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Plant functional traits (PFTs) have increased in popularity in recent years to describe various ecosystems
and biological phenomena while advancing general ecological principles. To date, few have investigated
distributional attributes of individual PFTs and their relationship with key attributes and processes of for-
est ecosystems. The objective of this study was to quantify the distribution and contribution of various
PFTs in determining forest structure, live tree production (volume and biomass), and tree mortality across
the eastern US. In total, 16 metrics representing species specific gravity and their shade, flood, and
drought tolerance were used to develop a PFT profile for over 23,000 permanent sample plots in the
region. Spatial relationships were observed when analyzing not only the mean value of these traits but
also measures of PFT complexity: the standard deviation, Shannon’s index (a measure of PFT diversity),
and Gini coefficient (a measure of PFT inequality). Results from nonparametric random forests models
indicated that variables which formed the PFT profile contributed to explaining broad-scale patterns in
the variability in forest structure (volume and biomass of overstory live trees, maximum stand density
index, and tree seedling abundance; R2 ranged from 0.09 to 0.78), production (volume [R2 = 0.16] and bio-
mass accretion [R2 = 0.11]), and to a lesser degree, tree mortality. Despite the variability in the data
employed and the variety of forest management regimes in these stands, this work demonstrates the util-
ity of applying PFT profiles for understanding and predicting patterns of forest structure and production
and their role in critical ecosystem processes such as carbon sequestration.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The ability to simultaneously manage forests for the sequestra-
tion of carbon (C) in addition to the other ecosystem services they
provide, including wood products, has recently been highlighted as
a scientific and public policy concern (Birdsey et al., 2006;
Schwenk et al., 2012). Across the temperate forests of the eastern
US, there may be opportunities to increase C stocks through appro-
priate management regimes, of which species composition may
play a role (Woodall et al., 2011a). From an ecological perspective,
species and functional trait diversity may regulate ecosystem pro-
ductivity and other processes (Tilman, 1982; Johnson and Wardle,
2010; Wilfahrt et al., 2014) and are increasingly being used to aid
predictions of ecosystem responses to global changes (Díaz and
Cabido, 1997; Soudzilovskaia et al., 2013). Understanding the
relationships between species- and population-level functional
traits and patterns of forest structure, composition, and associated
dynamics could enhance our ability to manage forests for a variety
of objectives, including (but not limited to) C sequestration, biodi-
versity, and wildlife habitat.

Despite the growing popularity of plant functional traits (PFTs)
to describe ecological communities, few studies have investigated
the diversity of these traits and their relationship with structure
and production in forested ecosystems. In its broadest sense, a trait
serves as a surrogate for representing the performance of an organ-
ism which can be related to growth, reproduction, and survival
components (Violle et al., 2007). These may be considered either
functional (e.g., leaf longevity; Wright, 2004), structural (e.g., wood
density; Chave et al., 2009), or response traits (e.g., investment in
leaf area; Díaz and Cabido, 1997). Specifically, such structural
and response traits could possibly play a role in furthering our
understanding of patterns of forest composition and structure.
Although there are numerous approaches for calculating indices
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of PFTs (see Mouillot et al., 2013; their Table 1 and Fig. 1), specific
traits may be useful in considering the use of PFTs in forest ecosys-
tem management. For example, a species’ tolerance to shade could
be fundamental in understanding biomass allocation patterns
(Walters et al., 1993), while structural traits such as wood density
might aid in discerning ecological succession patterns (Wilfahrt
et al., 2014). Refined understanding of PFTs across large scales
may assist with quantifying the effect of future global change sce-
narios on disturbance regimes (Mouillot et al., 2013) and ecosys-
tem processes (e.g., a species’ tolerance to drought is essential to
understanding drought-related tree mortality; van Mantgem
et al., 2009; Allen et al., 2010). Similarly, quantifying the relation-
ships between PFTs and productivity may help to refine ecosystem
models that seek to accurately represent future forest structure
and growth dynamics (Moorcroft et al., 2001).

