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Abstract

As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest

biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations.

Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation.

Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical

tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and

species. We address this issue using a model that estimates individual tree response to climate variables while

accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our

model allows for inference about variance within and among species. We quantify how variables influence above-

ground biomass growth of individual trees from a representative sample of 15 northern or southern tree species

growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response

to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a spe-

cies was wider than mean differences among species. The effects of mean temperature and summer moisture stress

interacted, such that warm years produced positive responses to summer moisture availability and cool years pro-

duced negative responses. As climate models project significant increases in annual temperatures, growth of species

like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the

past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses

to tree size and age. This means that measuring or predicting the physical structure of current and future forests

could tell us more about future C dynamics than growth responses related to climate change alone.
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Introduction

Tree growth is known to vary annually with fluctua-

tions in climate. In poor growing years, little to no

wood grows around the outer dimensions of a tree

stem, while favorable years produce higher than aver-

age growth in all dimensions. These growth variations

have implications for the global carbon (C) cycle

when scaled up to populations of trees, particularly

when extreme events such as droughts cause wide-

spread perturbations that lead to decline or mortality.

Growing forests are important sinks for atmospheric

carbon (Pan et al., 2011), which means they take up

and store more C through tissue growth than they

release through respiration, decay or other processes.

An individual tree sequesters C by assimilating CO2

during photosynthesis and growing structural carbo-

hydrates that make up the wood matrix. Carbon

accounts for ½ of wood mass on average (but see

Thomas & Malczewski, 2007), and remains stored in

wood fibers for decades to centuries until it is

released back to the atmosphere through combustion

or decay. Annual variation in wood growth is often

the most dynamic component of the terrestrial C cycle

and needs to be quantified to predict forest response,

and potential feedbacks, to climate change.
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Rates of forest C accumulation may be expected to

change with climate if communities of tree species

respond in unison to increasing annual temperatures

and growing season moisture stress. Yet communities

may not respond uniformly for a number of reasons.

Temperate forests are composed of many interacting

species with unique life history and physiological traits

that cause them to respond differently. Within species,

individual differences in size, age, and competitive

environment further govern climate–growth response

(Mart�ınez-Vilalta et al., 2011; Zhang et al., 2015). This

variation among individuals and within species intro-

duces uncertainty to projections of forest growth under

climate change and remains poorly characterized

(Carrer, 2011).

Forest communities and their potential for C seques-

tration may also be altered if climate change leads to

migration of warm-adapted tree species. Species’ geo-

graphic distributions reflect historical tolerances to

climate, leading to predictions of large-scale migration

of tree species toward the poles or higher elevations

with warming temperatures (Little, 1971; Iverson & Pra-

sad, 1998; Landscape Change Research Group, 2014),

under the assumption that species are able to track their

historic climate envelopes in geographic space. Zhu

et al. (2012, 2014) demonstrated this expected migration

is not yet apparent in large-scale forest inventory data

and satellite data have shown examples of montane tree

species shifting in directions counter to climate expecta-

tions (Foster & D’Amato, 2015). As tree migration

appears to lag the velocity of climate change, relative

growth rates of currently co-occurring species will

remain an important driver of forest composition and C

accumulation over the next 50–100 years.

Two factors have limited our understanding of the

impact of climate variation on annual wood growth of

forest trees: (i) Analyses often rely on suboptimal mea-

sures of growth; and (ii) inferences are often based on

models fit to nonrepresentative samples of trees. First,

analyses commonly rely on one-dimensional (e.g.,

diameter growth along a single radius) or dimension-

less (e.g., standardized ring-width) indices of wood

growth, rather than mass-based measures. This

approach limits understanding of how tree size relates

to annual growth variation. Tree growth in terms of

mass (and C accumulation) increases with tree size, as

recently demonstrated across a global dataset (Stephen-

son et al., 2014). This suggests that size may mediate

the effects of climate reported for dimensionless growth

indices, but the importance of size relative to climate

response remains unresolved (Chu et al., 2015;

Michaletz et al., 2015).

Although these one-dimensional and dimensionless

indices of wood growth can provide many useful

insights about forest ecosystems, using them to assess

forest C balance ignores the fact that whole-tree growth

is not directly analogous to diameter growth. Wood

growth is measured in practice by changes in the diam-

eter of a tree stem (DBH), and this radial growth pro-

vides the basis for a century’s worth of growth and

yield models. Models are necessary because changes in

diameter are one-dimensional (e.g., linear), yet wood

growth is a multidimensional process characterized by

volume and wood density. As such, tree growth is best

quantified by the mass of wood (e.g., the biomass)

grown as a layer over the stem and branches (and

roots) in a given year (Assmann, 1970). While changes

in tree diameter are correlated with biomass increment,

the relationship is not linear and is species-specific

(Jenkins et al., 2004). As a result, patterns in diameter

growth, as measured from ring-widths (Fig. 1a), cannot

accurately represent patterns of tree biomass growth

(Fig. 1b) (LeBlanc, 1990; Visser, 1995). Trees whose

growth appears identical in the single dimension of

diameter, may actually be producing biomass at rates

that differ by orders of magnitude, largely due to differ-

ences in stem geometry (i.e., the location of diameter

increment on a stem of larger or smaller circumference),

stature, and wood density (Fig. 1a, b). Further obscur-

ing these differences, tree-ring data are often standard-

ized to create dimensionless indices that correlate with

climate parameters (Cook & Peters, 1997) subsequently

hiding meaningful differences in biomass (Fig. 1c).

These dimensional differences are real, and have signif-

icant implications for questions that depend on the

absolute mass of wood growth. This distinction is

important when we want to know how climate change

will affect growth of competing tree species that differ

in stature and impact the potential for C sequestration

in forest wood.

A second factor that limits understanding of tree

growth is the fact that tree-ring studies aimed at histori-

cal climate reconstruction use unrepresentative

sampling designs that are not capable of producing

area-based estimates of growth that are scalable to for-

ests or landscapes (Brienen et al., 2012; Nehrbass-Ahles

et al., 2014). Inference based on these data can overstate

the strength of relationships between climate variation

and aggregate growth. Sampling for historical recon-

struction typically targets species and individual trees

that are old, sensitive to annual climate, and free from

competition (Fritts, 1976), thereby missing the variation

in individual response that exists within a forest

(Carrer, 2011). In contrast to the few sensitive trees suit-

able for climate reconstruction, the vast majority of

trees grow in dense forest environments where they

must compete intensely for light, growing space, and

belowground resources (Clark et al., 2012). In temperate
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biomes where closed-canopy forest conditions

dominate, climatic conditions may be less limiting to

tree growth than these other factors (Canham &

Thomas, 2010). Predicting how these forests respond to

global change requires an understanding of how popu-

lations of forest species, not just idiosyncratic individu-

als, vary mass growth with climate. Sampled trees

must be representative of populations growing in

typical canopy environments to draw meaningful infer-

ences about annual climate effects on population-level

C uptake.

