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ABSTRACT

Rogue patterns associated with multiple roots of Adler—-Moser polynomials under general multiple large
parameters of single-power form are studied in integrable systems. It is first shown that the multiplicity of any
multiple root in any Adler-Moser polynomial is a triangular number (i.e., its multiplicity is equal to n(n+1)/2
for a certain integer n). Then, it is shown that corresponding to a nonzero multiple root of the Adler-Moser
polynomial, a triangular rogue cluster would appear on the spatial-temporal plane. This triangular rogue
cluster comprises n(n+ 1)/2 fundamental rogue waves forming a triangular shape, and space-time locations of
fundamental rogue waves in this triangle are a linear transformation of the Yablonskii-Vorob’ev polynomial
0, (z)’s root structure. In the special case where this multiple root of the Adler—-Moser polynomial is zero, the
associated rogue pattern is found to be an nth order rogue wave in the O(1) neighborhood of the spatial-
temporal origin. These general results are demonstrated on two integrable systems: the nonlinear Schrédinger
equation and the generalized derivative nonlinear Schrédinger equation. For these equations, asymptotic
predictions of rogue patterns are compared with true rogue solutions and good agreement between them
is illustrated. The present results generalize the earlier ones in the literature where only one of the parameters
was assumed large. Extension of these results to generic multiple large parameters of dual-power form is also

discussed.

1. Introduction

Rogue waves, also known as freak waves, monster waves and ex-
treme waves, are unusually large and suddenly appearing surface waves
in the sea [1,2]. Since they appear and disappear without warning,
they can be dangerous to ships, even to large ones. In order to un-
derstand the mathematical and physical mechanisms of these waves,
an important theoretical discovery was that the nonlinear Schrédinger
(NLS) equation that governs one-dimensional wave-packet propagation
in the ocean admits rational solutions that show rogue-like behav-
iors [3-9]. Since the NLS equation also governs wave propagation in
many other physical systems such as optics and plasma, this implies
that rogue waves could appear in those other physical systems as well.
Such predictions were subsequently verified in experiments of optics,
water waves and plasma [10-14], which significantly deepened our
understanding of physical rogue events. Due to this success, rogue wave
solutions in many other integrable equations have also been derived,
and some of those solutions have been observed in experiments as well
(see [15] for a review).

Pattern formation of rogue waves is an important issue as this
information could allow for the prediction of later rogue wave events
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from earlier wave forms. In the NLS equation, some interesting pat-
terns of rogue solutions were numerically plotted in [16], but this
numerical plotting quickly became difficult as the order of the solution
increased. A new discovery we made in the past few years was that,
clear rogue patterns in the NLS equation would appear when internal
parameters in its rogue wave solutions get large, and such rogue
patterns could be predicted asymptotically by the root structures of
certain special polynomials [17,18]. If a single internal parameter is
large, the rogue pattern would be predicted by the root structure of
a certain Yablonskii-Vorob’ev hierarchy polynomial, with each sim-
ple root inducing a fundamental rogue wave in the spatial-temporal
plane and a multiple zero root inducing a lower-order rogue wave
in the neighborhood of the spatial-temporal origin [17]. If multiple
internal parameters are large in single-power form, then the rogue
pattern would be related to the root structure of a certain Adler-Moser
polynomial [18]. Specifically, it was shown in [18] that if this Adler—
Moser polynomial admits only simple roots, then the rogue pattern
would be a dilation of this Adler-Moser polynomial’s root structure,
with each of its simple roots generating a fundamental rogue wave
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in the spatial-temporal plane. But if this Adler-Moser polynomial
admits multiple roots, the corresponding rogue fields for these multiple
roots were not resolved in [18] and remain an open question. In a
different parameter regime of multiple large internal parameters in
dual-power form with special coefficient values, this question of rogue
patterns induced by a multiple root of the Adler-Moser polynomial was
investigated recently in [19]. It was shown that a nonzero multiple
root of the Adler-Moser polynomial could induce various rogue shapes
such as lower-order rogue waves and shapes associated with root
structures of Yablonskii-Vorob’ev hierarchy polynomials. But those
dual-power parameters in [19] do not include the single-power param-
eters we considered in [18] due to special choices of their dual-power
coefficients.

In this paper, we study rogue patterns associated with multiple roots
of Adler-Moser polynomials under general multiple large parameters of
single-power form in integrable systems and finish the work we started
in [18]. We first show that the multiplicity of any multiple root in any
Adler-Moser polynomial is a triangular number (i.e., its multiplicity
is equal to n(n + 1)/2 for a certain integer n). We then show that
corresponding to a nonzero multiple root of the Adler—-Moser polyno-
mial, a triangular rogue cluster would appear on the spatial-temporal
plane. This triangular rogue cluster comprises n(n + 1)/2 fundamental
rogue waves forming a triangular shape, and space-time locations of
fundamental rogue waves in this triangle are a linear transformation
of the Yablonskii-Vorob’ev polynomial Q,(z)’s root structure. In the
special case where this multiple root of the Adler-Moser polynomial
is zero, we show that the associated rogue pattern is an nth order
rogue wave in the O(1) neighborhood of the spatial-temporal origin.
We demonstrate these general results on two integrable systems: the
NLS equation and the generalized derivative nonlinear Schrédinger
(GDNLS) equations. For these equations, we compare our asymptotic
predictions of rogue patterns with true rogue solutions and show good
agreement between them. Our results generalize the earlier ones in [17]
where only one of the parameters was assumed large. At the end of this
article, we show that these results still remain valid for generic multiple
large parameters of dual-power form.

2. The objective

To help the reader better understand the objective of this paper, we
use the NLS equation as an example. This equation is

. 1
iu, + 5 tex +Juu=0.

General rogue waves in this equation, in their simplest explicit form,
were derived in [17] and will be reproduced in Section 4 of this article.
These rogue waves at the Nth order contain N — 1 free irreducible
complex parameters, as,das,...,a;y_;. If a single parameter in these
rogue waves is large, the pattern of the resulting rogue wave would
be determined by the root structure of a certain Yablonskii-Vorob’ev
hierarchy polynomial, as we have shown in [17]. If multiple parameters
are large and of the single-power form a,;,; = x;A>*!, where A >
1 is a large positive constant and (x|, x,,...,ky_;) are O(1) complex
constants not being all zero, then we have shown in [18] that the
relevant polynomial is the Adler-Moser polynomial @y (z; k|, ..., Kn_1)s
and each simple root of this polynomial would induce a fundamental
rogue wave in the spatial-temporal plane. What was not addressed
in [18] was that when this Adler-Moser polynomial admits multiple
roots, what rogue patterns would be induced by these multiple roots
on the spatial-temporal plane? Let us give two concrete examples.
The first example is where this multiple root is nonzero, and we
chose (x|, Ky, k3,k4) = (1,59/45,377/189,89/27). In this case, the root
structure of the corresponding Adler-Moser polynomial is shown in Fig.
1(a). This root structure contains a root z = 1 of multiplicity six as
marked by a red dot, together with nine other simple roots marked by
blue dots. When the a,;,, parameters in the 5th-order NLS rogue wave
are chosen as KjAZ/Jrl with A = 10, the modulus of this rogue wave
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is plotted in Fig. 1(b). One can easily recognize that each simple root
corresponds to a fundamental rogue wave as we have shown previously
in [18]. Then, the remaining wave field as marked by a black dashed
box would correspond to this nonzero root of multiplicity six, and our
goal now is to determine this wave field inside the black box at large
A values.

The second example is where the multiple root is zero, and we
chose (k. ky, k3, k4) = (1,1, 1,4/3). In this case, the root structure of the
corresponding Adler-Moser polynomial is displayed in Fig. 1(c). This
root structure contains a root z = 0 of multiplicity three as marked by
a red dot, together with twelve other simple roots marked by blue dots.
When the a,;,, parameters in the 5th-order NLS rogue wave are chosen
as k;A%*+! with A = 6, the modulus of this rogue wave is plotted in Fig.
1(d). One can easily recognize that each simple root corresponds to a
fundamental rogue wave as [18] has shown. Thus, the remaining wave
field as marked by a black dashed box would correspond to this zero
root of multiplicity three, and our goal now is to determine this wave
field inside the black box at large A values.

These two examples are just very specific cases for illustration pur-
poses. Our goal in this paper is not restricted to these specific cases. We
will determine the rogue wave fields corresponding to a multiple root of
the Adler-Moser polynomial for arbitrary multiple large parameters of
single-power form (i.e., for arbitrary K; values). Moreover, we will do
so not only for the NLS equation, but also for many other integrable
equations such as the derivative NLS equations and the Boussinesq
equation.

3. Preliminaries

We first introduce Schur polynomials .S;(x), where x = (x;,x,,...).
These polynomials are defined by

i Sj(x)ej = exp <i x,-ei) R 3.1

i=1

Jj=0
or more explicitly,

m

X!

—_ 1
S;(x) = > < [ 1_') (3.2)

L2+ +mly,=j i=1 !

In particular, Sy(x) = 1 and S (x) = x,. We also define S;(x) = 0 when
j<o.

Next, we introduce two types of special polynomials that will be
important for our work.

3.1. Yablonskii-Vorob’ev polynomials and their root structures
Yablonskii-Vorob’ev polynomials arose in rational solutions of the

second Painlevé equation (Py;) [20,21].

W' =20 +zw+a, (3.3)

where the prime denotes derivative to the variable z, and « is an
arbitrary constant. It has been shown that this P; equation admits
rational solutions if and only if « = N is an integer. In this case, the
rational solution is unique and is given by

wz Ny = L 2=1@ -y (3.4)
dz On(2)
w(z;0)=0, w(z;—N)=—-w(z;N), (3.5)

and the polynomials Qy(z), now called the Yablonskii-Vorob’ev poly-
nomials, are constructed by the following recurrence relation

On1Qnoy =20% —4[0N07 - (O} )], (3.6)
with Qy(z) = 1 and Q,(z) = z. Later, a determinant expression for
these polynomials was found in [22]. Let p;(z) be the special Schur
polynomial defined by

;)pj(z)ef = exp <z€ - §€3> ) 3.7)

J
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Fig. 1. (a) Root structure of an Adler-Moser polynomial with a nonzero multiple root. (b) An NLS rogue pattern |u(x,7)| associated with (a)’s root structure. (c)
Root structure of another Adler-Moser polynomial with a zero multiple root. (d) An NLS rogue pattern |u(x,?)| associated with (c)’s root structure. Parameters
used to generate these graphs are provided inside the text. In (a) and (c), simple roots are marked by blue dots, multiple roots marked by red dots with their
multiplicities indicated by a number beside them, and —6 < R(z),S(z) < 6, where R and I represent the real and imaginary parts of a complex number
respectively. In (b), —55 < x,7 < 55; and in (d), —35 < x, < 35. Black dashed boxes in (b) and (d) mark the regions of the wave fields which are the focus of the

present investigation.

and pi(z) =0 if j < 0. Then, Yablonskii-Vorob’ev polynomials Q y(z)
are given by the N x N determinant [22]

p1(2) Po(2) Pr-n(2)
0n() = ey P3:(Z) pzz(z) P4_;:v(z) ’ (3.8)
pan-1(2)  Pan-o(2) pn(2)

where ¢y = HjV: 1(2j = D!\, This determinant is a Wronskian since we
can see from Eq. (3.7) that p;(z) = p;_1(2). The Qp(z) polynomial is
monic with integer coefficients and has degree N(N + 1)/2 [23]. The
first few such polynomials are

0,(z) = 2> + 4,

05(2) = 25 + 202> - 80,

04(2) = 2(2° + 60z° + 11200),

05(2) = 213 + 140z'% + 28002° + 78400z — 3136000z> — 6272000.

Root structures of Yablonskii-Vorob’ev polynomials will be impor-
tant to us. It was shown in [24] that all roots of O y(z) are simple. It was
further shown in [23,25,26] that these simple roots form a triangular
shape (the three edges of this triangular shape are not completely
straight; but we will still call it a triangle for simplicity). To illustrate,
we display these triangular root patterns of QO (z) for 2 < N <5 in Fig.
2.