To date, most studies examining the influence of tree commu-
nity composition on forest structural conditions, productivity,
and C sequestration have relied primarily on species-identity-
based metrics, such as species richness or diversity, or average
values of an individual trait such as shade tolerance. For example,
Kirby and Potvin (2007) did not observe any relationships between
species diversity and aboveground C stocking, whereas D’Amato
et al. (2011) demonstrated important tradeoffs in aboveground C
storage and species and structural diversity, highlighting the chal-
lenge that managing forests for both climate change mitigation and
adaptation presents. Across eastern US forests, Woodall et al.
(2011a) observed that species shade tolerance had no effect on
the maximum amount of live aboveground C, however, mixtures
of both shade tolerant and intolerant species could potentially
maximize live aboveground C amounts for a given forest type.
The strength of relationships between various measures of biodi-
versity and aboveground biomass are weakened in highly-stocked
Table 1
Description and summary of plant functional traits used in quantifying forest structure, p

Variable Description

Structure
VOL Volume in live trees (m3/ha)
BIO Biomass in live trees (Mg/ha)
SDIMAX Maximum stand density index (Woodall et al., 2005)
SEED Seedling abundance (1000 ha�1)
LAT Latitude (�)
LONG Longitude (�)
DD5 Number of degree days greater than 5 �C

Production
DVOL Annual volume accretion (m3/ha/yr)
DBIO Annual biomass accretion (Mg/ha/yr)

Mortality
MORT Annual mortality (m3/ha/yr)

Functional traits
SGMEAN Mean of species specific gravitya

ShTolMEAN Mean of species shade toleranceb

FlTolMEAN Mean of species flood tolerance
DrTolMEAN Mean of species drought tolerance
SGSD Standard deviation of species specific gravity
ShTolSD Standard deviation of species shade tolerance
FlTolSD Standard deviation of species flood tolerance
DrTolSD Standard deviation of species drought tolerance
HSG Shannon’s diversity index based on species specific gravit
HShTol Shannon’s diversity index based on species shade toleran
HFlTol Shannon’s diversity index based on species flood toleranc
HDrTol Shannon’s diversity index based on species drought tolera
GiniSG Gini coefficient based on species specific gravity
GiniShTol Gini coefficient based on species shade tolerance
GiniFlTol Gini coefficient based on species flood tolerance
GiniDrTol Gini coefficient based on species drought tolerance

a Specific gravity ranged from Thuja occidentalis L. (0.29) to Quercus virginiana Mill. (0
b Shade tolerance ranged from Pinus palustris Mill. (0.87) to Abies balsamea L. (5.01).
stands and in stands with high site quality (Potter and Woodall,
2014), adding complexity to understanding diversity-structure
interactions. Stand factors such as age in addition to geographic
region have been related to mean values of PFTs (Wilfahrt et al.,
2014) but much less is known on how the diversity of a PFT within
a stand can be used in ecological applications. Based on these find-
ings, examinations of species-identity-based metrics or functional
traits based on a population-level mean attributes may be inade-
quate in capturing the true variability in trait characteristics that
are inherent to a forest ecosystem and their relationship with eco-
system processes. Developing a functional trait profile for forests
across the eastern US that employs PFTs common to forestry and
ecological applications may aid in interpreting how these traits
explain forest structure and production.

The overall goal of this study was to quantify the distribution
and contribution of PFTs in determining forest structure, produc-
tion, and mortality. Specific objectives of this study were to (1)
assess the distribution of PFT profiles (i.e., the mean, standard devi-
ation, diversity, and Gini coefficient) across the eastern US, and (2)
quantify the relationship between PFT profiles and forest structure,
live tree production (volume and biomass), and tree mortality.

2. Methods

2.1. Study region

Forests of the eastern US range from conifer and mixed conifer
and hardwood types in the north to extensive areas of natural and
planted pine and oak-hickory and oak-gum-cypress types in
southern regions (Smith et al., 2009). The study area investigated
here ranged eastward from the state of Minnesota to Maine in
the north and from Louisiana and Florida in the south, spanning
roduction, and mortality across eastern US forests.

Mean Min Max

123.37 0.00 998.48
106.04 0.00 654.99

1030.65 378.42 1448.71
6.03 0.00 325.84

40.05 25.46 49.35
�84.12 �96.78 �67.01

2858 663 6952

2.77 �125.00 106.29
2.11 �75.52 72.28

1.29 0.00 66.55

0.49 0.29 0.80
2.93 0.87 5.01
1.79 1.00 5.00
2.72 1.00 5.00
0.06 0.00 0.18
0.73 0.00 2.19
0.55 0.00 2.25
0.61 0.00 1.98

y 0.99 0.00 1.99
ce 1.04 0.00 2.04
e 0.89 0.00 1.88
nce 1.00 0.00 2.09

0.06 0.00 0.17
0.12 0.00 0.37
0.14 0.00 0.38
0.11 0.00 0.34

.80).