We outline these limitations explicitly because stud-

ies aimed at quantifying annual climate–tree growth

relationships typically report analyses based on varia-

tion in dimensionless indices of radial growth, rather

than mass-based models, or sometimes mistakenly

conflate the two (Anderegg et al., 2015). This body of

research offers a wealth of information about the cor-

relation of one-dimensional radial growth anomalies

with various climatic parameters such as monthly or

annual temperature and precipitation. However, anal-

yses based on growth indices cannot quantify the rel-

ative impact of climate variation on individual tree

and forest biomass accumulation. As individual

biomass growth generally increases with tree size

(Stephenson et al., 2014), we expect that forests with

diverse tree sizes might experience more variation in C

accumulation rates when large trees are climate-sensi-

tive rather than small trees. Size matters, as do other

structural characteristics of forests that can affect com-

petition and growth. By considering climate, tree and

stand factors simultaneously using mass-based models,

we can begin to make inferences about how much

wood growth, C accumulation, and the carbon cycle

might be altered under a changing climate.

Here, we used an individual, that is, tree-level,

hierarchical model to characterize to what extent

whole-tree growth depends on climatic, tree, and stand

structural variation. We estimate climatic effects on

mass growth, measured from tree-ring reconstructions

of aboveground biomass increment, while simultane-

ously estimating effects of individual tree structure

(size and age) and stand competition. We tested three

broad hypotheses asking: (i) whether structural or cli-

matic covariates are stronger predictors of growth,

(ii) whether tree growth varies across individuals in
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Fig. 1 Tree growth from a large Quercus rubra (tree 1) and small Fraxinus nigra (tree 2) illustrates different metrics of tree growth.

Growth is measured in a single dimension by changes in diameter (ring-width) (a) which are roughly equivalent for these two trees,

while growth in terms of biomass for the same trees (b) follows a significantly different pattern and illustrates large departures in abso-

lute growth. Ring-width data are commonly standardized to unitless indices to relate to climate anomalies, which also obscures growth

differences between trees (c). Two trees of different species, diameter and height (d) can have similar diameter growth (in terms of

ring-width) that nonetheless corresponds to very different absolute growth in terms of wood mass and volume (a and b). The outer

rings of these diagrammed trees, although equivalent in ring-width, have been shaded to highlight how stem geometry results in very

different volume growth for trees of different stature. The specific tree records used in this example were selected to illustrate how the

growth metrics RW and RWI do not capture differences in biomass growth. These examples are not intended to indicate mean differ-

ences in growth among species or across sites.
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response to climate and whether that variation eclipses

interspecific differences, and (iii) whether climate

responses vary based on historical species range. We

standardized covariates of interest, allowing us to com-

pare the magnitude of fitted coefficients to discern their

relative effects on growth and included species-specific

spatially structured latent covariates via the addition of

a residual spatial process term.

We examine a representative sample including 15

tree species (Table 1) from a transition zone between

temperate and boreal forest biomes in northern Min-

nesota, USA. This sample included four species at the

cool northern edge of their historical range, four at their

warm southern edge, and seven species closer to the

center latitude of their range (Fig. S1). We hypothesized

that annual climate variation in this transition zone

would explain significant variation in growth, but that

the magnitude of its effects would be smaller than vari-

ation explained by structural characteristics of the trees

and forests in which they grow. We also hypothesized

that individual trees would respond differently to cli-

matic drivers. If there is widespread variation in indi-

vidual response to climate within a species, aggregate

growth among species may differ less than expected as

the climate changes. We hypothesized that growth of

species near their cool range margin would be more

temperature-sensitive (Ettinger et al., 2011), while spe-

cies at the southern edge of their range would be more

sensitive to drought. We compared the posterior distri-

butions of these climatic effects among species to evalu-

ate which species are most vulnerable or resilient to

predicted climate change.

Materials and methods

Study area

The Superior National Forest (47.8°N, 91.7°W) in Minnesota,

USA, falls within the boreal–temperate forest ecotone where

the historical distributions of cool-adapted boreal species

overlap with the northern range margins of warm-adapted

temperate species (Fig. S1). This forest transition zone is

characterized by a continental climate with cold winters and

short growing seasons. Annual temperatures across sample

sites averaged 2.34 °C (SD = 0.37 °C) and annual precipita-

tion averaged 684 mm (SD = 48 mm) from 1900 to 1970.

These annual means increased to 3.03 °C (SD = 0.25 °C) and
734 mm (SD = 44 mm) in the period 1970–2010.

Aboveground biomass growth data from tree rings

We used growth data generated from tree increment cores

that were collected in June through August of 2010. We sam-

pled 36 forest stands representing eight common forest types

in the temperate and boreal forest transition zone (Foster

et al., 2014). Within each stand, three 400 m2 circular plots

were measured for forest structural attributes. Every live

overstory tree greater than 10 cm diameter at breast height

(DBH) was mapped and cored at 1.3 m height for tree-ring

analysis. Due to the large number of trees (3245), we

extracted one core per tree. We processed and measured

increment cores using a Velmex measuring stage and stan-

dard dendrochronological techniques (Holmes, 1983). We

cross-dated tree-ring series to conspecific trees within the

same stand or geographic neighborhood using the pointer

year method (Yamaguchi, 1991) and confirmed dating using

the program COFECHA (Holmes, 1983). Correlation among

cross-dated series averaged 0.540 and ranged from 0.290–
0.732 among trees in a series (Table S1) and autocorrelation

was typically 1st or 2nd order.

We estimated whole-tree aboveground biomass in a given

year by applying species-specific allometric equations

(Table S3) to tree diameters that were reconstructed from the

tree-ring series as described in Foster et al. (2014). The biomass

increment (e.g., mass growth) for a given year was the differ-

ence between tree biomass in year t and the biomass in the

previous year. When we use the terms biomass or biomass

increment hereafter, we are referring to aboveground compo-

nents. While the minimum size for the trees sampled in 2010

was 10 cm, the time series of reconstructed diameters covering

the century prior to sampling resulted in a mean DBH for all

observations of 9.8 cm (Table S2). Tree age could be reliably

reconstructed when increment cores reached the pith, or very

close to it (Appendix S2) (Foster et al., 2014).

