Wielandt's Theorem on Automorphism Towers Notes by Richard Foote

I have always wondered whether Wielandt's Theorem on the finiteness of automorphism towers could be made more transparent by couching a proof in the more modern terminology of components, etc. (One classic book containing a proof is [Zas], Appendix G.) Here is my attempt. I make no claim that this proof is better, shorter or even significantly different from either the original or proofs in various books; but rather this is a record of my musings on the subject.

Notation is standard, as may be found in $[\mathbf{DF}]$ or $[\mathbf{Asc}]$. All groups in this note are finite. Throughout the notes, "acts" means "acts by conjugation." For completeness, the cited exercises from $[\mathbf{DF}]$ are included in the Appendix at the end of this note.

Recall that a group G acts on itself by conjugation resulting in a homomorphism

$$G \longrightarrow \operatorname{Aut}(G)$$

whose kernel is the center of G (see [**DF**], Section 4.4 and its exercises for definitions and basic facts). In particular, if Z(G) = 1, then this is an embedding, and we may identify G with its group of inner automorphisms, which, by Exercise 4.4.1, forms a normal subgroup of Aut(G). It is immediate too from this exercise that if G has trivial center, then the center of Aut(G) is likewise trivial, so we may repeat the process. Replacing the homomorphisms, as above, by containments, we then iteratively obtain a tower:

If
$$Z(G) = 1$$
 we have
 $G = A_0 \trianglelefteq A_1 \trianglelefteq A_2 \trianglelefteq \dots \trianglelefteq A_n = A$ where $A_{i+1} = \operatorname{Aut}(A_i), \quad 0 \le i \le n-1.$
(*)

Wielandt's beautiful result asserts that this automorphism tower eventually stabilizes:

Theorem (*H. Wielandt, 1939*) Under the hypotheses of (*), there is some N such that $A_i = A_N$ for all $i \ge N$. (Equivalently, in any such tower, the order of A_n is bounded by some function of |G|, independent of n.)

Note that the order of the automorphism group of any centerless group X is bounded by |X|!because Aut(X) faithfully permutes the elements of X. Therefore, to prove Wielandt's Theorem it suffices to find certain (finitely many) specific subgroups X_i of G such that $|A_n|$ is bounded in terms of $|Aut(X_i)|$. At the heart of this process lies the generalized Fitting subgroup of G, and its fundamental property, due to Helmut Bender. For convenience we review this subject area.

B. Background Preliminaries

Let p be a prime and let X, H be groups. The results in this section, labeled **B.i** for integers **i**, might be considered as part of the "bread-and-butter" toolkit for finite group theorists! Experts may skip this section.

Recall that H is a subnormal subgroup of X if there is a chain

$$H = H_0 \trianglelefteq H_1 \trianglelefteq \dots \trianglelefteq H_m = X \tag{**}$$

where each H_i is normal in H_{i+1} (but not necessarily normal in X). This is usually denoted by $H \leq A$. For example, by **[DF]** Section 6.1, every subgroup of a nilpotent group is subnormal (and conversely). Note that "subnormality" is transitive. Also, such H is subnormal in every subgroup of X containing it.

B.1 If P is a Sylow p-subgroup of X and H is subnormal in X, then $P \cap H$ is a Sylow p-subgroup of H.

(*Proof:* Use induction and Exercise 4.5.34).

- A subgroup L of X is called a *component* of X if the following hold:
 - (i) $L \trianglelefteq \trianglelefteq X$,
- (ii) L is perfect, i.e., L = [L, L], and
- (iii) L/Z(L) is a (non-abelian) simple group.

A group satisfying only (ii) and (iii) is called *quasisimple*; so a component of X is a quasisimple subnormal subgroup of X. Non-abelian simple groups are, a fortiori, quasisimple. $SL_2(\mathbb{F}_5)$ is a quasisimple group of order 120 with a center of order 2.

Define E(X) to be the group generated by all components of X.

