
Wielandt’s Theorem on Automorphism Towers
Notes by Richard Foote

I have always wondered whether Wielandt’s Theorem on the finiteness of automorphism towers
could be made more transparent by couching a proof in the more modern terminology of com-
ponents, etc. (One classic book containing a proof is [Zas], Appendix G.) Here is my attempt.
I make no claim that this proof is better, shorter or even significantly different from either the
original or proofs in various books; but rather this is a record of my musings on the subject.

Notation is standard, as may be found in [DF] or [Asc]. All groups in this note are finite.
Throughout the notes, “acts” means “acts by conjugation.” For completeness, the cited exercises
from [DF] are included in the Appendix at the end of this note.

Recall that a group G acts on itself by conjugation resulting in a homomorphism

G −→ Aut(G)

whose kernel is the center of G (see [DF], Section 4.4 and its exercises for definitions and basic
facts). In particular, if Z(G) = 1, then this is an embedding, and we may identify G with its
group of inner automorphisms, which, by Exercise 4.4.1, forms a normal subgroup of Aut(G). It is
immediate too from this exercise that if G has trivial center, then the center of Aut(G) is likewise
trivial, so we may repeat the process. Replacing the homomorphisms, as above, by containments,
we then iteratively obtain a tower:

If Z(G) = 1 we have

G = A0 E A1 E A2 E · · · E An = A where Ai+1 = Aut(Ai), 0 ≤ i ≤ n− 1.
(∗)

Wielandt’s beautiful result asserts that this automorphism tower eventually stabilizes:

Theorem (H. Wielandt, 1939) Under the hypotheses of (∗), there is some N such that Ai = AN
for all i ≥ N . (Equivalently, in any such tower, the order of An is bounded by some function of
|G|, independent of n.)

Note that the order of the automorphism group of any centerless group X is bounded by |X|!
because Aut(X) faithfully permutes the elements of X. Therefore, to prove Wielandt’s Theorem
it suffices to find certain (finitely many) specific subgroups Xi of G such that |An| is bounded in
terms of |Aut(Xi)|. At the heart of this process lies the generalized Fitting subgroup of G, and its
fundamental property, due to Helmut Bender. For convenience we review this subject area.

B. Background Preliminaries

Let p be a prime and let X,H be groups. The results in this section, labeled B.i for integers i,
might be considered as part of the “bread-and-butter” toolkit for finite group theorists! Experts
may skip this section.

Recall that H is a subnormal subgroup of X if there is a chain

H = H0 E H1 E · · · E Hm = X (∗∗)

where each Hi is normal in Hi+1 (but not necessarily normal in X). This is usually denoted by
H EE X. For example, by [DF] Section 6.1, every subgroup of a nilpotent group is subnormal
(and conversely). Note that “subnormality” is transitive. Also, such H is subnormal in every
subgroup of X containing it.



B.1 If P is a Sylow p-subgroup of X and H is subnormal in X, then P ∩H is a Sylow p-subgroup
of H.
(Proof: Use induction and Exercise 4.5.34).

A subgroup L of X is called a component of X if the following hold:

(i) L EE X,

(ii) L is perfect, i.e., L = [L,L], and

(iii) L/Z(L) is a (non-abelian) simple group.

A group satisfying only (ii) and (iii) is called quasisimple; so a component of X is a quasisimple
subnormal subgroup of X. Non-abelian simple groups are, a fortiori, quasisimple. SL2(F5) is a
quasisimple group of order 120 with a center of order 2.

Define E(X) to be the group generated by all components of X.

B.2 E(X) = L1 ∗ L2 ∗ · · · ∗ Lr is a (commuting) central product of all the components Li of X.
(Proof: See [Asc], 31.7.)

B.3 The only normal subgroups of E(X) are products of some of the Li together with some subgroup
of the center of E(X).
(Proof: Ibid. This follows also from [DF], Exercise 5.4.18 applied to E(X)/Z(E(X)).)

B.4 The Fitting subgroup of X, denoted by F (X), is the largest normal nilpotent subgroup of X.
Also,

F (X) = Op1(X)×Op2(X)× · · · ×Ops(X)

where p1, . . . , ps are all the distinct primes dividing |X|.
(Proof: Easy exercise. See [Asc], 31.8.)

B.5 E(X) and F (X) commute and are both characteristic in X.
(Proof: This follows from B.3 and B.4; see also [Asc], 31.12.)

Define the generalized Fitting subgroup of X, denoted by F ∗(X), to be F ∗(X) := F (X)E(X).

B.6 (The Generalized Fitting Subgroup Theorem) CX(F ∗(X)) = Z(F ∗(X)).
(Proof: See [Asc], 31.13. Note that F ∗(X) is characteristic in X.)

B.7 As a direct consequence of B.6 and the opening remarks of this note we get:

For any finite group X, |X| ≤ |Z(F ∗(X))| · |Aut(F ∗(X))|.

In particular, if M = |F ∗(X)|, then an upper bound for |X| is M ·M !. This is crude because,
in particular, automorphisms of a group cannot be arbitrary permutations of that group: they
must all fix the identity, preserve the orders of elements, etc.

B.8 (Three Subgroups Lemma) Let H,E be any subgroups of X with E perfect. If [H,E,E] = 1,
then [H,E] = 1.
(Proof: See [Asc], 8.9. Strictly speaking this is just a consequence of the more generally
formulated Three Subgroups Lemma in [Asc].)