Table 1 Summary of observed tree biomass growth incre-

ment data (kg yr�1) by species. Minimum observed growth

for all species was 0 kg yr�1. See Appendix S2 for details on

data transformation. Standard deviations associated with the

means are shown in parentheses

Species Code

No.

trees

No.

tree

years

Mean

growth

Max

growth

Abies balsamea ABBA 365 13391 1.1 (0.9) 12.8

Acer rubrum ACRU 87 5646 1.6 (1.8) 21.9

Acer saccharum ACSA 175 12793 3.1 (3.5) 35.7

Betula papyrifera BEPA 273 19682 1.8 (1.9) 24.3

Fraxinus nigra FRNI 132 10374 0.8 (0.7) 5.2

Larix laricina LALA 10 707 0.7 (0.7) 4.9

Pinus banksiana PIBA 383 16137 2.6 (1.8) 17.4

Picea glauca PIGL 96 4395 2.1 (2.3) 25.1

Picea mariana PIMA 400 25971 1.3 (1.5) 28.6

Pinus resinosa PIRE 33 1438 3.7 (3.4) 22.6

Pinus strobus PIST 56 4243 2.6 (2.6) 19.1

Populus

grandidentata

POGR 23 1723 2.9 (2.2) 14.5

Populus

tremuloides

POTR 93 4466 4.4 (5.7) 66.1

Quercus rubra QURU 118 7803 1.8 (1.5) 10.1

Thuja occidentalis THOC 47 4876 1 (1.1) 8.5

ALL 2291 133645 1.9 (2.3) 66.1
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Climate data

We extracted monthly maximum and minimum temperature

and total precipitation for all tree-ring plot locations from the

PRISM gridded climate dataset from 1895 to 2010 (Daly et al.,

2008). PRISM data have been spatially interpolated to 30-

arcsec grid cells (~800 9 800 m) using relationships between

climate and geographic factors such as elevation, location,

coastal proximity, aspect, and orographic lift (Daly et al.,

2008). We calculated mean annual temperature (TEMP) from

the prior October to the current September and an index of

summer moisture stress for each site. We estimated monthly

potential evapotranspiration (PET) using the Hargreaves &

Samani (1982) approach, and then took the ratio of total pre-

cipitation to PET from June to August (P/PET), a common

index of growing season moisture stress (Mart�ınez-Vilalta

et al., 2011). P/PET is greater than one when precipitation

exceeds PET, while values below one represent a moisture

deficit. Across time and space, P/PET values for our study

area averaged 0.902 and ranged from 0.331–1.90 (Table S2).

To interpret model results in the context of future climate

change, we downloaded 1 degree bias-corrected and down-

scaled general circulation model (GCM) projections centered

on our study area (47.5°N Latitude and 91.5°W Longitude)

from the Coupled Model Intercomparison Project Phase 5

(CMIP5) (Maurer et al., 2007) (http://gdo-dcp.ucllnl.org/

downscaled_cmip5_projections/, accessed 2014-04-07). CMIP5

data contain climate model simulations for between 22 and 32

different GCMs and four forcing scenarios called representa-

tive concentration pathways (RCPs) (Moss et al., 2010). We

selected the radiative forcing trajectories RCP 4.5 (~4.5 W m�2

stabilized after 2100) and RCP 8.5 (~8.5 W m�2 in 2100) and

used one ensemble member per GCM (randomly selected for

GCMs with multiple runs) to construct ensemble means and

quantiles of forecast outcomes. We calculated mean annual

temperature and P/PET from CMIP5 ensemble means using

the same approach applied to historical PRISM data.

Biomass growth models

We modeled tree growth (i.e., annual aboveground biomass

increment) for 15 species as a function of tree and forest stand

structure and climatic variability using a Bayesian framework.

Differences in tree structure were quantified by tree size

(reconstructed diameter at breast height, DBH) and tree age

(measured from year of recruitment to 1.3 m height). We

account for the changing competitive environment experienced

by individual trees by incorporating the derivative of average

stand biomass growth (DERIV) (Foster et al., 2014) as a covari-

ate. DERIV is the instantaneous slope of a 30-year spline fit to

the stand-level sum of annual biomass growth. When DERIV is

positive, stand growth is increasing into available growing

space; when it is flat or negative, growing space is fully occu-

pied or decreasing. We tested growth response to climatic vari-

ability with covariates for mean annual temperature (TEMP)

and growing season moisture stress (P/PET) for the current

and two preceding years, as well as the interaction TEMP x P/

PET. We included lagged P/PET because tree growth is auto-

correlated through time, partly because trees store photosyn-

thate from previous growing seasons as nonstructural

carbohydrates to hedge against unfavorable years (Carbone

et al., 2013) and correlations were strongest in our tree-ring data

for time lags up to 2 years. We note that by including tree size

and age, we are fitting the ‘growth-related trends’ that are typi-

cally removed from tree-ring data via standardization (Cook &

Peters, 1997). The difference in our approach is that we model

these relationships as well as the residual climate response

simultaneously, rather than relying on the more typical curve

fitting approach used in dendroclimatology that is not informed

by tree size (Cook & Peters, 1981).

Model specification

In addition to the stand and climate variables described above,

we also want to account for unobserved variables that might

influence growth at local scales (e.g., soil, competition, and

disturbance) on individuals within a species. At a given tree

location s we model the log of annual biomass growth incre-

ment yt,j(si) for tree i, observation t, and species j using the

spatially varying linear regression model

yt;jðsiÞ ¼ aþ bjðsiÞ þ xt;jðsiÞ>dðsiÞ þ �t;jðsiÞ; ð1Þ

where a is the intercept, bj(si) is a species- and tree-specific

spatial random effect that provides local adjustment (with

structured dependence) to the mean, and the p 9 1 vectors

xt,j(si) and dj(si) are time-specific covariates and associated

slope parameters, respectively. Specifically, xt,j(si) comprises

tree- and stand-level variables log(AGE), log(DBH) and

DERIV, and climate variables TEMP, P/PET, (P/PET)t-1, (P/

PET)t-2, and TEMP x (P/PET). �t,j(si) captures the tree-specific

spatially uncorrelated error term. To facilitate comparison, all

variables were scaled to have mean zero and variance of one

(Gelman & Hill 2007).

We interpret the bj(si)’s as capturing the effect of unmea-

sured or unobserved covariates with spatial structure that act

on individuals of a given species. The intuition here is that we

might expect local latent environmental effects on individual

growth, but those effects may differ by species. Such spatially

structured latent variables can be captured via a spatial Gaus-

sian process (see, e.g., Banerjee et al., 2014, page 55, for details

on spatial Gaussian processes). Specifically, for a tree of spe-

cies j at generic location s, we assume spatial random effects

follow a zero-centered spatial Gaussian process, bj(s) ~ GP(0,

Cj(�;hj)), where the covariance function Cj(s,s’; hj) = Cov(bj(s),
bj(s’)) models the covariance corresponding to the pair of trees

of species j at locations s and s’. The nj 9 1 vector of process

realizations, say bj = (bj(s1), bj(s2), . . ., bj(snj))>, collected over

all trees within the jth species follows a multivariate normal

distribution N(0,Σ(hj)) with nj x nj covariance matrix Σ(hj). The
(l,k)-th element of Σ(hj) is given by Cj(sl,sk; hj) = r2jq(sl,sk; /j),

where r2j is the process variance and q is a valid spatial

correlation function with decay parameter /j. For the

subsequent analysis we use an exponential correlation func-

tion q(sl,sk; /j) = exp(-/j || sl - sk ||) where || sl - sk || is the Eucli-

dean distance between locations sl and sk. From a geostatistical

perspective, the r2j ’s can be viewed as the partial-sills whereas

measurement error variance, or nugget, is captured by the
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spatially uncorrelated zero-centered et,j(si � N(0, s2)). We

defined the effective spatial range of the posterior distribu-

tions of the bj(si)’s as the distance at which correlation is 0.05,

calculated as �log(0.05)//j.