Fig. 1. Distribution of plant functional traits common to forestry and ecological applications from Niinemets and Valladares (2006) at approximate locations of forest
inventory plots across the eastern US, 2003-2012. Legend group cutoffs represent the 0.2, 0.4, 0.6, and 0.8 percentiles of the data.
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approximately 24� latitude (LAT) and 30� longitude (LONG; Fig. 1).
Across the study area, mean annual temperatures ranged from
�0.8 to 24.2 �C and precipitation from 47 to 216 cm (Rehfeldt,
2006; USDA Forest Service, 2013b). Data for the study region were
classified into one of four classes of number of degree days (>5 �C;
DD5) to serve as a surrogate of site productivity: low (663 to 1841),
moderate-low (1842–2564), moderate-high (2565–3606), and
high (3607–6952). One hundred and fifty-nine unique forest types
were identified by the USDA Forest Service Forest Inventory and
Analysis (FIA) program for the data collected across this region
(USDA Forest Service, 2013a).

2.2. Data

The FIA program monitors forests by establishing permanent
sample plots across the US using a three phase inventory
(Bechtold and Patterson, 2005). During the inventory’s first phase
(P1), sample plot locations are established at an intensity of
approximately 1 plot per 2400 ha. If the plot lies partially or wholly
within a forested area, field personnel visit the site and establish a
phase two (P2) inventory plot. Standard P2 inventory plots consist
of four 7.32-m fixed radius subplots for a total plot area of approx-
imately 0.07 ha where standing tree and site attributes are mea-
sured. All live and standing dead trees with a diameter at breast
height (DBH) of at least 12.7 cm are measured on these subplots.
Within each subplot a 2.07-m microplot is established where live
trees with a DBH between 2.5 and 12.7 cm are measured.

A total of 23,854 inventory plots were analyzed for a variety of
characteristics related to forest structure, live tree production (vol-
ume and biomass accretion), and tree mortality. Initial plot mea-
surements began around 2002 with a remeasurement occurring
approximately five years later, the final of which took place in
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2010. Bole volume was calculated for individual trees by first esti-
mating gross volume using region-specific equations and then
reducing this estimate through considering merchantable stem
reductions to arrive at sound volume (Woodall et al., 2011b).
Sound bole volume was converted to bole biomass using species-
specific wood and bark density estimates (Miles and Smith,
2009; USDA Forest Service, 2013a). Total tree biomass was esti-
mated via the component ratio method (Woodall et al., 2011b)
which facilitated the calculation of tree component biomass as a
ratio of bole biomass based on component proportions from
Jenkins et al. (2003). Productivity (i.e., volume and biomass accre-
tion) was computed at the plot level as the change in the stock
from the two time periods. Mortality (as measured in volume)
was computed by analyzing individual trees that were recorded
as dead at their remeasurement but were alive at their initial mea-
surement, then scaling to the plot level. Productivity and mortality
were standardized on an annual basis.

2.3. Plant functional traits and complexity measures

Three PFTs of interest to forest managers, including shade
(ShTol), flood (FlTol; i.e., waterlogging), and drought tolerance
(DrTol) were obtained from Niinemets and Valladares (2006) and
applied to the FIA species list (see Appendix A; Supplementary
Material). These tolerance indices ranged continuously from
approximately one to five (low to high tolerance) and are based
primarily on the scales presented in Baker (1949). In the event that
a value for an FIA species was not found in Niinemets and
Valladares (2006), tolerance values were either averaged across
species in the same genus, or, a species with a similar phenotype
was applied to the missing species. Out of the 215 species observed
in this data across the eastern US, 60 did not have a tolerance val-
ues reported in Niinemets and Valladares (2006). Although this
represented 28% of the species in the study, the total percentage
of all observations without a tolerance value was 4%, signifying
that tolerance measures were unavailable for uncommon species
which were not generally abundant. After applying these species
values to the entire FIA tree list, we calculated the mean and stan-
dard deviations (SD) of these tolerance scales across all trees for
each FIA plot (e.g., ShTolMEAN and ShTolSD). We similarly calculated
the mean and SD for wood specific gravity (SG) at each FIA plot
(Miles and Smith, 2009; USDA Forest Service, 2013a).

