Wielandt's Theorem on Automorphism Towers Notes by Richard Foote

I have always wondered whether Wielandt's Theorem on the finiteness of automorphism towers could be made more transparent by couching a proof in the more modern terminology of components, etc. (One classic book containing a proof is [Zas], Appendix G.) Here is my attempt. I make no claim that this proof is better, shorter or even significantly different from either the original or proofs in various books; but rather this is a record of my musings on the subject. I am also especially grateful to Dr. Hy Ginsberg for his careful reading and stimulating comments on these notes.

Notation is standard, as may be found in $[\mathbf{DF}]$ or $[\mathbf{Asc}]$. All groups in this note are finite. Throughout the notes, "acts" means "acts by conjugation." For completeness, the cited exercises from $[\mathbf{DF}]$ are included in the Appendix at the end of Section C. Section D, added later, is an interesting, self-contained example.

Recall that a group G acts on itself by conjugation resulting in a homomorphism

$$G \longrightarrow \operatorname{Aut}(G)$$

whose kernel is the center of G (see [**DF**], Section 4.4 and its exercises for definitions and basic facts). In particular, if Z(G) = 1, then this is an embedding, and we may identify G with its group of inner automorphisms, which, by Exercise 4.4.1, forms a normal subgroup of Aut(G). It is immediate too from this exercise that if G has trivial center, then the center of Aut(G) is likewise trivial, so we may repeat the process. Replacing the homomorphisms, as above, by containments, we then iteratively obtain a tower:

If
$$Z(G) = 1$$
 we have
 $G = A_0 \trianglelefteq A_1 \trianglelefteq A_2 \trianglelefteq \dots \trianglelefteq A_n = A$ where $A_{i+1} = \operatorname{Aut}(A_i), \quad 0 \le i \le n-1.$
(*)

Wielandt's beautiful result asserts that this automorphism tower eventually stabilizes:

Theorem (*H. Wielandt, 1939*) Under the hypotheses of (*), there is some N such that $A_i = A_N$ for all $i \ge N$. (Equivalently, in any such tower, the order of A_n is bounded by some function of |G|, independent of n.)

Note that the order of the automorphism group of any centerless group X is bounded by |X|!because $\operatorname{Aut}(X)$ faithfully permutes the elements of X. Therefore, to prove Wielandt's Theorem it suffices to find certain (finitely many) specific subgroups X_i of G such that $|A_n|$ is bounded in terms of $|\operatorname{Aut}(X_i)|$. At the heart of this process lies the generalized Fitting subgroup of G, and its fundamental property, due to Helmut Bender. For convenience we review this subject area.

B. Background Preliminaries

Let p be a prime and let X, H be groups. The results in this section, labeled **B.i** for integers **i**, might be considered as part of the "bread-and-butter" toolkit for finite group theorists! Experts may skip this section.

Recall that H is a subnormal subgroup of X if there is a chain

$$H = H_0 \trianglelefteq H_1 \trianglelefteq \dots \trianglelefteq H_m = X \tag{(**)}$$

where each H_i is normal in H_{i+1} (but not necessarily normal in X). This is usually denoted by $H \leq X$. For example, by **[DF]** Section 6.1, every subgroup of a nilpotent group is subnormal

(and conversely). Note that "subnormality" is transitive. Also, such H is subnormal in every subgroup of X containing it.

A subgroup L of X is called a *component* of X if the following hold:

- (i) $L \trianglelefteq \trianglelefteq X$,
- (ii) L is perfect, i.e., L = [L, L], and
- (iii) L/Z(L) is a (non-abelian) simple group.

A group satisfying only (ii) and (iii) is called *quasisimple*; so a component of X is a quasisimple subnormal subgroup of X. Non-abelian simple groups are, a fortiori, quasisimple. $SL_2(\mathbb{F}_5)$ is a quasisimple group of order 120 with a center of order 2.

Define E(X) to be the group generated by all components of X.

- **B.1** $E(X) = L_1 * L_2 * \cdots * L_r$ is a (commuting) central product of all the components L_i of X. (*Proof:* See [Asc], 31.7.)
- **B.2** The only normal subgroups of E(X) are products of some of the L_i together with some subgroup of the center of E(X). (*Proof:* Ibid. This follows also from [**DF**], Exercise 5.4.18 applied to E(X)/Z(E(X)).)
- **B.3** The *Fitting subgroup* of X, denoted by F(X), is the largest normal nilpotent subgroup of X. Also,

$$F(X) = O_{p_1}(X) \times O_{p_2}(X) \times \dots \times O_{p_s}(X)$$

where p_1, \ldots, p_s are all the distinct primes dividing |X|. (*Proof:* Easy exercise. See [Asc], 31.8.)

