
Some Elementary Proofs:
Burnside’s Theorem and Theorems of Baer–Suzuki and Thompson

Notes by Richard Foote

The purpose of Section 1 of this note is to discuss the solvability of certain groups of order 2aqb

(and generalizations) from an elementary, group-theoretic perspective, without the use of character
theory. (I employ the term “elementary” to mean proofs that are straightforward consequences
of the material in Part I of Abstract Algebra, third edition, by Dummit–Foote, [DF].) Section 1
evolved from conversations with David Leep and Hy Ginsberg.

Section 2 was subsequently written to “follow my nose” in seeing how far the ideas in Section 1
could be pushed to obtain an elementary proof of the full Burnside result in the special case of
groups of even order. The Appendix, which consists of all the exercises quoted from [DF], was
then added in order to make the notes more self-contained.

Section 3, the odd order case of Burnside, was written months after Section 2 in order to
complete the picture of Burnside’s Theorem from a group-theoretic perspective. I also added it
because it includes an elementary proof of a special case of the Thompson Factorization Theorem,
which closely follows the arguments in the seminal Normal p-complement Theorem, [Th]—the
latter is where the now ubiquitous Thompson subgroup was first introduced. This subgroup is
defined and explored in Section 4.4, Exercise 20 of [DF] (reproduced in modified and clarified
form in Subsection 3.1). Thus Section 3, although slightly less conceptually “elementary” than the
preceding two sections, is nonetheless fully accessible to students conversant with Part I of [DF].
It is intended to serve as a gateway to more advanced techniques in finite group theory emerging
from it. Furthermore it provides an opportunity to see both the power and utility of Thompson’s
ideas and techniques “in action”. Indeed, the proof of the special case of Thompson’s Theorem is
modeled on Thompson’s original paper, but with some shortcuts (partly following Aschbacher in
[Asc, Section 32]); so readers who master this proof will be well prepared to tackle Thompson’s
exquisite but challenging opus. As noted at the end of Thompson’s paper, [Th] is a self-contained
three-page proof of a generalization of the main result of his doctoral dissertation, where he verified
the famous 60-year old Frobenius Conjecture!

I lay no claim to the originality of ideas or results in this note, but rather I hope that the
organization of these ideas illuminates how one might approach the study of finite group theory in
a naturally evolving way. Purely group-theoretic proofs of Burnside’s paqb theorem appear both
in journals (as cited) and in various text books. I hope that the proofs herein—of Baer–Suzuki
and Thompson’s Theorems as well as Burnside—are more accessible and self-contained. They are
also intended to act as a foretaste of and give insight into the wondrous papers and results in finite
group theory pioneered by the greats of the field.

Throughout the notes p and q are primes and all groups considered are finite.

Section 1 — Mason’s Theorem.

The main result of this section is to prove the following result, which is motivated by the special
case of Burnside’s paqb Theorem stated as Exercise 5 in Section 19.2 of [DF]:

5. Use the ideas in the proof of Philip Hall’s Theorem to prove Burnside’s paqb Theorem in the
special case when all Sylow subgroups are abelian (without use of character theory).

The main result of this section is:

Theorem A. Every finite group with an abelian subgroup of index a power of 2 is solvable.

In particular, this gives Burnside’s Theorem in the special case where p = 2 and the Sylow
q-subgroups for q odd are abelian. The proof is “elementary” inasmuch as it only uses conse-
quences of Sylow’s Theorem and facts about p-groups, as in Chapter 6 of [DF].



This result was proven by David Mason around 1975. At that time I was a research student
at Cambridge and David was visiting for the semester, having finished his PhD there in 1972. He
needed Theorem A to handle a configuration in a paper he was working on, and he asked me why
it is true. Together we reduced easily to a minimal counterexample being a non-abelian simple
group of even order, and we pondered for a while why this leads to a contradiction. The next day
David told me “It’s obvious: just use Burnside’s Lemma” (Lemma 7, Section 19.2 of [DF]).

In keeping with the notion of “elementary”, however, I now give an alternate proof. This
proof relies on the Baer–Suzuki Theorem. Aschbacher (in [Asc], 39.6) gives a short, completely
elementary proof of the latter result which, for the sake of completeness, I’ll distill here at the
end of this section, with more detail and notation adapted to our cause. Aschbacher’s proof is
modeled on a lovely proof by Lyons and Alperin (see [AL]), but Michael circumvents using a chain
of subgroups that mimics Alperin’s Fusion Theorem. Pre-Lyons proofs of Baer–Suzuki are longer
and less translucent (see eg., [Gor], 3.8.2)—see further comments on this proof on the next page,
including why it “fits” so well with the spirit of this note.

Recall that Op(G) is the largest normal p-subgroup of G (see Exercise 37, Section 4.5 of [DF]).

Baer–Suzuki Theorem. Let p be a prime and let X be a p-subgroup of any finite group G. If
〈X, Xg 〉 is a p-group for every g ∈ G, then X ≤ Op(G).

As a corollary to the Baer–Suzuki Theorem we get the (familiar) device we need:

Corollary. If z is an involution in G and z /∈ O2(G), then z inverts some element of G of odd
prime order.

Proof of the Corollary: By the Baer–Suzuki Theorem applied to X = 〈 z 〉, there is some conjugate
zg of z such that 〈 z, zg 〉 is not a 2-group. Since the group generated by any two involutions is
dihedral (see Exercise 6, Section 1.2 of [DF]), z inverts the (nontrivial, cyclic) rotation subgroup
of index 2 in 〈 z, zg 〉. Thus z inverts a rotation of odd prime order, as desired.

Proof of Theorem A: The proof follows the method of proof of Philip Hall’s Theorem (see Sec-
tion 19.2 of [DF]). Let G be a minimal counterexample to the assertion of Theorem A. By hypoth-
esis and the order formulas (Proposition 13, Section 3.2 of [DF]), G = HP , where P ∈ Syl2(G)
and H is abelian; and, replacing H by its 2′-subgroup if necessary, we may assume H has odd
order (i.e., is a Hall complement to P in G). Since the hypotheses pass to normal subgroups and
quotient groups, it follows that G is a non-abelian simple group of even order, so both P and H
are nontrivial and O2(G) = 1 (see Exercise 10, Section 3.3, as well as Section 3.4 of [DF]).

Let z be an involution in Z(P ). By the Baer–Suzuki Corollary, z inverts some element h
of odd prime order. Replacing H by a G-conjugate if necessary, we may assume h ∈ H. Let
M = NG(〈h 〉). Since H is abelian (the critical hypothesis),

〈H, z 〉 ≤M < G.

Since G = HP , every g ∈ G can be written as g = xy, where x ∈ H and y ∈ P ; thus Mg = My.
Now ⋂

g∈G
Mg =

⋂
y∈P

My E G.

But this intersection is nontrivial since z ∈ M and zy = z for all y ∈ P , hence z is in the
intersection. This contradicts the simplicity of G, and so completes the proof.

Corollary. Groups of order 2aq and 2aq2 are solvable for every prime q.
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Section 1.1 — The Baer–Suzuki Theorem.

We now include a proof of the Baer–Suzuki Theorem. (There does not seem to be an advantage to
proving this Theorem just in the “Burnside-type” groups we are considering; and the full Theorem
helps to clarify “what is going on” too.) The astute reader will recognize that this elementary proof
is essentially a sophisticated adaptation of the methods in the Studying Normalizers of Intersections
of Sylow p-subgroups subsection of Section 6.2 in [DF], although the proof herein does not even
invoke Sylow’s Theorem! They will come to better appreciate how simple [sic] ideas burgeon to
powerful tools in finite group theory (and this is but one of many “flowers” on this “stem”).

Theorem 1.1. (Baer–Suzuki) Let p be a prime and let X be a p-subgroup of any finite group G.
If 〈X, Xg 〉 is a p-group for every g ∈ G, then X ≤ Op(G).

Let X be the set of all G-conjugates of X. (In standard notation, X = XG.) Note that Baer–
Suzuki can equivalently be restated as: If every pair of elements of X generates a p-group, then
〈 X 〉 is a p-group (i.e., it is a statement about a conjugacy class of subgroups).

For any collection Y of subsets of any group G, let NG(Y) be the subgroup of group elements
that permute the sets in Y among themselves. We (Aschbacher) abuse notation slightly by saying
Y is contained in a subgroup N if each Y ∈ Y is contained in N (i.e., formally, Y is contained in
the power set of N). One must be a little careful when talking about normalizers of subsets—or
collections of subsets—of a group, because, for example, the normalizer of a subset need not contain
that subset (and indeed, could just equal the identity, or the center if G is a p-group).

We will need a standard lemma in p-group theory, adapted to certain subsets.

Lemma. Let R be any p-group and let A be any collection of subsets of R that is stable under
conjugation by R. Let Y be a proper subset of A, and assume 〈 Y 〉 normalizes Y. Then there is
some element in A−Y that normalizes Y. (Here 〈 Y 〉 is the subgroup generated by all sets Y ∈ Y.)

Proof of the Lemma: Let N = NR(Y). If N = R, then every element in A − Y normalizes Y.
(This covers the case Y = ∅.) If N < R, then since normalizers “grow” in p-groups (Theorem 1,
Section 6.1 of [DF]), let g be any element of R normalizing N with g /∈ N . Since g does not
normalize Y, there must be some element X ∈ Y such that Xg /∈ Y. By hypothesis Y ⊆ N and g
normalizes the latter group, so Xg ⊆ N . Since A is stable under conjugation, Xg ∈ A − Y is the
desired element. This completes the proof of the lemma.

Proof of Baer–Suzuki: Recall that X is the set of all G-conjugates of X. Let Z be a subset of X
that is maximal with respect to generating a p-group, and let P = 〈Z 〉. Clearly Z 6= ∅ since we
may assume X ∈ Z. If Z = X then P E G so X ≤ Op(G) and the theorem is proven; so by way
of contradiction

assume Z is a proper subset of X .

By definition of Z we have

〈Z, U 〉 is not a p-group, for all U ∈ X − Z. (1.1)

Over all p-subgroups of G that contain some element of X − Z choose Q such that

Y := {Y ∈ X | Y ≤ P ∩Q} has maximum cardinality.

[The reader should keep track that the arguments (and Lemma) are valid even if Y = ∅.]
Observe that Y ⊆ Z, and by (1.1), Y 6= Z. By construction P ∩Q normalizes Y, hence so does its
subgroup 〈 Y 〉.
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Let U be the set of all elements of X that are contained in Q, so by their definitions we have

Y = Z ∩ U . (1.2)

Since Q, and therefore U , contains an element of X − Z, it follows from (1.2) that Y is a proper
subset of U . By the Lemma applied to Y in each of the p-groups P and Q successively (using Z
and U for A respectively) we obtain:

there exist Z ∈ Z − Y and U ∈ U − Y that both normalize Y. (1.3)

By the overall hypotheses 〈Z,U 〉 is a p-group, which by (1.3) normalizes 〈 Y 〉. Thus

Q∗ := 〈 Y, Z, U 〉 = 〈 Y 〉〈Z, U 〉 is a p-group.