3.2. Adler-Moser polynomials

Adler-Moser polynomials were proposed by Adler and Moser [27],
who expressed rational solutions of the Korteweg—de Vries equation
in terms of those polynomials. In a different context of point vortex
dynamics, it was discovered unexpectedly that the zeros of these poly-
nomials also form stationary vortex configurations when the vortices
have the same strength but positive or negative orientations [28,29].

Adler-Moser polynomials @y (z) can be written as a determinant
[29]

0,(2) 0o(2) 0, n(2)

Oy(2) = cx 6’3:(z) 192:(z) 0, ,:V(z) ’ 3.9)
On-1(2) Oy _2(2) On(2)

where 0,(z) are Schur polynomials defined by

Z Gj(z)ej = exp <z€ + Z K,-e2i+1> s (3.10)

j=0 i=1

0,(z2)=0 if j <0, and k;(j 1) are arbitrary complex constants. Note
that our x; constant is slightly different from that in [29] by a factor
of —1/(2j + 1), and this different parameter definition will be more
convenient for our purpose. The determinant in (3.9) is a Wronskian
since we can see from Eq. (3.10) that 0§(z) =0;_1(z). In addition, the
Oy (z) polynomial is monic with degree N (N + 1)/2, which can be seen
by noticing that the highest z term of 6,(z) is z/ /j!, and the determinant
in (3.9) with 6,(z) replaced by its highest z term can be explicitly
calculated as zV(V+1/2 [9]. Adler-Moser polynomials @ (z) reduce to
Yablonskii-Vorob’ev polynomials Q,(z) when we set k; = —4/3 and
the other «; zero. Thus, Adler-Moser polynomials are generalizations
of Yablonskii-Vorob’ev polynomials. They are also generalizations of
Yablonskii-Vorob’ev polynomial hierarchies where only one of the ;
constants is nonzero [17].
The first few Adler-Moser polynomials are

0,(z;x,) = 2° — 3k,

O5(z;k,k) = 28 — 15k, 2° + 45K,z — 457,

0,(z; k), Ky, k3) = 2'0 — 45k, 27 + 315k, 2° — 157532
+4725Kk Kk, 2% — 4725k3 2 + 4725(k k3 — K3),

O5(z; k1, Ky, K3, Ky) = 21 — 105k, 212 + 1260k, 210 + 15751<fz9



B. Yang and J. Yang

Physica D: Nonlinear Phenomena 483 (2025) 134921

[ ]
® °
L4 ° ° °
— ® [ ® ® ® °
% [ ] [} [ ] [} [ ] [ ] [ ] [ ]
8 [ [ J [} ] o [ ]
) L] [ ] L4
° [ ]
[ ]
Re(z) Re(z) Re(z) Re(z)

Fig. 2. Root structures of Yablonskii-Vorob’ev polynomials Qy(z) for N =2,3,4,5 (from left to right). In all panels, —6 < R(z), I(z) < 6.

—14175k32% + 14175k k27

—33075(k} — 3K,)2° — 297675(k7 + kyKk3)z° + 1488375k K, 2*
—496125(2x7 — 3Kyk5 + 3k K,)2° + 4465125k (k| k3 — K2)Z
—1488375(k; k, + 3k7 — 3K,K4)z

+1488375(k — 33 + 6k Ky Kk3 — 3K7Ky).

3.3. Multiplicity of multiple roots in Adler-Moser polynomials

Root structures of Adler—-Moser polynomials are important for rogue
patterns when the underlying rogue wave possesses multiple large
internal parameters. Indeed, we have shown in [15,18] that for a wide
range of integrable equations such as the NLS equation, the derivative
NLS equations, the Boussinesq equation and others, every simple root
of the underlying Adler-Moser polynomial gives rise to a fundamental
rogue wave whose space-time location is linearly dependent on the
value of this simple root. Thus, our focus in this paper will be on
multiple roots of Adler—-Moser polynomials and the rogue patterns they
create, as we have explained in Section 2 earlier. Since Adler-Moser
polynomials contain free complex parameters {k;}, by choosing those
parameters judiciously, multiple roots can be easily created in these
polynomials. We give three examples below.

Our three examples are Os(z;«ky,k,,k3,k4) polynomials with the
following three sets of parameter values,

59 377 89
(K1,K2,K3,K4) = (1, E, @, ﬁ)’ (3.11)
1111

Kk k) = (2020 =0 = ) 3.12
(K1 K. K32 K4) (3579) 312)
and

4

(rrp s = (L L1, 5). (3.13)

Root structures for these three O5(z; k|, k», k3, k;) polynomials are dis-
played in Fig. 3(a, b, c) respectively. It is seen that in the first case
(3.11), this polynomial has a root z = 1 of multiplicity 6, plus 9 other
simple roots which form two opposing arcs on the two sides of the z = 1
root in the complex plane. In the second case (3.12), this polynomial
has a root z = 1 of multiplicity 10, plus 5 other simple roots which form
an arc on the left side of the z = 1 root. In the third case (3.13), this
polynomial has a zero root of multiplicity 3, plus 12 other simple roots
which form a complex shape surrounding the zero root. In all three
examples, a multiple root appears, and this multiple root is nonzero in
the first two cases and zero in the last case. We note that the first and
third examples have been mentioned in Section 2, see Fig. 1(a,c).

One may notice that multiplicities of the multiple roots in these
three examples are 3, 6 and 10, which are all triangular numbers,
i.e., numbers of the form j(j+1)/2 for a certain integer j. This is not an
accident. Indeed, we will show that the multiplicity of every multiple
root in any Adler-Moser polynomial is a triangular number. This result
is presented in the following theorem.

Theorem 1. The multiplicity of every multiple root in any Adler—-Moser
polynomial is a triangular number.

This result is important for the prediction of rogue patterns associ-
ated with Adler-Moser polynomials, as we will see in later sections. Its
proof is given below.

3.3.1. Row echelon form of a special matrix
To prove Theorem 1, we first introduce a lemma on the row echelon
form of a special N x 2N matrix

h, 1
hy  hy Ry 1
H=| hs ny, hy h h 1 , (3.14)
han-1 han—a Pon—3 han—4 hon-s han—g =+ Py 1
where i, h,, ..., hy,y_, are complex constants. Unwritten elements in

this matrix are all zero.
A matrix is in row echelon form if

(i) All rows having only zero entries are at the bottom;

(ii) The leading entry (that is, the left-most nonzero entry) of every
nonzero row is on the right of the leading entry of every row
above.

These two conditions imply that all entries in a column below a leading
entry are zeros.

Every matrix H can be reduced to a row echelon form H through
two types of elementary row operations,

(i) interchange two rows;
(i) multiply a row by a nonzero number and then add it to a lower
row.

The process to reduce H to its row echelon form H is called Gaussian
elimination. In matrix notations, H and its row echelon form H are
related as

PH =LH, (3.15)

where P is a permutation matrix which records type-i row operations,
and L is a lower triangular matrix with ones on the diagonal, which
records type-ii row operations.

It turns out that the row echelon form H of the special matrix H in
Eq. (3.14) has a special structure, and this special structure is presented
in the following lemma.

Lemma 1. The row echelon form H of the N x2N matrix H in Eq. (3.14)
has the following special structure

~ A C
H‘(o B)’

where A is a k X k upper triangular matrix with nonzero diagonal elements,
k is the number of the first consecutive columns of H that are linearly

(3.16)
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Fig. 3. Roots of Adler-Moser polynomials Os(z; k;, k5, k3, k). The parameter values of (x,, k,, k3, k) for panels (a)-(c) are given in Egs. (3.11)—(3.13) respectively.
In all plots, a multiple root is marked by a red dot with its multiplicity indicated by a number beside it. Simple roots are marked by blue dots. In all panels,

-6 < R(2),3(z) < 6.

independent, B is a (N — k)X (2N — k) matrix of the following staired form
0 B

B= 0 f i i il 1D
0 g

i.e., the ith row of matrix B starts with 2i — 1 zeros, followed by p and then

other row elements, and f # 0.

Proof of this lemma will be provided in the Appendix.

3.3.2. Proof of Theorem 1

Proof. Now, we are ready to prove Theorem 1.
Suppose z, is a multiple root of the Adler—-Moser polynomial O y (z).
Let us denote

z=zy+2 Oy =0x®). (3.18)

Then, 2 = 0 is a multiple root of the polynomial @N(ﬁ). When z = z,+2
is substituted into Eq. (3.10), we get

[se] [se)
Z Gj(z)ej =e*exp <zoe + Z K,-€2i+l> . (3.19)
Jj=0 i=

i=1

From Eq. (3.10), we see that

s oo
exp <z0€ + 2 Ki€2i+1> = 2 hjel,
. =

i=1

(3.20)

where h; = 0,(zy). Using this expansion and the Taylor expansion of
e%, we get from Eq. (3.19) that

J

si
0= Y by (3.21)
i=0 :
Thus,
91(2) 90(2) 92_1\/ (2)
03(z) 0,(2) 04_n(2)
On_1(2) by _2(2) OING) ) o
0 e 0
2 1 0
=H : : s , (3.22)
221\.171 221"/72 2;\/
eN-D!  @eN-2! T N Janxn

where H is the N x 2N matrix given in Eq. (3.14) with h; = 0;(zp).
Utilizing the matrix relation (3.15) as well as Lemma 1, we find that

the right side of the above equation is equal to P~'LM, where

ap + - O+ -
a222+... a22+...
ak—1 fk—z
v | D o (3.23)
= gkt 2 .
p (k+1)! p T
sk+3 2k+2
ﬂ(k+3)! o ﬂ(k+2)!
’ 2k+l+2(kafl) 2k+2(N7k71)
ﬂ(k+]+2(N—k—1))! ﬁ(k+2(N—k—1))!
In this M matrix, the terms “---” are terms of higher powers in 2, and

each next column of M is the % derivative of its previous column. It
is important for us to point out that this form of M is crucial in our
analysis, and Lemma 1 played a critical role in its derivation. Then,
using Egs. (3.9), (3.18) and (3.22), we find that

O (2) = cy det(P)™! det(M), (3.24)

where the fact of det(L) = 1 has been utilized since the diagonal
elements of the lower triangular matrix L are all one. The multiplicity
of the 2 = 0 root in Oy (%) is determined by the lowest power term
of 2 in éN(é). This lowest-power term of 2 is obtained by keeping
only the first term of each element in the above M matrix (3.23). The
determinant of such a reduced M matrix, that we denote as M), can be
easily seen as

k
detMy) = gV [ a;;

j=1

2 0 0 0
a 2 2 1 0
il 2 2
X det i f . . . . (3.25)
52N=k)-1 $2N—k)-2 $2N—k)-3 $2AN—k)—4 $2(N—-k)=5
QIN=-k)-D!  QIN-k)=2)!  Q2N-k)-3)! QIN-k-4! 2N-k-5)!
k
N-k —1 zNy(No+1)/2
=p (Hajj)cNo 2NoWo*D/2, (3.26)
j=1

where N, = N — k. Here, the last step was calculated using a technique
in [9]. Thus, the lowest power term of 2 in @N(ﬁ) is proportional to
2NoNo+1)/2 " which means that the multiplicity of the 2 = 0 root in
o6 ~(2), or equivalently, the multiplicity of the z, root in Oy (z), is equal
to Ny(Ny+1)/2, which is a triangular number. This completes the proof
of Theorem 1. ]

3.3.3. An alternative proof of Theorem 1

During the review of this manuscript, a referee pointed out that
Theorem 1 can be proved more easily in a very different way. We will
present this proof below and comment on its pros and cons relative to
our earlier proof.
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This alternative proof utilizes the existing results that Adler-Moser
polynomials are intimately related to trivial-monodromy potentials
[271, and trivial-monodromy potentials have double poles with triangu-
lar coefficients [30]. Indeed, it was shown in [27] through constructive
calculations that the Schrodinger operator

2

d
L,= e + u,(2) 3.27)
with u,(z) = —2;—; InO,(z) has trivial monodromy, i.e., all solutions

to L,y = Ay are meromorphic in z for all complex numbers A. For a
trivial-monodromy potential u(z), its Laurent expansion near a pole z,
was shown in [30] as
i(j+1
u(z) = JUtD + regular terms,
(z —z)?

where j is a positive integer. Combining these two results, one can
easily show that the multiplicity of a multiple root in the Adler-Moser
polynomial ©,(z) must be a triangular number. Suppose z is a root of
0,(z) of multiplicity m. Then,

(3.28)

0,(2) = (z — zp)"g(2), (3.29)

where g(z) is a polynomial with g(z,) # 0. Substituting this expression
into the definition of u,(z) above, we get

_2m + regular terms. (3.30)
(z — z¢)?