B.4 E(X) and F(X) commute and are both characteristic in X. (*Proof:* This follows from B.2 and B.3; see also [Asc], 31.12.)

Define the generalized Fitting subgroup of X, denoted by $F^*(X)$, to be $F^*(X) := F(X)E(X)$.

- **B.5** (The Generalized Fitting Subgroup Theorem) $C_X(F^*(X)) = Z(F^*(X))$. (Proof: See [Asc], 31.13. Note that $F^*(X)$ is characteristic in X.)
- **B.6** As a direct consequence of B.5 and the opening remarks of this note we get:

For any finite group X, $|X| \leq |Z(F^*(X))| \cdot |\operatorname{Aut}(F^*(X))|.$

In particular, if $M = |F^*(X)|$, then an upper bound for |X| is $M \cdot M!$. This is crude because, in particular, automorphisms of a group cannot be arbitrary permutations of that group: they must all fix the identity, preserve the orders of elements, etc.

B.7 (*Three Subgroups Lemma*) Let H, E be any subgroups of X with E perfect. If [H, E, E] = 1, then [H, E] = 1.

(*Proof:* See [Asc], 8.9. Strictly speaking this is just a consequence of the more generally formulated Three Subgroups Lemma in [Asc].)

Recall that $O^p(X)$ is the *smallest* normal subgroup of X for which $X/O^p(X)$ is a p-group. It is easy to see that $O^p(X)$ is the subgroup generated by all elements of X of order prime to p.

B.8 If $H \leq A$ and |X : H| is a power of p, then $O^p(X) = O^p(H)$. (*Proof:* This is an easy induction on m in (**).)

C. Proof of Wielandt's Theorem

Henceforth let G be a finite group with Z(G) = 1. Adopt the notation of (*). By the Generalized Fitting Subgroup Theorem (or, more precisely, B.6) it suffices to bound $|F^*(A)|$ in terms of |G|. We do this by bounding |E(A)| and then |F(A)| separately, in a series of steps.

Step 1: $C_A(G) = 1$.

Proof: Proceed by induction on the length, n, of the chain in (*). If n = 0 then G = A and $C_G(G) = Z(G) = 1$. If n = 1 then the result is the observation that $A_1 = \operatorname{Aut}(G)$ acts faithfully on G, made earlier. For $n \ge 2$, by induction we have $C_{A_{n-1}}(G) = 1$. Let $C = C_A(G)$. Then since $G \le A_1$, we see that A_1 normalizes C; and since $A_1 \le A_{n-1} \le A$ we have

$$[C, A_1] \le C \cap A_{n-1} = C_{A_{n-1}}(G) = 1,$$

i.e., $C \leq C_A(A_1)$. By definition of C the reverse containment is obvious, so $C = C_A(A_1)$. Now again use induction with G replaced by A_1 , so that the chain starting at A_1 has length n - 1, to get C = 1.

Step 2: E(A) = E(G).

Proof: By induction on n we have $E(A_{n-1}) = E(G)$. Since E(G) is subnormal in A, each component of E(G) is likewise a component of A, hence is a component of E(A). Let E_2 be the central product of all components of A that are *not* contained in G (so not in A_{n-1} too), hence by B.1:

$$E(A) = E(G) * E_2$$

where * denotes central product; and both factors are normalized by G. Since $G \leq A_{n-1} \leq A$ we have

$$[G, E_2] \le E_2 \cap A_{n-1}.$$

Since the right-hand side intersection above is normal in E_2 , by definition of E_2 and B.2 we have $[G, E_2] \leq Z(E_2)$. Thus $[G, E_2, E_2] = 1$. Since E_2 is perfect, by B.7 we have $[G, E_2] = 1$, i.e., $E_2 \leq C_A(G)$. The result now follows from Step 1.

Step 2 accomplishes the first stage of our proof of Wielandt. We next bound |F(A)| in terms of |G|. It suffices to bound the number of distinct primes p dividing |F(A)| and each $|O_p(A)|$.

