠ 0 and the 
other 𝜅𝑗 ’s are zero, then when 𝑧0 = 0 is a multiple root of 𝛩𝑁 (𝑧), the 
lower-order rogue wave approximation in the (𝑥, 𝑡) = 𝑂(1) region would 
have error of 𝑂(𝑎−13 ) = 𝑂(𝐴−3), which is much smaller than 𝑂(𝐴−1) in 
Eq. (6.6). Such special cases have been reported in [15,17] already. But 
in the generic case of Theorem  4, this error is only 𝑂(𝐴−1) as Fig.  7(d) 
shows.

Our result in Theorem  4 for rogue patterns in the 𝑂(1) neighborhood 
of the spatial–temporal origin for multiple large internal parameters 
(4.8) is obviously more general than our counterpart result for the 
14 
single-large-parameter case in [15,17], since the single-large-parameter 
scenario is a special case of the current multi-large-parameter scenarios. 
Indeed, Theorem  4 above is a generalization of the previous counterpart 
results such as Theorem 4 in Ref. [17]. Interestingly, our current 
derivation of Theorem  4 for the more general case (4.8) is actually 
simpler than our old treatment of the special single-large-parameter 
case in [15,17]. In our old treatment of the special case, we performed 
a complicated series of row operations to the Φ matrix in (4.11), and 
it was a challenge for us to describe those row operations very clearly 
there. In light of our current more general treatment, we can see clearly 
now that those complicated series of row operations we described in 
our old treatment are simply row operations to reduce the matrix 𝐇 of 
Eq. (3.14) with ℎ𝑗 = 𝜃𝑗 (0) to its row echelon form 𝐇̂ in Eq. (3.16). This 
understanding through the row echelon form of 𝐇 is the essence of this 
problem.

7. Conclusion and generalizations

In this paper, we have studied rogue patterns associated with multi-
ple roots of Adler–Moser polynomials under multiple large parameters 
of single-power form (4.8) in the NLS and GDNLS equations. We first 
showed that the multiplicity of any multiple root in any Adler–Moser 
polynomial is a triangular number of the form 𝑁0(𝑁0+1)∕2 for a certain 
integer 𝑁0. We then showed that corresponding to a nonzero multiple 
root of the Adler–Moser polynomial, a triangular rogue cluster would 
appear on the spatial–temporal plane. This triangular rogue cluster 
comprises 𝑁0(𝑁0 +1)∕2 fundamental rogue waves forming a triangular 
shape, and space–time locations of fundamental rogue waves in this 
triangle are a linear transformation of the Yablonskii–Vorob’ev polyno-
mial 𝑄𝑁0

(𝑧)’s root structure. In the special case where this multiple root 
of the Adler–Moser polynomial is zero, we showed that the associated 
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rogue pattern is a 𝑁0-th order rogue wave in the 𝑂(1) neighborhood of 
the spatial–temporal origin. Our analytical predictions were compared 
to true rogue solutions and good agreement was demonstrated. These 
results provide a clear and clean answer to rogue patterns induced by 
multiple roots of Adler–Moser polynomials under general multiple large 
parameters of single-power form (4.8). They also generalize the earlier 
results in [17] where only one of these parameters was assumed large.

In our derivations of the above analytical results, Lemma  1 on 
the row echelon form of a certain 𝑁 × 2𝑁 matrix (3.14) played a 
crucial role. This special matrix (3.14) naturally appears when we 
attempt to investigate the multiplicity of a multiple root in an Adler–
Moser polynomial and rogue patterns under multiple large parameters 
(4.8) in the NLS and GDNLS equations. In such investigations, the 
leading entries (that is, the left-most nonzero entries) of rows in the 
row echelon form of this matrix would give dominant or relevant 
contributions. The special structure of the row echelon form of this 
matrix given in Lemma  1 then directly leads to our main results of this 
paper.

Our results in this paper can be generalized in multiple directions. 
One direction of generalization is to other integrable equations. As is 
already clear from [15,46], our results can readily be generalized to 
integrable systems whose rogue waves can be expressed as determi-
nants featuring Schur polynomials with index jumps of two. Examples 
include the Boussinesq equation, the Manakov system, the three-wave 
resonant interaction system, the long-wave-short-wave resonant in-
teraction system, the Ablowitz–Ladik equation, the massive Thirring 
model, and many others [15]. In such systems, if multiple internal 
parameters in their rogue wave solutions are large as in (4.8) and the 
corresponding Adler–Moser polynomial admits a multiple root, then a 
nonzero multiple root is also expected to induce a triangular rogue 
cluster. If this multiple root is zero, then a lower-order rogue wave 
is also expected in the neighborhood of the spatial–temporal origin, 
except that internal parameters of this lower-order rogue wave might 
not be all zero, which would happen if the 𝑘 term in the corresponding 
Eq. (4.36) cannot be eliminated such as in the Boussinesq equation 
case [47].