Comparing this equation with (3.28), we then see that m = j(j + 1)/2.
Thus the multiplicity of the root z is a triangular number.

This proof of Theorem 1 is much simpler than our earlier proof.
The reason it is simpler is that it utilized the existing highly nontrivial
results in [27,30], while our earlier proof is a direct and self-contained
one without using prior knowledge.

If our goal in this paper were only to prove Theorem 1 regarding
the multiplicity of roots in Adler-Moser polynomials, then our direct
proof could be cut completely in favor of this simpler alternative
proof. However, our main goal in this paper is to determine rogue
patterns associated with multiple roots of Adler-Moser polynomials
(see later sections). In this determination, the simpler proof above
utilizing trivial-monodromy results are not helpful. Instead, our direct
proof utilizing Lemma 1 proves to be very useful. In fact, one will easily
see that our direct proof of Theorem 1 and our determination of rogue
patterns in later sections (such as the proof of Theorem 2 in Section 4.3)
have a lot in common and are counterparts of each other. We think this
intimate connection between our direct proof of Theorem 1 and our
later determination of rogue patterns is important. A similar connection
in Yablonskii-Vorob’ev-related rogue patterns has been observed in our
earlier paper [17], and we believe such connection will arise again in
other rogue-pattern problems. Thus, we choose to keep this direct proof
of Theorem 1 so that the reader can see and appreciate this connection.

2
u,(z) = —2d—[m In(z — zp) + Ing(z)] =
dz?

4. Triangular rogue clusters associated with nonzero multiple
roots of Adler-Moser polynomials in the NLS equation

The NLS equation

. )

1u,+§uxx+|u| u=0 4.1
arises in numerous physical situations such as water waves and op-
tics [31-33]. Since this equation admits Galilean and scaling invari-
ances, we can set the boundary conditions of its rogue waves as u(x, ) >
e’ as x,t — +oo. Under these boundary conditions, compact expressions
of general rogue waves in the NLS equation are given by [17]

uy(x, 1) = 2L i, (4.2)
00
where
_ (n)
On = 15‘3?21\/ ( $yim10j-1 ) (4.3)
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min(i,j)
1 _
¢,(-,",-> = Z 4—VS,-_v(x+(n)+vs) S, (x™(n) + vs), 4.9
v=0

vectors x*(n) = (xIL X3, ...) are defined by

2 *
. v x+293 Y
5 =0 X = 2j + D! t @i X0 = \Ym)

(4.5)

~ i

with j > 1 and the asterisk * representing complex conjugation, s =

(0, 55,0, 54, ...) are coefficients from the expansion

o0
;sjij=ln [%tanh(%)], (4.6)
and a3, as, ..., a,5_; are free irreducible complex constants.
When N = 1, the above solution is u,(x,?) = &;(x, ) e, where
. 4(1 + 2ir)
a(x,)=1—- ———. 4.7
10 1+ 4x2 + 412 “.7)

This is the fundamental rogue wave in the NLS equation that was
discovered by Peregrine in [3] and is now called the Peregrine wave
in the literature. This wave has a single hump of amplitude 3, flanked
by two dips on each side of the x direction. For higher N values and
large internal parameters, various rogue patterns would appear.

Patterns of these rogue waves uy(x,?) under a single large internal
parameter a,;,| were studied in our earlier work [17]. It was shown
that those patterns are predicted by root structures of the Yablonskii—
Vorob’ev polynomial hierarchy. If multiple internal parameters in these
rogue waves are large and of the single-power form

a4 = KjAZjH, I<j<N-1, (4.8)
where A > 1 is a large positive constant and (k|,ky,...,ky_;) are
O(1) complex constants not being all zero, it was shown in our recent
work [18] that the corresponding rogue patterns are predicted by
the root structure of the Adler-Moser polynomial @y (z;ky, ..., kKx_1)-
Specifically, it was shown that if all roots of this Adler-Moser polyno-
mial are simple, then the rogue pattern would comprise fundamental
(Peregrine) rogue waves whose locations on the (x, ) plane are propor-
tional to the values of these roots. But if the Adler-Moser polynomial
admits multiple roots, the rogue pattern was not resolved in [18]. In
this case, while each simple root of the Adler-Moser polynomial would
still give rise to a Peregrine wave on the (x,7) plane, what wave pattern
on the (x, 7) plane would be induced by a multiple root is still a key open
question.

This multiple-root question was considered recently in [19]. In their
work, the multiple large parameters {a,;,,} were taken in a dual-power
form «; AT 4 ) JA Of k; AL 4 ) ; A%-1, where the coefficients x; and
4; were taken as special values. For instance, in the KjA2j+l + 4;A
form, they took x; = zéj“ /(2j + 1) and all of 4; (with the exception
of at most one) as A = —[R(zp) + 2%iS(z¢)1/(2j + 1)!, where zq is
a nonzero root of the Adler—-Moser polynomial Oy (z;ky,...,kx_1). In
the x; A%*! + 2, A%~ form, they restricted to fourth-order rogue waves
uy(x,t) (N = 4), and their (K 45) values for this case were more
complicated and thus will not be reproduced here (the reader is referred
to [19] for their expressions). It is important to recognize that their
dual-power parameter forms do not include our single-power form (4.8)
since their coefficients 4; are never all zero.

The focus of this paper is to treat large parameters of the single-
power form (4.8) with arbitrary coefficients {x;}, as we have described
in Section 2 in less-mathematical language. In other words, we study
a different parameter regime here from [19]. Due to this different
parameter regime, the rogue fields we will report for multiple roots
of Adler-Moser polynomials will be very different from those reported
in [19]. For instance, it was reported in [19] that pentagon and
heptagon shapes as well as lower-order rogue waves could arise due to
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nonzero multiple roots of Adler-Moser polynomials. In our case, none
of that can happen (see Section 4.1).

In our parameter regime, rogue patterns induced by a zero multiple
root and a nonzero multiple root prove to be very different (see
Section 2 and Fig. 1 for examples). In this section, we treat the case
where this multiple root is nonzero. The case of this multiple root being
zero will be treated in Section 6 later.

4.1. Prediction of a triangular rogue cluster for a nonzero multiple root of
the adler-moser polynomial

Now, we consider NLS rogue waves with large internal parame-
ters (4.8) for general {x;} values. In this case, if the Adler-Moser
polynomial Oy(z;ky,...,ky_;) admits a nonzero multiple root z, of
multiplicity Ny(N, + 1)/2, then we will show that this multiple root
would induce a triangular rogue cluster on the (x,7) plane. This cluster
comprises Ny(N, + 1)/2 Peregrine waves whose (x,t) locations are
linearly related to the triangular root structure of the Yablonskii-
Vorob’ev polynomial Qy, (z). Details of these results are presented in
the following theorem.

Theorem 2. For the NLS rogue wave u (x,t) with multiple large internal
parameters of the single-power form (4.8), suppose the corresponding Adler—
Moser polynomial © y(z; ky, ..., kx_;) admits a nonzero multiple root z;, of
multiplicity No(N, + 1)/2. Then, a triangular rogue cluster will appear on
the (x,t) plane. This rogue cluster comprises Ny(N, + 1)/2 Peregrine waves
4y (x — xg,t — to) e forming a triangular shape, where ,(x,1) is given in
Egq. (4.7), and positions (x, t,) of these Peregrine waves are given by

Xo ¥ ity = 2gA + 2,RA'3, (4.9)

with Q = [ (zy +3iS (z9) ) /9] '3 and 2, being every one of the Ny(N, +

1)/2 simple roots of the Yablonskii-Vorob’ev polynomial Q v, (z). The error
of this Peregrine wave approximation is O(A~'/3). Expressed mathemati-
cally, when (x — x4)> + (t — t5)> = O(1), we have the following solution
asymptotics

un(x, 15 a3, ds, ..., ayy_y) = By (x — xq, 1 — tg) € + 0 (A71/3) . (4.10)
The proof of this theorem will be provided later in this section.
Theorem 2 states that the wave pattern induced by a nonzero

multiple root of the Adler-Moser polynomial @y(z) is a triangular

rogue cluster. The reason for this triangular shape of the cluster is
that the Yablonskii-Vorob’ev polynomial’s root structure is triangu-
lar (see Fig. 2). As we can see from Eq. (4.9), each root %, of the

Yablonskii-Vorob’ev polynomial Qy, (z) gives rise to a Peregrine wave,

and positions (x,,#,) of these Peregrine waves are given through a

linear mapping of Q , (z)’s root structure (notice that £ in Eq. (4.9) is

nonzero when z, # 0). Since the root structure of Yablonskii-Vorob’ev
polynomials has a triangular shape [23,25,26], their linear mapping is
triangular as well. Hence, the rogue cluster is triangular.

4.2. Numerical verification of the analytical prediction in Theorem 2

In this subsection, we use two examples to numerically verify the
theoretical predictions in Theorem 2.

Example 1. In our first example, we choose N = 5 and (x|, k, k3, kK4)
as in Eq. (3.11). When A = 10, the true rogue wave us(x,?) with
internal parameters (4.8) is plotted in Fig. 4(a). It is seen that the wave
field contains 9 Peregrine waves forming two opposing arcs, which
closely mimic the two arcs of simple roots in the root structure of
Os(z; Ky, ky, k3, k) Shown in Fig. 3(a). This is what we already expected
from our earlier work [18]. Our current interest is the wave cluster
between those two arcs, which is highlighted by a black dashed box
in that panel. This wave cluster is associated with the multiple root
zo = 1 in the root structure of Os(z;« |, Ky, k3, k4) of Fig. 3(a), which
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Theorem 2 is predicting for parameters (4.8) with large A. This cluster
looks triangular with 6 main humps. But these 6 humps are not well
separated, thus they are not ready to be compared with Theorem
2’s predictions yet. The reason these 6 humps are not well separated
can be understood from Eq. (4.9) of Theorem 2, which shows that
the distances between the predicted Peregrine waves are of O(A!/3).
Right now, A = 10, thus these distances are not large, leading to the
predicted Peregrine humps staying close together. Theorem 2 predicts
that better hump separation would be achieved for larger A values. For
this reason, we will choose A = 200 to do the comparison. For this
larger A value, the wave cluster corresponding to the multiple root
zo = 1 is plotted in Fig. 4(b). We see that this cluster is well resolved
now, and it comprises 6 well-separated humps forming a triangular
pattern, with each hump being an approximate Peregrine wave. In
panel (c), we show the leading-order analytical prediction of |us(x, )| in
the region of (b) from Theorem 2. Here, the leading-order prediction is
a collection of 6 Peregrine waves whose (x,,?,) locations are obtained
from Eq. (4.9). We see that this analytical prediction closely resembles
the true solution. To verify the O(A~'/3) error decay of our prediction,
we show in (d) the error of this prediction versus the A value. Here,
the error is measured as the distance between the true and predicted
locations of the Peregrine wave marked by a white arrow in panel (b),
and the location of the Peregrine wave is numerically determined as
the position of its peak amplitude. By comparing this error curve to the
theoretical decay rate of A=!/3, we see that this error indeed decays as
O(A~'/3) at large A. Thus, Theorem 2 is fully confirmed.