Complexity, typically defined as the degree of heterogeneity in
the distribution of biomass or individuals across different tree sizes
or species (e.g., D’Amato et al., 2011), was instead defined in the
context of PFTs by considering the distribution of SG and tolerance
indices. Shannon’s diversity index (H; Staudhammer and LeMay,
2001) was calculated for the three tolerance classes and SG.
Tolerance classes were summed across classes of 0.5 units while
SG was summed across classes of 0.05 units. This resulted in
approximately the same number of classes for both SG and toler-
ance values (on average, the number of classes in each FIA plot
was 3.9, 4.2, 3.4, and 3.9 for SG, ShTol, FlTol, and DrTol, respec-
tively). Here, large H values indicate a greater number of PFT
classes:

Hij ¼ �
XS

i¼1

nij

N
ln

nij

N

� �
ð1Þ

where S is the total number of classes in each plot, N is the total
number of trees in each plot, ni is the number of trees in each class
i, and j is the PFT of interest. Functional trait equality was similarly
calculated using the Gini coefficient (Glasser, 1962). This value ran-
ged from zero (perfect trait equality) to one (maximum trait
inequality) and was calculated by sorting the tree list of each FIA
plot ascendingly by the PFT of interest:
Giniij ¼
Pn

i¼1ð2i� n� 1ÞPFTij

n2l
ð2Þ

where n is the number of trees in each plot, PFTi is the value for
the trait associated with tree i, l is the mean PFT value in the
plot, and j is the PFT of interest. Ultimately, 16 variables were
calculated that represented functional trait complexity for the
FIA plots (i.e., the mean, SD, H, and Gini for each of the variables
SG, ShTol, FlTol, and DrTol; Table 1). Data from the initial plot
measurement were used to calculate the PFT profile and forest
structure variables, while production and mortality variables
were calculated using information from both the remeasurement
and initial conditions.

2.4. Analysis of traits and complexity measures

We assessed the direction (positive or negative) and strength of
the relationships between measures of functional trait complexity
and forest structure, production, and mortality using Spearman
correlation coefficients. To compare trends in the PFT profiles
developed with those based on mean values presented in
Niinemets and Valladares (2006), we employed generalized addi-
tive regression models. Correspondence analysis (CA; Ter Braak,
1986) was used as a multivariate statistical approach to graphically
display PFTs using ordination followed by trait vectors. The CA
method is based on Chi-squared distances where correlations are
weighted within an ordination axis. Although there are some
drawbacks to the CA method, including compression of distances
near the end of axes and distortions of second and later axes
(McCune and Grace, 2002), the method may be more efficient with
large datasets (e.g., n > 25,000) when compared to more quantita-
tively-demanding multivariate analyses such as nonmetric multi-
dimensional scaling. To identify the direction and strength of
trait vectors using the PFT information, we fit vectors onto the
ordination using 1000 permutations. Ordinations and trait vectors
were carried out using the ‘vegan’ package in R (Oksanen et al.,
2013).

2.5. Modeling

We used nonparametric random forests (RF; Breimen, 2001) in
R (Liaw and Wiener, 2002) to test the ability of functional trait
complexity measures to explain forest structure, production, and
mortality. The RF method ranked the relative influence that each
trait had on forest structure measurements. This method involved
building a set of regression trees based on bootstrapped samples of
the trait data that were compiled.

Measures of forest structure included the volume and biomass
of live trees (VOL, BIO), seedling abundance (SEED), and maximum
stand density index (SDIMAX). The SDIMAX, defined as the maximum
number of trees per hectare that can exist for a given average tree
size under the conditions of self-thinning (Long, 1996), was calcu-
lated using the average specific gravity of all trees on each FIA plot
(Woodall et al., 2005). Hence, SDIMAX (a unit-less value) was
employed as a measure of the maximum stocking potential of each
plot. Measures of tree dynamics included volume (DVOL) and bio-
mass accretion (DBIO) and annual mortality (MORT; Table 1). In
the RF method, classification trees are taken as independently-
sampled bootstraps of the data (Breimen, 2001). For ecological
data, RF models can offer high classification accuracy and provide
a method for assessing the relative importance of predictor vari-
ables (Cutler et al., 2007). Although RF models can be robust
against overfitting (Breimen, 2001), we used an approach outlined
in Weiskittel et al. (2011a) to balance model parsimony with the
risk of overfitting. To determine the optimal number of variables
to use from the host of functional trait information, we performed
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the RF model iteratively, each time dropping the least influential
variable as reflected in the RF variable importance score. After plot-
ting the number of variables used in each RF against R2 and root
mean square error (RMSE) fit statistics, we chose the model which
produced the minimum number of variables where the slope of the
fit statistic began to reach its asymptote. We defined this as the
optimal model. We sampled 250 regression trees for each iteration
of the RF model.