We complete the Bayesian specification by assigning prior

distributions to each parameter. We give a and the elements of

dj(si)’s flat, that is, noninformative, priors. Variance parame-

ters r2j ’s and s2 are assumed to follow inverse-Gamma distri-

butions with a shape hyperparameter of 2 and scale set based

on exploratory analysis using species-specific models and var-

iogram analysis of model residuals. We assume the spatial

decay parameters /’s have Uniform prior distributions with

support between the minimum and maximum distance

between tree locations, which includes individuals of a species

across all stands.

Parameter inference was based on posterior distributions

that were sampled using Markov chain Monte Carlo (MCMC).

Full conditional distributions were available for all model

parameters with the exception of the spatial process parame-

ters, which were sampled using a Metropolis–Hastings algo-

rithm. Specifics about the MCMC sampling algorithm are

provided in Appendix S1.

Our central interest is in the impact of covariates on individ-

ual tree-level and species-level biomass growth. In addition to

plots of the individual and pooled posterior distributions of d,
we are interested in assessing the variability in regression coef-

ficients at the individual level within species as well as their

variability between species. We summarize these as:

Vwithin
j;k ¼

Xnj

i¼1
ðdj;kðsiÞ � �dj;kÞ2=ðnj � 1Þ ð2Þ

and

Vbetween
k ¼

XJ

j¼1
ð�dj;k � �̂dkÞ2=ðJ � 1Þ ð3Þ

for k = 1,2. . .,p and j = 1,2,. . .,J, where p was previously

defined as the number of covariates, J is the number of species,
�dj;k is mean of the �dj;kðsiÞ‘s over the nj trees within the jth spe-

cies for the kth regression coefficient, and �̂dk is the mean over

the J species �dj;k’s.
We can generate samples from the posterior distributions of

Vwithin
j;k and Vbetween

k by calculating (2) and (3) for each post-

burn-in MCMC sample of d. We generate corresponding

posterior distributions for the �dj;k‘s in a similar way.

Alternative models and model evaluation

Inference about covariate impact on individual tree vs. species

variability requires tree-specific estimates of d as specified in

(1). However, from a predictive standpoint, it might be useful

to assess the need for individual tree-level, or even species-

level, regression coefficient estimates. Therefore, we consider

two submodels of (1), first pooling over individuals within

species

yt;jðsiÞ ¼ aþ bjðsiÞ þ xt;jðsiÞ>dj þ �t;jðsiÞ; ð4Þ

then over species,

yt;jðsiÞ ¼ aþ bjðsiÞ þ xt;jðsiÞ>dþ �t;jðsiÞ; ð5Þ

We note the submodels maintain the species- and tree-

specific spatial random effects, bj(si)’s, on the model intercept

to account for any spatially structured latent variable effects

on individuals.

We assessed goodness-of-fit of the three candidate models

with the deviance information criterion (DIC) (Spiegelhalter

et al., 2002), the predictive model choice criterion (D) (Gelfand

& Ghosh, 1998; Equation 6), and a scoring rule (SR) defined in

Gneiting & Raftery (2007, Equation 27). These criteria evaluate

both the closeness of the mean predicted value to the observed

data as well as the spread of the individual predictions around

the observed data. All three criteria also penalize increasing

model complexity and poor fit to observed data. For DIC the

term pD is considered the effective number of model parame-

ters and for D the term P penalizes both under- and overfitted

models. When comparing the candidate models, the preferred

model will yield predictions with low variance that are, on

average, close to the observed data while having low model

complexity. Larger values of SR and lower values of DIC and

D indicate a better fit to the data.

Parameter posterior inference and goodness-of-fit for each

candidate model were based on 15 000 post-burn-in

samples from 3 MCMC chains (5000 from each chain). Con-

vergence was diagnosed using the CODA package in R (R

Core Team 2013) by monitoring mixing of chains and the

Gelman–Rubin statistic (Gelman & Rubin, 1992). Satisfactory

convergence was diagnosed within 25 000 iterations for all

parameters.

Results

Summary statistics

Annual tree-level biomass growth averaged 1.9 kg yr�1

across all 2291 trees and 15 species, and ranged from 0

to 66.1 kg yr�1 (Table 1). Average biomass growth of

individual species ranged from 0.7 [0.64,0.74] and 0.8

[0.78,0.81] kg yr�1 in the slowest growing Larix laricina

and Fraxinus nigra (95% CIs shown in brackets), to the

highest mean growth of 3.1 [3.1,3.2], 3.7 [3.5,3.8], and

4.4 [4.2,4.6] kg yr�1 for Acer saccharum, Pinus resinosa,

and Populus tremuloides, respectively. Most tree species

were represented by >50 and up to 400 individual trees,

although the least sampled species were only repre-

sented by 10–33 individuals (L. laricina, P. resinosa, and

P. grandidentata).

Candidate models

Based on the goodness-of-fit metrics, the full model

(Eqn 1) that allowed growth responses to vary by indi-

vidual trees within species performed better than alter-

native models that pooled tree-level data within species

(Eqn 4) or pooled data without regard to individuals or

species (Eqn 5) (Table 2). The goodness-of-fit metrics
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DIC and D were minimized while the score SR was

maximized with the full model (Table 2), indicating

that fitting individual tree responses represented the

data better even though it required estimation of a

much larger parameter set. All subsequent results and

discussion focus on the full model (1) that allowed indi-

vidual tree responses.

Species-level growth response

Tree biomass growth increased with tree size for all

species (Fig. 2a). Tree size affected growth more than

any other covariate with a mean coefficient �̂d of ~1
(0.95) across species. The effect of age on biomass

growth was also relatively large (Fig. 2b) and signifi-

cant for all species. Age had negative coefficients in the

model (�̂d = �0.61). The mean trend in stand growth

(DERIV) had a positive, although small (�̂d = 0.05), effect

on the growth of 8 of 15 species (Fig. 2c). This suggests

that individuals in these species respond similarly to

the competitive conditions reflected by the general

growth trend of the stand. We expected shade-intoler-

ant species that establish canopy dominance early in

stand development to respond most strongly to stan-

d-level competition. Similarly, we expected shade-

tolerant species to show a range of both positive and

negative growth responses to stand-level trends, under

the assumption that they can withstand more variable

Table 2 Goodness-of-fit metrics for candidate models. The

score that indicates improved fit is noted in bold

Model(1)

individual

effects

Model(4)

pooled

effects

(within species)

Model(5)

pooled

effects

(all observations)

PD 18 739 1516 1414

DIC 20 561 55 432 66 719

P 9043 11 847 12 890

D 15 870 23 436 25 519

SR 257 069 193 107 181 536
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Fig. 2 Posterior distributions for regression parameters ð�dÞ associated with the tree and stand structure covariates tree size (DBH), age,

and stand competition (DERIV). Species codes and names can be found in Table 1. Species are ordered based on the central latitude of

their historical range, with northern species at the top and southern species at the bottom. Limits on x-axis vary among panels. Signifi-

cant posterior distributions (97.5% > 0) are highlighted against a solid white background, while significant negative distributions were

highlighted with a solid tan background. Nonsignificant distributions appear against the gridded gray background.
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light conditions. Instead, half of the species with

significant positive responses to aggregate growth

trends are tolerant of shade: Abies balsamea, Picea

mariana, P. glauca, and Acer saccharum. We note

that most of the northern species responded positively

to trends in stand growth, with the exception of P.

tremuloides.