Example 2. In our second example, we choose N =5 and (x|, k5, k3, k4)
as in Eq. (3.12). When A = 15, the true rogue wave us(x, 1) with internal
parameters given in Eq. (4.8) is plotted in Fig. 5(a). It is seen that the
left side of the wave field contains 5 Peregrine waves forming an arc,
which closely mimics the arc of 5 simple roots in the root structure
of Os5(z; k. k5, k3, k4) shown in Fig. 3(b), as we would expect from our
earlier work [18]. Our current interest is the wave cluster on the right
side of the wave field, which we have highlighted by a black dashed
box in that panel. This cluster is associated with the multiple root
zy = 1 in the root structure of O5(z; k. k. k3,k,) of Fig. 3(b), which
Theorem 2 is predicting. We see that this cluster is triangular with
10 main humps, some of which not well-separated. Thus, to compare
this cluster with our predictions, we use a larger value of A = 200
instead (as we did in Example 1). For this larger A value, the wave
cluster corresponding to the multiple root z, = 1 is plotted in Fig. 4(b).
This cluster comprises 10 well-separated humps forming a triangular
pattern, with each hump being an approximate Peregrine wave. In
panel (c¢), we show the leading-order analytical prediction of |us(x,#)| in
the region of (b) from Theorem 2. We see that this analytical prediction
closely resembles the true solution, confirming the predictive power of
Theorem 2. We have also verified the O(A~1/3) error decay similar to
what we did in Example 1, but details will be omitted for brevity.

4.3. Proof of Theorem 2

Now, we prove Theorem 2 on the asymptotic prediction of a tri-
angular rogue cluster for a nonzero simple root in the Adler-Moser
polynomial for the NLS equation.

Proof. We first rewrite the ¢, determinant (4.3) into a 3N X 3N
determinant [9]

o, = ONXN 4’N><2N , (411)

_‘I’ZNXN I2N><2N

where

&, =200, [xt+(G-Ds], ¥, =278, [x"+(-Ds]. (4.12)
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Fig. 4. (a) A true 5th-order NLS rogue wave |us(x, )| for internal parameters (4.8) with (x|, x,. k3, k,) given in Eq. (3.11) and A = 10. The black dashed box marks
the wave cluster of our interest. (b) Zoom-in of this cluster for a larger A value of A = 200. (c) Leading-order analytical prediction of this cluster in (b) from
Theorem 2. The (x,7) intervals are —55 < x,7 < 55 for panel (a) and 188 < x <214, —13 <t < 13 for panels (b) and (c). (d) Error of the leading-order prediction
versus A for the Peregrine wave marked by a white arrow in panel (b) (the theoretical decay rate of A~'/? is also plotted for comparison).

X

X

X

Fig. 5. (a) A true 5th-order NLS rogue wave |us(x, )| for internal parameters (4.8) with (k|, k,, k3, k) given in Eq. (3.12) and A = 15. The black dashed box marks
the wave cluster of our interest. (b) Zoom-in of this cluster for a larger A value of A = 200. (c) Leading-order analytical prediction of this cluster in (b) from

Theorem 2. The (x,?) intervals are —60 < x,7 < 60 for panel (a) and 186 < x < 218,

To prove Theorem 2, we need to perform asymptotic analysis to this
o, determinant for large A. For this purpose, we notice that x* =
(xT,O, x;,O, ...), where xI’,x;, ... are given in Eq. (4.5) which contain
internal parameters aj,as,.... When these internal parameters are of
the form (4.8) with A > 1, and x,1 = O(A) or smaller, we define (x,,?,)

by x. +it. = zyA and split x* as

xt =w+ %7, (4.13)

w = (x, +i1,,0,a3,0,a5,0,...) = (z94,0,k,43,0,x,4°,0, ...),
(57,0, %7 + b3,0,%7 + b5,0, ...),
X+ 2%(iD)

er+

=

j+l =

'I"E)?+if+n, R

+

2j+1 =

—16 <t < 16 for panels (b) and (c).

s

@j+ D!

x, +2%(it,) _ o+ 2% - 1)S(zp)i

@j+ D!

@j+ D!

s

>

(4.14)
(4.15)

(4.16)

(4.17)
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ay 1Sy +ajpS{A™ 4 - L0+a;,80A47" + )

a4y S|+ ay38, A7+ -

-1
Skt + A pg1SEAT

52280 + a 38147 + )

1 -1
5@ Ska + Qg1 Sk AT+ )

M= - . : (4.28)
BSpa1 + 01538247 + - F(BSK + D138k AT+ )
BSii3 +bysSiaA™! + - 3(BSia+by5SiysA™ + )
' _ i }
BSk—142ny + by ang+1 Skaang AT+ - 3 (BSk-212ny + DNy 2Ny +15k-142N, A EE D IR NN
Box I.
f=x-x, f=t—t,. (4.18) of M. Thus, the asymptotics of o, can be obtained from analyzing the

From this x* splitting and the definition of Schur polynomials, we see
that
J
S;(xt +vs) = D S, (w) S;&T + vs),
i=0

(4.19)
where v is any integer. In addition, from the definition of functions 6 1(2)
in Eq. (3.10), we see that
S;(w) = A0,(z). (4.20)

Let us denote 6,(z;) = h;. Then, using the above two relations, we can
rewrite the ® matrix as

® =FG, (4.21)
F =Mat, .y <j<on (A% hy_;) =D HD,, (4.22)
G =Mat g ;on (279708, [FT+G - Ds])., (4.23)
D, = diag(4, A3, ..., AN, 4.24)
D, = diag(1,47!,...,A72N), (4.25)

Here, H is the matrix given in Eq. (3.14) with h; = 6,(z,), which is
the same H matrix as in the proof of Theorem 1. From Eq. (3.15) and
Lemma 1, we get H = P‘lLﬁ, where P is a permutation matrix, L is
a lower triangular matrix with ones on the diagonal, and H is a row
echelon form given in Eq. (3.16). Thus,

& =D,P"'LHD,G. (4.26)

The key step of this proof is to utilize the special row echelon form H
in Eq. (3.16) of Lemma 1. Doing so, we find that we can rewrite the
above ® matrix as

® =D,P~'LD;M, (4.27)

where D; = diag(l,A™L,..., A7k, A717k A3k AI-2IN=R—ky M s
given in Box I, k is the number of the first few columns of H that
are linearly independent, Ny = N -k, a;; and b,; are elements in
the A and B matrices of Lemma 1, and S; is equal to S; (£%) in the
first column, equal to S (fc+ + s) in the second column, and so on.
Notice that the determinant of the N x N matrix comprising the first
N columns of H is just Oy(z,), the fact of z, being a root of Oy(z)
means that these first N columns of H are linearly dependent. Thus,
k < N and N, > 1. This M matrix above is similar to a matrix of the
same name in the proof of Theorem 1. Since the H matrix here (with
h; = 0,(z)) is the same as that in the proof of Theorem 1, we see
that Ny(Ny + 1)/2 is the multiplicity of the z, root in the Adler-Moser
polynomial Oy (z; k|, ..., Kn_1)-

Matrices D;, P~!, L and D; in Eq. (4.27) are all N x N nonsingular
constant matrices that are independent of the index » of s,. Because
of that, they can all be factored out of the ¢, determinant (4.11) and
cancel out from o,/0, in the rogue wave formula (4.2). This means
that in the ¢, determinant (4.11), ® can be replaced by M. Similarly,
¥ in that 5, determinant can be replaced by a counterpart matrix M

asymptotics of M and its counterpart M.

To proceed further, we will first use a heuristic approach to derive
the leading order approximation of uy (x,t). Afterwards, we will use a
more rigorous analysis to justify that leading order approximation and
derive its error estimates.

Our heuristic approach is as follows. As we will quickly see, rogue
patterns induced by the multiple root z,, of the Adler-Moser polynomial
Oy (2) appear in the (%,7) = 0(A!/?) region of the (x,7) plane. In this
region, since (£7,%7,...) are all O(A'/?) and (b3, bs,..) all O(A), the
expression for £ in Eq. (4.15) indicates that

S,(& +vs) = 0(A3) (4.29)

for any fixed integer v. Thus, we see from Eq. (4.28) that at large A,
all terms involving A~! or its powers in the M matrix are subdominant,
and

M~M, A>I1, (4.30)

where M, is the matrix of M with all terms involving A~! and its powers
neglected, i.e.,

M 0
M :( a > (4.31)
0 Mc Mb

a1,150 0 0

s 145,85, 0
M, = 32,2. 1 2“2:2 0 ' ’ (4.32)
1 L
UeSk=1 3UkSk=2 " FTT kS0 s

M, = fMat;;n_s 1<jon—k (27VTVESy BT+ (G- 1+ Kk)s]), (4.33)

and M, is a matrix we do not write out since it is not needed. Note that
in the above lower-triangular matrix M,, S; is equal to S; (2*) in the
first column, equal to .S ) (fc+ + s) in the second column, and so on.

Using the above results and their counterparts for the ¥ component,
and recalling that a; ;,a,,, ..., a; and  are all nonzero and S, = 1, we
see that the ¢, determinant (4.11) with its ® replaced by M and its ¥
replaced by M’s counterpart M is asymptotically equal to

o, ~ay6,, A>1, (4.349)
where « is a certain nonzero constant,
o o
6',, — ANOXNO NoX2Ny , (435)
_‘I’ZNOXNO I2N0x2N0

and

@,; =200, [FF+(G-1+hks], P

ij

=270, &+ G- 1+k)s].
(4.36)

During this calculation, an overall factor of 27% has been scaled out
from the M, matrix and its counterpart for the ¥ component. Using
techniques of Ref. [17], we can remove the k term in the above
Eq. (4.36) without affecting the 6, determinant. Then, the resulting
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6, simply corresponds to the N,-th order rogue wave u No(fc,ﬂ with
internal parameters (b3, bs, ..., by, ;). Thus, we have
0D g1,

(4.37)

un(x,t;a3,as, ..., ayn_1) ~ un (X,1:b3,bs, ... by 1) e

The phase term ei~) here is induced by our notation in Eq. (4.2),
which implies uy(x,?) has phase e while u N, (%) has phase . From
Eq. (4.17), we see that internal b,;,, parameters in this Ny-th order
rogue wave u No(fc,ﬂ are nonzero and O(A). The asymptotics of this
uNO(fc,ﬂ has been studied in Sec. 6 of Ref. [17]. Since the current
internal parameters satisfy the condition of b,;,, < O(b;zf D73y for every
j > 2, results in Sec. 6 of Ref. [17] indicate that at large A, the solution
Un, (R, 75 b3, bs, ..., by _1) would split into Ny(No+1)/2 Peregrine waves
it (R =%, I—fy)el’, where 4, (x, ) is given in Eq. (4.7), and positions (%, 7y)
of these Peregrine waves are given by % + ify = 2, (—3b3/4) 3 with
£, being every one of the Ny(N, + 1)/2 simple roots of the Yablonskii—
Vorob’ev polynomial O No(2)- Since by = [z +3S(z()ilA/6, we then get

Ro +ily = 20QA'/, (4.38)

where  is as defined in Theorem 2 and is nonzero. Recalling £ = x—x,
and 7 =t — 1, with x, + it, = zpA, we see that a,(& — %,,7 — 7)) =
iy (x —xg, t—1y), where (x,, ) are as given in Eq. (4.9). Then, Eq. (4.37)
means that

A>1 (4.39)

un(x,t;a3,0s, ..., ay_1) ~ 01 (x — X0, — 1g) e,

when (x,7) are in the O(1) neighborhood of (x, #y).

The above derivation is heuristic for the following reason. The
leading-order term &, in Eq. (4.34) turns out to nearly vanish around
locations (4.38) where Peregrine waves are predicted. This fact can be
seen from Ref. [17] or from the later text of this subsection. Because of
that, it is crucial for us to show that the error terms which are neglected
in the leading-order asymptotics (4.34) do not surpass or match that
leading-order contribution in those regions. Since we did not estimate
those errors and their relative contributions, the above calculation was
heuristic and not rigorous.

Next, we more carefully justify the above asymptotics (4.39) and
derive its error estimates. In this process, we will not rely on our earlier
results in Ref. [17], but will do all necessary calculations directly so that
our treatment here is self-contained.