Step 3: For every prime p, $O_p(A)$ normalizes and acts faithfully by conjugation on $O^p(G)$. Moreover, if p does not divide |G| then $O_p(A) = 1$.

Proof: For an arbitrary prime p let $X = O_p(A)G$, and let P be a Sylow p-subgroup of X. By B.8,

$$O^p(G) = O^p(X) \le X,\tag{3.1}$$

as needed for the normality assertion. Note too that $X = PO^p(G)$. Let $P_0 = C_P(O^p(G)) \leq P$. Since $P_0 \leq P$, if $P_0 \neq 1$ then $P_1 := P_0 \cap Z(P) \neq 1$. Thus P_1 centralizes both P and $O^p(G)$, which generate X. Hence $P_1 \leq C_X(G)$, which is trivial by Step 1; and so $P_0 = 1$ as well. Since $O_p(A) \leq O_p(X) \leq P$, this proves the second assertion of Step 3. Moreover, if p does not divide |G|, then $O^p(G) = G$ and so by (3.1) we have $[O_p(A), G] \leq O_p(A) \cap G = 1$, i.e., $O_p(A) \leq C_X(G) = 1$, as needed to finish the proof of Step 3. Wielandt's Theorem now follows easily: By Step 3, for all primes p not dividing |G| we have $O_p(A) = 1$, and we also have

$$|F(A)| \le \prod_{p \mid |G|} |\operatorname{Aut}(O^p(G))|.$$

Combining this with Step 2 gives

$$|F^*(A)| \le |E(G)| \cdot \prod_{p \mid |G|} |\operatorname{Aut}(O^p(G))|.$$

So $|A_n|$ is (crudely) bounded above, independent of n in (*), by B.6 applied to the above. (In fact, $|F^*(A)|$ divides the above product, even when we replace each factor of $|\operatorname{Aut}(O^p(G))|$ by just its p-part.)

Exercises

Let G be a finite group with Z(G) = 1. Adopt the notation of (*).

- 1. Prove that $N_A(G) = A_1$. Deduce that if $G \leq A$ then $A_2 = A_1$, i.e., the tower terminates in at most one step.
- 2. Let G be a direct product of non-abelian simple groups. Prove that $A_2 = A_1$ in (*).
- 3. What hypotheses do you need on an arbitrary tower (*)—where each $A_i \leq A_{i+1}$ but A_{i+1} need not equal Aut (A_i) —to obtain the bound on $F^*(A)$ at the end of the proof? [Note that Steps 2 and 3 only rely on Step 1 of the proof.]

References

- [Asc] Finite Group Theory, M. Aschbacher, Cambridge U. Press, 1986.
- [DF] Abstract Algebra, third edition, D. Dummit and R. Foote, Wiley, 2003.
- [Zas] The Theory of Groups, H. Zassenhaus, Chelsea, 1958.

Appendix — Cited exercises from [DF]

- 4.1.1. If $\sigma \in \operatorname{Aut}(G)$ and ϕ_g is (left) conjugation by g prove that $\sigma \phi_g \sigma^{-1} = \phi_{\sigma(g)}$. Deduce that $\operatorname{Inn}(G) \leq \operatorname{Aut}(G)$. (The group $\operatorname{Aut}(G)/\operatorname{Inn}(G)$ is called the *outer automorphism group* of G.)
- 5.4.18. Let K_1, K_2, \ldots, K_n be non-abelian simple groups and let $G = K_1 \times K_2 \times \cdots \times K_n$. Prove that every normal subgroup of G is of the form G_I for some subset I of $\{1, 2, \ldots, n\}$ (where G_I is the direct product of the K_i for $i \in I$). [Hint: If $N \trianglelefteq G$ and $x = (a_1, \ldots, a_n) \in N$ with some $a_i \neq 1$, then show that there is some $g_i \in G_i$ not commuting with a_i . Show $[(1, \ldots, g_i, \ldots, 1), x] \in K_i \cap N$ and deduce $K_i \leq N$.]

D. Example of Towers of Arbitrary Length

This discussion creates strictly increasing automorphism towers of arbitrary length (for different starting groups G). The fundamental idea is that if $K := \langle r, s \rangle$ is a dihedral group of order 2^{N+1} for $N \ge 2$ with usual generators r, s of orders $2^N, 2$ respectively, and if $K_i := \langle r^{2^N-i}, s \rangle$, then K_i is a dihedral subgroup of order 2^{i+1} and

$$K_2 \leq K_3 \leq \cdots \leq K_N = K$$
 with $K_{i+1} = N_K(K_i)$.