- **B.2** $E(X) = L_1 * L_2 * \cdots * L_r$ is a (commuting) central product of all the components L_i of X. (*Proof:* See [Asc], 31.7.)
- **B.3** The only normal subgroups of E(X) are products of some of the L_i together with some subgroup of the center of E(X). (*Proof:* Ibid. This follows also from [**DF**], Exercise 5.4.18 applied to E(X)/Z(E(X)).)
- **B.4** The *Fitting subgroup* of X, denoted by F(X), is the largest normal nilpotent subgroup of X. Also,

 $F(X) = O_{p_1}(X) \times O_{p_2}(X) \times \dots \times O_{p_s}(X)$

where p_1, \ldots, p_s are all the distinct primes dividing |X|. (*Proof:* Easy exercise. See [**Asc**], 31.8.)

B.5 E(X) and F(X) commute and are both characteristic in X. (*Proof:* This follows from B.3 and B.4; see also [Asc], 31.12.)

Define the generalized Fitting subgroup of X, denoted by $F^*(X)$, to be $F^*(X) := F(X)E(X)$.

- **B.6** (The Generalized Fitting Subgroup Theorem) $C_X(F^*(X)) = Z(F^*(X))$. (Proof: See [Asc], 31.13. Note that $F^*(X)$ is characteristic in X.)
- **B.7** As a direct consequence of B.6 and the opening remarks of this note we get:

For any finite group X, $|X| \leq |Z(F^*(X))| \cdot |\operatorname{Aut}(F^*(X))|.$

In particular, if $M = |F^*(X)|$, then an upper bound for |X| is $M \cdot M!$. This is crude because, in particular, automorphisms of a group cannot be arbitrary permutations of that group: they must all fix the identity, preserve the orders of elements, etc.

B.8 (*Three Subgroups Lemma*) Let H, E be any subgroups of X with E perfect. If [H, E, E] = 1, then [H, E] = 1.

(*Proof:* See [Asc], 8.9. Strictly speaking this is just a consequence of the more generally formulated Three Subgroups Lemma in [Asc].)

Recall that $O^p(X)$ is the *smallest* normal subgroup of X for which $X/O^p(X)$ is a p-group. It is easy to see that $O^p(X)$ is the subgroup generated by all elements of X of order prime to p.

B.9 If $H \leq A$ and |X : H| is a power of p, then $O^p(X) = O^p(H)$. (*Proof:* This is an easy induction on m in (**).)

C. Proof of Wielandt's Theorem

Henceforth let G be a finite group with Z(G) = 1. Adopt the notation of (*). By the Generalized Fitting Subgroup Theorem (or, more precisely, B.7) it suffices to bound $|F^*(A)|$ in terms of |G|. We do this by bounding |E(A)| and then |F(A)| separately, in a series of steps.

Step 1: $C_A(G) = 1$.

Proof: Proceed by induction on the length, n, of the chain in (*). If n = 0 then G = A and $C_G(G) = Z(G) = 1$. If n = 1 then the result is the observation that $A_1 = \operatorname{Aut}(G)$ acts faithfully on G, made earlier. For $n \ge 2$, by induction we have $C_{A_{n-1}}(G) = 1$. Let $C = C_A(G)$. Then since $G \le A_1$, we see that A_1 normalizes C; and since $A_1 \le A_{n-1} \le A$ we have

$$[C, A_1] \le C \cap A_{n-1} = C_{A_{n-1}}(G) = 1,$$

i.e., $C \leq C_A(A_1)$. By definition of C the reverse containment is obvious, so $C = C_A(A_1)$. Now again use induction with G replaced by A_1 , so that the chain starting at A_1 has length n - 1, to get C = 1.

Step 2: E(A) = E(G).

Proof: By induction on n we have $E(A_{n-1}) = E(G)$. Since E(G) is subnormal in A, each component of E(G) is likewise a component of A, hence is a component of E(A). Let E_2 be the central product of all components of A that are *not* contained in G, so by B.2:

$$E(A) = E(G) * E_2$$

where * denotes central product; and both factors are normalized by G. Since $G \leq A_{n-1} \leq A$ we have

$$[G, E_2] \le E_2 \cap A_{n-1}.$$

Since the latter subgroup is normal in E_2 , by definition of E_2 and B.3 we have $[G, E_2] \leq Z(E_2)$. Thus $[G, E_2, E_2] = 1$. Since E_2 is perfect, by B.8 we have $[G, E_2] = 1$, i.e., $E_2 \leq C_A(G)$. The result now follows from Step 1.