Annual climatic variation in terms of mean annual

temperature and summer moisture stress affected

growth in a variety of ways. Growth of five species

responded significantly to a combination of current

year TEMP and P/PET, characterized by negative coef-

ficients on each covariate and a positive coefficient on

the interaction term (Fig. 3). The significant interaction

indicates that annual growth response to temperature

depends on the growing season moisture stress, and

vice versa. We interpreted this interaction by plotting

growth in response to summer moisture stress for mean

annual temperatures that range from the mean TEMP

(2.8 °C) to up to �2 SD (4.8 °C) (Fig. 6). Interaction

plots show that growth decreases in response to

increasing moisture availability in cooler than average

years (blue lines), and growth increases with moisture

availability in warmer than average years (red lines).

Years with average annual temperatures show less of a

growth response across the range of summer moisture

stress (gray lines). Species with larger coefficients on

these climate parameters, such as P. grandidentata, had

a much larger overall growth response than species

with smaller coefficients, such as Q. rubra (Fig. 6). Only

three species did not show a directional biomass

growth response to any climate variables: Picea mariana,

Pinus resinosa, and Thuja occidentalis. The remaining

species showed a significant response to growing

season moisture availability from prior years. Signifi-

cant coefficients on lagged P/PET tended to be positive

for conditions 1 year prior to growth and negative for

conditions 2 years prior to growth. P. tremuloides was

unique in having a negative growth response to mois-

ture availability of both prior years, and A. saccharum

was the only species to respond positively to both. The

magnitude of climatic effects on growth represented by

standardized coefficients on the covariates was small

(means from �0.05 to 0.05) relative to coefficients for

tree size and age.

The species and tree location specific residual spatial

structure captured by the bj(si)’s represents autocorrela-
tion in growth that is not explained by the climate, tree,

or stand covariates used in the model. Posterior esti-

mates of the effective spatial range of species-specific

processes varied from approximately 10 to 40 m, with

the means of most species centered between 15 and

25 m (Fig. 4). These differences in species effective spa-

tial range and the process variance estimates, r2j ’s

(Fig. S4), suggest individual trees are responding to

unmeasured stresses or resources in species-specific

ways. Two species with the broadest effective spatial

ranges (Fig. 4), P. tremuloides and A. balsamea, are highly

preferred hosts of the native defoliators, forest tent

caterpillar (Malacosoma disstria) and spruce budworm

(Choristoneura fumiferana), respectively. The wide range

in their spatial dependence may reflect the variable pat-

terns of these and other disturbances. Residual spatial

patterns may also reflect indirect processes, such as

synchronized release of nonhost species during insect

outbreaks.

Variation in individual tree growth response

Individual, tree-level responses to the different struc-

ture and climate covariates varied (Figs 2, 3, and 5),

and for some species, widely. For example, B. papyri-

fera responses to AGE and DBH were highly vari-

able (Fig. S3), as was Pinus strobus response to the

stand-level trend DERIV (Fig. S3), and responses of P.

resinosa, Populus tremuloides, and Larix laricina to

TEMP (Fig. 5). For other species, there was much less

variation among individuals (i.e., trees all responded

about the same to the different predictors as F. nigra

did for TEMP (Fig. 5)). The cool-adapted, northern

conifers Abies balsamea, Picea mariana, P. glauca and

Pinus banksiana all had fairly narrow range of reac-

tions to all the covariates (Fig. 5). Posterior distribu-

tions of variances defined in Eqns 2–3 (Figs 5 and S4)

suggest variability among individual tree growth

response to climate was larger than variability in

response among species.

Relationship between climate response and geographic
range

Within-species variance in individual response to

TEMP or P/PET did not show a trend with the central

Latitude of species ranges. There was, however, a sig-

nificant negative trend between mean Vwithin and cen-

tral Longitude of species range (where degrees west are

represented by negative values) (VTEMP trend = �0.001,

r2 = 0.28, VP/PET trend = �0.002, r2 = 0.29). Boreal spe-

cies whose historic ranges spanned a much greater

east–west extent across Canada’s boreal forest (Fig. S1)
had higher variability in individual growth response to

TEMP and P/PET than species whose central Longi-

tude reflected ranges restricted primarily to eastern

North America. Central Latitude and Longitude of spe-

cies range was strongly, negatively correlated

(trend = �0.46, r2 = 0.72), suggesting that these geo-

graphic centroids are imperfect, if useful, proxies to

characterize species climatic niche.
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Discussion

Individual trees varied in their growth response to mean

annual temperatures and summer moisture stress. The

variation among individuals within a species appeared

to be wider than mean differences among species. The

amount that biomass growth varied in response to

annual climate was much smaller than the amount it var-

ied in response to differences in tree age and size. Tree

size affected growth more than any other covariate with

a mean coefficient �̂d of ~1 (0.95) across species. If you

consider two trees, one of mean size throughout the
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Fig. 3 Posterior distributions for regression parameters ð�dÞ associated with annual climate covariates. Climate covariates include mean

annual temperature (TEMP) (a) and growing season moisture stress derived from the ratio of summer precipitation to potential evapo-

transpiration (P/PET) for the current year (b), their interaction (c), and up to 2 years prior (P/PETt-2) (d, e). Species codes and names
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at the top and more southern species at the bottom. Limits on the x-axis vary among panels. Positively significant posterior distribu-
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tan background. Nonsignificant distributions appear against the gridded gray background.
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growth series (DBH ~ 9.8 cm) and a tree one SD larger

(+1.9 cm), these standardized coefficients mean that bio-

mass growth of the larger tree should be greater by one

SD, or about 4 kg yr�1 on average (Table S2). We are

able to quantify these effects because we model biomass

directly, which would not be possible if we modeled raw

or detrended ring-width.

Age had negative coefficients in the model

(�̂d = �0.61), which could be interpreted to mean that

biomass growth decreased with age. However, in mul-

tiple regression, covariation may influence the direction

of each effect. Tree size and age are always intertwined.

A tree cannot get bigger without also getting older, and

one generally does not get older without getting larger

(with some exceptions). When we predicted biomass

growth from tree age alone using a univariate model,

growth increased with age, as it did with size. When

tree age was added to a model that included tree size,

age acted as a correcting factor that accounts for inter-

tree variation in growth rates that have accumulated

over time. For two trees of the same size (~10 cm DBH),

one that is 10 years old and another that is 20, the

younger tree has grown twice as fast as the older one to

reach the same size, which indicates that something

about its genetics or local environment is favorable for

growth. This information improves predictions of

growth for each tree. By comparison, coefficients on

climatic variables were generally smaller than |0.05|,
meaning that their combined effects would only lower

growth by ~0.2 SD (0.8 kg for an average tree), in warm

and dry years (+1 SD TEMP, �1 SD P/PET). The

importance of size and age to predict growth, relative

to competition and climate, means that measuring or
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Fig. 5 Posterior distributions of within and between species

variances of slope parameters (V) for three climate variables.