Another direction of generalization is to multiple large internal 
parameters whose forms are more general than those considered in this 
paper. The forms of large parameters we have considered are (4.8), 
where each parameter contains a single power term. For a broader class 
of large parameters of the dual-power form 

𝑎2𝑗+1 = 𝜅𝑗𝐴
2𝑗+1 + 𝜆𝑗𝐴, 1 ≤ 𝑗 ≤ 𝑁 − 1, (7.1)

where 𝐴 is a large positive number and 𝜅𝑗 , 𝜆𝑗 free complex constants, 
we can extend our analysis to this case with little modification. In 
this case, we can quickly show that for both the NLS equation and 
the GDNLS equations, if 𝜆̃1 ≠ 0, where 𝜆̃1 ≡ 𝜆1 + [𝑧0 + 3iℑ(𝑧0)]∕6
and 𝑧0 is a multiple root of multiplicity 𝑁0(𝑁0 + 1)∕2 in the Adler–
Moser polynomial 𝛩𝑁 (𝑧; 𝜅1,… , 𝜅𝑁−1), then a triangular rogue cluster 
would appear on the spatial–temporal plane. This triangular rogue 
cluster comprises 𝑁0(𝑁0 + 1)∕2 fundamental rogue waves forming a 
triangular shape, and space–time locations of fundamental rogue waves 
in this triangle are a linear transformation of the Yablonskii–Vorob’ev 
polynomial 𝑄𝑁0

(𝑧)’s root structure. Specifically, space–time locations 
(𝑥0, 𝑡0) of these fundamental rogue waves in the triangle are still given 
by Eq. (4.9) for the NLS equation and by Eq. (5.17) for the GDNLS 
equations, except that 𝛺 in those two equations should be replaced 
by 𝛺, where 𝛺 ≡

(

−3𝜆̃1∕4
)1∕3. These results hold for arbitrary (𝜅𝑗 , 𝜆𝑗 )

values as long as 𝜆̃1 ≠ 0. It is noted that multiple large parameters of the 
dual-power form (7.1) with special (𝜅𝑗 , 𝜆𝑗 ) values in the NLS equation 
have been considered in [19], and their results for 𝜆𝑗 values with 𝜆̃1 ≠ 0
agree with our general results above. The case of 𝜆̃1 = 0 for the dual-
power parameter form (7.1) with general 𝜅𝑗 and 𝜆𝑗 values can also be 
treated through a simple extension of our analysis, and details will be 
omitted here.
15 
A third direction of generalization is to the pattern analysis of 
rogue waves which can be expressed as determinants featuring Schur 
polynomials with index jumps of three under multiple large parameters. 
Such rogue waves appear in integrable systems such as the Manakov 
equations and the three-wave resonant interaction system. When a 
single internal parameter in such rogue waves is large, their pattern has 
been shown to be described by root structures of Okamoto polynomial 
hierarchies [48]. The question of wave patterns under multiple large 
internal parameters in such rogue waves is still open. This question can 
be addressed through a natural extension of our analysis in this paper, 
and it will be left for future studies.

In this paper, rogue patterns under (multiple) large parameters 
were studied by directly calculating the large-parameter asymptotics 
of rogue wave solutions. One can wonder if this problem can also 
be attacked by other methods, such as asymptotics in the inverse-
scattering (Riemann–Hilbert) framework. In this framework, one first 
derives the scattering data associated with these rogue solutions and 
use that data to formulate a Riemann–Hilbert problem. Then, one 
performs asymptotics on this Riemann–Hilbert problem and uses this 
information to derive the asymptotics of the underlying rogue waves. 
This approach was successfully applied in [49] to determine the large-
order asymptotics of fundamental rogue waves in the NLS equation 
(these fundamental rogue waves here refer to the NLS rogue waves 
𝑢𝑁 (𝑥, 𝑡) in Eq. (4.2) where all internal parameters 𝑎3, 𝑎5,… , 𝑎2𝑁−1 are 
taken as zero). It will be interesting to see if this approach can also 
be applied to study large-parameter asymptotics of these 𝑢𝑁 (𝑥, 𝑡) rogue 
waves.
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Appendix

In this appendix, we prove Lemma  1.
For the 𝐇 matrix in Eq. (3.14), i.e., 

𝐇 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ℎ1 1
ℎ3 ℎ2 ℎ1 1
ℎ5 ℎ4 ℎ3 ℎ2 ℎ1 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

ℎ2𝑁−1 ℎ2𝑁−2 ℎ2𝑁−3 ℎ2𝑁−4 ℎ2𝑁−5 ℎ2𝑁−6 ⋯ ℎ1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (A.1)

we denote its 𝑗th column as 𝐻𝑗 , where 1 ≤ 𝑗 ≤ 2𝑁 . Its 𝐻1 and 𝐻2
vectors can be related as 
⎛

