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Abstract
Purpose of Review The objective quantification of stand density (SD) is necessary for predicting forest dynamics over space 
and time. Despite the development of various synthetic representations of SD, consensus remains elusive regarding a primary 
integrated measure due to contrasting data sources, statistical modeling methods, and distinct regional variations in forest 
structure and composition. One of the most enduring and robust measures of SD is Reineke’s (1933; J. Ag Res. 46, 627-638) 
stand density index (SDI), which has long formed the basis for the prediction of stand development concerning self-thinning 
processes in single-species, even-aged stands and stand density management diagrams (SDMDs). Thus, this review tracks 
the development of different methodologies and necessary data for properly estimating SDI, including its application in 
complex forests and adaptive management contexts.
Recent Findings Limitations of SDI in its earliest form have led to important modifications centered on refinement and 
expanding its application beyond even-aged, single-species stands to multi-cohort, mixed composition stands. Statistical 
advances for better determination of the maximum size-density boundary line have also been applied to SDI estimates using 
the ever-expanding availability of remeasured field data including large-scale, national forest inventories. Other innovations 
include the integration of regional climate information and species functional traits, e.g., wood specific gravity, drought, 
and shade tolerance.
Summary In this synthesis, we describe the attributes of SDI that have promulgated its use as a leading measure of SD for 
nearly 90 years. Recent applications of robust statistical techniques such as hierarchical Bayesian methods and linear quan-
tile mixed modeling have emerged as the best performing methods for establishing the maximum size-density boundary, 
especially those incorporating ancillary variables like climate.

Keywords Carrying capacity · Maximum stand density index · Quantile regression · Reineke · Relative density · Self-
thinning · Stand density index · Stand density management diagrams

Introduction

To grow, trees require essential yet limited site resources 
such as water, light, nutrients, and space for crown expan-
sion [1–4]. For a given site, the primary factor that regulates 
the growth rate of a tree is the available growing space [5••]. 
Stand density (SD) often refers to a quantitative measure of 
the local conditions of a forest stand providing a description 
of the overall competition [3, 6–9]. SD can be expressed in 
absolute terms such as stem density (N; #  ha−1), total basal 
area (BA;  m2  ha−1), tree area ratio (TAR), or crown competi-
tion factor (CCF; %), which are largely independent of spe-
cific management objectives. BA and N are fast, simple, and 
easy to measure in the field. Still, they often cannot express 
the full degree of competition in a forest due to underlying 
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differences in stand age, site quality, species composition, 
or forest types [10, 11]. In addition, the specific N or BA 
threshold at which key stand dynamics processes such as 
crown closure and the onset of self-thinning occur is highly 
dependent on other stand variables, including average tree 
size (i.e., quadratic mean diameter), species composition, 
age, and site quality [11].

Given the proper context, SD is recognized as one of the 
key variables for evaluating crowding and overall competi-
tion in a forest stand [12, 13]. For example, it is one of the 
significant drivers of stand volume and biomass accretion 
and, thus carbon storage [14], while also being a valuable 
predictor for tree allometry and aspects of wood quality [15]. 
SD may also be related to the potential vulnerability to forest 
disturbances such as fire, wind, insects, and droughts [16, 
17]. Absolute measures of SD such as N or BA can also be 
expressed in relative terms by comparing the current number 
and size of trees growing in a stand to the maximum num-
ber of trees of the same size that a given site can theoreti-
cally support [18]. Relative metrics can aid in interpreting 
and standardizing management regimes due to their greater 
generality.

Viewed in the context of natural stand development, 
changes in SD metrics, particularly N, are closely linked to 
the self-thinning process described as the process by which 
less competitive trees in subordinate crown classes succumb 
to competition-induced mortality as surviving tree canopies 
expand in size with an increased demand for resources and 
growing space [19]. Self-thinning has two outcomes; the 
first involves a reduction in the number of stems (N) result-
ing from an increase in their average size, and the other is 
the accumulation of canopy gaps in mature stands when 
allometric constraints are reached [20, 21]. Young, even-
aged stands typically support higher than optimal densities 
under certain conditions of natural regeneration or stump-
sprouting, especially after large-scale disturbances [22]. 
Self-thinning begins early in these contexts, typically lead-
ing to rapid reductions in stem densities as even-aged stand 
development progresses. In contrast, multi-aged stands tend 
to have vertically distinct cohorts of trees interacting in mul-
tiple dimensions, complicating the assessment of competi-
tion and SD effects. Nevertheless, self-thinning will occur 
within high-density patches in irregular stands even if the 
stand is not collectively at maximum density, i.e., the self-
thinning boundary.