Climate covariates include mean annual temperature (TEMP)

(a), and growing season moisture stress derived from the ratio

of summer precipitation to potential evapotranspiration (P/

PET) for the current year (b), and their interaction (TEMP 9

P/PET) (c). Similar plots for the remaining covariates can be

found in Fig. S3. Species codes and names can be found in

Table 1.
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predicting the physical structure of current and future

forests could tell us more about C uptake rates through

the year 2100 than growth responses related to climate

change alone. The wide variability in individual tree

responses further suggests that C uptake in mature

forests may be buffered and resilient to a range of

changes in climate (Fig. S2) that are projected for the

boreal–temperate forest ecotone.

Comparing climate projections to the historical record

experienced over the lifetime of the current population

helps clarify whether climate impacts on growth will

have biological significance for future competitive inter-

actions (Fig. S2). Mean annual temperature is projected

to increase in these forests from the historic long-term

mean of 2.83 °C (1895–2011) to a mean of 6.43 °C 2055–
2095 (Fig. S2), based on the mean of the CMIP5 ensem-

ble of GCM simulations and the RCP 4.5 trajectory. A

range of CMIP5 projections predict significant increases

in TEMP by 2050, but nonsignificant changes in P/PET

(Fig. S2). Years that were historically considered ‘hot’

(+2 SD) will occur more frequently. In the past, mean

annual temperatures only exceeded +2 SD above the

long-term mean (e.g., 4.81 °C) in 3 of 112 years (2.6%,

1895–2010), in 1931, 1987, and 1998. Climate projections

from the CCSM4 GCM model and RCP 4.5 predict that

mean annual temperatures will exceed 4.81 °C in 74% of

years between 2010 and 2098. Based on historical

response to warmer years (Figs 3 and 6), we expect

growth of the temperate species Q. rubra, A. saccharum,

and P. grandidentata and the boreal species P. glauca and

P. banksiana to respond more strongly to summer mois-

ture stress in the future, growing more in wet years, but

even less in dry ones. We expect growth of the remain-

ing species to be roughly the same as in the past,

because individual variation includes both positive and

negative responses to annual climate. Surprisingly, we

find three temperate species growing at the northern

edge of their range to be included among sensitive spe-

cies that may suffer more under future droughts,

although this prediction could be reversed if local pre-

cipitation is higher than current projections. The interac-

tion of these climatic effects calls into question the

simple assumption that temperate species like A. saccha-

rum and Q. rubra will automatically have an advantage

at the temperate–boreal ecotone under a changing cli-

mate (Reich et al., 2015). At the same time, the projection

that 74% of years over this century will be historically

‘hot’ years, compared to only 3% in the past, suggests

that temperatures may exceed the local climate envelope

to the extent that tree and species growth can no longer

be predicted from past relationships.

Climate response did not vary with central latitude

of species’ historical ranges, but the within-species

variation in response to TEMP and P/PET did vary sig-

nificantly with range longitude. This evidence suggests

that boreal species whose ranges span the east–west

extent of Canada express more individual variation in

growth response to fluctuating annual climate than spe-

cies whose ranges are restricted to the eastern half of

North America. We expected that species growing at

their range margins, whether warm or cool, would

show more sensitivity to climate variation. Central

latitude did not emerge as a strong proxy for species

climatic niche, unlike recent studies examining effects

on tree seedling productivity (Reich et al., 2015). The

importance of longitude on within-species variation

likely reflects the east–west gradient in P/PET that ulti-

mately grades into the prairie biome ~150 km from our

study area (Danz et al., 2013).
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Fig. 6 Predicted growth across a gradient of standardized sum-

mer moisture stress (P/PET) under different mean annual tem-

peratures (colored lines) demonstrates the effect of the

significant interaction between these climate parameters. P.

glauca shows a typical response (a), while Q. rubra has the nar-

rowest response. Plots show predicted mean growth when all

other covariates are at their mean value. Plots show that for

average temperature years (solid gray lines), growth varies little

in relation to growing season moisture stress. In extreme tem-

perature years, growth responds strongly and in opposite direc-

tions to growing season moisture stress (blue and red lines).

Other species showing this interactive response included A.

saccharum, P. banksiana, and P. grandidentata (Fig. 3).
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Implications for dendroecology

The size and age effects on tree growth would differ in

magnitude if we had modeled relationships with tree

ring-width or unitless ring-width indices (RWI) instead

of biomass increment (Fig. S6). In particular, the negative

effect of age would appear to be a stronger driver of

growth than the positive effect of size if models pre-

dicted ring-width rather than biomass increment

(Fig. S6), and the significance of species responses would

differ for 12 species–covariate combinations (Figs 2 and

3). Models predicting RWI would differ from above-

ground biomass models on the significance of 33

species–covariate relationships, and conclude that size

does not predict growth for five species. Models that

focus on basal area increment (BAI) or volume increment

generally report growth effects for tree size and age that

agree with ours (Cortini et al., 2012; Michaletz et al.,

2015), namely a positive effect of size, accompanied by a

negative effect of age, when both covariates are in a

model (Mart�ınez-Vilalta et al., 2011). The creation of a

residual ring-width chronology requires the imposition

of a model that is intended to remove growth effects

related to size and age (Cook & Peters, 1981). These

residuals highlight the interannual variation in a ring-

width time series, part of which is known to encode a cli-

mate-related signal. What gets lost in this process is the

possibility that the climate signal may occupy an increas-

ingly smaller percentage of biomass growth as trees get

larger. This issue is frequently overlooked when den-

drochronology data are relied on to inform projections of

forest carbon balance (Anderegg et al., 2015).

Our results suggest that research that relies on

archived dendrochronology records, most of which

have been sampled or processed in nonrepresentative

ways, should exercise caution and resist inferring

carbon cycle effects from variation in ring-widths

(diameter increment) or standardized residual

chronologies alone. When effects in tree rings imply an

effect on forest C accumulation rates, those effects

should be tested by converting the data to biomass, or

at least BAI and testing how this transformation affects

inference. In general, variation in linear measures of

growth should not be conflated with the changes in bio-

mass that drive the forest carbon cycle.

Sources of model uncertainty and directions for future
work

Our models faced common sources of uncertainty that

present a number of opportunities for future improve-

ments to model design. One source of uncertainty

arises from the allometric equations used to estimate

aboveground biomass from reconstructed DBH. While

we carefully selected biomass equations to be suitable

to our sampled trees and study area (Table S3), allomet-

ric equations are often derived from limited sample

sizes and may not include a wide range of tree diame-

ters (Weiskittel et al., 2015). Current efforts to sample

and build new comprehensive allometric equations for

North American tree species should provide opportuni-

ties to better characterize and minimize this source of

uncertainty within a few years (Weiskittel et al., 2015).

Small sample sizes for three species, uncertainty

around some age estimates, and unmeasured distur-

bances likely added uncertainty to some of our results.

Finally, while we have argued that biomass increment

is the best growth metric for inference relevant to C

budgets, biomass models face challenges in predicting

future and aggregate growth, mainly because DBH

must be forecast as well to update the model.