⎜

⎜

⎜

⎜

⎜

ℎ1
ℎ3
ℎ5
⋮

⎞

⎟

⎟

⎟

⎟

⎟

=

⎛

⎜

⎜

⎜

⎜

⎜

𝛼1
𝛼2 𝛼1
𝛼3 𝛼2 𝛼1
⋮ ⋮ ⋱ ⋱

⎞

⎟

⎟

⎟

⎟

⎟

⎛

⎜

⎜

⎜

⎜

⎜

1
ℎ2
ℎ4
⋮

⎞

⎟

⎟

⎟

⎟

⎟

, (A.2)
⎝
ℎ2𝑁−1 ⎠ ⎝

𝛼𝑁 𝛼𝑁−1 … 𝛼2 𝛼1 ⎠ ⎝
ℎ2𝑁−2 ⎠
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where 𝛼1, 𝛼2,… , 𝛼𝑁  are constants whose values can be readily deter-
mined by sequentially solving each equation from the top down. For 
example, from the first equation, we get 𝛼1 = ℎ1; from the second 
equation, we get 𝛼2 = ℎ3 − 𝛼1ℎ2; and so on. The system of Eqs. (A.2) 
can be rewritten as 

𝐻1 = 𝛼1𝐻2 + 𝛼2𝐻4 +⋯ + 𝛼𝑁𝐻2𝑁 =
𝑁
∑

𝑗=1
𝛼𝑗𝐻2𝑗 . (A.3)

Since vectors 𝐻3,𝐻5,…  are just zeros followed by portions of the 𝐻1
vector, it is easy to see that they can be expressed through 𝐻4,𝐻6,…
as well. For example, 

𝐻3 = 𝛼1𝐻4 + 𝛼2𝐻6 +⋯ + 𝛼𝑁−1𝐻2𝑁 =
𝑁−1
∑

𝑗=1
𝛼𝑗𝐻2𝑗+2, (A.4)

and so on. Using these relations, we can rewrite the 𝐇 matrix (A.1) as 

𝐇 =

[ 𝑁
∑

𝑗=1
𝛼𝑗𝐻2𝑗 𝐻2

𝑁−1
∑

𝑗=1
𝛼𝑗𝐻2𝑗+2 𝐻4 … 𝛼1𝐻2𝑁 𝐻2𝑁

]

. (A.5)

Using the first rows of the 𝐻2 vectors in this matrix and performing 
type-ii row operations of Section 3.3.1, we can eliminate all lower 
rows of those 𝐻2 vectors and reduce them to [1, 0,… , 0]𝑇 , where the 
superscript ‘T ’ represents the transpose of a vector. This process only 
affects the 𝐻2 vectors; other vectors 𝐻4,𝐻6,… ,𝐻2𝑁  in this 𝐇 matrix 
(A.5) remain intact, because those other 𝐻2𝑗 vectors have zero as their 
first elements. Next, we use the second rows of the 𝐻4 vectors and 
perform type-ii row operations of Section 3.3.1 to eliminate all lower 
rows of those 𝐻4 vectors and reduce them to [0, 1, 0,… , 0]𝑇 . In this 
process, vectors 𝐻6,𝐻8,… ,𝐻2𝑁  in (A.5) will remain intact. Continuing 
this process, we then find that the 𝐇 matrix (A.5) can be reduced 
through type-ii row operations to the following matrix 

𝐆 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛼1 1
𝛼2 0 𝛼1 1
𝛼3 0 𝛼2 0 𝛼1 1
𝛼4 0 𝛼3 0 𝛼2 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝛼𝑁 0 𝛼𝑁−1 0 𝛼𝑁−2 0 ⋯ 𝛼1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.6)

Next, we further reduce this 𝐆 matrix through type-i and type-ii 
row operations of Section 3.3.1. Let us denote the 𝑗th column of this 
𝐆 matrix as 𝐺𝑗 , where 1 ≤ 𝑗 ≤ 2𝑁 . Now, we need to introduce a key 
parameter 𝑘, which is defined as the integer where 

Rank(𝐺1, 𝐺2,… , 𝐺𝑘) = Rank(𝐺1, 𝐺2,… , 𝐺𝑘+1) = 𝑘. (A.7)

In other words, this 𝑘 is the number of the first consecutive columns of 
𝐆 that are linearly independent and the addition of the next column of 
𝐆 would make them linearly dependent. Clearly, such 𝑘 exists and is 
unique, and 0 ≤ 𝑘 ≤ 𝑁 . In particular, when 𝑘 = 0, 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑁 =
0; and when 𝑘 = 𝑁 , Rank(𝐆) = 𝑁 . Since type-ii row operations do not 
affect the rank or linear dependence of column vectors of a matrix, this 
parameter 𝑘 can also be defined in terms of the original 𝐇 matrix as 