For the parsimonious RF model, input variables were altered to
perform a sensitivity analysis. We modified inputs by ±25% to
assess the influence of moderate changes to variables on forest
structure and production. We then compared these new predic-
tions to the mean predicted value for BIO, VOL, and DVOL and
DBIO to compute the percent change in prediction that resulted
from altering one input variable while holding the others fixed.
3. Results

There were several apparent trends when visualizing the spatial
distribution PFT profiles across the eastern US (Fig. 1). Both the
mean and SD of shade tolerance were highest (>3.6) in the North-
east and upper Midwest regions and lowest (<2.7) in the Atlantic
and Gulf Coastal Plains across the southeastern US. Tolerance to
flooding was generally low across all FIA plots (mean of 1.79 on
a 1–5 scale; Table 1; Niinemets and Valladares, 2006), however,
greatest values (>2.1) were observed in the upper Midwest and
southeastern Coastal Plain regions. Stands that exhibited the great-
est tolerance to drought generally displayed the lowest tolerance
to shade, and vice versa (Fig. 1). Drought tolerance was highest
(>3.4) in the Coastal Plains and lowest (<2.0) in the Northeast
and upper Midwest. Measurements that quantified the SD and
diversity of tolerance scales were less distinguishable among
regions compared to observing mean values. There was a trend
of greatest SD and diversity in the tree tolerance scales examined
across the Appalachian Mountain chain, principally in the states
of Kentucky, Tennessee, and Virginia. Gini coefficients (measure-
ments of PFT inequality) for the four traits of interest tended to
be lowest across the Atlantic Coastal Plain and highest across
northern states (Fig. 1). Spearman rank correlation coefficients
were generally strongest between mean and SD values of PFTs
and LAT, LONG, and DD5, confirming many of the spatial trends
observed. For example, the correlation between ShTolMEAN and
LAT (�0.489) and DrTolMEAN and DD5 (0.679) were some of the
Table 2
Spearman rank correlations between plant functional traits and forest structure, productio
correlations >0.250 and significant at p < 0.05 are italic bold.

Functional traits Structure

VOL BIO SDIMAX SEED LA

SGMEAN 0.160 0.307 �1.000 �0.024 �0
ShTolMEAN 0.305 0.318 �0.017 0.189 0
FlTolMEAN �0.058 �0.092 0.287 �0.097 0
DrTolMEAN �0.067 �0.023 �0.528 �0.120 �0
SGSD 0.195 0.193 0.015 0.135 0
ShTolSD 0.072 0.045 0.207 0.174 0
FlTolSD 0.215 0.227 �0.005 �0.024 �0
DrTolSD 0.196 0.218 0.217 �0.035 �0
HSG 0.305 0.345 �0.260 0.043 �0
HShTol 0.270 0.296 �0.173 0.135 �0
HFlTol 0.210 0.231 �0.136 0.105 �0
HDrTol 0.314 0.354 �0.284 0.089 �0
GiniSG 0.188 0.160 0.194 0.167 0
GiniShTol 0.022 0.000 0.150 0.127 0
GiniFlTol 0.257 0.289 �0.171 0.100 �0
GiniDrTol 0.276 0.276 0.041 0.078 �0

a Variable descriptions can be found in Table 1.
strongest observed. Correlations were less in magnitude for other
measures of PFT diversity with LAT, LONG, and DD5 (Table 2).