Another significant challenge was presented by the

need to characterize climate variation at scales local to

individual trees using gridded climate data that have

been interpolated at a coarser spatial resolution. The

PRISM climate data imperfectly approximate actual cli-

mate variation experienced within each stand; thus, we

would expect the climate responses to be stronger if a

denser network of historical climate stations existed.

The challenge of this scale mismatch has been dis-

cussed in prior work (Zhu et al., 2014), and is an area of

ongoing investigation, yet it would not be possible to

assess differences in individual tree response without

accepting some approximation in the climate data at

this time.

Our analysis addresses one demographic process,

variation in growth, and finds that individual variation

overcomes many apparent differences in species-level

response to changing annual climate. Yet to fully

understand species vulnerability to climate change, we

need models that also address demographic responses

related to reproduction, establishment, and mortality

(Clark et al., 2012). Disturbances introduce noise that

may mask climate–growth relationships and may

change as temperatures rise leading to significant

effects on growth and mortality. Disturbance changes

and their effects on demographic rates are not directly

addressed in our analysis. On the establishment side,

observations from isolated, planted seedlings in climate

warming experiments are increasingly being used to

predict future, species-specific climate response and

performance (e.g., Reich et al., 2015); however, the

importance of tree size, age, and competitive conditions

in affecting within-species response in our models

argues for caution in extrapolating these early trends

given they only capture a single life stage and size

class. As such, the use of models that simultaneously

address these factors, such as those presented in this
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and other work (Clark et al., 2013) may provide a more

accurate portrayal of future species performance and

ecosystem-level C dynamics. Future modeling efforts

should aim to incorporate more of these processes

simultaneously, which should become possible as

remeasurement of extensive forest inventory plots con-

tinues (Vanderwel & Purves, 2014; Zhang et al., 2015).

A recent analysis from remeasured forest plot data also

found that stand structure, represented by total basal

area, was a more important predictor of aggregate

stand growth, recruitment and mortality than climate

(Zhang et al., 2015). While the similarity between our

findings suggests consistent results across studies, our

data and modeling frameworks are different. In

particular, our models capture annual variation in cli-

mate, which must be smoothed out over remeasure-

ment periods of 5–10 years for inventory data (Zhang

et al., 2015), and we account for multiple effects

simultaneously.

In this study, we quantified for the first time how tree

size and age affect annual biomass growth relative to

climate response, and found that individual tree size

and age were much more important when predicting

growth rates than climate parameters. We propose that

research related to understanding the potential for C

sequestration in forests should be prioritized based on

this result. Prediction of future C uptake rates in

temperate forests will benefit most by (i) improving

measurement of current tree demographic rates, partic-

ularly related to mortality and establishment, then (ii)

improving our ability to estimate the size, age and spe-

cies composition of current and future forests, and (iii)

improving our ability to predict tree growth response

to annual climate variation. Future efforts should

account for variation in climate response among indi-

viduals using representative sampling designs, and

consider how interacting responses to temperature and

moisture stress may challenge our expectations. The

wide range of individual growth responses observed

here suggests that aggregate growth and C uptake in

mature forests may be more resilient to climate change

than expected in the coming decades, although it

remains to be seen whether threshold dynamics will

push tree growth into unpredictable territory.

Acknowledgments

We thank Bruce Anderson and others at the Superior National
Forest. Nick Jensen, Mike Reinikainen, Kyle Gill, Shawn Fraver,
John Segari, Amy Milo, and others helped collect, cross-date,
and measure tree-ring data. We thank Jim Clark for the use of R
code for posterior figures. Funding for this research was pro-
vided by the Department of Interior Northeast Climate Science
Center, by the American Revenue Recovery Act, and by the
USGS Climate and Land use and Ecosystems Mission Areas.

We acknowledge the World Climate Research Programme’s
Working Group on Coupled Modelling, which is responsible for
CMIP, and we thank the climate modeling groups for producing
and making available their model output. For CMIP, the US
Department of Energy’s Program for Climate Model Diagnosis
and Intercomparison provides coordinating support and led
development of software infrastructure in partnership with the
Global Organization for Earth System Science Portals. Andrew
Finley was supported by National Science Foundation (NSF)
DMS-1513481, EF-1137309, EF-1241874, and EF-1253225, as well
as NASA Carbon Monitoring System grants. Sudipto Banerjee
was supported by NSF DMS-1513654. Any use of trade, pro-
duct, or firm names is for descriptive purposes only and does
not imply endorsement by the US Government.

References

Anderegg WRL, Schwalm C, Biondi F et al. (2015) Pervasive drought legacies in

forest ecosystems and their implications for carbon cycle models. Science, 349,

528–532.

Assmann E (1970) The Principles of Forest Yield Study. Pergamon Press, Oxford.

Banerjee S, Carlin BP, Gelfand AE (2014) Hierarchical Modeling and Analysis for Spatial

Data, 2nd Edn. Chapman & Hall/CRC Monographs on Statistics & Applied Proba-

bility, 135, Taylor & Francis Group, Boca Raton, FL.

Brienen RJW, Gloor E, Zuidema PA (2012) Detecting evidence for CO2 fertilization

from tree ring studies: the potential role of sampling biases. Global Biogeochemical

Cycles, 26, GB1025.

Canham CD, Thomas Q (2010) Frequency, not relative abundance, of temperate tree

species varies along climate gradients in eastern North America. Ecology, 91,

3433–3440.

Carbone MS, Czimczik CI, Keenan TF, Murakami PF, Pederson N, Schaberg PG,

Richardson AD (2013) Age, allocation and availability of nonstructural carbon in

mature red maple trees. New Phytologist, 200, 1145–1155.

Carrer M (2011) Individualistic and time-varying tree-ring growth to climate sensitiv-

ity. PLoS ONE, 6, e22813.

Chu C, Bartlett M, Wang Y, Fangliang H, Weiner J, Chave J, Sack L (2015) Does cli-

mate directly influence NPP globally? Global Change Biology, 22, 12–24.

doi:10.1111/gcb.13079.

Clark JS, Bell DM, Kwit M, Stine A, Vierra B, Zhu K (2012) Individual-scale inference

to anticipate climate-change vulnerability of biodiversity. Philosophical Transactions

of the Royal Society B, 367, 236–246.

Clark JS, Gelfand AE, Woodall CW, Zhu K (2013) More than the sum of the parts: for-

est climate response from joint species distribution models. Ecological Applications,

24, 990–999.

Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing for-

est interior tree-ring width series for dendroclimatic studies. Tree-ring Bulletin, 41,

45–53.

Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of cli-

matic and environmental change. The Holocene, 7, 361–370.

Cortini F, Comeau PG, Bokalo M (2012) Trembling aspen competition and climate

effects on white spruce growth in boreal mixtures of Western Canada. Forest Ecol-

ogy and Management, 277, 67–73.

Daly C, Halbleib M, Smith JI et al. (2008) Physiographically sensitive mapping of cli-

matological temperature and precipitation across the conterminous United States.

International Journal of Climatology, 28, 2031–2064.