(We shall prove this momentarily.) This alone is not quite good enough to produce an automorphism tower because both $Z(K_i) \neq 1$ and generally $K_{i+1} \neq \operatorname{Aut}(K_i)$ —the latter is a much bigger group (see the exercises following). So we need some additional "constraints" to mitigate these shortcomings. We do this essentially by letting K act on a 2-dimensional vector space over \mathbb{F}_p for a suitable prime p. The details follow.

First let 2^n be given, for any fixed $n \ge 2$. We assert that there is some prime p such that 2^n divides p-1 as follows (sketch): Let p be a prime dividing $2^{2^{n-1}} + 1$, so $2^{2^{n-1}} \equiv -1 \pmod{p}$. One easily argues that the multiplicative order of 2 in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is 2^n . Then use Lagrange to verify that $2^n \mid p-1$. For the remainder of the discussion let p be a prime chosen with $p-1 = 2^N d$ where d is odd and $N \ge 4$. (Think of N as being large!)

Next we generalize and provide more detail for the opening paragraph. Let $K = D_{2^{N+1}d} = \langle r, s \rangle$ be the dihedral group of order $2^{N+1}d$, where d is odd, with the usual generators r, s of orders 2^Nd and 2 respectively. Let $R_i = \langle r^{2^{N-i}} \rangle$ be the unique subgroup of $\langle r \rangle$ of order 2^id for $1 \leq i \leq N$, and let $K_i = \langle R_i, s \rangle$ be the dihedral subgroup of K or order $2^{i+1}d$ containing s. We sketch that

$$K_i$$
 is a subgroup of index 2 in K_{i+1} and $N_K(K_i) = K_{i+1}$. (1)

It is easy that $K_i \leq K_{i+1}$ and $|K_{i+1} : K_i| = 2$ so $K_i \leq K_{i+1}$. To show K_{i+1} is the full normalizer of K_i in K, first compute that $[r^m, s] = r^{-2m}$. This implies that $[R_m, s] = R_{m-1}$ for every $m \geq 2$. Let $N = N_K(K_i)$, so $K_{i+1} \leq N$. To prove the reverse containment observe that $N \cap \langle r \rangle$ is a cyclic subgroup of index 2 in N containing R_{i+1} , hence it must equal R_m , for some $m \geq i+1$. Since $s \in K_i$ we have $[R_m, s] = R_{m-1} \leq K_i$, hence $m - 1 \leq i$, as needed for the reverse containment, and so (1) holds.

[Note that, up to conjugacy in K, there are two choices for the generator s, namely a given s and then rs. The proof in the preceding paragraph works regardless of which conjugate we choose; and this is reflected by the fact that s and rs are conjugate under the outer automorphism of K of order 2, given by the action of $D_{2^{N+2}d}$ containing K as a (normal) subgroup of index 2.]

Next let $V = E_{p^2}$ be the the elementary abelian group of order p^2 for p as above. Note that $\operatorname{Aut}(V) = GL_2(\mathbb{F}_p)$, which has order $p(p-1)^2(p+1)$. It is helpful to notice that because $4 \mid p-1$ and (p-1, p+1) = 2, we get $4 \nmid p+1$, so a Sylow 2-subgroup of $GL_2(\mathbb{F}_p)$ has order 2^{2N+1} . We shall write $GL_2(\mathbb{F}_p)$ as a 2×2 matrix group with identity I. Let $\mathbb{F}_p^{\times} = \langle \zeta \rangle$, so ζ is a primitive $(p-1)^{\text{st}}$ root of unity in \mathbb{F}_p . Define the following elements of $GL_2(\mathbb{F}_p)$:

$$z = \zeta I = \begin{pmatrix} \zeta & 0 \\ 0 & \zeta \end{pmatrix}$$
 $r = \begin{pmatrix} \zeta & 0 \\ 0 & 1 \end{pmatrix}$ $s = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

so |r| = p - 1 = |z|; also, $s^2 = 1$ and $r^s = srs = \begin{pmatrix} 1 & 0 \\ 0 & \zeta \end{pmatrix}$. Let $Z = \langle z \rangle \cong Z_{p-1}$ (this is the center of $GL_2(\mathbb{F}_p)$). Thus $\langle r, r^s \rangle$ is homocyclic abelian of order $(p-1)^2$ and

$$\langle r, s \rangle \cong (Z_{p-1} \times Z_{p-1}) \cdot Z_2 \cong Z_{p-1} \wr Z_2.$$