Scatterplots indicated significant negative relationships
between ShTolMEAN and DrTolMEAN and with DrTolMEAN and
FlTolMEAN (Spearman rank correlation coefficients of �0.51 and
�0.41, respectively), with a nonsignificant relationship between
ShTolMEAN and FlTolMEAN (Fig. 2). A slight positive relationship
was observed for variables that described the SD of tolerance scales
(correlation ranged from 0.17 to 0.35), with relationships generally
stronger for stands that displayed low SDs of tolerance variables.
Correlations among measures reflecting the diversity of tolerance
values were all in excess of 0.64. The Gini coefficient of the three
tolerance scales mimicked trends in SD, i.e., relationships were
stronger for stands that displayed a low Gini of tolerance variables,
with correlations ranging from 0.34 to 0.48 (Fig. 2). For these cor-
relations, it should be noted that statistically significant results
may emerge despite marginal biological effects, a reflection of
our large sample size.

The degree of correlation between metrics of PFT diversity and
forest structure and dynamics varied depending on the variable of
interest (Table 2). Spearman rank correlations for PFTs were stron-
ger for BIO than for VOL and were all positive with the exception of
FlTolMEAN and DrTolMEAN. For SDIMAX and seedling abundance,
strongest negative correlations were observed for DrTolMEAN

(�0.528 and �0.120, respectively) and strongest positive correla-
tions were observed for FlTolMEAN and ShTolMEAN (0.287 and
0.189, respectively). Correlations between PFTs and production
and mortality were generally low (range from �0.117 to 0.179).

Differences in PFTs were illustrated by the broad distribution of
points in ordination space by corresponding classes of site produc-
tivity (Fig. 3). The variation in PFTs was explained by axis 1 (35.5%)
and 2 (22.5%) with total inertia = 0.1183. Patterns in fitted trait
vectors reflected a distribution of plots along axis 1 ranging from
stands with a higher degree of variability in PFTs in the negative
portion to those with lower levels in the positive portion of the
axis. Axis 2 primarily reflected broad trends in average PFTs with
higher mean flood and shade tolerance in the negative portion
and plots with higher mean drought tolerance and specific gravity
in the positive portion. The R2 values for vectors ranged from
0.21 to 0.87 depending on the PFT with all PFTs significantly
correlated based on the random permutations drawn from the data
(Appendix B; Supplementary Material).

Results from the RF regression indicated increasing R2 and
decreasing RMSE as additional variables were considered in the
n, and mortality across the eastern USa. Correlations significant at p < 0.05 are italic;

Production Mortality

T LONG DD5 DVOL DBIO MORT

.489 0.010 0.449 �0.009 0.037 �0.004

.344 0.302 �0.454 �0.117 �0.115 0.061

.073 �0.032 �0.024 �0.096 �0.089 0.071

.636 �0.145 0.679 0.174 0.179 �0.070

.128 0.063 �0.147 �0.021 �0.043 0.079

.264 0.003 �0.267 �0.070 �0.085 0.096

.071 0.169 0.051 0.065 0.062 0.090

.402 0.123 0.376 0.131 0.118 0.074

.199 0.062 0.185 0.046 0.028 0.124

.107 0.069 0.083 0.037 0.017 0.148

.117 0.041 0.113 0.027 0.020 0.142

.284 0.147 0.229 0.086 0.067 0.138

.220 0.052 �0.228 �0.020 �0.051 0.106

.099 �0.124 �0.057 �0.024 �0.042 0.100

.043 0.162 0.008 0.077 0.073 0.085

.033 0.249 �0.026 0.052 0.033 0.134



Fig. 2. Scatterplots of mean, standard deviation (SD), diversity and Gini coefficient of plant functional traits from Niinemets and Valladares (2006) across the eastern US.
Smoothed line is a generalized additive model regression with 95% confidence bounds in gray, and Spearman correlation reported in upper right.

Fig. 3. Ordination results from correspondence analysis and vectors representing
plant functional traits. Traits listed are significantly correlated (p < 0.05) with axis 1
or 2 where correlations are weighted within an ordination axis. Results are plotted
across various forest productivity classes, as measured in total cumulative degree
days.
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model. To generate a parsimonious model, a five-variable model
was chosen because the decrease in R2 was minimal and RMSE
appeared to stabilize after dropping variables (see Appendix C;
Supplementary Material). Values for R2 ranged from 0.00 to 0.78.
Traits that exhibited the strongest spatial patterns, e.g., the mean
values of the PFTs (Fig. 1), tended to be strong predictors of forest
structure, as measured by their importance scores (Table 3). Vari-
ables representing the Gini coefficient of traits similarly contrib-
uted to explaining the variation of forest structure attributes. The
means of SG and DrTol ranked high in terms of their importance
scores for variables representing forest structure/production.