First, we split the M matrix in Eq. (4.28) as

M=M,+M,, (4.40)

where M, is as given in Eq. (4.31). We also do a similar splitting for
the counterpart matrix M of the ¥ counterpart. In the (%,7) = 0(4!/3)
region, due to the asymptotics (4.29), we see that when (M), ; #0, the
matrix element (M,);; of M; is O(A~%/%) less than the corresponding
matrix element (M), ; of My; and when (M), ; =0, M), is 0rde~r of
A~! or its higher power. Similar results hold for the counterpart M in
the ¥ component.

Then, we examine the matrix M,,. This matrix comprises elements
S; (%" +vs). When (%,7) = O(A!/3), it is easy to see that
S, +vs) =8, (£7,0,65,0,0,...) [1 + 0473 (4.41)

for any fixed integer v. The polynomial S; ()%TO b3,0,0, ) is related
to p;(z) in Eq. (3.7) as
S, (%7.0.65,0,0,...) = Q/A1p (2), (4.42)

where Q is as defined in Theorem 2, and 2 = Q'A~13(% + if + n).
Inserting (4.42) into (4.41), we get
S;&T+vs) = QI ABp, ) [1+0 (A7) (4.43)

Now, we use the above results (4.40), (4.43) and their
W-counterparts to calculate o, in Eq. (4.11), with its & replaced by
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M and its ¥ replaced by M’s counterpart M. To proceed, we first use
determinant identities and the Laplace expansion to rewrite that o, as

(M"v”/') (1\7[”],,) ’

It is easy to see that the dominant contributions to this ¢, come from
two index choices, one being u = (1,2,...,N), and the other being
u=(1,2,..., N=1, N+1), and the rest of the contributions are of relative
order A~1/3,

With the first index choice, in view of Egs. (4.40), (4.43) and size
discussions of M,’s elements above, the M,-’”j determinant in Eq. (4.44)
can be found as

X det
1<i,j<N

det
1<i,j<N

0, = (4.44)

1<py<pp<-+-<uy <2N

No(Ng+1)
Y [QN0(2)+0 (A—2/3)], (4.45)
where a; = Z*N(N’”/ZQNO(NO“)/ZﬂNOc;,:) 1<, a;;. Here, the leading-

order contribution to this determinant comes from approximating M
by M, and approximating S;(%* + vs) in M, by its leading-order term
in Eq. (4.43), and the O(A~%/3) error term in (4.45) comes from the M,
component of M as well as the O(A~2/3) error term in (4.43). In view
of the definitions of (%, 1,) in Eq. (4.38), we can rewrite 2 as

2=20+ Q7 ATV (R = %) +1( — 7o) + 1] . (4.46)

Then, expanding Q N (D around 2 = £, and recalling 2, is a simple
root of the Yablonskii-Vorob’ev polynomial O No (s ie., O Ny(Zo) =0
and Q’No(ﬁo) # 0, we get

Oy, (&) = 271 47Ol (20) [(& = %0) +iG i) +n] [L+0 (47'7)].
(4.47)

Inserting this equation into (4.45), the M;

; determinant in Eq. (4.44)
then becomes

H

No(No+D)-2

0 Q710 (2) [& =) +iE =i +n] AT o [1+0(47'7)].

(4.48)
Similarly, the 1{7[”]_!,- determinant in Eq. (4.44) can be found as

No(Ng+D-2

(a]Q’lQ’NO(éo))* [ -5 —iG—i)—n| A= & [1+0(a7'/)].

(4.49)

With the second index choice of y = (1,2,....,N — 1, N + 1), the
leading-order contribution to the M; , determinant in Eq. (4.44) can
be obtained by neglecting the M; component of M and approximating
S;(&*+vs) in M,, by its leading-order term in Eq. (4.43), and the relative
error of this approximation is O(A~2/3). Thus, this Mi,ﬂ,- determinant is
found as

1 _1 A X N N
50‘1 ‘7N0-Q 15(}2\[0 [Pz;‘—l (2), P2ia(2), - ’pzi—(No—])(Z)s sz_(N0+|)(Z)]

No(Ng+1)-2

XA~ 6 [1+0(A72)]. (4.50)
Since p,;_( No+1(2) = p’2’._ NU(;%), this determinant is then equal to
1 . . NoWo+D-2 a3
7@ Q7O (AT e [1+0(4 ). (4.51)
Utilizing Eq. (4.46), this expression can be approximated as
1 oy No(Ng+D-2 13
F02 Oy (AT e [1+0(4a7'7)]. (4.52)
Similarly, the IVIMJ_’,- determinant in Eq. (4.44) can be found as
1 B L \* No(WNo+b-2 _
s(meoy ) a7 e [1+o(a7h)]. (4.53)

Summarizing the above contributions, we find that the determinant
o, in Eq. (4.44) is calculated as

No(Ng+D-2

o, = )a,gl(z |Q§VO(2O)‘2A 3
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x [(5=20) + (=) = @ (i = o) = + %] [1+0(a713)].
(4.54)

Then, inserting the above asymptotics into Eq. (4.2), we find that when
(%,1) is in the O(1) neighborhood of (%,,%,), i.e., when (x,7) is in the O(1)
neighborhood of (x, 7,) where (x, 7y) are given in Eq. (4.9) of Theorem
2

]

1 i

o
un(x,t;a3,as,...,a,y_1) = —e
%

=ei’<1 >+0(A-'/3),

which is a Peregrine wave #,(x — xq,7 — #y)e'’, and the error of this
Peregrine approximation is O (A~!/3). Theorem 2 is then proved. ]

A[1 + 2i(F — 1y)]

146 — R 4G —1)? (4:55)

5. Triangular rogue clusters in the GDNLS equations

The normalized GDNLS equations are [34-37]

i, + %uxx + iylulzu)C +i(y — l)uzui + %(y —D(y = 2)|ul*u =0, (5.1)
where y is a real constant. These equations become the Kaup—Newell
equation when y = 2 [38], the Chen-Lee-Liu equation when y =
1 [39], and the Gerdjikov-Ivanov equation when y = 0 [40]. These
GDNLS equations and their special versions govern a number of phys-
ical processes such as the propagation of circularly polarized nonlin-
ear Alfvén waves in plasmas [41,42], short-pulse propagation in a
frequency-doubling crystal [43], and propagation of ultrashort pulses
in a single-mode optical fiber [44,45].

Rogue waves in these equations satisfy the following normalized

boundary conditions [37]

i(1—y—a)x— % ila2+2(7-2)a+1-7]t
,

u(x,t) —> e x,t — +00, (5.2)

where a > 0 is a free wave number parameter. Under these conditions,
compact expressions of Nth order rogue waves in the GDNLS equations
(5.1) are given by [46].

% yy—1
i(1=y=ax— il +2(~2)a+1-7]t (N 8N

uy(x,ny=e v , (5.3)
In
where
vt =009, gn(x,t)=0_y4, 5.4
— (n,k)
o= det (9N ). 5.5)
min(i,j) 1
¢§f}*"> = Z 47Si_v(x+(n, k) +v8)S;_,(x~(n, k) + vs), (5.6)
v=0
the vectors x=(n, k) = (x1i’x;£’ ) are defined by
Xt = k+(n+%>(h1+%>+\/Ex+[\/;(a—l)+ia]t, (5.7)
xp ==k (n+3) (n +3) + Vax + [Vat@ -1 - a1, 5.8)
1
Xje1 = 1+ Doy
1 i .
+m{\/Ex+[\/;(a—l)+2211a]t}+a2j+l, ji>1, (5.9)
_ 1
Xpjpr = —(n+ E)h;jﬂ
1 2j. * .
+m{\/Ex+[\/;(a—l)—Zfla]t}+a2j+l, j>1, (5.10)
x'fj =0, j>1, (5.11)

s = (s1,59,...) is defined in Eq. (4.6), hj(a) are coefficients from the
expansion

o yp) -1/2
3, :1<L)
j=l i+y/a

(5.12)
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and as, as, ..., a,y_, are free irreducible complex constants.

The fundamental GDNLS rogue wave is obtained when we take
N =1 in the above general solution. This fundamental rogue wave
is

uy (x,1) = iy (x, t)ei(l—y—a)x—%i[a2+2(y—2)a+l—y]t’ (5.13)
where

e
O (5.14)

/i
the functions f|(x,?) and g;(x,7) are given from Eq. (5.4) as
1 1 .
fin = [5 (m+ 5) +vax+ [\/E(a— 1)+1a] z]
(e, 1 L 1
x [—5 (h1 + 2) +yax + [\/E(a 1 ux] t] t3 619

g (nr) = [1-%(}11 +%)+\/¢—xx+ |Vata -1 +ia] ]
x[-1+3 (hi+3) + Vax+ [Vata-D-ia|1] + 1. G.16)

and h; =[i— \/5] J12G+ \/5)]. This wave has a single hump of amplitude
3, flanked by two dips on its sides, and its intensity profile is slanted
on the (x,7) plane.

Patterns of these GDNLS rogue waves uy (x,t) under a single large
internal parameter a,;,; were studied in our earlier work [15,46].
It was shown that those patterns are predicted by root structures
of the Yablonskii-Vorob’ev polynomial hierarchy. If multiple internal
parameters in these rogue waves are large and of the single-power
form (4.8), it was shown in [15] that the corresponding rogue patterns
are predicted by the root structure of the Adler-Moser polynomial
On(z; Ky, ..., kn_p). If all roots of this Adler-Moser polynomial are sim-
ple, then the rogue pattern would comprise fundamental rogue waves
whose locations on the (x,7) plane are a certain linear transformation
to this polynomial’s root structure. When the Adler-Moser polynomial
admits multiple roots, while each simple root of the polynomial would
still give rise to a fundamental rogue wave on the (x, ) plane, the wave
pattern induced by a multiple root was not addressed in [15]. This
question will be answered in this paper. Similar to the NLS case, rogue
patterns induced by a zero multiple root and a nonzero multiple root
are very different. In this section, we treat the nonzero multiple-root
case. The zero multiple-root case will be treated in Section 6 later.

5.1. Prediction of a triangular rogue cluster and its proof for the GDNLS
equations

In this section, we consider GDNLS rogue waves with large inter-
nal parameters (4.8) when the corresponding Adler—-Moser polynomial
On(z;k, ..., ky_;) admits a nonzero multiple root. If this root has
multiplicity N,(Ny+1)/2, then we will show that this root would induce
a triangular rogue cluster on the (x,7) plane. This cluster comprises
Ny(Ny + 1)/2 fundamental rogue waves whose (x,7) locations are lin-
early related to the triangular root structure of the Yablonskii-Vorob’ev
polynomial Q y, (z). Details of our results are presented in the following
theorem.

Theorem 3. For the GDNLS rogue wave uy (x,t) with multiple large in-
ternal parameters of the single-power form (4.8), suppose the corresponding
Adler-Moser polynomial O y (z; k1., ... , kK 5_;) admits a nonzero multiple root
z, of multiplicity Ny(Ny+1)/2. Then, a triangular rogue cluster will appear
on the (x,t) plane. This rogue cluster comprises Ny(N, + 1)/2 fundamental
rogue waves i, (x—x, t—to)ei(l_}'—‘”"_%i["zﬂ(’_b‘”l_y]’ forming a triangular
shape, where i1, (x,t) is given in Eq. (5.14), and positions (x,,t,) of these

fundamental rogue waves are given by
Vaxg + [\/E(a— 1)+ia] t = 2pA + 29QA1/3, (5.17)

with Q = [ (zy +3iS [z]) /8] '3 and 2, being every one of the No(N, +
1)/2 simple roots of the Yablonskii-Vorob’ev polynomial Q y, (z). The error
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of this fundamental rogue wave approximation is O(A~'/3). Expressed
mathematically, when (x — x4)* + (t — t5)> = O(1), we have the following
solution asymptotics

Jaan_y) = ﬁ](x_x”’I_to)ei(l—y—rz)x—%i[a2+2(y—2)a+l—y]r+0 (A—I/S) )

(5.18)

uy(x,t;a;3,as, ...