Since U ∈ U but U /∈ Y, relation (1.2) implies U /∈ Z, i.e., Q∗ contains the element U ∈ X − Z.
But P ∩Q∗ contains Y ∪ {Z}, which contradicts the maximality of Y. This completes the proof.

Readers may be interested in [FW], which gives elementary results in a vein similar to Baer–Suzuki.

Section 2 — Burnside’s Theorem for Groups of Even Order.

The purpose of this section is to glean from the preceding section “elementary” group-theoretic
methods that lead to a proof of the general Burnside Theorem, at least for groups of even order:

Theorem B. Any group of order 2aqb is solvable, for all odd primes q.

Starting out as in the preceding section, by way of contradiction let G be a counterexample of
minimal order. As before, since the hypotheses carry over to all subgroups and quotient groups, G
is a simple group of even order all of whose proper subgroups are solvable. Let z be an involution
that lies in the center of some Sylow 2-subgroup of G. By the Baer–Suzuki Corollary, z inverts
some element h of order q. Let M be a maximal subgroup of G containing NG(〈h 〉). The rest of
the argument involves studying the structure of M and its embedding in G.

Before embarking on the main argument, we first distill fundamental ideas of Baer–Suzuki and
Hall that lead naturally to the following independent result, stated in a way that is symmetric in
p and q.

An element is called p-central in G if it is contained in the center of a Sylow p-subgroup of G.

Proposition. Let K be a group of order paqb, where p and q are any distinct primes and a, b > 0.
Let y be any nontrivial p-central element of K and let x be any nontrivial q-central element of K.
If 〈x, y 〉 has a normal Sylow subgroup for either p or q then K is not simple.

Proof. Choose notation so that 〈x, y 〉 has a normal Sylow q-subgroup. Let y be in the center of
the Sylow p-subgroup P and let x be in the center of the Sylow q-subgroup Q. Let X = xK be the
K-conjugacy class of x. As in Section 1, by order considerations K = QP , so every element of K
can be written as g = cd, for some c ∈ Q and d ∈ P . Thus xg = xd, and hence

X = xP , i.e., P acts transitively on X .

Let O1,O2, . . . ,Or be the 〈 y 〉-orbits of 〈 y 〉 acting on X with x ∈ O1, and let Xi = 〈Oi 〉, for
1 ≤ i ≤ r; so eachXi is normalized by y. Since the actions of 〈 y 〉 and P on X commute, P permutes
{O1,O2, . . . ,Or} and acts transitively on it (this is an easy special case of Exercise 9(a), Section 4.1
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of [DF]). Consequently, |Oi| = |O1| and Xi
∼= X1, for 1 ≤ i ≤ r. By hypothesis 〈x, y 〉 has a unique

Sylow q-subgroup, which therefore contains O1, and so X1 is a q-group. Thus

Xi is a nontrivial q-group normalized by y, for 1 ≤ i ≤ r.

Now let Y be any subset of X that has maximal cardinality subject to the condition that 〈 Y 〉 is
a q-group normalized by y. Thus |Y| ≥ |O1| ≥ 1. It follows from the maximality of |Y| that 〈 Y 〉
normalizes Y. Let R be any Sylow q-subgroup of K containing 〈 Y 〉, and let A = X ∩R.

Assume Y is proper in A. Then by the Lemma in Section 1.1 there is some x0 ∈ A − Y
that normalizes Y. Let x0 ∈ Oi for some i. Since y and x0 both normalize 〈 Y 〉, so too does

〈x〈 y 〉0 〉 = 〈Oi 〉 = Xi. Thus 〈 Y ∪ Oi 〉 = 〈 Y 〉 ·Xi is a q-group normalized by y, contradicting the
maximality of |Y|. This proves Y = A = X ∩R.

Let M = NK(〈 Y 〉), so M contains both the p-central element y and a Sylow q-subgroup R
of K. If M = K then 1 6= 〈 Y 〉 E K and the proposition holds. Otherwise, as in Section 1,
by orders K = RP = MP ; so Phillip Hall’s argument gives that the proper normal subgroup
∩g∈KMg = ∩d∈PMd contains y, hence again K is not simple. This completes the proof of the
proposition.

Corollary. In the notation of the Proposition, if y normalizes any q-subgroup of K that contains x
(or vice versa), then K is not simple.

We will also need some “background” properties of finite solvable groups, that we tag as SOL 1
to SOL 4; these are introduced at the point they are first used. All the proofs of these quoted
results are exercises at the same level of difficulty as those in Section 6.1 of [DF], and they require
material only from its Part I (some are already exercises in [DF]). We include comments and hints
on the proofs of these quoted results at the end of this section.

Returning to the main argument: Throughout this section we letM2 = O2(M) andMq = Oq(M)
(see Exercise 37 and its generalization, Exercise 37*, in Section 4.5 of the Appendix). Keep in mind
that by their normality, [M2,Mq] ≤ M2 ∩Mq = 1, i.e., M2 and Mq commute. The first needed
result is immediate from Exercise 31 in Section 6.1 of [DF]:

If K is a nontrivial solvable group, then Op(K) 6= 1, for some prime p. (SOL 1)

As a consequence of this and the simplicity of G we obtain:

Either M2 6= 1 or Mq 6= 1 (or both); and

M = NG(Mp) whenever Mp 6= 1, for p = 2, q.
(2.1)

Let T ∈ Syl2(G) be such that T ∩M ∈ Syl2(M), and let Q ∈ Sylq(G) with Q ∩M ∈ Sylq(M).
By the [DF] Exercise 4.5.37 applied in M we have M2 ≤ T and Mq ≤ Q. We may further assume
h ∈ Q. By construction NG(〈h 〉) ≤M , hence

Z(Q) ≤M. (2.2)

Next, as in Section 1, we argue that

M does not contain either a Sylow 2-subgroup or Sylow q-subgroup of G. (2.3)

Otherwise suppose M contains either T or Q. Then by order considerations G = MQ or G = MT1
respectively, where z ∈ Z(T1) for some T1 ∈ Syl2(G). Then use the Phillip Hall intersection
argument to show G is not simple, a contradiction. (The reader should check the details.)
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In order to unravel the structure of certain subgroups of M , we state our second property of
solvable groups, which is Exercise 34 in Section 6.1 of [DF]:

If K is a solvable group with no nontrivial normal subgroup of order prime to p,

then CK(Op(K)) = Z(Op(K)), and so CK(Op(K)) ≤ Op(K).
(SOL 2)

[Remark: In light of (a new) Exercise 37* in Section 4.5 of the Appendix, the “...with no nontriv-
ial...” hypothesis on the solvable group K can be stated more succinctly as: “... with Op′(K) = 1,”.
Assuming the hypothesis of SOL 2, we conclude that K acts by conjugation as automorphisms of
Op(K) with Z(Op(K)) as the kernel of this action (cf. Section 4.4 of [DF]); so, in many respects,
Op(K) “controls” much of the structure of K itself. In particular, |K| ≤ |Aut(Op(K))|·|Z(Op(K))|.
This is one facet of the importance of Op(K) in the general structure theory of finite groups.
SOL 2 is a special case of the Fitting Subgroup Theorem, which is Exercise 34* at the end of the
Appendix. The latter exercise is used in Section 3.]

Continuing the main argument, first suppose M2 = O2(M) = 1. By (2.1), Mq 6= 1, and since
Mq ≤ Q, we have Z(Q) centralizes Mq. Thus (2.2) and SOL 2 imply Z(Q) ≤ CM (Mq) ≤ Mq.
In this case the 2-central involution y = z normalizes the q-group Mq containing Z(Q), and the
Corollary gives a contradiction. Since M2 ≤ T this proves (via (2.1)):

M2 = O2(M) 6= 1, and so Z(T ) ≤ NG(M2) = M . (2.4)

Next suppose Mq = Oq(M) = 1. Since M2 ≤ T , we have Z(T ) centralizes M2. Thus (2.4)
and SOL 2 imply Z(T ) ≤ CM (M2) ≤ M2. Now by (2.2), Z(Q) normalizes the 2-group M2 which
contains Z(T ), and the Corollary again gives a contradiction. Thus we must also have

Mq = Oq(M) 6= 1. (2.5)

At this point we could in invoke (or paraphrase) “structural” results of Helmut Bender (in
[Be] or [Ma]) that show that the minimal counterexample group G cannot possess the maximal
subgroup M with both M2 and Mq nontrivial. Rather than do this, however, we pursue our
“follow your nose” method further and see what can be said about 〈 t, x 〉 generated by certain 2-
and q-central elements of M . This will ultimately enable us to significantly distill the portions of
Bender’s argument that we need.

Henceforth (relying on (2.2) and (2.4)) let

H = 〈 t, x 〉, where t is an involution in Z(T ) and x is an element of order q in Z(Q).

(We now use this t instead of z as our 2-central element; the original z and h play no further role.)
By the Proposition, H does not have either a normal Sylow 2- or q-subgroup; in particular,

t /∈M2 and x /∈Mq. (2.6)

In order to unravel the structure of H we adopt a “Chinese Remainder Theorem” approach and
determine the image of H in M/M2 (for the q-structure) and then in M/Mq (for its 2-structure).

Let M̃ = M/M2 = M/O2(M). By Exercise 37(d) in Section 4.5 of [DF], we have O2(M̃) = 1̃.
Thus by SOL 2,

Z̃(Q) ≤ Z(Q̃) ≤ Oq(M̃).

(Keep in mind that although Õq(M) ≤ Oq(M̃), in general the latter subgroup is larger.) Thus

x̃ lies in the abelian group Z(Oq(M̃)) which is normalized by the involution t̃. Thus x̃ and (x̃)t̃
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commute and generate a group isomorphic to either Zq (when t̃ normalizes 〈 x̃ 〉) or Zq ×Zq (when

t̃ does not normalize 〈 x̃ 〉 — it interchanges the two Zq factors). We eliminate the first of these
two possibilities.

If the involution t̃ normalizes 〈 x̃ 〉, then t̃ either centralizes or inverts the subgroup 〈 x̃ 〉 (these
are the only automorphims of order 1 or 2 of Zq). Assume the former scenario occurs. Then

〈 x̃ 〉 likewise centralizes 〈 t̃ 〉. By taking preimages in M , it follows that x normalizes the 2-group
M2〈 t 〉, and the Corollary gives a contradiction.