Analysis of the five-variable RF regression indicated that VOL
was most sensitive to changes in ShTolMEAN followed by GiniDrTol

and BIO was most sensitive to changes in ShTolMEAN followed by
SGMEAN (Fig. 4). In terms of production, DBIO was more sensitive
to changes in input parameters than DVOL. Changes of a ±25%
magnitude in ShTolMEAN and SGMEAN resulted in a 56% and 34% dif-
ference in the prediction of DBIO, respectively. Volume accretion
was most sensitive to changes in DrTolMEAN (�23%) and ShTolMEAN

(�21%).
4. Discussion

Researchers and forest land managers in any given region are
generally well-acquainted with the functional traits that are char-
acteristic of their species of interest, such as their shade tolerance.
Similarly, the structural characteristics of forests across the eastern
US are routinely measured through forest inventories. Building on
this information, a PFT profile can be quantified and implemented



Table 3
Summary of variables used in random forests and their importance scores (%IncMSE) for predicting forest structure, production, and mortality across the eastern USa.

VOL BIO SDIMAX
b SEED

Variable %IncMSE Variable %IncMSE Variable %IncMSE Variable %IncMSE

ShTolMEAN 78.2 ShTolMEAN 97.8 DrTolMEAN 114.7 ShTolMEAN 22.9
SGMEAN 71.7 SGMEAN 84.4 ShTolMEAN 96.8 ShTolSD 18.7
FlTolMEAN 58.1 GiniSG 69.7 GiniDrTol 88.0 HShTol 16.8
GiniDrTol 52.5 ShTolSD 58.5 FlTolMEAN 75.4 FlTolMEAN 16.1
GiniShTol 49.9 FlTolMEAN 58.2 GiniShTol 67.3 DrTolMEAN 13.4
R2 0.22 R2 0.30 R2 0.78 R2 0.09
RMSE 77.03 RMSE 55.24 RMSE 65.51 RMSE 6989.05

DVOL DBIO MORT

Variable %IncMSE Variable %IncMSE Variable %IncMSE

ShTolMEAN 41.9 SGMEAN 33.2 SGMEAN 24.7
SGMEAN 40.7 DrTolMEAN 32.1 DrTolMEAN 23.7
DrTolMEAN 37.4 FlTolSD 31.3 HFlTol 19.5
ShTolSD 29.5 FlTolMEAN 30.3 DrTolSD 17.6
HFlTol 19.5 ShTolMEAN 28.4 HSG 12.2
R2 0.16 R2 0.11 R2 0.00
RMSE 4.63 RMSE 3.51 RMSE 2.71

a Variable descriptions can be found in Table 1. Overall fit statistics are also provided: R2 and root mean square error (RMSE).
b Measures of SG were withheld from estimating SDIMAX given the use of SG in determining this value (Woodall et al., 2005).

Fig. 4. Results of sensitivity analysis assuming a ±25% change in variables obtained
from the five-variable random forests model.
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to aid in assessing biodiversity benchmarks, understanding forest
ecosystem dynamics, and as shown here, may help to explain var-
iation in forest structure and changes in volume and biomass
accretion. Moreover, describing the broad scale patterns and trade-
offs associated with response traits such as drought and shade tol-
erance are useful in anticipating future impacts of changing
precipitation regimes and the regions where these effects might
be greatest (Melillo et al., 2014). The spatial distribution and vari-
ability of the PFT profiles developed here no doubt reflect current
and past forest management practices and highlight the
importance of accounting for regional vulnerabilities that may
emerge if management practices inadvertently promote homoge-
neity at broad spatial scales. Finally, these PFT profiles can improve
our understanding of processes related to forest structure and
dynamics.