Rank(𝐻1,𝐻2,… ,𝐻𝑘) = Rank(𝐻1,𝐻2,… ,𝐻𝑘+1) = 𝑘. (A.8)

This 𝑘 number matches that given in Lemma  1.
The condition (A.7) means that 𝐺𝑘+1 is linearly dependent on 

(𝐺1, 𝐺2,… , 𝐺𝑘), i.e., 

𝐺𝑘+1 =
𝑘
∑

𝑗=1
𝑟𝑗𝐺𝑗 , (A.9)

where 𝑟𝑗 ’s are certain constants. This condition gives linear relations 
between 𝛼𝑗 parameters, which we will use to reduce the matrix 𝐆 to a 
row echelon form.
(1) The case of 𝑟 ≠ 0
1
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We first consider the case of 𝑟1 ≠ 0 in Eq. (A.9). In this case, we can 
rewrite this vector relation as 

𝐺1 =
𝑘+1
∑

𝑗=2
𝑟̂𝑗𝐺𝑗 , (A.10)

where 𝑟̂𝑗 ≡ −𝑟𝑗∕𝑟1 for 2 ≤ 𝑗 ≤ 𝑘 and 𝑟̂𝑘+1 ≡ 1∕𝑟1.
Suppose 𝑘 is even, say 𝑘 = 2𝑛 where 𝑛 is an integer. Since the vector 

𝐺𝑘+1 starts with 𝑛 zeros and followed by [𝛼1,… , 𝛼𝑁−𝑛]𝑇 , the vector 𝐺𝑘
starts with 𝑛− 1 zeros, followed by 1, and then 𝑁 − 𝑛 zeros, and so on, 
the vector relation (A.10) can be written out element-wise as
𝛼1 = 𝑟̂2, (A.11)
𝛼2 = 𝑟̂3𝛼1 + 𝑟̂4, (A.12)
…… (A.13)
𝛼𝑛 = 𝑟̂3𝛼𝑛−1 + 𝑟̂5𝛼𝑛−2 +⋯ + 𝑟̂2𝑛−1𝛼1 + 𝑟̂2𝑛, (A.14)
𝛼𝑛+1 = 𝑟̂3𝛼𝑛 + 𝑟̂5𝛼𝑛−1 +⋯ + 𝑟̂2𝑛−1𝛼2 + 𝑟̂2𝑛+1𝛼1, (A.15)

𝛼𝑛+2 = 𝑟̂3𝛼𝑛+1 + 𝑟̂5𝛼𝑛 +⋯ + 𝑟̂2𝑛−1𝛼3 + 𝑟̂2𝑛+1𝛼2, (A.16)

…… (A.17)
𝛼𝑁 = 𝑟̂3𝛼𝑁−1 + 𝑟̂5𝛼𝑁−2 +⋯ + 𝑟̂2𝑛−1𝛼𝑁−𝑛+1 + 𝑟̂2𝑛+1𝛼𝑁−𝑛. (A.18)

Using these element-wise relations and performing type-ii row op-
erations, we can reduce the 𝐆 matrix (A.6) to the following form 

𝐆̂ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛼1 1
𝛼2 0 𝛼1 1
⋮ ⋮ ⋮ ⋮ ⋯ ⋯
𝛼𝑛 0 𝛼𝑛−1 0 𝛼𝑛−2 0 ⋯ ⋯
0 −𝑟̂2𝑛+1 𝑟̂2𝑛 ⋯
0 0 0 −𝑟̂2𝑛+1 𝑟̂2𝑛 ⋯
0 0 0 0 0 −𝑟̂2𝑛+1 𝑟̂2𝑛 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯
0 0 0 0 0 0 ⋯ 0 −𝑟̂2𝑛+1 𝑟̂2𝑛 ⋯

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(A.19)

where the first 𝑛 rows are unchanged from 𝐆. The way to do it is that, 
we first multiply row 𝑁 − 1 of 𝐆 by 𝑟̂3 and subtract it from row 𝑁 , 
multiply row 𝑁 − 2 by 𝑟̂5 and subtract it from row 𝑁 , … , and lastly 
multiply row 𝑁 − 𝑛 by 𝑟̂2𝑛+1 and subtract it from row 𝑁 . Then, by 
utilizing the above explicit relations, the last row of 𝐆 would reduce 
to the last row of the above 𝐆̂ matrix, while the first 𝑁 − 1 rows of 𝐆
remain intact. Next, we multiply row 𝑁 − 2 of 𝐆 by 𝑟̂3 and subtract it 
from row 𝑁 − 1, multiply row 𝑁 − 3 by 𝑟̂5 and subtract it from row 
𝑁 − 1, … , and lastly multiply row 𝑁 − 𝑛 − 1 by 𝑟̂2𝑛+1 and subtract it 
from row 𝑁 − 1. Then, by utilizing the above explicit relations again, 
row 𝑁−1 of 𝐆 would reduce to row 𝑁−1 of the above 𝐆̂ matrix, while 
the first 𝑁 − 2 rows of 𝐆 remain intact. This process repeats and the 
above 𝐆̂ would result from these type-ii row operations. This 𝐆̂ matrix 
can be structured as 