Danz NP, Frelich LE, Reich PB, Niemi GJ (2013) Do vegetation boundaries display

smooth or abrupt spatial transitions along environmental gradients? Evidence

from the prairie–forest biome boundary of historic Minnesota, USA. Journal of

Vegetation Science, 24, 1129–1140.

Ettinger AK, Ford KR, HilleRisLambers J (2011) Climate determines upper, but not

lower, altitudinal range limits of Pacific Northwest conifers. Ecology, 92,

1323–1331.

Foster JR, D’Amato AW (2015) Montane forest ecotones moved downslope in north-

eastern US in spite of warming between 1984 and 2011. Global Change Biology, 21,

4497–4507.

Foster JR, D’Amato AW, Bradford JB (2014) Looking for age-related growth decline

in natural forests: unexpected biomass patterns from tree rings and simulated

mortality. Oecologia, 175, 363–374.

Fritts HC (1976) Tree Rings and Climate. Academic Press, London.

© 2015 John Wiley & Sons Ltd, Global Change Biology, 22, 2138–2151

2150 J . R . FOSTER et al.

http://dx.doi.org/10.1111/gcb.13079


Gelfand AE, Ghosh SK (1998) Model choice: a minimum posterior predictive loss

approach. Biometrika, 85, 1–11.

Gelman A, Hill J (2007) Data Analysis Using Regression and Multilevel/Hierarchical Mod-

els. Cambridge University Press, New York, NY.

Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple

sequences. Statistical Science, 7, 457–472.

Gneiting T, Raftery AE (2007) Strictly proper scoring rules, prediction, and estima-

tion. Journal of the American Statistical Association, 102, 359–378.

Hargreaves GH, Samani ZA (1982) Estimating potential evapotranspiration. Journal of

the Irrigation and Drainage Division, 108, 225–230.

Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measure-

ment. Tree-Ring Bulletin, 43, 69–78.

Iverson LR, Prasad AM (1998) Predicting abundance of 80 tree species following cli-

mate change in the eastern United States. Ecological Monographs, 68, 465–485.

Jenkins JC, Chojnacky DC, Heath LS et al. (2004) Comprehensive database of diame-

ter-based biomass regressions for North American tree species. Gen. Tech. Rep.

NE-319. Newtown Square, PA: U.S. Department of Agriculture, Forest Service,

Northeastern Research Station. 45 p.

Landscape Change Research Group (2014) Climate Change Atlas. Northern Research

Station, U.S. Forest Service, Delaware, OH. Available at: http://www.nrs.fs.fed.

us/atlas (accessed 28 February 2015).

LeBlanc DC (1990) Relationships between breast-height and whole-stem growth

indices for red spruce on Whiteface Mountain, New York. Canadian Journal of

Forest Research, 20, 1399–1407.

Little EL (1971) Atlas of United States Trees: Vol. 1. Conifers and Important Hardwoods.

US Department of Agriculture Miscellaneous Publication 1146, Washington, DC.

Mart�ınez-Vilalta J, Lopez BC, Loepfe L, Lloret F (2011) Stand- and tree-level determi-

nants of the drought response of Scots pine radial growth. Oecologia, 168, 877–888.

Maurer EP, Brekke L, Pruitt T, Duffy PB (2007) Fine-resolution climate projections

enhance regional climate change impact studies. Eos Transactions AGU, 88, 504.

Michaletz ST, Cheng D, Kerkhoff AJ, Enquist BJ (2015) Convergence of terrestrial

plant production across global climate gradients. Nature, 512, 39–52.

Moss RH, Edmonds JA, Hibbard KA et al. (2010) The next generation of scenarios for

climate change research and assessment. Nature, 463, 747–756.

Nehrbass-Ahles C, Babst F, Klesse S et al. (2014) The influence of sampling design on

tree-ring-based quantification of forest growth. Global Change Biology, 20,

2867–2885.

Pan Y, Birdsey RA, Fang JY et al. (2011) A large and persistent carbon sink in the

world’s forests. Science, 333, 988–993.

R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria. Available at: URL http://

www.R-project.org/ (accessed 10 September 2014).

Reich PB, Sendall KM, Rice K, Rich RL, Stefanski A, Hobbie SE, Montgomery RA

(2015) Geographic range predicts photosynthetic and growth response to warming

in co-occurring tree species. Nature Climate Change, 5, 148–152.

Spiegelhalter DJ, Best NG, Carlin BR, van der Linde A (2002) Bayesian measures of

model complexity and fit. Journal of the Royal Statistical Society Series B-Statistical

Methodology, 64, 583–616.

Stephenson NL, Das AJ, Condit R et al. (2014) Rate of tree carbon accumulation

increases continuously with tree size. Nature, 507, 90–93.

Thomas SC, Malczewski G (2007) Wood carbon content of tree species in Eastern

China: interspecific variability and the importance of the volatile fraction. Journal

of Environmental Management, 85, 659–662.

Vanderwel MC, Purves DW (2014) How do disturbances and environmental hetero-

geneity affect the pace of forest distribution shifts under climate change? Ecogra-

phy, 37, 10–20.

Visser H (1995) Note on the relation between ring widths and basal area increments.

Forest Science, 41, 297–304.

Weiskittel AR, MacFarlane DW, Radtke PJ et al. (2015) A call to improve methods for

estimating tree biomass for regional and national assessments. Journal of Forestry,

113, 414–424.

Yamaguchi DK (1991) A simple method for cross-dating increment cores from living

trees. Canadian Journal of Forest Research, 21, 414–416.

Zhang J, Huang S, Fangliang H (2015) Half-century evidence from western Canada

shows forest dynamics are primarily driven by competition followed by climate.

Proceedings of the National Academy of Sciences of the United States of Americas, 112,

4009–4014.

Zhu K, Woodall CW, Clark JS (2012) Failure to migrate: lack of tree range expansion

in response to climate change. Global Change Biology, 18, 1042–1052.

Zhu K, Woodall CW, Ghosh S et al. (2014) Dual impacts of climate change: forest

migration and turnover through life history. Global Change Biology, 20, 251–264.

Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Table S1. Descriptive statistics from cross-dated tree-ring
datasets.
Table S2. Covariate means and standard deviations across
tree-ring data.
Table S3. Biomass allometric equations: references and
DBH limits.
Figure S1. Overlap of historical species’ ranges as mapped
by Little (1971).
Figure S2. GCM projections of CMIP5 ensemble means and
ranges for the study area.
Figure S3. Plots of individual variation metrics (V) within
and among species.
Figure S4 Spatial process variance estimates (r2j ’s) among
species.
Figure S5. Examples of observed and predicted biomass
growth.
Figure S6. Barplots of coefficient means by covariate.
Appendix S1. Model (1) MCMC sampling algorithm.
Appendix S2. Additional details on data preparation and
transformation.

© 2015 John Wiley & Sons Ltd, Global Change Biology, 22, 2138–2151

TREE GROWTH DEPENDS ON STRUCTURE OR CLIMATE? 2151

http://www.nrs.fs.fed.us/atlas
http://www.nrs.fs.fed.us/atlas
http://www.R-project.org/
http://www.R-project.org/