Similarly, if t̃ inverts 〈 x̃ 〉, then again by taking preimages in M , we see that t inverts some
subgroup of prime order q in the group M2〈x 〉. Since 〈x 〉 is a Sylow q-subgroup of the latter group,
t inverts (hence normalizes) some conjugate of 〈x 〉. Again, the Corollary gives a contradiction.
These arguments prove:

H/(H ∩M2) ∼= H̃ =
(
〈 x̃ 〉 × 〈 x̃ 〉t̃

)
〈 t̃ 〉 ∼= Zq o Z2. (2.7)

Since factoring M by the 2-group M2 preserves the Sylow q-structure, the Sylow q-subgroups of

H are of type Zq × Zq. Also, the complete preimage in H of the Sylow q-subgroup of H̃ is a
subgroup of index 2 in H. Since H has a subgroup, H0, of index 2, a Sylow 2-subgroup of H
cannot have order 2 or 4 — otherwise it follows easily that H0, hence also H, would have a normal
Sylow q-subgroup, contrary to the Proposition. (Note that by the Corollary, t does not normalize
any Sylow q-subgroup of H; rather some element in the coset tM2 normalizes a Sylow q-subgroup
of H.)

Next let M̂ = M/Mq. As before, by SOL 2 we have t̂ ∈ Z(O2(M̂)), and then likewise 〈 (t̂)〈 x̂ 〉 〉
is an elementary abelian 2-group. Also, since t inverts some element y of order q in H, we have

[t̂, ŷ] ∈ O2(M̂) ∩ 〈 ŷ 〉 = 1̂. Since t̂ both inverts and centralizes ŷ in the quotient group Ĥ, we must

have ŷ = 1̂. This means that the Zq ×Zq Sylow q-subgroup of H maps to just the cyclic subgroup

〈 x̂ 〉 in Ĥ. Putting this together with (2.7) gives

H/(H ∩Mq) ∼= Ĥ = 〈 (t̂)〈 x̂ 〉 〉〈 x̂ 〉 ∼= E2mZq,

and so H ∩M2
∼= E2m−1 , for some m ≥ 3.

(2.8)

Results (2.7) and (2.8) are sufficient to give the Sylow structure and indeed the isomorphism
type of our H (depending on m). I had hoped that we could then use this, together with Baer–
Suzuki–Hall arguments, to obtain an easy contradiction. That goal has not been realized (remains
open). Fortunately we now have enough information to extract and simplify sub-arguments from
[Be] and [Ma] to get a contradiction in fairly short order. But this involves quoting two additional
facts, whose proofs are also outlined (as exercises with hints) at the end of this section.

The next of these quoted result is the following (where Exercise 37* in Section 4.5 of the
Appendix lists the relevant notation and elementary properties of the subgroups involved):

If K is a solvable group, then Op′(NK(P )) ≤ Op′(K), for every p-subgroup P of K. (SOL 3)

In the special case when |K| = paqb for any distinct primes p, q, SOL 3 says equivalently that if
D is any q-subgroup of K with D E NK(P ), then D ≤ Oq(K).

SOL 3 is one of the foundational results in the study of p-local subgroups of finite groups, where
a p-local subgroup of any finite group A is defined to be the normalizer of any nontrivial p-subgroup
of A. SOL 3 says that in a (finite) solvable group K, the normal p′-subgroups of p-local subgroups
of K get “pushed-down” into the largest normal p′-subgroup of the whole group K. This critical
“local-global” embedding property has far-reaching ramifications in the study of general finite
groups. The next result, (2.9)—and its proof—is a particular exemplar of the latter assertion.
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Before stating SOL 4, we first use SOL 3 to obtain a crucial embedding property:

M is the unique maximal subgroup of G that contains M2Mq. (2.9)

To prove this let N be any maximal subgroup of G containing M2Mq and let N2 and Nq denote
O2(N) and Oq(N) respectively. The steps of the proof exhibit delightful symmetry between M
and N as well as between 2 and q.

First apply SOL 3 to the 2-group P = M2 in the solvable group K = N , using the fact that
Mq E NN (M2), to get Mq ≤ Nq. Then symmetrically apply SOL 3 to the q-group P = Mq in the
solvable group K = N , using the fact that M2 E NN (Mq), to get M2 ≤ N2. Now since N2 and Nq
commute, from the two previous containments we get Nq ≤ NG(M2) = M and N2 ≤ NG(Mq) = M ,
that is, N2Nq is contained in M . By the completely symmetric argument with the roles of M
and N and their corresponding subgroups interchanged, we see that Nq ≤ Mq and N2 ≤ M2

(using that (2.1) holds symmetrically for N in place of M). Thus Nq = Mq and so we get
N = NG(Nq) = NG(Mq) = M , which establishes (2.9).

Next, by (2.8) we have that H ∩M2 contains a Klein fourgroup W . Moreover, by its proof,

Ŵ ≤ Z(O2(M̂)) ∩ M̂2 ≤ Z(M̂2). Since the homomorphism ̂ : M → M/Mq restricts to an

isomorphism between the Sylow 2-subgroups of M and M̂ , we have W ≤ Z(M2). Thus for every
w ∈W we have M2 ≤ CM (w) (and Mq ≤ CM (w) since w ∈M2). By (2.9) we obtain

CG(w) ≤M, for every w ∈W − {1}. (2.10)

We require a final general result, which is stated only in the highly restricted (and easy to prove)
form that we need: Let q be any odd prime. In any group K:

If F is a q-group that is normalized by any Klein fourgroup W , then

F = 〈CF (w) | w ∈W − {1} 〉. (SOL 4)

Since W has exactly three nonidentity elements (involutions), F is generated by their three central-
izers (although this extra fact is not utilized). This “background” result is labeled SOL 4 because
it is only a statement about the solvable group FW . More comments on SOL 4 appear in the
“Remarks” subsection following the proof.

The final step: By (2.3) the Sylow 2-subgroup T0 = T∩M ofM is proper in the Sylow 2-subgroup
T of G. Since normalizers “grow” in p-groups, there is some s ∈ T − T0 with s normalizing T0.
(Note that s /∈M so Ms 6= M .) Since T0 = T s0 we have that W,W s,M2 and Ms

2 are all contained
in M ∩Ms, where W is, as above, a Klein fourgroup contained in H ∩ Z(M2). Apply SOL 4 to
F = Ms

q , which is a q-group normalized by W in the group K = Ms. This gives

Ms
q = 〈CMs

q
(w) | w ∈W − {1} 〉.

By (2.10) we then have Ms
q ≤ M. Thus Ms

2M
s
q ≤ M (equivalently, M2Mq ≤ Ms−1

), and so
by (2.9), M = Ms, a contradiction. This completes the proof of Theorem B.

Remarks on the proofs of SOL 1 – SOL 4.

SOL 1: As observed, SOL 1 is immediate from Exercise 31 in Section 6.1 of [DF] (see Appendix).

SOL 2: This is Exercise 34 in Section 6.1 of [DF]. The [Hint] appearing in the book should be
revised—I include such a revision in the Appendix. SOL 2 is a special case of the Fitting Subgroup
Theorem, which is Exercise 34* immediately after Exercise 34 in the Appendix. The combination
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of SOL 2 and SOL 3 is the beginning of many deep and powerful tools in the general structure
theory of finite groups.

SOL 3: Proofs of this statement generally rely on the so-called Thompson A×B–Lemma, but the
following [with hint] is a more self-contained argument.
Prove SOL 3 by (double) induction, first on |K|, and, subject to this, on |P ∗ : P |, where P ∗ is a
Sylow p-subgroup of K containing P .
[Hint: By induction as above, let K be a counterexample of minimal order and, subject to this,
with P a p-subgroup of K of maximal order for which the conclusion fails. First use Exercise 20 in
Section 6.1 of [DF] (in the Appendix) to show that by minimality Op′(K) = 1. Let N = NK(P )
and Q = Op′(N) (so Q 6= 1 by hypothesis). Show that Q = Op′(CK(P )). Use SOL 2 to show that
P does not contain Op(K); in particular, P 6= P ∗ (which is the “base case” of the induction on
index). Let P1 = NPOp(K)(P ) ≤ N . Argue that P < P1 and Q E CK(P1) to show that P1 is a
counterexample in K of larger p-power order, a contradiction.]

SOL 4: This is a special case of a more general “generation” result about abelian p-groups W of
rank n > 1 acting on groups F of order relatively prime to p — the latter groups are then generated
by centralizers of subgroups of W of rank n− 1 (this generalization is discussed in Section 3). The
SOL 4 special case — the only one we need in Section 2 — is however much easier to prove.
[Hint: One completely elementary way of proving SOL 4 is as follows: Let

F0 = 〈CF (w) | w ∈W − {1} 〉, F1 = NF (F0), F1 = F1/F0.

Note that W acts on both F0 and F1, hence also on F1. Since normalizers “grow” in q-groups,
check that F0 = F if and only if F1 = 1. Then use Exercise 20(b) in Section 6.1 to show that each
w ∈ W − {1} acts by conjugation as a fixed point free automorphism on F1 (see Exercise 23 of
Section 1.6 — in the Appendix — for the definition and relevant properties of such automorphisms).
Deduce that since (by the exercise) all three involutions w1, w2 and w1w2 in W invert every element
of F1 we must have F1 = 1, as needed.

A more “classical” approach to proving SOL 4 is as follows: First reduce to the case where one
may assume F is an elementary abelian q-group by: factor out the Frattini subgroup, Φ(F ), of F
and use Exercises 20 and 26 in Section 6.1 of [DF] to show that if the result holds for F/Φ(F ) in
place of F then it holds for F too. (Note that the characteristic subgroup Φ(F ) is normalized by
W , so W acts on the q-group F/Φ(F ).) This reduces the proof of SOL 4 to the case when F is an
elementary abelian q-group i.e., F is a finite dimensional vector space over the field Z/qZ. SOL 4
then follows immediately by simultaneously diagonalizing the matrices representing the elements
of W (why?).

Alternatively, one can avoid using linear algebra in the case where F is elementary abelian by
explicitly decomposing F into W -invariant subgroups (which are eigenspaces) as follows: Write F
in additive notation. Fix any w ∈W − {1} and define:

F+ = CF (w) = {v + vw | v ∈ F} and

F− = {v ∈ F | vw = −v} = [F,w] = {v − vw | v ∈ F},

and check that these are W -invariant subgroups. Show F = 〈F+, F− 〉 ∼= F+ × F− (this is where
we need q to be odd). Finally, write W = 〈w, u 〉 for some involution u. Likewise consider the
action of u on F−, i.e., decompose F− into its +/− subgroups under the action of u on it; and
then deduce that F− is generated by the subgroups CF−(u) (which is its plus space for u) and
CF−(wu) (i.e., the minus space for u acting on F− is the plus space for wu), as needed.]
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Additional thoughts

1. Formulate an independent version (Proposition) of display (2.9) for more general groups G and
maximal subgroups M of G. What hypotheses on G,M do you need? Does essentially the same
argument then work for your G?