Note that $Z \leq \langle r, s \rangle$, and $\langle r, s \rangle$ is the largest subgroup of $GL_2(\mathbb{F}_p)$ that permutes the two eigenspaces of r acting on V spanned by (1,0) and (0,1). [We could further argue that $\langle r, s \rangle$ is a maximal subgroup of $GL_2(\mathbb{F}_p)$.]

Next we define certain subgroups of $\langle r, s \rangle$. For each $0 \leq i \leq N$ let

$$r_i := r^{2^{N-i}}, \quad \text{so } |r_i| = 2^i d.$$

Now let

- (a) $W_i := \langle r_i, s \rangle \cong Z_{2^i d} \wr Z_2$
- (b) $C_i := \langle r_i r_i^s \rangle = Z \cap W_i \cong Z_{2^i d}$
- (c) $L_i := \langle W_i, Z \rangle \cong (Z_{2^i d} \wr Z_2) * Z_{p-1}$ where the two factors in this central product intersect in the cyclic group C_i .

Next note that

$$(\zeta^{-(2^N-i)}I) \cdot r_i^s = \begin{pmatrix} \zeta^{-(2^N-i)} & 0\\ 0 & \zeta^{-(2^N-i)} \end{pmatrix} \begin{pmatrix} 1 & 0\\ 0 & \zeta^{2^{N-i}} \end{pmatrix} = r_i^{-1}.$$

In other words, conjugation by s inverts $r_i \pmod{Z}$. Since $\langle r_i \rangle \cap Z = 1$, the order of $r_i \pmod{Z}$ in L_i/Z is the same as $|r_i|$, hence we have

(d) $L_i/Z \cong D_{2 \cdot (2^i d)}$.

It follows that

(e) $L_2 \leq L_3 \leq \cdots \leq L_N$ with each $|L_{i+1} : L_i| = 2$,

where, since Z is contained in every L_i , one can verify this computation by working (mod Z) and just comparing successive orders.

We also easily have:

(f) $L'_i = W'_i = \langle [r_i, s] \rangle = \langle r_i^{-1} r_i^s \rangle \cong Z_{2^i d}$, for $i \ge 2$.

We also need a couple of facts about the projective linear groups $PGL_2(\mathbb{F}_p) := GL_2(\mathbb{F}_p)/Z$ and $PSL_2(\mathbb{F}_p) := SL_2(\mathbb{F}_p)Z/Z$. Proofs are relegated to the exercises at the end of this section.

(g) $|PGL_2(\mathbb{F}_p)| : PSL_2(\mathbb{F}_p)| = 2$. Also, $PSL_2(\mathbb{F}_p)$ has one class of involutions (it is sufficient that conjugation takes place in $GL_2(\mathbb{F}_p)$), and the centralizer in $PGL_2(\mathbb{F}_p)$ of a (projective) involution in $PSL_2(\mathbb{F}_p)$ is isomorphic to L_N/Z .

The key "taming" construction is as follows. Let X be the semidirect product $V \rtimes GL_2(\mathbb{F}_p)$, where the action of $GL_2(\mathbb{F}_p)$ on V is the natural one. For each $i \geq 2$ let $A_i := V \rtimes L_i \leq X$. Note that A_i is a normal subgroup of index 2 in A_{i+1} . Also observe that the non-abelian group L_i acts faithfully and (consequently also) irreducibly on V, so it follows easily that

$$Z(A_i) = 1, \qquad 2 \le i \le N.$$

We finish the main proof by arguing that as abstract groups,

$$A_{i+1} \cong \operatorname{Aut}(A_i), \qquad 2 \le i \le N - 1. \tag{2}$$

Fix $i \geq 2$, let $B := \operatorname{Aut}(A_i)$, and identify A_i as a normal subgroup of B as before. Note that $V = O_p(A_i)$ is characteristic in A_i , so under this identification $V \trianglelefteq B$. Since A_{i+1} acts faithfully by conjugation on A_i , we have $A_{i+1} \le B$.