𝐆̂ =
(

𝐀̂ 𝐂̂
𝟎 𝐁

)

, (A.20)

where ̂𝐀 is a matrix of size 2𝑛×2𝑛, i.e., 𝑘×𝑘, and 𝐁 is a (𝑁−𝑘)×(2𝑁−𝑘)
matrix of the form 

𝐁 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 −𝑟̂2𝑛+1 𝑟̂2𝑛 ⋯
0 0 0 −𝑟̂2𝑛+1 𝑟̂2𝑛 ⋯
0 0 0 0 0 −𝑟̂2𝑛+1 𝑟̂2𝑛 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯
0 0 0 0 0 0 ⋯ 0 −𝑟̂2𝑛+1 𝑟̂2𝑛 ⋯

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (A.21)

This form of 𝐁 matches that in Eq. (3.17) of Lemma  1 with 𝛽 = −𝑟̂2𝑛+1 =
−1∕𝑟1 ≠ 0. Regarding 𝐀̂, since Rank(𝐺1, 𝐺2,… , 𝐺𝑘) = 𝑘 and type-ii row 
operations do not change the rank of the resulting columns, we see 
that the rank of the first 𝑘 (i.e., 2𝑛) columns of the 𝐆̂ matrix is also 2𝑛. 
In view of the structure (A.20) of this 𝐆̂ matrix, we see that the rank 
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of the 𝐀̂ matrix is 2𝑛. Thus, 𝐀̂ is nonsingular and can be reduced to 
an upper triangular matrix 𝐀 with nonzero diagonal elements through 
type-i and type-ii row operations. Applying these same type-i and type-
ii row operations to the first 𝑘 rows of 𝐆̂ in Eq. (A.20), the resulting 
matrix is then the row echelon form 𝐇̂ of matrix 𝐇 whose structure is 
as described in Lemma  1.

Next, we consider the other case where 𝑘 is odd, say 𝑘 = 2𝑛 + 1
where 𝑛 is an integer. In this case, we notice that the vector 𝐺𝑘+1 starts 
with 𝑛 zeros, followed by 1, and then 𝑁 − 𝑛 − 1 zeros; the vector 𝐺𝑘
starts with 𝑛 zeros and followed by [𝛼1,… , 𝛼𝑁−𝑛]𝑇 ; and so on. Thus, the 
vector relation (A.10) can be written out element-wise as

𝛼1 = 𝑟̂2, (A.22)
𝛼2 = 𝑟̂3𝛼1 + 𝑟̂4, (A.23)
…… (A.24)
𝛼𝑛 = 𝑟̂3𝛼𝑛−1 + 𝑟̂5𝛼𝑛−2 +⋯ + 𝑟̂2𝑛−1𝛼1 + 𝑟̂2𝑛, (A.25)
𝛼𝑛+1 = 𝑟̂3𝛼𝑛 + 𝑟̂5𝛼𝑛−1 +⋯ + 𝑟̂2𝑛−1𝛼2 + 𝑟̂2𝑛+1𝛼1 + 𝑟̂2𝑛+2, (A.26)

𝛼𝑛+2 = 𝑟̂3𝛼𝑛+1 + 𝑟̂5𝛼𝑛 +⋯ + 𝑟̂2𝑛−1𝛼3 + 𝑟̂2𝑛+1𝛼2, (A.27)

…… (A.28)
𝛼𝑁 = 𝑟̂3𝛼𝑁−1 + 𝑟̂5𝛼𝑁−2 +⋯ + 𝑟̂2𝑛−1𝛼𝑁−𝑛+1 + 𝑟̂2𝑛+1𝛼𝑁−𝑛. (A.29)

Using these element-wise relations and performing type-ii row opera-
tions similar to what we did in the even-𝑘 case earlier, we can reduce 
the 𝐆 matrix (A.6) to the following form 

𝐆̂ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛼1 1
𝛼2 0 𝛼1 1
⋮ ⋮ ⋮ ⋮ ⋯ ⋯
𝛼𝑛 0 𝛼𝑛−1 0 𝛼𝑛−2 0 ⋯ ⋯
𝑟̂2𝑛+2 −𝑟̂2𝑛+1 ⋯
0 0 𝑟̂2𝑛+2 −𝑟̂2𝑛+1 ⋯
0 0 0 0 𝑟̂2𝑛+2 −𝑟̂2𝑛+1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯
0 0 0 0 0 0 ⋯ 𝑟̂2𝑛+2 −𝑟̂2𝑛+1 ⋯

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(A.30)

where the first 𝑛 rows are unchanged from 𝐆. This matrix can be 
structured as 

𝐆̂ =
(

𝐀̂ 𝐂̂
𝟎 𝐁

)