2. Try re-working the methods in this section to prove that a finite group with a nilpotent subgroup
of index a power of 2 is solvable. (Again, this could be deduced immediately from Burnside’s
Lemma, using character theory.)

3. A closer examination of the proof of Theorem B shows that only the existence of a fourgroup W
in Z(M2) is needed to complete the proof, starting from SOL 3 onward. Can you shorten the
discussion of the structure of H (i.e., the proof of (2.8)) to extract this existence result only?

4. As a more difficult project: Do these ideas extend to give a group-theoretic proof of Burnside’s
Lemma itself, for any finite group that has a conjugacy class of size a power of 2? (I do not
know if the latter has been done before.)

Section 3 — Burnside’s Theorem for Groups of Odd Order.

This section rounds out the notes by giving a proof of the following case of Burnside’s Theorem,
stated in a slightly more general form than just the odd order version.

Theorem C. Assume p, q are primes with {p, q} 6= {2, 3}. Then any group of order paqb is solvable.

The order hypothesis, for p < q, is clearly equivalent to p and q being both odd or paqb = 2aqb

for some prime q ≥ 5 (i.e., pq 6= 6). The obstruction to the argument in Section 2 working for
odd order groups is that for odd primes p and nontrivial p-central elements x, when attempting
at the outset to apply the Baer–Suzuki Theorem in a minimal counterexample G, the structure of
〈x, xg 〉 = D is not readily determined (in the case when p = 2 it is a dihedral subgroup). Indeed,
it is possible that D = G, so we cannot assert that Oq(D) 6= 1, which was the pivotal starting
point for both Sections 1 and 2.

Although virtually all of the steps in Section 2 are utilized in this proof as well, the one additional
tool needed is a special case of the so-called Thompson Factorization Theorem. This Theorem is
discussed and proved (in the restricted, easier version we need) in Subsection 3.1. Fortunately the
main proof, as well as that of Thompson’s Theorem, invoke only one additional “external” result,
SOL 4*, which is a generalization of SOL 4 that was already alluded to in the discussion of SOL 4
at the end of Section 2. A proof of the SOL 4* is outlined at the end of this section—and like
the other quoted “SOL–facts”, it reduces to accessible exercises. So again, Section 3 is essentially
self-contained as intended (although the reader is also charged with doing some easy elementary
[DF]-level exercises that clarify certain steps of the proof, but are of independent interest).

The proof of Theorem C now begins as in Section 2: Throughout this proofG is a counterexample
of minimal order, hence is a non-abelian simple group all of whose proper subgroups are solvable.
Note that the Proposition at the beginning of Section 2 remains valid for G = K as well.

Let M be any maximal subgroup of G. Adopt the same notation as in Section 2: Op(M) = Mp

and Oq(M) = Mq. Early in the proof of Theorem B we showed that for a certain M produced
via the Baer–Suzuki Corollary, both Mp and Mq are nontrivial (displays (2.4) and (2.5)). The
ensuing arguments then lead to a contradiction. This line of reasoning can also be modified in this
situation to yield the following:

For every maximal subgroup M , exactly one of Mp or Mq is nontrivial. (3.1)
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By way of contradiction assume Mp 6= 1 and Mq 6= 1. We sketch how a contradiction is achieved by
following the arguments from (2.5) onward, showing only what modifications need to be made—the
details are left for the reader (who may simply wish to rewrite the portions of Section 2 to cover
any minimal counterexample G to Burnside—regardless of even/odd parity—satisfying (2.4) and
(2.5)).

To prove (3.1) first choose notation so that p < q (so p plays the role of 2). Let P ∈ Sylp(G)
be such that P ∩M ∈ Sylp(M) and let Q ∈ Sylq(G) be such that Q ∩M ∈ Sylq(M). Then
Mp ≤ P ∩M and Mq ≤ Q ∩M , so

Z(P ) ≤ NG(Mp) = M and Z(Q) ≤ NG(Mq) = M. (3.1a)

Verify, by the same argument in Section 2, that (2.3) holds for M now too:

M does not contain either a Sylow p-subgroup or Sylow q-subgroup of G. (3.1b)

Again let

H = 〈 t, x 〉, where t is an element of order p in Z(P ) and x is an element of order q in Z(Q).

Verify that the same arguments, mutatis mutandis, yield that the Sylow subgroups of H are both
elementary abelian, i.e., isomorphic to Epm and Eqn respectively.

Show next that
H ∩Mp

∼= Epm−1 , for some m ≥ 3, (3.1c)

where the assertion that m ≥ 3 requires Exercise 2 at the end of this section to eliminate the
possibility that m = 2.

Next verify that the Bender argument giving (2.9) also holds verbatim once 2 is replaced by p:

M is the unique maximal subgroup of G that contains MpMq. (3.1d)

Finally, arrive at the contradiction by the reasoning following (2.9): This is where we need a
generalization of SOL 4 (which is stated in a form that is even more general than when A is just
Ep2 , since it will be needed in this generality in the proof of Thompson’s Theorem). For p and q
any distinct primes:

if F is a q-group normalized by any nontrivial elementary abelian p-group A,

then F = 〈CF (B) | B ≤ A with |A : B| = p 〉. (SOL 4*)

SOL 4 is the special case where A ∼= E4. As in Section 2, remarks at the end of this section sketch
how to reduce SOL 4* to “elementary” exercises. Finally, the adapted argument in Section 2
immediately after SOL 4 leads to a contradiction. This proves (3.1).

Returning to the main argument, for the next results we remove the notational restriction that
p < q. Now easily eliminate the “Baer–Suzuki configuration” as we did at the outset of Section 2:

No nontrivial p-central element normalizes a nontrivial q-subgroup of G. (3.2)

By way of contradiction assume the nontrivial p-central element z normalizes the nontrivial q-
subgroup R. Let M be a maximal subgroup containing NG(R). Let Q be a Sylow q-subgroup of G
such that R ≤ Q ∩M ∈ Sylq(M). Then Z(Q) ≤ NG(R) ≤M . By (3.1) either Mp = 1 or Mq = 1.
If Mp = 1, then SOL 2 implies Z(Q) ≤ CM (Mq) ≤ Mq, which leads to a contradiction by the
Corollary in Section 2 applied to y = z normalizing Mq. If on the other hand Mq = 1, then Mp 6= 1.
Let P be a Sylow p-subgroup of G such that P ∩M ∈ Sylp(M). Likewise Z(P ) ≤ NG(Mp) = M
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and so SOL 2 forces Z(P ) ≤ CM (Mp) ≤ Mp. Again a contradiction is achieved by applying the
same Corollary to a nontrivial element of Z(Q) normalizing Mp (with p and q interchanged in the
application).

[Comment: Coming up is the point where we use the Thompson subgroup J(P1), for P1 any
nontrivial p-subgroup of G. We need Theorem 3.1, stated and proved in Subsection 3.1. The
arguments in this proof of Theorem C do not require the specific definition of the “J-subgroup”,
but only that J(P1) is some nontrivial characteristic subgroup of P1 that satisfies the conclusion of
Theorem 3.1 for every P1 that is Sylow in a suitable proper subgroup K of G. So we defer actually
defining the Thompson subgroup until Subsection 3.1. (In the proof of Theorem C one can think
of J(P1) as just being “like” Z(P1) or P ′1 etc. for these purposes.)

The ensuing arguments are strongly based on those in Section 6.2 of [DF], especially its Studying
Normalizers of Intersections of Sylow p-subgroups subsection. In the parlance of modern finite
group theory they fall under the rubric of “pushing-up”, where we encounter chains: J charP1 E P2

and use “transitivity of normality for characteristic subgroups” to “push up” the normalizer of J
to contain the larger group P2 (see Section 4.4 of [DF]).]

Let P ∈ Sylp(G), let t be any element of order p in Z(P ), and let M be any maximal subgroup
containing P . It is immediate from (3.2) that

Mq = 1 and CG(t) = P. (3.3)

Thus M satisfies the hypotheses of Theorem 3.1, and so

M = NG(J(P )). (3.4)

We started with M any maximal subgroup containing a fixed Sylow subgroup P of G. This shows
M is uniquely determined by P as NG(J(P )). Furthermore, since every Sylow p-subgroup P ∗

of M is Sylow in G, likewise M is uniquely characterized as M = NG(J(P ∗)). We record this
observation as

M is the unique maximal subgroup containing P ∗, for every P ∗ ∈ Sylp(M). (3.5)

[Another way of looking at this—which does require the specific properties of the J-subgroup (see
Subsection 3.1)—is that since J(P ) EM , we have J(P ) ≤Mp; this forces J(P ) = J(Mp), and the
latter subgroup is “intrinsic” to M (characteristic in M , not just in P ). Since Mp ≤ P ∗ for every
P ∗ as above, J(Mp) = J(P ∗) as well. Alternatively, J(P )g = J(P g) for all g in G, so if J(P ) EM ,
then J(P ) = J(P ∗) by conjugacy of Sylow p-subgroups in M .]

We next show
NG(P0) ≤M for every nontrivial p-subgroup P0 of M . (3.6)

[Recall that the subgroups NG(P0) are called p-local subgroups of G; so (3.6) says that M contains
all p-locals for its nontrivial p-subgroups. In modern parlance M is said to be strongly p-embedded
in G.]

Let P0 be a counterexample to (3.6) with |NG(P0)∩M |p maximal, and let N = NG(P0), so N 6≤M .
Let P1 be a Sylow p-subgroup of NM (P0) = N ∩M , so |P1| = |N ∩M |p. By normality of P0 in
N we get P0 ≤ P1. Replacing P by an M -conjugate if necessary, we may assume P1 ≤ P ; so
P1 = P ∩ N . Since N 6≤ M , it follows from (3.5) that P1 6= P . Since normalizers “grow” in
p-groups and P0 is proper in P , we have P0 < P1. Let P2 := NP (P1), so since P1 < P , likewise
P1 < P2. [It may help the reader to draw a partial lattice of all the subgroups we’ve just defined.]

The first step to proving (3.6) is:

P1 = P ∩N is a Sylow p-subgroup of N . (3.6a)
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To see this intermediate step: Since P1 < P2 ≤ M ∩ NG(P1), it follows from the maximality
condition that defined P0 that NG(P1) ≤M . If P1 is not Sylow in N , then again since normalizers
“grow” in a Sylow p-subgroup of N containing P1, it follows that |NN (P1)|p > |P1|; but NN (P1)
is contained in N ∩M contrary to P1 being Sylow in N ∩M . This contradiction proves (3.6a).