Step 2 accomplishes the first stage of our proof of Wielandt. We next bound |F(A)| in terms of |G|. It suffices to bound the number of distinct primes p dividing |F(A)| and each $|O_p(A)|$.

Step 3: For every prime p, $O_p(A)$ normalizes and acts faithfully by conjugation on $O^p(G)$. In particular, if p does not divide |G| then $O_p(A)$ acts faithfully on G.

Proof: For an arbitrary prime p let $X = O_p(A)G$, and let P be a Sylow p-subgroup of X. By B.9,

$$O^p(G) = O^p(X) \trianglelefteq X.$$

as needed for the first assertion. Let $P_0 = C_P(O^p(G)) \leq P$. Since $P_0 \leq P$, if $P_0 \neq 1$ then $P_1 := P_0 \cap Z(P) \neq 1$. By B.1, P contains a Sylow p-subgroup of G. Thus P_1 centralizes every p'-element of G as well as a Sylow p-subgroup of G. This forces $P_1 \leq C_A(G)$, which is trivial by Step 1; and so $P_0 = 1$ as well. This proves Step 3.

Wielandt's Theorem now follows easily: For all primes p not dividing |G| we have $O^p(G) = G$; and so from Step 3, each corresponding $O_p(A)$ is bounded by the order of a Sylow p-subgroup of Aut(G). Since these $|O_p(A)|$ are relatively prime for different p, the direct factor of F(A) consisting of all $O_p(A)$ for p not dividing |G| is bounded in order by |Aut(G)|. By Step 3 we thus have

$$|F(A)| \le |\operatorname{Aut}(G)| \cdot \prod_{p \mid |G|} |\operatorname{Aut}(O^p(G))|.$$

Combining this with Step 2 gives

$$|F^*(A)| \le |E(G)| \cdot |\operatorname{Aut}(G)| \cdot \prod_{p \mid |G|} |\operatorname{Aut}(O^p(G))|.$$

So $|A_n|$ is (crudely) bounded above, independent of n in (*), by B.7 applied to the above.

Exercises

Let G be a finite group with Z(G) = 1. Adopt the notation of (*).

- 1. Prove that $N_A(G) = A_1$. Deduce that if $G \leq A$ then $A_2 = A_1$, i.e., the tower terminates in at most one step.
- 2. Let G be a direct product of non-abelian simple groups. Prove that $A_2 = A_1$ in (*).

References

- [Asc] Finite Group Theory, M. Aschbacher, Cambridge U. Press, 1986.
- [DF] Abstract Algebra, third edition, D. Dummit and R. Foote, Wiley, 2003.
- [Zas] The Theory of Groups, H. Zassenhaus, Chelsea, 1958.

Appendix — Cited exercises from [DF]

- 4.1.1. If $\sigma \in \operatorname{Aut}(G)$ and ϕ_g is (left) conjugation by g prove that $\sigma \phi_g \sigma^{-1} = \phi_{\sigma(g)}$. Deduce that $\operatorname{Inn}(G) \leq \operatorname{Aut}(G)$. (The group $\operatorname{Aut}(G)/\operatorname{Inn}(G)$ is called the *outer automorphism group* of G.)
- 4.5.34. Let $P \in Syl_p(G)$ and assume $N \leq G$. Use the conjugacy part of Sylow's Theorem to prove that $P \cap N$ is a Sylow *p*-subgroup of N. Deduce that PN/N is a Sylow *p*-subgroup of G/N. (This may also be done by the Second Isomorphism Theorem—cf. Exercise 9, Section 3.3.)
- 5.4.18. Let K_1, K_2, \ldots, K_n be non-abelian simple groups and let $G = K_1 \times K_2 \times \cdots \times K_n$. Prove that every normal subgroup of G is of the form G_I for some subset I of $\{1, 2, \ldots, n\}$ (where G_I is the direct product of the K_i for $i \in I$). [Hint: If $N \trianglelefteq G$ and $x = (a_1, \ldots, a_n) \in N$ with some $a_i \neq 1$, then show that there is some $g_i \in G_i$ not commuting with a_i . Show $[(1, \ldots, g_i, \ldots, 1), x] \in K_i \cap N$ and deduce $K_i \leq N$.]