We first claim

B acts on V with the kernel of this action equal to V, for all
$$i \ge 2$$
. (3)

To see this, let $C = C_B(V)$. Thus C centralizes V and commutes with the faithful action of L_i on V; so C also acts trivially on A_i/V . Hence C stabilizes the chain $1 \le V \le A_i$, i.e., acts trivially on the two successive quotients. (See Corollary 32 and its following paragraph in Section 17.3 of [**DF**] for relevant definitions and results on stability groups.) By Corollary 17.2.29 in [**DF**] the cohomology group $H^1(V, L_i)$ is trivial because $(|V|, |L_i|) = 1$, and so C = V as desired. [Proofs of (3) can also be accomplished by more elementary means, such as Maschke's Theorem, etc.!]

We need a lemma that allows us to deal with abstract groups, rather than the groups L_i defined in terms of their specific representations on V.

Lemma. Let M be a subgroup of $GL_2(\mathbb{F}_p)$ isomorphic (as an abstract group) to L_i for some $i \ge 2$. Then $|N_{GL_2(\mathbb{F}_p)}(M) : M| = 2$ when i < N and equals 1 when i = N.

Proof: Note that the non-abelian group M acts faithfully, hence also irreducibly, on the 2dimensional space V. The abstract group M has Z(M) a cyclic group of order p-1. Since \mathbb{F}_p contains the $(p-1)^{\text{st}}$ roots of unity, by Schur's Lemma Z(M) consists of scalar matrices, i.e., $Z = Z(M) \leq M$. (Note that Z is represented by scalar matrices for every choice of basis of V.)

Since by (d), M/Z(M) is dihedral of order $2^{i+1}d$, this quotient group has a unique cyclic subgroup of order $2^i d$. Let overbars denote passage to $GL_2(\mathbb{F}_p)/Z = PGL_2(\mathbb{F}_p)$. By (d), both $\overline{L_i}$ and \overline{M} are dihedral of order $2^{i+1}d$, with $Z(\overline{M})$ of order 2. By (g), $|PGL_2(\mathbb{F}_p) : PSL_2(\mathbb{F}_p)| = 2$, and since $i \geq 2$, $Z(\overline{M})$ and $Z(\overline{L_1})$ both belong to $PSL_2(\mathbb{F}_p)$. Also by (g), the latter group has one class of involutions, so we may replace \overline{M} by a conjugate to assume

$$Z(\overline{M}) = Z(\overline{L_i}) := \langle \overline{u} \rangle.$$

Thus again by (g),

$$\overline{M}, \overline{L_i} \le C_{PGL_2(\mathbb{F}_p)}(\overline{u}) = \overline{L_N}.$$

In particular, \overline{M} is a dihedral subgroup of order $2^{i+1}d$ in the dihedral group $\overline{L_N}$. The Lemma now follows from (1) together with the remarks following that proof.

We can now finish the proof of (2). By (3), B/V embedds into GL(V), so we may identify B/V as a subgroup of $GL_2(\mathbb{F}_p)$ with A_i/V then identified with some subgroup, B_i , of $GL_2(\mathbb{F}_p)$ isomorphic to L_i as an abstract group. (We do *not* assume that B itself embeds into X.) Under this identification, $A_i/V = B_i \leq B/V$. Since i < N, by the preceding Lemma applied to $M = B_i$ we get that $|N_{GL_2(\mathbb{F}_p)}(B_i)| = 2|B_i|$. Since $A_i \leq A_{i+1} \leq B$ and $|A_{i+1} : A_i| = 2$, we must have $A_{i+1}/V = B/V$ and so $B = A_{i+1}$, as claimed. This completes the main proof.

Thus, starting at $G = A_2$ we get a strictly increasing automorphism tower of length N - 2:

$$G = A_2 \trianglelefteq A_3 \trianglelefteq \cdots \trianglelefteq A_N$$
 where $A_{i+1} = \operatorname{Aut}(A_i)$ and $|A_{i+1} : A_i| = 2, \quad 2 \le i \le N-1$

Here we chose N first, and then constructed G (depending on N) to have a tower of length at least N-2, which, by Wielandt's Theorem, nonetheless ultimately terminates (see Exercise 3 below).

Remarks:

1. Once we know that (|V|, |B/V|) = 1, the extension of B/V by V splits by Schur's Theorem (cf., [**DF**], Section 17.4), independent of knowing that $B = A_{i+1}$; so B embeds into X for this reason as well.