Continuing the proof of (3.6), we next show

J(P1) E N. (3.6b)

We do this by verifying that K = N satisfies the hypotheses of Theorem 3.1 (applied with P1

as a Sylow p-subgroup of K). For Hypothesis (1): Since Z(P ) ≤ NG(P0) = N , by (3.2) we get
Oq(N) = 1. For Hypothesis (2): Since Z(P ) ≤ Z(P1), (3.3) says CN (t) = P1, for any element t of
order p in Z(P ) ≤ Z(P1), as needed to verify the (stronger) Hypotheses (2*). Theorem 3.1 now
gives (3.6b).

For the final step in the proof of (3.6): Recall that P1 < NP (P1) = P2. Thus J(P1) charP1 E P2,
so by “transitivity of normality for characteristic subgroups,” J(P1) E P2. Thus by (3.6b),

P1 < P2 ≤ NG(J(P1)) ∩M and N ≤ NG(J(P1)). (3.6c)

The second containment implies NG(J(P1)) 6≤ M , hence altogether (3.6c) says J(P1) violates the
maximality condition that defined P0. This contradiction establishes (3.6).

We now easily finish the proof of Theorem C: Break the symmetry between p and q by choosing
notation so that pa > qb. The final contradiction comes from showing that

M contains every Sylow p-subgroup of G (3.7)

since then 〈Sylp(G) 〉 is a nontrivial proper normal subgroup of G. Let P ∗ be any Sylow p-
subgroup of G and let P0 = P ∗ ∩M . By the above choice of notation, since PP ∗ is a subset of G
(not necessarily a subgroup), the usual order formula gives

papa > paqb = |G| ≥ |PP ∗| = |P ||P ∗|
|P ∩ P ∗|

=
papa

|P ∩ P ∗|
.

This forces |P ∩ P ∗| > 1; and since P ≤ M we get P0 6= 1. If P0 = P ∗, then P ∗ ≤ M as claimed
in (3.7). Otherwise, P0 < P ∗. Then by (3.6), NG(P0) ≤M . Since normalizers “grow” in p-groups,
P0 < NP∗(P0) ≤ P ∗ ∩M = P0, a contradiction. This proves (3.7) and so completes the proof of
Theorem C.

[We’ve come full-circle: The final paragraph in the proof of Theorem C contains the essential
ingredients for the solution to the Exercise 5 on page 1 that instigated these notes.]

Section 3.1 — The Thompson Factorization Theorem.

We begin by reviewing basic facts about abelian p-groups and their automorphism groups, for p
any prime. (Readers may wish to review Section 4.4 of [DF] first too.) Let A be a nontrivial finite
abelian p-group. By the Fundamental Theorem of Finite Abelian Groups (proved in Section 6.1 of
[DF]), A has a unique decomposition as

A ∼= Zpα1 × Zpα2 × · · · × Zpαr , where 0 < α1 ≤ α2 ≤ · · · ≤ αr. (∗)

The invariant r is called the rank of A—it is characterized as the minimum number of generators
of A and is denoted as m(A). We say A is elementary abelian if all αi = 1 above, in which case
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A is the direct product of r copies of Zp, and is denoted as Epr . Each A as in (∗) has a unique
elementary abelian subgroup, A0, of maximal rank (in modern notation A0 is denoted by Ω1(A)):

A0 = {x ∈ A | xp = 1} = Ω1(A).

(We may think of A0 as “being at the bottom of A”.) It is easy to see that A0
∼= Epr and

m(A0) = m(A).

Next assume A = A0 is elementary abelian of rank r. If we write A in additive notation then
we may view A as a vector space over Fp, where Fp = Z/pZ is the finite field of p-elements. From
this perspective m(A) equals the vector space dimension of A—any minimal set of generators of
A is an Fp-basis of A. The subgroups B of A are vector subspaces, and the dimension of B is its
rank too. Of special utility is the dimension formulas for A that say

m(B + C) = m(B) +m(C)−m(B ∩ C), for any subgroups B, C of A. (∗∗)

(This is an immediate consequence of the general Diamond Isomorphism Theorem for groups.)
A subspace of A of dimension r − 1 is called a hyperplane of A; so hyperplanes are just the
subgroups of index p in A. Of special interest to our proof is the trivial consequence of (∗∗):

m(B1 ∩B2) = r − 2, for any distinct hyperplanes B1 and B2 of A.

In this notation we may rewrite SOL 4* as: for any distinct primes p, q,

if F is a q-group normalized by any nontrivial elementary abelian p-group A,

then F = 〈CF (B) | B is a hyperplane of A 〉. (SOL 4*)

(We allow the trivial case when |A| = p too.)

Assume A ∼= Epr is a subgroup of a larger group G. If a subgroup H of G acts by conjugation
on A (normalizes A), then this action is Fp-linear, i.e., H acts as linear transformations on A; so
the elements of H can be represented by matrices with entries from Fp. If Aut(A) denotes the
collection of all group automorphisms of A, then Aut(A) = GL(A) ∼= GLr(Fp). I’ve included a
compendium of results from linear algebra and linear groups at the end of this section — it’s way
more information than we actually need, but results are stated in general form for greater clarity
and comprehensiveness.

With this review in mind, we now define the Thompson subgroup of any (finite) p-group P . We
do this by modifying the version stated as Exercise 20, Section 4.4 in [DF]. The version below has
been altered from the book by the following changes:

(i) The functions d and m below have been interchanged from their book definitions. (The defini-
tions given above are the ones used most commonly in the literature, including in the original
[Th] and in [Asc].)

(ii) The definition of J(P ) is only given for p-groups. (I do not know of any instances where the
J-subgroup is used for non-p-groups.)

(iii) J(P ) is defined in terms of elementary abelian p-subgroups, rather than arbitrary abelian p-
subgroups of P . (This also necessitates changing the “answer” for P = Q8 in part (c).)

The book definition of the J-subgroup is the version Thompson originally formulated in [Th],1 and
sometimes the one below is distinguished from it by calling it Je(P ) (the subscript “e” being to
signal “elementary subgroups generating”). However, the version below (without the subscript e) is

1In his original paper, Thompson used T instead of P for the p-group in his definition. I was once at a conference

where, in a talk he was giving, John stated that he did not intend John Thompson to be the eponym for J(T )!
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now much more prevalent in the literature—for example, in Aschbacher’s book [Asc]. The definition
of a J-subgroup in [Gor]—due to George Glauberman—is different from both of these(!), but is
rarely used. Here is the (modified) [DF] Exercise:

20*. Let p be a prime and let P be a finite p-group. For any abelian subgroup A of P let m(A) be
the minimum number of generators of A (called the rank of A). [So, for example, m(A)) = 1 if
and only if A is a nontrivial cyclic group.] Let d(P ) be the maximum of the integers m(A) as
A runs over all abelian subgroups of P . [So for example, d(Q8) = 1 and d(D8) = 2.] Let A(P )
be the collection of all elementary abelian subgroups of P of maximal rank:

A(P ) = {A | A is an elementary abelian subgroup of P with m(A) = d(P )},
and define J(P ) = 〈A(P ) 〉.

J(P ) is called the Thompson subgroup of P . (Note that J(P ) 6= 1 if P 6= 1.)

(a) Prove that J(P ) is a characteristic subgroup of P .

(b) For each of the following 2-groups P list all abelian subgroups A of P that satisfy m(A) =
d(P ), and state which of these is elementary abelian:
P = Q8, D8, D16 and QD16 (where QD16 is the quasidihedral group of order 16 defined
in Exercise 11 of Section 2.5). [You may use the lattices of subgroups for these groups in
Section 2.5.]

(c) Show that J(Q8) = 〈−1 〉, J(D8) = D8, J(D16) = D16 and J(QD16) is a dihedral subgroup
of order 8 in QD16.

(d) Prove that if H ≤ P and J(P ) is contained in H, then J(P ) = J(H).

(e) Deduce that if H is a subgroup of P (not necessarily normal) and J(H) is contained in some
subgroup K of H with K E G, then J(H) E P .

See also Exercise 1 at the end of this section for another family of p-groups where the J-subgroup
is easily calculated.

We now state the main theorem of this subsection.

Theorem 3.1. (Thompson) Let K be a finite solvable group, let p be a prime dividing |K|, let P
be a Sylow p-subgroup of K, and let Z = Ω1(Z(P )) (the group generated by all elements of order
p in Z(P )). Assume the following:

(1) Op′(K) = 1, and

(2) CK(Z) = P .

Then one of the following holds:

(i) p = 2 with 233
∣∣ |K|,

(ii) p = 3 with 2233
∣∣ |K|, or

(iii) J(P ) E K.

Theorem 3.1 is a special case of the Thompson Factorization Theorem, which removes hypothe-
ses (1) and (2) and concludes more generally that either K factors as K = NK(J(P ))CK(Z)Op′(K)
(as in conclusion (iii)) or K has some specifically defined normal subgroups (isomorphic to direct
products of SL2(p)’s when p = 2 or 3); in the latter conclusion 6

∣∣ |K| automatically holds—which
is what we need for our Theorem C (see [Asc], Section 32). Our proof is closely modeled on
arguments in [Th], but because our hypotheses are more restricted—but still sufficient for The-
orem C—it can take some “shortcuts” from the lines of reasoning in both [Th] and [Asc]. In
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particular, it avoids invoking the three “overhead” facts cited at the outset of [Th] (although one
of these is essentially replaced by SOL 4*).

In the proof of Theorem C we use the observation that hypothesis (2) holds whenever we have
the (stronger) condition:

(2*) C(t) = P , for some element t of order p in Z(P ).

((2*) =⇒ (2)) because P ≤ CK(Z) ≤ CK(t).)

Careful reading shows that conclusions (i) and (ii) can be removed if instead we add the hy-
pothesis that the Sylow 2-subgroups of K are abelian: The divisibility conclusions only emerge at
the very end of the proof, where this substitution may be made. See also Exercises 4 and 5 at the
end of this section for additional insights.

Proof of Thompson: By way of contradiction let K satisfy the hypotheses and be of minimal order
with respect to the property that J(P ) is not normal in K. [Note that as we replace K by other
counterexamples K0 satisfying the hypotheses, the Sylow p-subgroup of K0, and therefore its J-
subgroup, may change; so, built in to this minimality is the changing of these J-subgroups too.]
Let Kp = Op(K). By hypothesis (1) and SOL 1 and SOL 2 we have Kp 6= 1 and

CK(Kp) = Z(Kp) and so Z ≤ Kp. (3.1.1)

Let V = Ω1(Z(Kp)) = {x ∈ Z(Kp) | xp = 1}. Thus V is an elementary abelian p-group on which
K acts by conjugation. We argue that the kernel of this action is Kp:

CK(V ) = Kp so K := K/Kp acts faithfully on V . (3.1.2)

This is because by (3.1.1), Z ≤ V , so by hypothesis CK(V ) ≤ CK(Z) = P . Thus CK(V ) is
a normal p-subgroup of K, hence is contained in Op(K) = Kp; by definition of V the reverse
containment holds. This proves (3.1.2).