This theorem says that the wave pattern induced by a nonzero
multiple root of the Adler-Moser polynomial @y(z) is a triangular
rogue cluster, similar to the NLS case. The reason for this triangular
shape of the cluster is easy to see from Eq. (5.17). This equation
shows that positions (x,,#;) of fundamental rogue waves in this cluster
are given through a linear mapping of the root structure £, of the
Yablonskii-Vorob’ev polynomial Qy, (z). Indeed, this linear mapping
can be worked out more explicitly from Eq. (5.17) as

R [ R(Zy)
[ fo ]_[ t, ]+B[ 3(20) ] (5.19)
where

Xe _ 9{(20)

le ] _BO[ S(z) ]’ (5.20)
and

4 el
BO =A |: \(/)E ; :| ,
LR - L) —Lg@Q) - =R
B:Am[ Ve (1) D \/E‘S(]) « (5.21)
S R 10)

In this linear map (5.19), the first term is a constant shift, and B is
a constant matrix. Since the root structure of all Yablonskii-Vorob’ev
polynomials has a triangular shape [23,25,26], the rogue cluster of
fundamental rogue waves obtained through this linear mapping is
triangular as well.

Proof of Theorem 3. The proof of this theorem is similar to that for
the NLS equation in Section 4.3 and thus will only be sketched below.

We start by rewriting the o, determinant (5.5) into the 3N x 3N
determinant (4.11), where ® and ¥ are given by Eq. (4.12), except
that the x* vectors are now different. Due to the expression of xIr in
Eq. (5.7), we define (x,,?,) by

\/Exc + [\/E(a -+ ia] t, = zpA.

Explicit expressions of (x,,?,) can be easily worked out and they are as
given in Eq. (5.20).
Next, we split x* as

(5.22)

xtT=w+ i, (5.23)
w = (Vax, + [Va(a - 1) +ialt,,0,a3,0,a5,0,...)
= (204,0,k;43,0,,4,0, ...), (5.24)
&= (R1,0.87 + 5.0, %% + b5,0,...), (5.25)
stzkor (ne3) (m+3) + Vai+ [Vat@ - +ia] i (5.26)
. |
x'z*'j+1 =n+ E)hzjﬂ
1 N 2js ~ .
Y ETTT {Vaz+ [\/E(a— +2 1a] ihogz, (5.27)
| y
byt = G {\/;xc + [\/E(a - 1)+22’1a] zc}
+ QY - DS(zp)i
= MA i1, (5.28)
Qj+1)!
f=x-x, f=t—t,. (5.29)

Notice that these b,;,, values have the same final expressions as those
in Eq. (4.17) of the NLS case. The rest of the calculations is almost
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identical to that in the proof of Theorem 2 for the NLS equation,
the reason being that the rogue solution’s structure (5.5)—(5.6) of the
GDNLS equations is identical to (4.3)—(4.4) of the NLS equation. Based
on the heuristic arguments over there, we similarly find that

uy(x,tya3,as, ... ayn_y) ~ uny (%, 1503, bs, ... by 1)

% ei(l—y—(x)(x—fc)—%i[(x2+2(y—2)a+l—yj(t—ﬂ’

A>1. (5.30)

Since internal b,;,, parameters in this Nj-th order rogue wave u Ny s f)
are large and O(A), the asymptotics of this rogue wave u No(fc,ﬂ can
be obtained from Ref. [46] and Sec. 6 of Ref. [17] with very lit-
tle modification, and we find that at large A, this uNO(fc,D would
split into Ny(N, + 1)/2 fundamental rogue waves a;(% — Xo,7 — 7p)
ei(1_y“”)’?‘%”"2*'2(7‘2)““_”;, where #,(x,1) is given in Eq. (5.14), and its
positions (%, 7,) are given by

% N EN 13 _ 4 1/3
0 - - >
\/Ex + [\/E(a -1 +1a] fo =29 (=3b3/4) 2,02AY

with 2, being every one of the N,(N, + 1)/2 simple roots of the
Yablonskii-Vorob’ev polynomial O Ny and Q as defined in Theorem
3. Recalling £ = x —x, and = 1 — 1., we see that 4,(% — %p,7 — fy) =
iy (x—x(,1—1y), where (x,,,) are as given in Eq. (5.17), and (5.30) then
becomes

(5.31)

[(xz+2(}/—2)(t+l—y]1’ A1

(5.32)

. 1.
. . i(1-y—a)x—1
Uy (X, 15 a3, s, ... Gy ) ~ By (X = X, 1 — 1) @0 T770x 31

when (x,1) are in the O(1) neighborhood of (x,,#,). Error estimates to
the above asymptotics can be obtained in the same way as in the proof
of Theorem 2, and we can see that this error is O(A~'/3). Theorem 3 is
then proved. ]

5.2. Numerical verification of analytical predictions in Theorem 3

Next, we use an example to numerically verify the theoretical
predictions in Theorem 3 for the GDNLS equations.

Example 3. In our example, we choose y = 2, « = 16/9, N = 5,
and (k. Ky, k3,k) as in Eq. (3.11). When A = 8, the true rogue wave
us(x, 1) with internal parameters given in Eq. (4.8) is plotted in Fig. 6(a).
It is seen that the wave field contains two opposing arcs comprising
5 and 4 fundamental GDNLS rogue waves each. These fundamental
rogue waves are induced by simple roots in the root structure of
Os(z; Ky, ky, k3, k) shown in Fig. 3(a), as has been explained in our
earlier work [15]. Our current interest is the wave cluster between
those two arcs, which is induced by the multiple root z, = 1 in the
root structure of Os(z; ky, k,, k3, k,) in Fig. 3(a). This cluster comprises
6 humps forming a triangle, but some of those 6 humps are not well
separated. As done before, we will choose a larger A value of A =
150 to do the comparison between the true solution and Theorem 3’s
predictions. For this larger A value, the wave cluster corresponding to
the multiple root z, = 1 is plotted in Fig. 6(b). We see that this cluster
comprises 6 well-separated humps forming a triangular pattern, with
each hump being an approximate fundamental rogue wave. In panel
(c), we show the leading-order analytical prediction of |us(x,?)| in the
region of (b) from Theorem 3. Here, the leading-order prediction is a
collection of 6 fundamental rogue waves whose (x,#,) locations are
obtained from Eq. (5.17). We see that this analytical prediction closely
resembles the true solution. To verify the O(A~'/3) error decay of our
prediction, we show in (d) the error of this prediction versus the A
value. Here, the error is measured as the distance between the true
and predicted locations of the fundamental rogue wave marked by a
white arrow in panel (b), and the location of the fundamental rogue
wave is numerically determined as the position of its peak amplitude.
By comparing this error curve to the theoretical decay rate of A~'/3, we
see that this error indeed decays as O(A~!/3) at large A. Thus, Theorem
3 is fully confirmed.



B. Yang and J. Yang

Physica D: Nonlinear Phenomena 483 (2025) 134921

X

[~ (d)

- solution error
A8 decay

102 103

A

Fig. 6. (a) A true 5th-order GDNLS rogue wave |us(x,t)| with y =2 and « = 16/9 for internal parameters (4.8) with (x|, x,, k3, «,) given in Eq. (3.11) and A =8.
(b) Zoom-in of the wave cluster induced by the multiple root z, = 1 of Os(z; k|, k,, k3, k) for a larger A value of A = 150. (c) Leading-order analytical prediction
of this cluster in (b) from Theorem 3. The (x,7) intervals are —34 < x,t < 34 for panel (a) and 104 < x < 121, —8.5 <t < 8.5 for panels (b) and (c). (d) Error of
the leading-order prediction versus A for the fundamental rogue wave marked by a white arrow in panel (b) (the theoretical decay rate of A~!/3 is also plotted

for comparison).

6. Rogue patterns associated with a zero multiple root in the
Adler-Moser polynomial

In the past two sections, we determined rogue patterns induced by a
nonzero multiple root in the Adler-Moser polynomial for the NLS and
GDNLS equations. We showed that in both cases, a triangular rogue
cluster would appear. If the multiple root of the Adler—-Moser polyno-
mial is zero, the situation would be totally different. In this case, we
will show that instead of a triangular rogue cluster, a lower-order rogue
wave would appear in the O(1) neighborhood of the spatial-temporal
origin. Details of these results for the NLS and GDNLS equations are
presented in the following theorem.

Theorem 4. For the NLS rogue wave uy (x,t) in Eq. (4.2) and the GDNLS
rogue wave uy(x,t) in Eq. (5.3) with multiple large internal parameters
of the single-power form (4.8), suppose the corresponding Adler—-Moser
polynomial O y(z;ky, ..., kx_,) admits a zero multiple root of multiplicity
No(Ny+1)/2. Then, a lower Ny-th order rogue wave with all-zero internal
parameters would appear in the O(1) neighborhood of the origin (x,t) =
(0, 0), and the error of this lower-order rogue wave approximation is O(A™").
Expressed mathematically, when x> + 1> = O(l), we have the following
rogue-wave asymptotics for the NLS and GDNLS equations,

uy(x,t;a3,a5, ..., a;n_1) = up (x,1,0,0,...,0)+ O (A_l) . (6.1

Proof. These proofs for the NLS and GDNLS equations are almost

identical. Thus, we will just prove it for the NLS equation below.
Suppose Oy (z; Ky, ..., ky_;) admits a zero multiple root of multiplic-

ity No(No+1)/2, and x?>+1> = O(1). We first rewrite the o, determinant

13

(4.3) into a 3N x 3N determinant (4.11). Then, we split x* as

xt =w+ it (6.2)

w = (0,0,43,0,4a5,0,...) = (0,0, 4%,0,k, 43,0, ...), (6.3)

&t =(31,0.57,0,%5,0,...), (6.4)
2j (3

$rzxtittn &3, = X200 Ly (6.5)

2/ T2+ D)

This splitting is a special case of the earlier (4.13) with z, = 0. Then,
using the formulae (4.19)-(4.21) as well as the special row echelon
form H of matrix H in Eq. (3.16), we can rewrite the ® matrix in (4.11)
as (4.27), where M is given in Eq. (4.28) except that the £* vector in
S; (&* + vs) there should be updated to (6.4) now. The fact of zero
being a root of Oy (z) guarantees that k < N and N,, > 1 in the M matrix
(4.28). When x? +1* = O(1), S;(** + vs) = O(1). Thus, we still have the
asymptotics (4.30), i.e., M ~ M), where M, is given in Eq. (4.31). From
this asymptotics, we still get Eq. (4.34), i.e., o, ~ ay6,,, where 6, is given
in Eq. (4.35). Using techniques of Ref. [17], we can also remove the k
term in Eq. (4.36). Then, we see from Eq. (6.4) that the resulting 6,
now corresponds to the Ny-th order rogue wave uy (x,t) with all-zero
internal parameters, i.e.,

un(x, 103,05, ..., ayn_1) ~ uNO(x,t;O,O, 5,0, A1 (6.6)

Unlike the z, # 0 case in the proof of Theorem 2, the leading-order
term 6, of o, here does not vanish in the x> + 1> = O(1) region. Thus,
the above argument is no-longer heuristic but is reliable. Regarding the
order of error in the approximation (6.6), since S j(fc’f +vs) = O(1) in
the M matrix (4.28), we see that the approximation of M by M, has
relative error of O(A~!). This translates to an error of O(A~!) in the
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Fig. 7. (a) A true fifth order NLS rogue wave |us(x,?)| for internal parameters (4.8) with (x,x,,x5,x,) = (1,1,1,4/3) and A = 6. (b) Zoom-in of (a) in the
(x,7) = O(1) region. (c) Analytical prediction of this solution in the (x,7) = O(1) region from Theorem 4. The (x,7) intervals are —35 < x, < 35 for panel (a) and
—5 < x,t <5 for panels (b) and (c). (d) Error of our predicted solution versus A (the theoretical decay rate of A~! is also plotted for comparison).

approximation (6.6) as well, hence Eq. (6.1) holds. This completes the
proof of Theorem 4. []

Next, we use an NLS example to confirm Theorem 4. In this
example, we take N 5 and (k, k), k3,k4) = (1,1,1,4/3) as in
Eq. (3.13). In this case, zero is a triple root of the Adler-Moser poly-
nomial Os(z; k|, k,, k3, k), see Fig. 3(c). When we take large internal
parameters as (4.8) in the NLS equation with A = 6, the true rogue wave
is plotted in Fig. 7(a). The (x,7) = O(1) region that is associated with
the zero root of the Adler-Moser polynomial is zoomed in and shown in
panel (b). In (c), the analytical prediction for this region from Theorem
4 is displayed. This analytical prediction is a second-order rogue wave
with zero internal parameters. As one can see, the predicted solution
closely resembles the true solution in panel (b). In panel (d), the error
of our approximation versus A is plotted. Here, the error is measured
as the absolute difference between the true solution and the predicted
solution at the spatial-temporal location of (x,#) = (0.5,0.5). It can be
seen that this error decays in proportion to A~!', which matches our
prediction in Theorem 4.