, (A.31)

where 𝐀̂ is a matrix of size (2𝑛 + 1) × (2𝑛 + 1), i.e., 𝑘 × 𝑘, and 𝐁 is a 
(𝑁 − 𝑘) × (2𝑁 − 𝑘) matrix of the form 

𝐁 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 𝑟̂2𝑛+2 −𝑟̂2𝑛+1 ⋯
0 0 0 𝑟̂2𝑛+2 −𝑟̂2𝑛+1 ⋯
0 0 0 0 0 𝑟̂2𝑛+2 −𝑟̂2𝑛+1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯
0 0 0 0 0 0 ⋯ 0 𝑟̂2𝑛+2 −𝑟̂2𝑛+1 ⋯

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

(A.32)

This form of 𝐁 matches that in Eq. (3.17) of Lemma  1 with 𝛽 = 𝑟̂2𝑛+2 =
1∕𝑟1 ≠ 0. Regarding 𝐀̂, using the same arguments as for the even-𝑘
case above, we see that 𝐀̂ is nonsingular and can be reduced to an 
upper triangular matrix 𝐀 with nonzero diagonal elements through 
type-i and type-ii row operations. Applying these same type-i and type-
ii row operations to the first 𝑘 rows of 𝐆̂ in Eq. (A.31), the resulting 
matrix is then the row echelon form 𝐇̂ of matrix 𝐇 whose structure is 
as described in Lemma  1.

(2) The case of 𝑟1 = 0 but 𝑟3 ≠ 0
If 𝑟1 = 0 but 𝑟3 ≠ 0, by examining the first equation in the vector 

relation (A.9), we see that 𝑟 = 0 as well. Thus, the vector relation (A.9) 
2
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can be rewritten as 

𝐺3 =
𝑘+1
∑

𝑗=4
𝑟̂𝑗𝐺𝑗 , (A.33)

where 𝑟̂𝑗 ≡ −𝑟𝑗∕𝑟3 for 4 ≤ 𝑗 ≤ 𝑘 and 𝑟̂𝑘+1 ≡ 1∕𝑟3.
If 𝑘 is even, say 𝑘 = 2𝑛 where 𝑛 is an integer, then the above vector 

relation (A.33) can be written out element-wise as
0 = 0, (A.34)
𝛼1 = 𝑟̂4, (A.35)
𝛼2 = 𝑟̂5𝛼1 + 𝑟̂6, (A.36)
…… (A.37)
𝛼𝑛−1 = 𝑟̂5𝛼𝑛−2 + 𝑟̂7𝛼𝑛−3 +⋯ + 𝑟̂2𝑛−1𝛼1 + 𝑟̂2𝑛, (A.38)
𝛼𝑛 = 𝑟̂5𝛼𝑛−1 + 𝑟̂7𝛼𝑛−2 +⋯ + 𝑟̂2𝑛−1𝛼2 + 𝑟̂2𝑛+1𝛼1, (A.39)

𝛼𝑛+1 = 𝑟̂5𝛼𝑛 + 𝑟̂7𝛼𝑛−1 +⋯ + 𝑟̂2𝑛−1𝛼3 + 𝑟̂2𝑛+1𝛼2, (A.40)

…… (A.41)
𝛼𝑁−1 = 𝑟̂5𝛼𝑁−2 + 𝑟̂7𝛼𝑁−3 +⋯ + 𝑟̂2𝑛−1𝛼𝑁−𝑛+1 + 𝑟̂2𝑛+1𝛼𝑁−𝑛. (A.42)

Using these element-wise relations and performing type-ii row opera-
tions similar to what we did in the 𝑟1 ≠ 0 case earlier, we can reduce 
the 𝐆 matrix (A.6) to the following form 

𝐆̂ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛼1 1
𝛼2 0 𝛼1 1
⋮ ⋮ ⋮ ⋮ ⋯ ⋯

𝛼𝑛−1 0 𝛼𝑛−2 0 𝛼𝑛−3 0 ⋯ ⋯
0 −𝑟̂2𝑛+1 𝑟̂2𝑛 ⋯
0 0 0 −𝑟̂2𝑛+1 𝑟̂2𝑛 ⋯
0 0 0 0 0 −𝑟̂2𝑛+1 𝑟̂2𝑛 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯
0 0 0 0 0 0 ⋯ 0 −𝑟̂2𝑛+1 𝑟̂2𝑛 ⋯
𝛼𝑁 0 𝛼𝑁−1 0 𝛼𝑁−2 0 ⋯ ⋯ ⋯ ⋯ ⋯