We next argue that

K = AKpQ, for some A ∈ A(P ) with A 6≤ Kp, where

Q is a normal q-subgroup of K acted on nontrivially by A, for some prime q 6= p.
(3.1.3)

To prove this first observe that by Exercise 20*(d) above, J(P ) 6≤ Kp. Thus there must be some
A ∈ A(P ) with A 6≤ Kp — this is the A we want.

[One way of proceeding is to use Hall’s Theorems on the existence of {p, q}-Hall subgroups in
solvable groups, given as Exercise 33, Section 6.1 of [DF] (not in the Appendix). We choose a
slightly more efficient method that invokes the generalization of SOL 2 alluded to in Section 2.]

First quote Exercise 34* in Section 6.1 of the Appendix: Let F (K) be the Fitting subgroup of
the solvable group K. Since Op(K) = 1, F (K) is the product of the Oq(K) as q runs over all

primes 6= p. Since A is a p-group, part (c) of that exercise says A acts faithfully on F (K), hence
it must act nontrivially (but not necessarily faithfully) on Oq(K) for some prime q 6= p. Fix such

a q. Let Q be a Sylow q-subgroup of the complete preimage of Oq(K) in K; so KpQ is that
complete preimage, and is normal in K. Thus K0 := A(KpQ) is a subgroup of K. Note that K0

is a {p, q}-group with P0 := AKp ∈ Sylp(K0).

We verify the hypotheses of Theorem 3.1 for K0: Hypothesis (2) holds for K0 since Z ≤ Kp ≤
P0, so Z ≤ Ω1(Z(P0)); and hence we get CK0

(Ω1(Z(P0))) ≤ CK0
(Z) = P0, which implies (2).

Hypothesis (1) holds for K0 because Z ≤ Kp ≤ Op(K0) and Op(K0) centralizes Oq(K0); and so
because Hypothesis (2) holds for K, it forces Oq(K0) = 1. This checks both hypotheses. We next
show K0 is a counterexample.
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Since m(A) = d(P ) and d(P0) ≤ d(P ), we must have m(A) = d(P0) and so A ∈ A(P0); hence
A ≤ J(P0). Furthermore, since A acts nontrivially on Q, we cannot have A ≤ Op(K0); so it
follows that J(P0) is not normal in K0. This shows K0 is a counterexample to Theorem 3.1, so by
minimality of K we get K = K0 and so (3.1.3) holds.

[Note: We were not asserting that J(P ) = J(P0), nor did we claim Op(K0) = Kp, but only that

J(P0) is not normal in K0 because of the nontrivial action of A on Q.]

Next we prove
|A| = |A : A ∩Kp| = p. (3.1.4)

To see this: By SOL 4*, Q is generated by the collection of subgroups CQ(B) as B runs over

all hyperplanes of A. Each of these centralizers is stable under conjugation by A. Since A acts
nontrivially on Q, there must be some hyperplane B1 such that A acts nontrivially on CQ(B1). Let

Q1 = CQ(B1), and let Q1 be the subgroup of Q that maps to Q1 under “bar”. Let K1 = AKpQ1.
As before since A normalizes KpQ1, we see that K1 is a subgroup of K. Now use the exact same
reasoning as in the proof of (3.1.3) to show that K1 satisfies the hypotheses of the theorem and is
also a counterexample, hence by minimality K1 = K (details are left to the reader). Consequently
we get Q1 = Q. By construction, B1 now centralizes Q = Oq(K); so by SOL 2 (invoked with p

and q interchanged) we get B1 = 1. This establishes (3.1.4).

Henceforth let B = A ∩ Kp, so B is a hyperplane of A and A = B × 〈 a 〉, where we now fix

a ∈ A−B. By (3.1.3) and (3.1.4), 〈 a 〉 is a Sylow p-subgroup of K. Since Op(K) = 1, there must

be a second Sylow p-subgroup, 〈 ag 〉, in K. Fix such g ∈ K. Then 〈 a, ag 〉 has more than one
Sylow p-subgroup, so it follows that

H := 〈 a, ag 〉 is not a p-group, for some fixed g ∈ K. (3.1.5)

[Note that we did not quote the Baer–Suzuki Theorem to assert (3.1.5)! In what follows, keep in
mind that a and a act the same way on V , so we drop the “bar” when considering the action of a.]

The nub of the proof is the next point, where the specific nature of the J-subgroup comes into
focus:

a centralizes a hyperplane of V . (3.1.6)

To see this let m(A) = r = d(P ), so m(B) = r − 1. Since B ≤ Kp and V ≤ Z(Kp), the subgroup
generated by B and V is both abelian and generated by elements of order p; hence BV , written
additively as B + V , is elementary abelian. Since B ≤ B + V and since every elementary abelian
subgroup of P has rank ≤ r, we must have

r − 1 = m(B) ≤ m(B + V ) ≤ r.

Since a does not centralize V by (3.1.2), but it does centralize B, we must have B + V 6= B. This
implies m(B + V ) = r and by (∗∗), B ∩ V is a hyperplane of V . This implies (3.1.6).

Since ag is a conjugate of a, it too centralizes a hyperplane of V . From (∗∗) we get

H centralizes the subspace W := CV (a) ∩ CV (ag) of V of dimension ≥ dimV − 2. (3.1.7)

We next show that

Ṽ := V/W ∼= Ep2 is 2-dimensional and a acts nontrivially on Ṽ . (3.1.8)

By (3.1.7), Ṽ is a space of dimension ≤ 2. If H also centralizes Ṽ , then by Exercise 3 at the end of
this section, all elements of order q in H centralize V , a contradiction (since by (3.1.5), H contains
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nontrivial q-elements, all of which act faithfully on V ). This proves a must act nontrivially on

Ṽ . Hence Ṽ cannot be one-dimensional (i.e., of order p), since in that case a (and ag) would act

trivially on Ṽ (as Aut(Zp) has order p− 1); so Ṽ ∼= Ep2 is 2-dimensional, as needed for (3.1.8).

[Remark: At this point it might be worthwhile to review the compendium of results from linear
groups at the end of this subsection.]

Thus a permutes the p+1 one-dimensional subspaces (the lines) of Ṽ — call this set L. If a acts
trivially on L then so too does ag. In this case let C be any hyperplane of V with 0 ≤W < C < V ;
so C/W ∈ L is fixed by both a and ag. Since V/C and C/W are both one-dimensional, both a and
ag act trivially on the successive quotients in the chain, and so again by Exercise 3 the elements
of order q in H centralize V , a contradiction.

Since a acts nontrivially on L, it permutes it as a p-cycle and a 1-cycle. Let C be the hyperplane
of V with W < C < V and C/W the element of L fixed by a (the 1-cycle orbit). If ag also fixes
the line C/W , then 〈 a, ag 〉 acts trivially on successive quotients in the same chain as the previous
paragraph, a contradiction. This proves ag must move the element C/W of L. This is enough to
ensure

H = 〈 a, ag 〉 acts transitively on the set L := { p+ 1 lines in Ṽ }. (3.1.9)

The “orbit-stabilizer theorem” (Proposition 2, Section 4.1 of [DF]) then gives that p + 1 divides

|H|. Thus the order of K is divisible by |Ṽ | · |a| · (p+ 1) = p3(p+ 1).

[Note that if we were only interested in proving Theorem 3.1 for odd order groups, we could stop
here; but finishing the general case is easily done with only a bit of “[DF]–overhead” needed.]

If p = 2, then conclusion (i) holds. If p = 3, then conclusion (ii) holds.

Assume p ≥ 5. Let H0 be the kernel of the action of H on L, and let Ĥ = H/H0, so Ĥ acts

faithfully on L. Since Ĥ is generated by two elements of order p, by Exercise 6(a) below it is

isomorphic to a subgroup of PSL2(p). Of course Ĥ is also a {p, q}-group. Since p + 1
∣∣ |Ĥ| and

(p, p+ 1) = 1, we must have

p+ 1 = qc, for some c ≥ 2.

Thus p = qc − 1 is divisible by q − 1 and so q = 2.

Next, by (3.1.9) together with the fact that 〈 a 〉 has orbits of size p and 1 on L, we get

Ĥ acts doubly transitively on L. (3.1.10)

(See Exercises 7 to 9 in Section 4.1 of [DF]—in the Appendix—for relevant definitions and prop-

erties of permutation groups.) Let N̂ be a minimal normal subgroup of the solvable group Ĥ, so

N̂ is elementary abelian. By the Exercise 9(c)* of Section 4.1, display (3.1.10) implies

N̂ acts transitively on L, so 2c = p+ 1
∣∣ |N̂ |.

Thus N̂ is an elementary abelian 2-group and m(N̂) ≥ c. Since 5 ≤ p = 2c − 1 we must have

c ≥ 3. By Exercise 6(c) below, however, m(Â) ≤ 2 for every elementary abelian 2-subgroup Â of
PSL2(p), a contradiction. This completes the proof of Theorem 3.1.

[An alternative way of proceeding after (3.1.8) is to show H ∼= SL2(p) and then (independently)
show SL2(p) is nonsolvable for p ≥ 5. That approach seems less consonant with our development.]
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Outline of a proof of SOL 4*.

For p and q any distinct primes, the statement SOL 4* is:

if F is a q-group normalized by any nontrivial elementary abelian p-group A,

then F = 〈CF (B) | B ≤ A with |A : B| = p 〉. (SOL 4*)

Proofs of this ultimately rely on the following:

Any finite abelian subgroup of the multiplicative group of a field is cyclic, (∗∗∗)

found in Section 9.5 of [DF] as Proposition 18. This is the essential underpinning of Schur’s Lemma,
which is the specific result we need.

[The variant of Schur’s Lemma for group algebras over the complex numbers is Exercise 17 in
Section 18.1 of [DF] (listed in the Appendix). We need the corresponding version for group algebras
over certain finite fields.]

We sketch how this works. Let A,F be a minimal counterexample with |F | minimal and, subject
to this, with |A| minimal (so A is clearly not cyclic). First use the second approach hint to a proof
of SOL 4 outlined at the end of Section 2: Show F/Φ(F ) is also a counterexample, where Φ(F ) is
the Frattini subgroup of F . By minimality then Φ(F ) = 1, i.e.,

F is an elementary abelian q-group Eqn , for some n ≥ 1.

Now write F in additive form, and to emphasize this perspective use V in place of F—thus V is
a vector space over the finite field Fq, where q 6= p (this is not the “V ” in Subsection 3.1).

By minimality of A and V , using Exercise 20(b) of Section 6.1 (with p, q interchanged in the
application) argue that

A acts faithfully on V ,

〈CV (B) | B ≤ A with |A : B| = p 〉 = 0, and

there is no nontrivial proper subspace of V that is normalized by A.