Recall that Op(X) is the smallest normal subgroup of X for which X/Op(X) is a p-group. It is
easy to see that Op(X) is the subgroup generated by all elements of X of order prime to p.

B.9 If H EE X and |X : H| is a power of p, then Op(X) = Op(H).
(Proof: This is an easy induction on m in (∗∗).)
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C. Proof of Wielandt’s Theorem

Henceforth let G be a finite group with Z(G) = 1. Adopt the notation of (∗). By the Generalized
Fitting Subgroup Theorem (or, more precisely, B.7) it suffices to bound |F ∗(A)| in terms of |G|.
We do this by bounding |E(A)| and then |F (A)| separately, in a series of steps.

Step 1: CA(G) = 1.

Proof: Proceed by induction on the length, n, of the chain in (∗). If n = 0 then G = A and
CG(G) = Z(G) = 1. If n = 1 then the result is the observation that A1 = Aut(G) acts faithfully
on G, made earlier. For n ≥ 2, by induction we have CAn−1

(G) = 1. Let C = CA(G). Then since
G E A1, we see that A1 normalizes C; and since A1 ≤ An−1 E A we have

[C,A1] ≤ C ∩An−1 = CAn−1(G) = 1,

i.e., C ≤ CA(A1). By definition of C the reverse containment is obvious, so C = CA(A1). Now
again use induction with G replaced by A1, so that the chain starting at A1 has length n − 1, to
get C = 1.

Step 2: E(A) = E(G).

Proof: By induction on n we have E(An−1) = E(G). Since E(G) is subnormal in A, each compo-
nent of E(G) is likewise a component of A, hence is a component of E(A). Let E2 be the central
product of all components of A that are not contained in G, so by B.2:

E(A) = E(G) ∗ E2

where ∗ denotes central product; and both factors are normalized by G. Since G ≤ An−1 E A we
have

[G,E2] ≤ E2 ∩An−1.

Since the latter subgroup is normal in E2, by definition of E2 and B.3 we have [G,E2] ≤ Z(E2).
Thus [G,E2, E2] = 1. Since E2 is perfect, by B.8 we have [G,E2] = 1, i.e., E2 ≤ CA(G). The
result now follows from Step 1.

Step 2 accomplishes the first stage of our proof of Wielandt. We next bound |F (A)| in terms of |G|.
It suffices to bound the number of distinct primes p dividing |F (A)| and each |Op(A)|.

Step 3: For every prime p, Op(A) normalizes and acts faithfully by conjugation on Op(G). In
particular, if p does not divide |G| then Op(A) acts faithfully on G.

Proof: For an arbitrary prime p let X = Op(A)G, and let P be a Sylow p-subgroup of X. By B.9,

Op(G) = Op(X) E X,

as needed for the first assertion. Let P0 = CP (Op(G)) E P . Since P0 E P , if P0 6= 1 then
P1 := P0 ∩ Z(P ) 6= 1. By B.1, P contains a Sylow p-subgroup of G. Thus P1 centralizes every
p′-element of G as well as a Sylow p-subgroup of G. This forces P1 ≤ CA(G), which is trivial by
Step 1; and so P0 = 1 as well. This proves Step 3.

Wielandt’s Theorem now follows easily: For all primes p not dividing |G| we have Op(G) = G;
and so from Step 3, each corresponding Op(A) is bounded by the order of a Sylow p-subgroup of

3



Aut(G). Since these |Op(A)| are relatively prime for different p, the direct factor of F (A) consisting
of all Op(A) for p not dividing |G| is bounded in order by |Aut(G)|. By Step 3 we thus have

|F (A)| ≤ |Aut(G)| ·
∏
p
∣∣|G| |Aut(Op(G))|.

Combining this with Step 2 gives

|F ∗(A)| ≤ |E(G)| · |Aut(G)| ·
∏
p
∣∣|G| |Aut(Op(G))|.

So |An| is (crudely) bounded above, independent of n in (∗), by B.7 applied to the above.

Exercises

Let G be a finite group with Z(G) = 1. Adopt the notation of (∗).

1. Prove that NA(G) = A1. Deduce that if G E A then A2 = A1, i.e., the tower terminates in at
most one step.

2. Let G be a direct product of non-abelian simple groups. Prove that A2 = A1 in (∗).
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Appendix — Cited exercises from [DF]

4.1.1. If σ ∈ Aut(G) and φg is (left) conjugation by g prove that σφgσ
−1 = φσ(g). Deduce that

Inn(G) E Aut(G). (The group Aut(G)/Inn(G) is called the outer automorphism group of G.)

4.5.34. Let P ∈ Sylp(G) and assume N E G. Use the conjugacy part of Sylow’s Theorem to prove that
P ∩N is a Sylow p-subgroup of N . Deduce that PN/N is a Sylow p-subgroup of G/N .
(This may also be done by the Second Isomorphism Theorem—cf. Exercise 9, Section 3.3.)

5.4.18. Let K1,K2, . . . ,Kn be non-abelian simple groups and let G = K1 ×K2 × · · · ×Kn. Prove that
every normal subgroup of G is of the form GI for some subset I of {1, 2, . . . , n} (where GI is
the direct product of the Ki for i ∈ I).
[Hint: If N E G and x = (a1, . . . , an) ∈ N with some ai 6= 1, then show that there is some
gi ∈ Gi not commuting with ai. Show [(1, . . . , gi, . . . , 1), x] ∈ Ki ∩N and deduce Ki ≤ N .]
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