When predicting stand-level behavior, another key issue is 
that maximum size-density relationships (MSDRs) are based 
on a conceptualized self-thinning behavior, yet in reality, ini-
tiation of density-dependent mortality will commence before 
a stand reaches the zone of imminent competition mortality, 
often because of genetics or other environmental constraints 
[9, 23–26]. Complicating factors can include the issue that 
SD often varies at small spatial scales, such as on plots within 

a stand where some high-density patches will exist at the self-
thinning line. However, when aggregated to the stand-level, 
the forest may be assessed, on average, as below the zone of 
self-thinning [27]. Managed stands are seldom allowed to 
develop along the actual self-thinning line, at least once they 
have reached a commercial size. This presents a challenge to 
observing maximum levels of competition and assessing their 
influence on productivity [28].

Viewed in the context of even-aged stand development, 
SD measures vary widely yet relatively reliably across time 
and space [29•, 30]. Generally, competition is assessed at 
the stand-level, i.e., using some relative measure of SD, yet 
there may be substantial differences between density esti-
mates determined at the plot- and stand-level [31], particu-
larly for multi-aged or mixed composition stands. Factors 
such as site quality, species characteristics, composition, 
and past disturbance history may also contribute to spatial 
variation in SD [32–34]. In addition to spatial variation in 
SD, there are also important temporal determinants of SD. 
For example, the rate of decreasing N and increasing BA are 
often nonlinear and highly varied depending on the stage of 
stand development and species composition. Additionally, 
stand development is also driven by disturbance intensity 
and frequency [33, 34]. Thus, measures of SD vary in con-
sistent yet complex ways over time and space.

A few key SD metrics have been in existence for decades 
to describe self-thinning behavior for monospecific forest 
stands, with initial quantification by forest scientists focusing 
on the development of simple indices or values of competi-
tion in forests [10, 35]. The resulting allometric relation-
ships refer to the size of the mean tree in the form of QMD, 
volume, or biomass related to N [35]. It is often desirable 
for SDs that effectively measure stand occupancy to have the 
following characteristics: (i) easy to measure, (ii) (largely) 
independent of age and site quality, and (iii) exhibit a dis-
cernible relationship with stand dynamics such as growth [7, 
10, 35]. Interestingly, some of the most well-known studies 
[29•, 36, 37] illustrating the influence of SD on self-thinning 
are based on related yet fundamentally different relationships 
[38, 39••, 40].

Stand density index (SDI) has been applied in forest man-
agement for almost a century. It has come to be regarded 
as a biologically-based and synthetic measure of SD [41]. 
However, despite the long tenure of SDI as introduced by 
Reineke [39••] and the subsequent modifications, there has 
been a limited synthesis of the available literature for the 
temperate forest region [42, 43•, 44•, 45•, 46, 47]. This 
is especially the case for studies focused explicitly on the 
influence of different data sources and statistical approaches 
necessary to define this key relationship, particularly the 
maximum-density self-thinning boundary. We address this 
need with this synthesis organized into four key sections 
including: (i) an overview of Reineke’s SDI for even-aged 
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stands and alternative measures of SD; (ii) data requirements 
and statistical methods for estimating the maximum self-
thinning boundary line or maximum stand density index 
 (SDIMAX); (iii) application of relative density (RD, SDI/SDI-
MAX) as a measure of competition in forest stands; and (iv) 
assessment of key trends and recommendations for future 
research on this topic.

Overview of Reineke’s SDI for Even‑Aged 
Stands and Other Common Measures of SD

SDI is considered a relatively robust and synthetic measure 
of SD and general site occupancy. It is typically derived 
from empirical data using coefficients established following 
the “self-thinning rule” concept [48]. SDI may be viewed as 
an absolute measure for assessing the level of competition 
in forests [44•, 49] and establishing a reference level for the 
MSDR. SDI is typically derived from N and QMD. Reineke 
[39••] provided SDI as a measure of the size-density rela-
tionship for even-aged, single-species (monospecific), fully 
stocked stands, and expressed its independence from stand 
age and site index. An underlying assumption is the limiting 
relationship between N and QMD is linear on a log-log scale 
in unmanaged and fully stocked stands. The index value for 
QMD proposed by Reineke [39••] was 10 inches or 25.4 cm, 
although the value has been set at 25 cm diameter at breast 
height (dbh) in Europe. Effectively, this implies that for a 
given QMD, there is a maximum number of trees that can 
exist on a per unit area basis, i.e., the site carrying capacity. 
Average N and QMD are generally obtained from sample 
plots established across a wide range of densities and ages. 
When the log of N is plotted against the log of QMD, a nega-
tive linear relationship with a purported slope of −1.605 is 
generally produced. Thus, the QMD value in metric units is 

generally 25 cm, and the traditional SDI expressed in terms 
of N is written as indicated in Table 1.

Maximum stand density index  (SDIMAX) is the maximum 
number of stems of a given diameter (e.g., 25.4 cm) that 
can exist per given unit of area in a self-thinning environ-
ment [42, 54•, 55, 56]. The size-density relationship has been 
focused on monospecific and even-aged stands, while the 
intercept varies considerably across species or species groups 
[2, 30]. Thus, SDI has two primary components: one being 
that it can be used to characterize the maximum density at 
a given average size  (SDIMAX), and secondly, it can be used 
to estimate the density of any given stand at or below that 
level. Both components have their own equations, which are 
interrelated. Also, because SDI includes information about 
both N and QMD, it is synthetic and it has been shown to 
perform better than various absolute measures on their own, 
particularly across a range of stand conditions [57].