(†)

Let S = Fq[A] be the group ring of A with coefficients from Fq, as described in Section 7.2 of [DF]
(where it is simply denoted by FqA). Note that S is a commutative, finite ring with 1. The action
of A by conjugation makes V into an Fq[A]-module, i.e., an S-module, as described in detail in
Section 18.1. The third line in (†) is, by definition, the statement that

V is an irreducible S-module on which A acts as S-module endomorphisms.

Now invoke the elementary version of Schur’s Lemma stated in Exercise 11, Section 10.3 of [DF]
(in the Appendix) to obtain:

EndS(V ) is a division ring.

With the group operation in A written (as usual) multiplicatively, the group product of two ele-
ments of A is their composition as endomorphisms of the S-module V (and multiplication in the
ring End(V ) is composition of endomorphisms—see Section 10.2 of [DF]). So each element of A
is an invertible endomorphism of V since the group A contains group inverses. (Alternatively,
since EndS(V ) is a division ring, every nonzero element in it is invertible!) Thus A is (represented
faithfully as) a finite subgroup of the multiplicative group of the division ring EndS(V ). Since
multiplication of elements in A is commutative, the subring generated by A and Fq in EndS(V ) is
a field. By (∗∗∗), A is cyclic, a contradiction. This proves SOL 4*.
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Another way of approaching SOL 4* is to use the result that, because there are p distinct pth

roots of unity in some extension field L of Fq, each element of A can be represented as a diagonal
matrix with entries from L (q 6= p is required for this). Since A is abelian, it follows by induction
that the elements of A can be simultaneously diagonalized over L. This easily shows that V ⊗Fq L
is generated by centralizers of hyperplanes B of A. One can use “descent arguments” to then show
the same generation is true for V over Fq (although V does not decompose into eigenspaces for
elements of A over Fq). This “diagonalization method”, ultimately essentially relies on (∗∗∗) too.

If p
∣∣ q − 1 we may take L = Fq, and the “descent” step is not required: A is represented by

diagonal matrices with entries from Fq. This is part of the reason that the original SOL 4 has
easier proofs: 2 always divides q − 1; and the diagonalization method is explicitly describable.

Review of Linear Groups.

This is a review of some results from basic linear algebra and linear groups. The facts herein
are either already in Sections 11.1 to 11.4 of [DF], or are easy exercises from that material. The
special case when the vector space is of dimension 2 and the field is the finite field Fp = Z/pZ of
p elements are what is needed in these notes; but proofs of the general results are the same. Let
F be any field and let V be a vector space over F of finite dimension n ≥ 1. Let F× denote the
multiplicative group of all nonzero elements of F .

Let GL(V ) be the group of all nonsingular linear transformations from V to itself — the gen-
eral linear group. Let GLn(F ) be all n × n invertible matrices, which is a group under matrix
multiplication. (If F is the finite field Fp = Z/pZ for p a prime, use GLn(p) to denote GLn(F );
and likewise for other linear subgroups.) Then GL(V ) ∼= GLn(F ), where an isomorphism is given
by fixing any basis of V and writing the matrix of each linear transformation with respect to that
basis (in the domain and range).

Various subgroups of these general linear groups are of particular interest: The determinant

det : GLn(F ) −→ F× by X 7−→ det(X)

is a group homomorphism. The determinant of a linear transformation does not depend on the
choice of basis representing it as a matrix. Let SL(V ) and SLn(F ) be the elements of determinant 1
in the respective general linear groups — the kernel of the determinant map — called the special
linear groups. Then SL(V ) E GL(V ) and GL(V )/SL(V ) ∼= F× ∼= GLn(F )/SLn(F ). Let I denote
the identity linear transformation or identity matrix of degree n. A scalar transformation or matrix
is αI for any α ∈ F . The subgroup of nonzero scalar transformations (or matrices) is a subgroup
of GL(V ) (respectively GLn(F )) isomorphic to F× and is contained in the center of the group.
The scalar matrices of determinant 1 are the subgroup {λI | λn = 1} of the special linear group.
It is an exercise that

the subgroup of nonzero scalars equals the center of the general linear group, and

the subgroup of scalars of determinant 1 equals the center of the special linear group.

If F is a finite field, then the linear groups are finite and their order formulas are given in Sec-
tion 11.2 of [DF]. In particular, |GL2(p)| = (p2 − 1)(p2 − p) and |SL2(p)| = p(p− 1)(p+ 1).

The projective space over V of degree n − 1 is the set of all lines or 1-dimensional subspaces
in V . We have denoted this by L, but it is also denoted by P(V ) (or Pn−1(F )). One easily see that

if F is a finite field, then |L| = (|F |n − 1)/(|F | − 1).
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Clearly GL(V ) acts on L, and the subgroup of scalar transformations acts trivially. It is an exercise
to show that

the kernel of the action of GL(V ) on L equals the nonzero scalar matrices,

i.e., GL(V )/〈λI | λ ∈ F× 〉 acts faithfully on L. The latter group is called the projective general
linear group and is denoted by PGL(V ). The projective special linear group is denoted PSL(V ) :=
SL(V )/{λI | λn = 1} (and denoted PGLn(F ) and PSLn(F ) for the respective matrix groups).

Exercises

1. Let p be an odd prime and let P = Zp o Zp be the wreath product group of order pp+1 (cf.,
Exercise 23, Section 5.5 of [DF]). Show that J(P ) is the unique elementary abelian subgroup of
P of rank p. (Check that Z2 o Z2

∼= D8, so J(P ) = P when p = 2.)

2. Let K be a solvable group and let p be the smallest prime dividing |K|. Prove that if a Sylow
p-subgroup of K is cyclic, then K has a normal p-complement.
(This result is true without the solvability assumption on K, but the general result is usually
proved via the transfer homomorphism.)
[Hint: Reduce to when Op′(K) = 1. Use SOL 2 (and the paragraph after it) to show K = Op(K),
where the automorphism group of a cyclic group is derived in Section 4.4 of [DF].]

3. (Stability groups for co-prime actions) Let p be a prime and let V be any p-group normalized
by a group Q of order prime to p (in some large group containing both V and Q). Assume V
contains a chain of subgroups

0 = V0 ≤ V1 ≤ V2 ≤ · · · ≤ Vn = V

such that each Vi is normalized by V and Q with Q acting trivially by conjugation on Vi/Vi−1
for 1 ≤ i ≤ n. Prove that Q acts trivially on all of V .
(The trivial action hypothesis can alternatively be written as [Vi, Q] ≤ Vi−1 for 1 ≤ i ≤ n.)
[Hint: Reduce by induction to n = 2 and Q is a q-group for some prime q 6= p. Then use
Exercise 20(b) in Section 6.1—see the Appendix—applied with the roles of p and q reversed and
its N = V1.]

Remark: In the special case when V is an elementary abelian p-group, you can refine the chain
by removing equalities and then adding subspaces between Vi and Vi+1, as needed, to make all
successive quotients one-dimensional (so V is n-dimensional). Then any vectors ei chosen with
ei ∈ Vi − Vi−1 for 1 ≤ i ≤ n form a basis of V . With respect to such a basis the elements of Q
are represented by upper triangular matrices with 1’s along the diagonal (unipotent matrices). By
order considerations, the subgroup of all unipotent matrices is a Sylow p-subgroup of GLn(Fp).
Under its action on V the p′-group Q must therefore map to the identity in this p-group, i.e.,
Q must act trivially. (This is another solution, when V is elementary abelian.) These chains of
subspaces are called flags in V and a refined chain of length n is a maximal flag.

4. Show that K = S4 satisfies all the hypotheses of Theorem 3.1 for p = 2. For P a Sylow 2-
subgroup of S4 show P = J(P ) and P is not normal in S4. [Hint: See Exercise 20*(c).]
(Of course p3(p+ 1) = 23 · 3 divides the order of S4.)

Remark: You can see how K = S4 “emerges” as a prototypical minimal counterexample at the end
of the proof, where V = Kp is the unique Klein fourgroup V4 in the alternating group and the “W
subspace” is trivial in this case—this leads to conclusion (i).
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5. Let p be any prime and let H = SL(V ) ∼= SL2(p) act naturally on the 2-dimensional vector
space V over Fp. Let G = V o H be the semidirect product with respect to this action. Let
P ∈ Sylp(G). Show that |P | = p3 and that P = J(P ). Prove J(P ) is not normal in G.

Remark: It follows from Theorem 3.1 and this example that SL2(p) is not solvable for all p ≥ 5.
(Solvability is strongly used in the proof of (3.1.3).)
When p = 2, G = K ∼= S4 as in Exercise 4. When p = 3, G is a solvable group of order 2333 with
Sylow 2-subgroup of type Q8. With a tad more work one can actually strengthen conclusion (ii)
of Theorem 3.1 to assert that 2333

∣∣ |K|.
6. Let p be an odd prime, let G = GL2(p) and let S = SL2(p) be the general and special linear

groups of degree 2 over the finite field Fp = Z/pZ respectively (where we use without reference

the notation and results from the review of linear groups above). Let Ŝ = PSL2(p) be the
projective special linear group i.e., S modulo the subgroup of scalars of determinant 1.

(a) Prove that any subgroup of G generated by elements of order p is contained in S.
[Hint: |F×p | = p− 1.]

(b) Prove that z = −I is the unique element of order 2 in S.
[Hint: Use the method in the hints for SOL 4 at the end of Section 2 to show that any
involution z can be represented by a diagonal matrix with respect to some basis. Then use
det(z) = 1 to show z is represented by −I, and deduce that the same is true for any basis.]

(c) Let T ∈ Syl2(S) (so z ∈ T by (b)). Show that T̂ = T/〈 z 〉. Show that d(T̂ ) ≤ 2, where

d is the maximum rank of elementary abelian subgroups of T̂ (i.e., show T̂ , and hence also
PSL2(p), does not contain a subgroup isomorphic to E8).

[Hint: Suppose 〈 z 〉 ≤ A ≤ T with Â ∼= E8. Show every x ∈ A − 〈 z 〉 has order 4 with
x2 = z and with 〈x 〉 E A. Deduce from normality that |CA(x)| > 4 and so there is some
y ∈ CA(x)− 〈x 〉. Get a contradiction by showing |xy| = 2.]

Remark: It is not hard to prove (by induction) that if T is any 2-group with a unique element z of
order 2, then T is either cyclic or generalized quaternion (i.e., Z2m or Q2m). Part (c) follows easily
from this independent general result, since T/〈 z 〉 is then cyclic or dihedral respectively.

7. Give a different proof of the Baer–Suzuki Theorem for solvable groups K, via induction on |K|.
[Hint: Reduce to when Op(K) = 1 and K = XOp′(K) with X ∈ Sylp(K).]
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Appendix — Exercises from [DF] and Generalizations

Section 1.2

6. Let x and y be elements of order 2 in any group G. Prove that if t = xy then tx = xt−1 (so
that if n = |xy| <∞ then x, t satisfy the same relations in G as s, r do in D2n).