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(A.43)

where the first 𝑛 − 1 rows and the last row are unchanged from 𝐆. 
Moving the last row of this 𝐆̂ matrix above its first row (which is a 
type-i row operation), the resulting matrix has the structure (A.20), 
where 𝐀̂ is a nonsingular matrix of size 2𝑛 × 2𝑛, i.e., 𝑘 × 𝑘, and 𝐁 is 
a (𝑁 − 𝑘) × (2𝑁 − 𝑘) matrix as given in Eq. (A.21). This form of 𝐁
matches that in Eq. (3.17) of Lemma  1 with 𝛽 = −𝑟̂2𝑛+1 = −1∕𝑟3 ≠ 0. The 
reason of the 𝐀̂ matrix being nonsingular is the same as before, i.e., its 
rank is 𝑘 which is the same as the rank of the first 𝑘 columns of the 𝐆
matrix. Since ̂𝐀 is nonsingular, it can be reduced to an upper triangular 
matrix 𝐀 with nonzero diagonal elements through type-i and type-ii 
row operations. Applying these same type-i and type-ii row operations 
to the first 𝑘 rows of that whole matrix, the resulting matrix is then 
the row echelon form 𝐇̂ of matrix 𝐇 whose structure is as described in 
Lemma  1.

If 𝑘 is odd, say 𝑘 = 2𝑛 + 1 where 𝑛 is an integer, then the vector 
condition (A.33) can be written out element-wise as
0 = 0, (A.44)
𝛼1 = 𝑟̂4, (A.45)
𝛼2 = 𝑟̂5𝛼1 + 𝑟̂6, (A.46)
…… (A.47)
𝛼𝑛 = 𝑟̂5𝛼𝑛−1 + 𝑟̂7𝛼𝑛−2 +⋯ + 𝑟̂2𝑛+1𝛼1 + 𝑟̂2𝑛+2, (A.48)

𝛼𝑛+1 = 𝑟̂5𝛼𝑛 + 𝑟̂7𝛼𝑛−1 +⋯ + 𝑟̂2𝑛+1𝛼2, (A.49)

𝛼𝑛+2 = 𝑟̂5𝛼𝑛+1 + 𝑟̂7𝛼𝑛 +⋯ + 𝑟̂2𝑛+1𝛼3, (A.50)

…… (A.51)
𝛼𝑁−1 = 𝑟̂5𝛼𝑁−2 + 𝑟̂7𝛼𝑁−3 +⋯ + 𝑟̂2𝑛+1𝛼𝑁−𝑛. (A.52)

Using these element-wise relations and performing type-ii row opera-
tions as before, we can reduce the 𝐆 matrix (A.6) to the following form 
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𝐆̂ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛼1 1
𝛼2 0 𝛼1 1
⋮ ⋮ ⋮ ⋮ ⋯ ⋯

𝛼𝑛−1 0 𝛼𝑛−2 0 𝛼𝑛−3 0 ⋯ ⋯
𝑟̂2𝑛+2 −𝑟̂2𝑛+1 ⋯
0 0 𝑟̂2𝑛+2 −𝑟̂2𝑛+1 ⋯
0 0 0 0 𝑟̂2𝑛+2 −𝑟̂2𝑛+1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯
0 0 0 0 0 0 ⋯ 𝑟̂2𝑛+2 −𝑟̂2𝑛+1 ⋯
𝛼𝑁 0 𝛼𝑁−1 0 𝛼𝑁−2 0 ⋯ ⋯ ⋯ ⋯ ⋯

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(A.53)

where the first 𝑛 − 1 rows and the last row are unchanged from 𝐆. 
Moving the last row of this 𝐆̂ matrix above its first row, the resulting 
matrix then has the structure (A.31), where ̂𝐀 is a nonsingular matrix of 
size (2𝑛+1)×(2𝑛+1), i.e., 𝑘×𝑘, and 𝐁 is a (𝑁−𝑘)×(2𝑁−𝑘) matrix as given 
in Eq. (A.32). This form of 𝐁 matches that in Eq. (3.17) of Lemma  1 with 
𝛽 = 𝑟̂2𝑛+2 = 1∕𝑟3 ≠ 0. The reason of this 𝐀̂ matrix being nonsingular 
is the same as before. Since 𝐀̂ is nonsingular, it can be reduced to 
an upper triangular matrix 𝐀 with nonzero diagonal elements through 
type-i and type-ii row operations. Applying these same type-i and type-
ii row operations to the first 𝑘 rows of that whole matrix, the resulting 
matrix is then the row echelon form 𝐇̂ of matrix 𝐇 whose structure is 
as described in Lemma  1.