2. Much of this discussion could be simplified by relying on Dickson's list of all subgroups of $PGL_2(\mathbb{F}_p)$ (see [**Di**], XII or [**Hu**], II.7 and 8): Quote these to produce the entire chain of projective subgroups L_i/Z together with identifying their normalizers, take preimages in $GL_2(\mathbb{F}_p)$, and then define the groups $A_i = V \rtimes L_i$ in X to proceed accordingly. We leave it to the reader to write this up!

Exercises

- 1. Show that if K is the dihedral group of order $2^{N+1} \ge 8$, then $|\operatorname{Aut}(K)| = 2^{2N-1}$. [Hint: Use the usual presentation for K and find the number of pairs of generators r', s' that satisfy the "same" (corresponding) relations. (See the end of Section 6.3 of $[\mathbf{DF}]$.)]
- 2. Prove, independent of Exercise 1, that $K = D_{2^{N+1}}$ has no nontrivial odd order automorphisms for all $N \ge 2$.
 - [Hint: You may quote Burnside's Basis Theorem from Section 6.1 of [DF].]
- 3. In the notation of this example, show that $\operatorname{Aut}(A_N) = A_N$, i.e., the automorphism tower terminates at *exactly* length N 2. (Thus, by starting with G equal to some A_k for suitable $k \geq 2$ and "large" enough N, we may construct explicit strictly increasing automorphism towers that terminate in any given positive integer length.)

[Hint: Likewise V is characteristic in $A_N = L_N$, hence V is normal in Aut (A_N) . Follow the proof of (3).]

- 4. Prove that $|PGL_2(\mathbb{F}_p) : PSL_2(\mathbb{F}_p)| = 2$. [Hint: Every matrix D in $GL_2(\mathbb{F}_p)$ is equivalent mod Z to itself times a scalar matrix. Use this to show that D is equivalent to a matrix whose determinant is a square in \mathbb{F}_p^{\times} ; then use that $|\mathbb{F}_p^{\times} : (\mathbb{F}_p^{\times})^2| = 2$.]
- 5. Prove that $PSL_2(\mathbb{F}_p)$ has no subgroup of index 2, for any odd prime p. [Hint: One "group-theoretic" way is to suppose there is some H_1 with $|PSL_2(\mathbb{F}_p) : H_1| = 2$, let $g \in PGL_2(\mathbb{F}_p) - PSL_2(\mathbb{F}_p)$ and let $H = H_1 \cap H_1^g$; so $H \leq PGL_2(\mathbb{F}_p)$ and is of index 4 or 8 by the preceding exercise. Use (1) on page 5 to show H must have cyclic Sylow 2-subgroups; then quote Exercise 4.5.49 in [**DF**] to show that H has a normal 2-complement, Y. Deduce that $Y \leq PGL_2(\mathbb{F}_p)$, and use that the latter group is doubly transitive on the p+1 lines in V to get that Y is transitive on these p+1 lines, a contradiction because p+1 is even. (Alternatively, Y contains all the p+1 Sylow p-subgroups of $PGL_2(\mathbb{F}_p)$.)]
- 6. Prove that $PSL_2(\mathbb{F}_p)$ has one class of involutions (it is sufficient for our proof that conjugation takes place in $GL_2(\mathbb{F}_p)$ although one could show that $PSL_2(\mathbb{F}_p)$ itself has one class), and that the centralizer in $PGL_2(\mathbb{F}_p)$ of a projective involution in $PSL_2(\mathbb{F}_p)$ is isomorphic to L_N/Z . [Hint: One way is to use Jordan canonical forms to show that every element of order 4 in $SL_2(\mathbb{F}_p)$ is conjugate (in $GL_2(\mathbb{F}_p)$) to $u = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, where $i^2 = -1$ in \mathbb{F}_p (u maps to an involution in the projective group); then easily calculate the structure of $N_{GL_2(\mathbb{F}_p)}(\langle u \rangle)$ either by direct computation or by noting that the latter group permutes the two eigenspaces of u.

Another way is to use Thompson's Transfer Lemma, $[\mathbf{DF}]$ Exercise 17.3.6, together with the preceding exercise.]

References

- [Di] Linear Groups with an Exposition of the Galois Field Theory, L.E. Dickson, Dover, 1958.
- [Hu] Enliche Gruppen I, B. Huppert, Springer, 1967.