Section 1.6

23. Let G be a finite group that possesses an automorphism σ such that σ(g) = g if and only if
g = 1. If σ2 is the identity map from G to G, prove that σ acts by inversion on G and G is
abelian (when G 6= 1 such an automorphism σ is called fixed point free of order 2). [Show that
every element of G can be written in the form x−1σ(x) and apply σ to such an expression.]

Section 3.3

9. Let p be a prime and let G be a group of order pam, where p does not divide m. Assume P is
a subgroup of G of order pa and N is a normal subgroup of G of order pbn, where p does not
divide n. Prove that |P ∩N | = pb and |PN/N | = pa−b. (The subgroup P of G is called a Sylow
p-subgroup of G. This exercise shows that the intersection of any Sylow p-subgroup of G with
a normal subgroup N is a Sylow p-subgroup of N .)

10. Generalize the preceding exercise as follows. A subgroup H of a finite group G is called a Hall
subgroup of G if its index in G is relatively prime to its order: (|G : H|, |H|) = 1. Prove that
if H is a Hall subgroup of G and N E G, then H ∩N is a Hall subgroup of N and HN/N is a
Hall subgroup of G/N .

Section 4.1

7. Let G be a transitive permutation group on the finite set A. A block is a nonempty subset B of
A such that for all σ ∈ G either σ(B) = B or σ(B)∩B = ∅ (here σ(B) is the set {σ(b) | b ∈ B}).

(a) Prove that if B is a block containing the element a of A, then the set GB defined by GB =
{σ ∈ G | σ(B) = B} is a subgroup of G containing Ga.

(b) Show that if B is a block and σ1(B), σ2(B), . . . , σn(B) are all the distinct images of B under
the elements of G, then these form a partition of A.
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(c) A (transitive) group G on a set A is said to be primitive if the only blocks in A are the trivial
ones: the sets of size 1 and A itself. Show that S4 is primitive on A = {1, 2, 3, 4}. Show that
D8 is not primitive as a permutation group on the four vertices of a square.

(d) Prove that the transitive group G is primitive on A if and only if for each a ∈ A, the only
subgroups of G containing Ga are Ga and G (i.e., Ga is a maximal subgroup of G, cf. Exercise
16, Section 2.4). [Use part (a).]

8. A transitive permutation group G on a set A is called doubly transitive if for any (hence all)
a ∈ A the subgroup Ga is transitive on the set A− {a}.

(a) Prove that Sn is doubly transitive on {1, 2, . . . , n} for all n ≥ 2.

(b) Prove that a doubly transitive group is primitive. Deduce that D8 is not doubly transitive
in its action on the 4 vertices of a square.

9. Assume G [any group] acts transitively on the finite set A and let H be a normal subgroup of G.
Let O1,O2, . . . ,Or be the distinct orbits of H on A.

(a) Prove that G permutes the sets O1,O2, . . . ,Or in the sense that for each g ∈ G and each
i ∈ {1, . . . , r} there is a j such that gOi = Oj , where gO = {g · a | a ∈ O} (i.e., in
the notation of Exercise 7 the sets O1, . . . ,Or are blocks). Prove that G is transitive on
{O1, . . . ,Or}. Deduce that all orbits of H on A have the same cardinality.

(b) Prove that a doubly transitive group is primitive.

(c)* (added to book) Deduce that a nontrivial normal subgroup of a doubly transitive permutation
group is transitive.

Section 4.5

37. Let R be any normal p-subgroup of G (where G is any finite group).

(a) Prove that R is contained in every Sylow p-subgroup of G.

(b) If S is another normal p-subgroup of G, prove that RS is also a normal p-subgroup of G.

(c) The subgroup Op(G) is defined to be the group generated by all normal p-subgroups of
G. Prove that Op(G) is the unique largest normal p-subgroup of G and Op(G) equals the
intersection of all Sylow p-subgroups of G.

(d) Let G = G/Op(G). Prove that Op(G) = 1 (i.e., G has no nontrivial normal p-subgroup).

Generalize the preceding exercise as follows (where G is any finite group):

37*. Let π be any set of primes (possibly infinite). Recall that a π-group is any group whose order
is divisible by only primes in π. Let R be a normal π-subgroup of G.

(a) If S is another normal π-subgroup of G, prove that RS is also a normal π-subgroup of G.

(b) The subgroup Oπ(G) is defined to be the group generated by all normal π-subgroups of G.
Prove that Oπ(G) is the unique largest normal π-subgroup of G.

(c) Let G = G/Oπ(G). Prove that Oπ(G) = 1 (i.e., G has no nontrivial normal π-subgroup).

Simplify notation, as in Exercise 37, by using Op(G) to denote O{p}(G).

In general, for any set of primes π let π′ be the set of all primes not in π, and so Oπ′(G) is the
largest normal subgroup of G whose order is relatively prime to all primes in π. If π = {p},
simplify notation by using Op′(G) to denote Oπ′(G).

In the special case when |G| = paqb for p, q distinct primes, Op′(G) = Oq(G) (and vice versa).

(d) Prove that Oπ(G) and Oπ′(G) commute (elementwise). [Hint: Consider [Oπ(G), Oπ′(G)]. ]
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Section 6.1

20. Let p be a prime, let P be a p-subgroup of the finite group G, let N be a normal subgroup of
G whose order is relatively prime to p and let G = G/N . Prove the following:

(a) NG(P ) = NG(P ) [Use Frattini’s Argument.]

(b) CG(P ) = CG(P ). [Use part (a).]

Comment: For any group G the Frattini subgroup of G (denoted by Φ(G)) is defined to be the
intersection of all the maximal subgroups of G (if G has no maximal subgroups, set Φ(G) = G).

26. Let p be a prime, let P be a finite p-group and let P = P/Φ(P ).

(a) Prove that P is an elementary abelian p-group. [Show that P ′ ≤ Φ(P ) and that xp ∈ Φ(P )
for all x ∈ P .]

(b) Prove that if N is any normal subgroup of P such that P/N is elementary abelian then
Φ(P ) ≤ N . State this (universal) property in terms of homomorphisms and commutative
diagrams.

(c) Let P be elementary abelian of order pr (by (a)). Deduce from Exercise 24 that if x1, x2, . . . , xr
are any basis for the r-dimensional vector space P over Fp and if xi is any element of the coset
xi, then P = 〈x1, x2, . . . , xr 〉. Show conversely that if y1, y2, . . . , ys is any set of generators
for P , then s ≥ r (you may assume that every minimal generating set for an r-dimensional
vector space has r elements, i.e., every basis has r elements). Deduce Burnside’s Basis The-
orem: a set y1, . . . , ys is a minimal generating set for P if and only if y1, . . . , ys is a basis of
P = P/Φ(P ). Deduce that any minimal generating set for P has r elements.

(d) Prove that if P/Φ(P ) is cyclic then P is cyclic. Deduce that if P/P ′ is cyclic then so is P .

(e) Let σ be any automorphism of P of prime order q with q 6= p. Show that if σ fixes the coset
xΦ(P ) then σ fixes some element of this coset (note that since Φ(P ) is characteristic in P
every automorphism of P induces an automorphism of P/Φ(P )). [Use the observation that
σ acts a permutation of order 1 or q on the pa elements in the coset xΦ(P ).]

(f) Use parts (e) and (c) to deduce that every nontrivial automorphism of P of order prime to
p induces a nontrivial automorphism on P/Φ(P ). Deduce that any group of automorphisms
of P which has order prime to p is isomorphic to a subgroup of Aut(P ) = GLr(Fp).

31. For any group G a minimal normal subgroup is a nontrivial normal subgroup M of G such that
the only normal subgroups of G which are contained in M are 1 and M . Prove that every
minimal normal subgroup of a finite solvable group is an elementary abelian p-group for some
prime p. [If M is a minimal normal subgroup of G, consider its characteristic subgroups: M ′

and 〈xp | x ∈M 〉.]
34. (Revised from book) Let p be a prime dividing the order of the finite solvable group G. Assume

G has no nontrivial normal subgroup of order prime to p (i.e., Op′(G) = 1). Let P = Op(G) be
the largest normal p-subgroup of G (cf. Exercise 37 in Section 4.5. Exercise 31 implies P 6= 1).
Prove that CG(P ) ≤ P , i.e., CG(P ) = Z(P ).

[Let C = CG(P ) and by way of contradiction assume C 6≤ P . Use Exercise 31 to show that there
exists M E G with P < M ≤ PC such that M/P is a q-group, for some prime q 6= p (invoke
Exercise 37(d) in Section 4.5 to get q 6= p). Let Q ∈ Sylq(M). Prove that Q ≤ C. Deduce that
M = P ×Q and consequently that Q E G to obtain a contradiction.]

The next exercise generalizes Exercise 34 above: It describes the Fitting subgroup, F (G), of any
finite group G and establishes some of its basic properties. You can think of this generalization
as SOL 2*: It is analogous to the way Section 4.5, Exercise 37* above generalizes Exercise 37
preceding it.
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34*. (The Fitting Subgroup) Let G be any finite group.

(a) Prove that if N1 and N2 are nilpotent normal subgroups of G, then N1N2 is a nilpotent normal
subgroup. Deduce that G contains a unique maximal normal nilpotent subgroup—denote it
by F (G)—called the Fitting subgroup of G. (See also Exercises 37 and 37* in Section 4.5.)

(b) Prove that F (G) is the direct product of the subgroups Op(G) as p runs over all prime divisors
of G. Deduce that if Op′(G) = 1 then F (G) = Op(G).

(c) (The Fitting Subgroup Theorem) Prove that if K is any finite solvable group, then
CK(F (K)) ≤ F (K), i.e., CK(F (K)) = Z(F (K)).
[Use exactly the same reasoning as the hint to Exercise 34 above but with P replaced by
F (K), where q is any prime. Derive the contradiction by showing that the resulting M is
nilpotent.]

(d) Deduce from (c) that if K is solvable, then |K| ≤ |Aut(F (K))| · |Z(F (K))|.

Section 10.3

11. Show that if M1 and M2 are irreducible R-modules [where R is any ring with 1], then any nonzero
R-module homomorphism from M1 to M2 is an isomorphism. Deduce that if M is irreducible
then EndR(M) is a division ring (this result is called Schur’s Lemma). [Take M1 = M2 = M
for Schur’s Lemma.]

Section 18.1

17. Prove the following variant of Schur’s Lemma for complex representations of abelian groups: if
G is abelian, any irreducible complex representation, φ, of G is of degree 1 and G/ kerφ is cyclic.
[This can be done without recourse to Exercise 14 (in Section 18.1) by using the observation
that for any g ∈ G the eigenspaces of φ(g) are G-stable. Your proof that φ has degree 1 should
also work for infinite abelian groups when φ has finite degree.]
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