We would like to point out that, in special cases such as when all
{x;} are zero except for one of them, the error of this lower-order rogue
wave approximation could be smaller. For example, if x; # 0 and the
other k;’s are zero, then when z, = 0 is a multiple root of Oy (z), the
lower-order rogue wave approximation in the (x,7) = O(1) region would
have error of O(a;l) = O(A™?), which is much smaller than O(A™!) in
Eq. (6.6). Such special cases have been reported in [15,17] already. But
in the generic case of Theorem 4, this error is only O(A™") as Fig. 7(d)
shows.

Our result in Theorem 4 for rogue patterns in the O(1) neighborhood
of the spatial-temporal origin for multiple large internal parameters
(4.8) is obviously more general than our counterpart result for the
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single-large-parameter case in [15,17], since the single-large-parameter
scenario is a special case of the current multi-large-parameter scenarios.
Indeed, Theorem 4 above is a generalization of the previous counterpart
results such as Theorem 4 in Ref. [17]. Interestingly, our current
derivation of Theorem 4 for the more general case (4.8) is actually
simpler than our old treatment of the special single-large-parameter
case in [15,17]. In our old treatment of the special case, we performed
a complicated series of row operations to the ¢ matrix in (4.11), and
it was a challenge for us to describe those row operations very clearly
there. In light of our current more general treatment, we can see clearly
now that those complicated series of row operations we described in
our old treatment are simply row operations to reduce the matrix H of
Eq. (3.14) with h; = 0,(0) to its row echelon form H in Eq. (3.16). This
understanding through the row echelon form of H is the essence of this
problem.

7. Conclusion and generalizations

In this paper, we have studied rogue patterns associated with multi-
ple roots of Adler-Moser polynomials under multiple large parameters
of single-power form (4.8) in the NLS and GDNLS equations. We first
showed that the multiplicity of any multiple root in any Adler-Moser
polynomial is a triangular number of the form N,(N,+1)/2 for a certain
integer N,. We then showed that corresponding to a nonzero multiple
root of the Adler-Moser polynomial, a triangular rogue cluster would
appear on the spatial-temporal plane. This triangular rogue cluster
comprises Ny(Ny+ 1)/2 fundamental rogue waves forming a triangular
shape, and space-time locations of fundamental rogue waves in this
triangle are a linear transformation of the Yablonskii-Vorob’ev polyno-
mial Q No (z)’s root structure. In the special case where this multiple root
of the Adler-Moser polynomial is zero, we showed that the associated



B. Yang and J. Yang

rogue pattern is a Ny-th order rogue wave in the O(1) neighborhood of
the spatial-temporal origin. Our analytical predictions were compared
to true rogue solutions and good agreement was demonstrated. These
results provide a clear and clean answer to rogue patterns induced by
multiple roots of Adler-Moser polynomials under general multiple large
parameters of single-power form (4.8). They also generalize the earlier
results in [17] where only one of these parameters was assumed large.

In our derivations of the above analytical results, Lemma 1 on
the row echelon form of a certain N x 2N matrix (3.14) played a
crucial role. This special matrix (3.14) naturally appears when we
attempt to investigate the multiplicity of a multiple root in an Adler—
Moser polynomial and rogue patterns under multiple large parameters
(4.8) in the NLS and GDNLS equations. In such investigations, the
leading entries (that is, the left-most nonzero entries) of rows in the
row echelon form of this matrix would give dominant or relevant
contributions. The special structure of the row echelon form of this
matrix given in Lemma 1 then directly leads to our main results of this
paper.

Our results in this paper can be generalized in multiple directions.
One direction of generalization is to other integrable equations. As is
already clear from [15,46], our results can readily be generalized to
integrable systems whose rogue waves can be expressed as determi-
nants featuring Schur polynomials with index jumps of two. Examples
include the Boussinesq equation, the Manakov system, the three-wave
resonant interaction system, the long-wave-short-wave resonant in-
teraction system, the Ablowitz-Ladik equation, the massive Thirring
model, and many others [15]. In such systems, if multiple internal
parameters in their rogue wave solutions are large as in (4.8) and the
corresponding Adler-Moser polynomial admits a multiple root, then a
nonzero multiple root is also expected to induce a triangular rogue
cluster. If this multiple root is zero, then a lower-order rogue wave
is also expected in the neighborhood of the spatial-temporal origin,
except that internal parameters of this lower-order rogue wave might
not be all zero, which would happen if the k term in the corresponding
Eq. (4.36) cannot be eliminated such as in the Boussinesq equation
case [47].

Another direction of generalization is to multiple large internal
parameters whose forms are more general than those considered in this
paper. The forms of large parameters we have considered are (4.8),
where each parameter contains a single power term. For a broader class
of large parameters of the dual-power form
ayjyy =K, AFT 4 QA

1<j<N-1, (7.1)

where A is a large positive number and «;, 4; free complex constants,
we can extend our analysis to this case with little modification. In
this case, we can quickly show that for both the NLS equation and
the GDNLS equations, if 4; # 0, where 1, = A, + [zy + 3iS(z()1/6
and z, is a multiple root of multiplicity Ny(N, + 1)/2 in the Adler-
Moser polynomial ©y(z;ky,...,ky_;), then a triangular rogue cluster
would appear on the spatial-temporal plane. This triangular rogue
cluster comprises Ny(N, + 1)/2 fundamental rogue waves forming a
triangular shape, and space-time locations of fundamental rogue waves
in this triangle are a linear transformation of the Yablonskii-Vorob’ev
polynomial Qy, (z)’s root structure. Specifically, space-time locations
(x¢. 1) of these fundamental rogue waves in the triangle are still given
by Eq. (4.9) for the NLS equation and by Eq. (5.17) for the GDNLS
equations, except that £ in those two equations should be replaced
by 2, where Q = (—31,/4)1/3. These results hold for arbitrary (x;, 4;)
values as long as 1, # 0. It is noted that multiple large parameters of the
dual-power form (7.1) with special (x;, 4;) values in the NLS equation
have been considered in [19], and their results for A ; values with 1 1 #0
agree with our general results above. The case of 4, = 0 for the dual-
power parameter form (7.1) with general K; and A ; values can also be
treated through a simple extension of our analysis, and details will be
omitted here.
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A third direction of generalization is to the pattern analysis of
rogue waves which can be expressed as determinants featuring Schur
polynomials with index jumps of three under multiple large parameters.
Such rogue waves appear in integrable systems such as the Manakov
equations and the three-wave resonant interaction system. When a
single internal parameter in such rogue waves is large, their pattern has
been shown to be described by root structures of Okamoto polynomial
hierarchies [48]. The question of wave patterns under multiple large
internal parameters in such rogue waves is still open. This question can
be addressed through a natural extension of our analysis in this paper,
and it will be left for future studies.

In this paper, rogue patterns under (multiple) large parameters
were studied by directly calculating the large-parameter asymptotics
of rogue wave solutions. One can wonder if this problem can also
be attacked by other methods, such as asymptotics in the inverse-
scattering (Riemann-Hilbert) framework. In this framework, one first
derives the scattering data associated with these rogue solutions and
use that data to formulate a Riemann-Hilbert problem. Then, one
performs asymptotics on this Riemann-Hilbert problem and uses this
information to derive the asymptotics of the underlying rogue waves.
This approach was successfully applied in [49] to determine the large-
order asymptotics of fundamental rogue waves in the NLS equation
(these fundamental rogue waves here refer to the NLS rogue waves
uy(x,1) in Eq. (4.2) where all internal parameters a3, as, ..., a,y_; are
taken as zero). It will be interesting to see if this approach can also
be applied to study large-parameter asymptotics of these uy (x, ) rogue
waves.
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Appendix

In this appendix, we prove Lemma 1.
For the H matrix in Eq. (3.14), i.e.,

h, 1
hy  hy  h 1
hy (A

h 1 ,
hyn—1 han—a hon_3 han_y hons han_g = By 1

we denote its jth column as H;, where | < j < 2N. Its H; and H,
vectors can be related as

hy a 1

h; a hy

hs =] o a a; hy > (A.2)
hyn_1 ay Oy a hyn_
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where a,a,,...,ay are constants whose values can be readily deter-
mined by sequentially solving each equation from the top down. For
example, from the first equation, we get a; = h;; from the second
equation, we get @, = h; — a; h,; and so on. The system of Egs. (A.2)
can be rewritten as
N
H =aHy+a,Hy+ - +ayHyy = Zaszj.
j=1

(A.3)

Since vectors Hj, Hs, ... are just zeros followed by portions of the H;
vector, it is easy to see that they can be expressed through H,, Hg, ...
as well. For example,

N-1

Hy=ayHy+ oy Ho+ - +ay_Hyy = ) a;Hyjp
j=1

(A.4)

and so on. Using these relations, we can rewrite the H matrix (A.1) as

N N-1

H=|Y aHy Hy ) ajHy, H,
= =

aHyy Hyy (A.5)

Using the first rows of the H, vectors in this matrix and performing
type-ii row operations of Section 3.3.1, we can eliminate all lower
rows of those H, vectors and reduce them to [1,0,...,0]”, where the
superscript ‘T’ represents the transpose of a vector. This process only
affects the H, vectors; other vectors Hy, Hg, ..., H,y in this H matrix
(A.5) remain intact, because those other H, ; vectors have zero as their
first elements. Next, we use the second rows of the H, vectors and
perform type-ii row operations of Section 3.3.1 to eliminate all lower
rows of those H, vectors and reduce them to [0,1,0,...,0]”. In this
process, vectors Hg, Hg, ..., H,y in (A.5) will remain intact. Continuing
this process, we then find that the H matrix (A.5) can be reduced
through type-ii row operations to the following matrix

a1
a 0 a) 1
G= a; 0 a 0 a; 1 (A6)
a 0 a 0 a 0
ay 0 ay_; 0 ay_, O a1

Next, we further reduce this G matrix through type-i and type-ii
row operations of Section 3.3.1. Let us denote the jth column of this
G matrix as G;, where 1 < j < 2N. Now, we need to introduce a key
parameter k, which is defined as the integer where

Rank(G,,G,, ..., G,) = Rank(G,, G, ..., Gy, )) = k. (A7)

In other words, this k is the number of the first consecutive columns of
G that are linearly independent and the addition of the next column of
G would make them linearly dependent. Clearly, such k exists and is
unique, and 0 < k < N. In particular, when k =0, a; = a, = - = ay =
0; and when k£ = N, Rank(G) = N. Since type-ii row operations do not
affect the rank or linear dependence of column vectors of a matrix, this
parameter k can also be defined in terms of the original H matrix as

Rank(H,, H,, ..., H,) = Rank(H,, H,, ..., H,,|) = k. (A.8)

This k number matches that given in Lemma 1.
The condition (A.7) means that G,,; is linearly dependent on
(G,.G,,....G)), ie.,

k

Giy1 = erGj’
Jj=1

(A.9)

where r;’s are certain constants. This condition gives linear relations
between «; parameters, which we will use to reduce the matrix G to a
row echelon form.

(1) The case of r; #0
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We first consider the case of r; # 0 in Eq. (A.9). In this case, we can
rewrite this vector relation as
k+1

G, =) #,G;,
j=2

(A.10)

where #; = —r;/r; for 2 < j <k and 7y = 1/ry.