Results from the spatial analysis of these PFTs across regional
scales generally aligns with what Niinemets and Valladares
(2006) observed at species scales, namely that no regions simulta-
neously exhibited high tolerance to shade, flood, and drought col-
lectively (as measured using mean values). The tradeoffs observed
between tolerance to shade and drought (i.e., areas of high shade
tolerance displayed low drought tolerance) is likely a reflection
of a plant’s investment strategy capturing light versus avoiding
drought (Niinemets and Valladares, 2006). From a biomass alloca-
tion perspective, species that can survive shade are likely to display
large leaf area with preferred partitioning of carbon to foliage,
whereas species attempting to avoid drought may allocate a
greater proportion of biomass belowground (Hertel et al., 2013).
As the difference between BIO and VOL is inherently wood density,
it is expected there would be stronger correlations between the
PFTs and BIO given that biomass is not purely structure but an inte-
grated metric that brings together both structure and traits.
Despite these tradeoffs, mean values for these tolerance scales
were important predictors of structure and production (Table 3).
Differences in the sensitivity between DVOL and DBIO when
examining changes in predictions from altering shade and drought
tolerance in the RF model (Fig. 4) could indicate biomass allocation
tradeoffs, namely because merchantable volume considers only the
stemwood portion while biomass considers all woody compo-
nents. The sensitivity of the RF regression to HFlTol (in the case of
DVOL), FlTolSD (in the case of DBIO), and GiniDrTol (in the case of
VOL) indicates that variability in PFTs are apparent and may influ-
ence the distribution of forest structure and production attributes
across the temperate forests of the eastern US.

Results from the eastern US indicated negative correlations
between shade and drought tolerance and drought and flood toler-
ance (Fig. 2) which was similarly observed by Niinemets and
Valladares (2006). Further analysis beyond solely the means of the
data permitted us to explore additional relationships among the
traits of interest. For example, although mean values may not be cor-
related for various tolerance metrics (e.g., between ShTolMEAN and
FlTolMEAN; Niinemets and Valladares, 2006), what information can
be gleaned from assessing alternate measures from their PFT
profile? For the SD, diversity, and Gini coefficient, we observed
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significant positive relationships between ShTol and FlTol, but
observed no trends when investigating means alone. These mea-
sures were similarly important in the RF model, indicating that
incorporating the complete trait profile may help to explain large-
scale patterns in forest structure and production. Similarly, stands
with higher ShTolMEAN had greater mortality rates (Table 2), whereas
relationships between DrTolMEAN and mortality were negative. This
suggests that sites with greater variability in ShTol may exhibit
lower mortality risk, potentially reflecting differences in susceptibil-
ity to mortality agents or stressors across the shade tolerance spec-
trum. Future work investigating this mortality-shade tolerance
tradeoff may be further ameliorated by examining the temporal
trends in forest stand dynamics. For example, mortality may be
low during early stages of stand development (e.g., stand initiation;
Oliver and Larson, 1996) while increasing during later stages.
Concomitant with these transitions is an increasing presence of
shade tolerant species while shade intolerants likely die as light
becomes a limiting resource. Such data sources like FIA may help
to inform assessments of these dynamics in the future.

To our knowledge, information depicting this variability and
diversity of plant traits has not been incorporated into ecosystem
models and/or dynamic global vegetation models that employ
plant trait data. In a management context, if an adaptive frame-
work for forest management is considered to provide a range of
stand development pathways (e.g., Puettmann et al., 2009), metrics
related to the PFT profile and their associated relationships with
stand processes such as production and mortality could prove use-
ful for anticipating the outcomes of management regimes aimed at
increasing forest ecosystem complexity.

Although the RF models had substantial unexplained variability
in terms of describing mortality, traditional ecosystem models often
employ a myriad of independent variables that relate to initial stand
conditions (e.g., basal area), climate information, and productivity
potential (e.g., site index). Given that most forest growth models
struggle to predict mortality because of its rare and highly episodic
nature (Weiskittel et al., 2011b), this analysis similarly found diffi-
culties in relating observed mortality in the FIA inventory to the
PFT profile. Logical next steps will be to assess the degree to which
PFT profiles aid in ecosystem models by reducing prediction uncer-
tainty above and beyond what is provided by currently employed
forest variables. Similarly, additional metrics may aid modelers in
refining diversity measurements across large geographic scales
(e.g., the Hill transformation of Shannon’s diversity presented in
Jost, 2006). Additional research questions can subsequently be
examined, such as what is the appropriate scale (i.e., individual tree
to landscape levels) to incorporate PFT metrics? As the use of remo-
tely-sensed information becomes more commonplace to answer
questions at regional and/or continental scales (e.g., assessing forest
C stocks; Saatchi et al., 2011), understanding the relationships
between forest structure and a profile of PFT information will be
crucial as these new technologies emerge.
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