(3) The remaining cases
The above treatments can be easily extended to the remaining cases, 

such as 𝑟1 = 𝑟3 = 0 but 𝑟5 ≠ 0, 𝑟1 = 𝑟3 = 𝑟5 = 0 but 𝑟7 ≠ 0, and so on.
When 𝑘 is even where 𝑘 = 2𝑛, the last (extreme) case is where 

𝑟1 = 𝑟3 = ⋯ = 𝑟2𝑛−1 = 0. In this case, Eq. (A.9) shows that 𝑟2 = 𝑟4 = ⋯ =
𝑟2𝑛 = 0 as well. Thus, 𝐺𝑘+1 = 𝐺2𝑛+1 = 0, i.e., 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑁−𝑛 = 0. 
Because of this, the matrix 𝐆 in Eq. (A.6) then becomes 

𝐆 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1
0 0 0 1
⋮ ⋮ ⋮ ⋮ ⋯ ⋯
0 0 0 0 0 0 ⋯ 0 1

𝛼𝑁−𝑛+1 0 0 0 0 0 ⋯ ⋯ ⋯ ⋯ ⋯
𝛼𝑁−𝑛+2 0 𝛼𝑁−𝑛+1 0 0 0 ⋯ ⋯ ⋯ ⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋯ ⋯
𝛼𝑁 0 𝛼𝑁−1 0 𝛼𝑁−2 0 ⋯ ⋯ ⋯ ⋯ ⋯

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.54)

Moving the last 𝑛 rows of this matrix above its first row, the resulting 
matrix is then of the form (A.20), where 𝐀̂ is a nonsingular matrix of 
size 2𝑛×2𝑛, i.e., 𝑘× 𝑘, and 𝐁 is a (𝑁 − 𝑘) × (2𝑁 − 𝑘) matrix of the form 

𝐁 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1
0 0 0 1
0 0 0 0 0 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯
0 0 0 0 0 0 ⋯ 0 1 ⋯

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (A.55)

This form of 𝐁 matches that in Eq. (3.17) of Lemma  1 with 𝛽 = 1. The 
reason of the ̂𝐀 matrix being nonsingular is the same as before. Since ̂𝐀
is nonsingular, it can be reduced to an upper triangular matrix 𝐀 with 
nonzero diagonal elements through type-i and type-ii row operations. 
Applying these same type-i and type-ii row operations to the first 𝑘 rows 
of that whole matrix, the resulting matrix is then the row echelon form 
𝐇̂ of matrix 𝐇 whose structure is as described in Lemma  1.

When 𝑘 is odd where 𝑘 = 2𝑛 + 1, the last (extreme) case is where 
𝑟1 = 𝑟3 = ⋯ = 𝑟2𝑛−1 = 0 but 𝑟2𝑛+1 ≠ 0 (the case of 𝑟2𝑛+1 = 0
as well cannot happen in view of Eq. (A.9)). In this extreme case, 
𝑟2 = 𝑟4 = ⋯ = 𝑟2𝑛 = 0. Thus, Eq. (A.9) becomes 𝐺2𝑛+2 = 𝑟2𝑛+1𝐺2𝑛+1, 
i.e., 𝛼 = 1∕𝑟 ≠ 0 and 𝛼 = 𝛼 = ⋯ = 𝛼 = 0. Because of this, the 
1 2𝑛+1 2 3 𝑁−𝑛
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matrix 𝐆 in Eq. (A.6) becomes 

𝐆 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛼1 1
0 0 𝛼1 1
⋮ ⋮ ⋮ ⋮ ⋯ ⋯
0 0 0 0 0 0 ⋯ 𝛼1 1

𝛼𝑁−𝑛+1 0 0 0 0 0 ⋯ ⋯ ⋯ ⋯ ⋯
𝛼𝑁−𝑛+2 0 𝛼𝑁−𝑛+1 0 0 0 ⋯ ⋯ ⋯ ⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋯ ⋯
𝛼𝑁 0 𝛼𝑁−1 0 𝛼𝑁−2 0 ⋯ ⋯ ⋯ ⋯ ⋯

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.56)

Moving the last 𝑛 rows of this matrix above its first row, then the 
resulting matrix has the structure (A.31), where 𝐀̂ is a nonsingular 
matrix of size (2𝑛+1) × (2𝑛+1), i.e., 𝑘× 𝑘, and 𝐁 is a (𝑁 − 𝑘) × (2𝑁 − 𝑘)
matrix of the form 

𝐁 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 𝛼1 1 ⋯
0 0 0 𝛼1 1 ⋯
0 0 0 0 0 𝛼1 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯
0 0 0 0 0 0 ⋯ 0 𝛼1 1 ⋯

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (A.57)

This form of 𝐁 matches that in Eq. (3.17) of Lemma  1 with 𝛽 =
𝛼1 ≠ 0. The reason of the 𝐀̂ matrix being nonsingular is the same as 
before. Since ̂𝐀 is nonsingular, it can be reduced to an upper triangular 
matrix 𝐀 with nonzero diagonal elements through type-i and type-ii 
row operations. Applying these same type-i and type-ii row operations 
to the first 𝑘 rows of that whole matrix, the resulting matrix is then 
the row echelon form 𝐇̂ of matrix 𝐇 whose structure is as described in 
Lemma  1. This completes the proof of Lemma  1. □

Data availability

No data was used for the research described in the article.
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