Suppose k is even, say k = 2n where n is an integer. Since the vector
G, starts with n zeros and followed by [«, ..., ay_,]7, the vector G,
starts with n — 1 zeros, followed by 1, and then N — n zeros, and so on,
the vector relation (A.10) can be written out element-wise as

I (A.11)
oy = Fyay + 7y, (A12)
...... (A13)
@y = P30y + sy + o+ Pyl ) + Py (A.14)
¥yt = P30y + Py + o+ Py @ + o0y (A.15)
@y = P30y +Psay + o+ P oy + Py, (A.16)
______ (A17)
ay = Faay_ + sy o+ -+ oy 1 ON iy F Pop ANy (A.18)

Using these element-wise relations and performing type-ii row op-
erations, we can reduce the G matrix (A.6) to the following form

a; 1
a O a; 1
e O a_; 0 a_, O
G=[0 =Py Py >
0 0 0 _?2n+1 ;Zn
0 0 0 0 0 —=fpupq Fop o
0 0 0 0 0 0 0 —Foppy Py o

(A.19)

where the first » rows are unchanged from G. The way to do it is that,
we first multiply row N — 1 of G by #; and subtract it from row N,
multiply row N — 2 by #s and subtract it from row N, ..., and lastly
multiply row N — n by #,,,; and subtract it from row N. Then, by
utilizing the above explicit relations, the last row of G would reduce
to the last row of the above G matrix, while the first N — 1 rows of G
remain intact. Next, we multiply row N — 2 of G by #; and subtract it
from row N — 1, multiply row N — 3 by 75 and subtract it from row
N -1, ..., and lastly multiply row N —n -1 by #,,,, and subtract it
from row N — 1. Then, by utilizing the above explicit relations again,
row N —1 of G would reduce to row N —1 of the above G matrix, while
the first N — 2 rows of G remain intact. This process repeats and the
above G would result from these type-ii row operations. This G matrix
can be structured as

a=<A C>,

0 B
where A is a matrix of size 2nX2n, i.e., kxk, and Bisa (N —k)x(2N —k)
matrix of the form

(A.20)

0 _f'2n+l 2 2n

0 0 0 -7 2n+1 '22;1
B=|0 0 0 0 0 —fyy Py (A.21)
0 0 0 0 0 0 0 —Foppy Foy -
This form of B matches that in Eq. (3.17) of Lemma 1 with g = —#,,,; =
—1/r; # 0. Regarding A, since Rank(G, G,, ..., Gy) = k and type-ii row
operations do not change the rank of the resulting columns, we see
that the rank of the first k (i.e., 2n) columns of the G matrix is also 2n.
In view of the structure (A.20) of this G matrix, we see that the rank
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of the A matrix is 2n. Thus, A is nonsingular and can be reduced to
an upper triangular matrix A with nonzero diagonal elements through
type-i and type-ii row operations. Applying these same type-i and type-
ii row operations to the first k rows of G in Eq. (A.20), the resulting
matrix is then the row echelon form i of matrix H whose structure is
as described in Lemma 1.

Next, we consider the other case where k is odd, say k = 2n + 1
where n is an integer. In this case, we notice that the vector G, starts
with n zeros, followed by 1, and then N — n — 1 zeros; the vector G,
starts with n zeros and followed by [ay, ...,ay_,]"; and so on. Thus, the
vector relation (A.10) can be written out element-wise as

e (A.22)
Ay = Fzap + Py, (A.23)
...... (A.24)
@y = P30y + Ps@yu_n + o + Fop_ 1@ + Fops (A.25)
Upy1 =P, +Fsa, g+ o+ Py g0 + Foppap 4 Fopyo, (A.26)
Wy = Pyl + Psy oo+ Py 103 + Fopy 0, (a.27)
...... (A.28)
ay =Fon_ | +Psay o+ Py 1@y gy F Popp Oy (A.29)

Using these element-wise relations and performing type-ii row opera-
tions similar to what we did in the even-k case earlier, we can reduce
the G matrix (A.6) to the following form

a; 1
a 0 a; 1
a, 0 a,, 0 a,, 0
G=|Pop2 —Foprr ,
0 0 f2n+2 _;2n+1
0 0 0 0 Foppn —Foppy -
0 0 0 0 0 0 * Pangy —Papyr o

(A.30)

where the first n rows are unchanged from G. This matrix can be
structured as

G= A C
0 B

where A is a matrix of size 2n+1)x (2n+ 1), i.e., k X k, and B is a
(N — k) X (2N — k) matrix of the form

(A.31)

0 f2n+2 _?2n+l

0 0 0 i’2n+2 _f2n+1
B=10 0 0 0 0 Popya —Foppr -
00 0 0 0 0 0 Fopsy —Famy

(A.32)

This form of B matches that in Eq. (3.17) of Lemma 1 with g =#,,,, =
1/r; # 0. Regarding A, using the same arguments as for the even-k
case above, we see that A is nonsingular and can be reduced to an
upper triangular matrix A with nonzero diagonal elements through
type-i and type-ii row operations. Applying these same type-i and type-
ii row operations to the first k rows of G in Eq. (A.31), the resulting
matrix is then the row echelon form H of matrix H whose structure is
as described in Lemma 1.

(2) The case of r; =0 but r; #0

If r; = 0 but r; # 0, by examining the first equation in the vector
relation (A.9), we see that r, = 0 as well. Thus, the vector relation (A.9)
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can be rewritten as
k+1

Gy =)' #,G),
j=4

(A.33)

where 7; = —r;/ry for 4 < j < k and 7y = 1/r5.
If k is even, say k = 2n where n is an integer, then the above vector
relation (A.33) can be written out element-wise as

0=0, (A.34)
o (A.35)
@ = Fsay + Pg (A.36)
...... (A.37)
Ay = Psu_ o + Py, _3+ o+ Py + 7y, (A.38)
@y = Py + P70 g + o+ Py 10y + Py, (A.39)
Apyy = Ps@y + Py, + o+ Foy 05 + Py @, (A.40)
...... (A.41)
ay_ =Fsay oy +Fay 3+ + Py @y g+ PO, (A.42)

Using these element-wise relations and performing type-ii row opera-
tions similar to what we did in the r; # 0 case earlier, we can reduce
the G matrix (A.6) to the following form

a 1
a, 0 a) 1
a,_; 0 a,, 0 a5 0
A 0 —# P
G= 2n+1 2n ) . i
0 0 0 —Popyr o
0 0 0 0 0 _f2n+1 f’2n
0 0 0 0 0 0 0 _f2n+1 on
ay 0 ay_g 0 An_o 0

(A.43)

where the first n — 1 rows and the last row are unchanged from G.
Moving the last row of this G matrix above its first row (which is a
type-i row operation), the resulting matrix has the structure (A.20),
where A is a nonsingular matrix of size 2n X 2n, i.e., k X k, and B is
a (N — k) X 2N — k) matrix as given in Eq. (A.21). This form of B
matches that in Eq. (3.17) of Lemma 1 with § = —#,,,; = —1/r; # 0. The
reason of the A matrix being nonsingular is the same as before, i.e., its
rank is k which is the same as the rank of the first k columns of the G
matrix. Since A is nonsingular, it can be reduced to an upper triangular
matrix A with nonzero diagonal elements through type-i and type-ii
row operations. Applying these same type-i and type-ii row operations
to the first k rows of that whole matrix, the resulting matrix is then
the row echelon form H of matrix H whose structure is as described in
Lemma 1.

If k is odd, say k = 2n + 1 where n is an integer, then the vector
condition (A.33) can be written out element-wise as

0=0, (A.44)
a =Py, (A.45)
o = Fsoy + g, (A.46)
...... (A.47)
@y = Fs@y_y +Fra,p + o+ Py + o0, (A.48)
Ay = Ps@y + Py + o+ Py, (A.49)
Upyy = 5@y + P, + o+ Fopyas, (A.50)
...... (A.51)
ay_y = Fs@y_p + Fray_3+ -+ Py Oy _pe (A.52)

Using these element-wise relations and performing type-ii row opera-
tions as before, we can reduce the G matrix (A.6) to the following form
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a; 1

a 0 a; 1
a1 0 L) 0 a,_3 0
Fon2 —Fontl

[op
1

0 0 P 2n+2 _’A'ZrH—l

0 0 0 0 i;2n+2 _f2n+1
0 0 0 0 0 0

ay 0

Toptl

* o

an_i 0 ay_y 0

where the first n — 1 rows and the last row are unchanged from G.
Moving the last row of this G matrix above its first row, the resulting
matrix then has the structure (A.31), where Aisa nonsingular matrix of
size 2n+1)X(2n+1), i.e., kxk, and B is a (N —k)x(2N —k) matrix as given
in Eq. (A.32). This form of B matches that in Eq. (3.17) of Lemma 1 with
B = Fy,yp = 1/r3 # 0. The reason of this A matrix being nonsingular
is the same as before. Since A is nonsingular, it can be reduced to
an upper triangular matrix A with nonzero diagonal elements through
type-i and type-ii row operations. Applying these same type-i and type-
ii row operations to the first k rows of that whole matrix, the resulting
matrix is then the row echelon form H of matrix H whose structure is
as described in Lemma 1.

(3) The remaining cases

The above treatments can be easily extended to the remaining cases,
suchas r; =r; =0but rg #0, ry =r; =rs =0 but r; # 0, and so on.

When k is even where k = 2n, the last (extreme) case is where

Fy =r3 =+ =r,,_; =0.In this case, Eq. (A.9) shows thatr, =r, = --- =
ry, = 0 as well. Thus, G| = Gy, =0, i.e, a0 =ay = =ay_, =0.
Because of this, the matrix G in Eq. (A.6) then becomes
0 1
0 0 0 1
0 0 0 o 0 0. 01
G= A.54
a1 0 0 0 0 0 (A.54)
AN _—p+2 0 AN —p+1 0 0 0
ay 0 ay_y Oay_, O

Moving the last n rows of this matrix above its first row, the resulting
matrix is then of the form (A.20), where A is a nonsingular matrix of
size 2n X 2n, i.e., k Xk, and B is a (N — k) X (2N — k) matrix of the form

0 1
0 0 0 1

B=|0 0 0 0 0 1 (A.55)
o 0 0 0 0 0 - 0 1

This form of B matches that in Eq. (3.17) of Lemma 1 with g = 1. The
reason of the A matrix being nonsingular is the same as before. Since A
is nonsingular, it can be reduced to an upper triangular matrix A with
nonzero diagonal elements through type-i and type-ii row operations.
Applying these same type-i and type-ii row operations to the first k rows
of that whole matrix, the resulting matrix is then the row echelon form
H of matrix H whose structure is as described in Lemma 1.

When k is odd where k = 2n + 1, the last (extreme) case is where
rp =13 = = =1y = 0butr,,,; # 0 (the case of ry,,; = 0
as well cannot happen in view of Eq. (A.9)). In this extreme case,
= ry, = 0. Thus, Eq. (A.9) becomes G,,,» = r3,,1Gans1>
= ay_, = 0. Because of this, the

Py =1y = e
ie,a; =1/ry,,; #0and a, = a3 = -+
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matrix G in Eq. (A.6) becomes

a; 1
0 0 o 1
o 0 0 0 0 0 - a 1
= A.
¢ ay_p,.p 00 0 0 O (A-56)
AN_n42 0 AN _n+1 0 0 0
ay 0 ay_y Oay_, O

Moving the last n rows of this matrix above its first row, then the
resulting matrix has the structure (A.31), where Aisa nonsingular
matrix of size 2n+1)x(2n+1), i.e., kxk, and B is a (N —k)x (2N —k)
matrix of the form

0 a 1
0 0 0 a 1

B=| 0 0 0 0 0 o 1 (A.57)
o 0 0 0 0 0 - 0 a 1

This form of B matches that in Eq. (3.17) of Lemma 1 with g

a; # 0. The reason of the A matrix being nonsingular is the same as
before. Since A is nonsingular, it can be reduced to an upper triangular
matrix A with nonzero diagonal elements through type-i and type-ii
row operations. Applying these same type-i and type-ii row operations
to the first k rows of that whole matrix, the resulting matrix is then
the row echelon form H of matrix H whose structure is as described in
Lemma 1. This completes the proof of Lemma 1. []
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