In most instances,  SDIMAX has been determined empir-
ically through (i) measurement of self-thinning stands at 
various stages of development [54•], (ii) assessing full 
site occupancy based on species composition [55], and 
(iii) determining an optimal self-thinning intensity [58••]. 
In this context,  SDIMAX may be viewed as the key deter-
minant of relative density (RD, SDI/SDIMAX) given that 
value is a comparison of a stand’s current SDI with its 
potential maximum [54•, 59].  SDIMAX is also widely used 
for the construction of density management diagrams 
(DMDs), particularly for identifying the upper thresh-
old or reference line [59, 60••, 61•], while it is widely 
used growth and yield models such as the Forest Vegeta-
tion Simulator (FVS) for determining density-dependent 
mortality and maximum sizes [58, 62–67]. The accurate 
establishment of  SDIMAX in mixed species has been facili-
tated by the integration of species-specific traits such as 
specific gravity [11, 54•] and shade tolerance [64], con-
sistent with hypotheses about stem mechanics [7].

Table 1  Traditional stand density index (SDI) of Reineke [39••] and alternative common stand density (SD) measures reported in the literature

Definition Equation Application Reference

Traditional stand density index
SDI=

N

(

QMD

25

)1.605 Even-aged stands Reineke [39••]

Additive stand density index
ASDI= 

∑N

i
∗ Ni

�

DBHi

25

�1.605 Multi-aged stands Long and Daniel [50••]

Maximum stand density index SDIMAX=ea + b ∗  ln (25) Even-aged stands Long [51]
Relative density S= ∑Gi/  Gi, max Even-aged stands Sterba [52]
Relative density (uncalibrated estimate) RD = BA/QMD0.5 Even-aged stands Curtis [18]
Relative spacing

RS=

√

10000

N

HD

Even-aged species Hart [38]

Crown competition factor CCF=
∑n

i=1
MCA Even- and uneven-aged stands Krajicek et al. [6]

Tree area ratio TAR=bon+b1+∑d+b2∑d2 Even- and uneven-aged stands Chisman and Schumacher [53]
−3/2 power rule V

_
= a ∗ N

−3

2
Even-aged populations Yoda et al. [40]
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The key variables used to determine the maximum size-
density relationship have varied over time and by discipline. 
For example, Reineke [39••] related N and QMD (commonly 
used in forestry), while Yoda et al. [40] related average plant 
biomass to N (preferred by plant ecologists) (see Table 1). 
Universally, competition among plants of the same species 
leads to power-law relations among crowding measures such 
as plant density and mean size such as individual biomass 
[68] or volume [29•]. Taking a different approach, Hart [38] 
used the relationship between the average distance between 
trees and the mean height of the dominant canopy (Table 1) 
to characterize directional changes in size-density relation-
ships throughout stand development. Overall, the combina-
tions of SD metrics use average tree size to explain the size-
density relationships at a specific spatial scale (generally the 
stand-level) and have been used to guide SD research for both 
mixed and pure species forests. Both Yoda et al. [40] and 
Reineke [39••] assumed that there was a fixed slope (−1.5 for 
N vs mean biomass and −1.605 for N vs QMD, respectively) 
between the logarithms of size and density independent of 
differences in species, age, and site quality of fully stocked 
stands [43•].

Because SDI as introduced by Reineke [39••] is based 
on even-aged stands, researchers observed that the same 
approach may not apply to irregular and mixed stands due 
to potential variation in the underlying diameter distribution 
and overall representativeness of mean stand-level attributes 
[11, 50••, 69]. The limitations of the original SDI formu-
lation have also included inadequate data for defining the 
relationship, inconsistent statistical methods, and continued 
use of some key but weakly supported assumptions, such as 
a constant slope across species [31]. These shortcomings of 
SDI have led to important modifications of the existing theory 
allowing general extension of SDI to multi-aged and mixed-
species stands. Figure 1 tracks the development of Reineke’s 
SDI over time and provides examples of statistical methods 
and forest types where it has been applied. These SDI mile-
stones were selected based on innovations such as the devel-
opment of SDI and modifications to the original SDI for use 
in multi-aged stands. Alternative statistical methods used for 
estimating the self-thinning line in different forest types are 
also considered milestones in the refinement of SDI. Initial 
applications of SDI in size-density management charts where 
SDI was initially applied to address forest management prob-
lems were also considered representing milestones in Fig. 1.

Further Refining SDI as Additive Stand Density 
Index with Functional Traits

As noted previously, SDI was initially developed for monospe-
cific, even-aged stands, and some researchers have contended 
that the original formulation was mathematically flawed [27] 
with various alternative forms proposed [27, 50••, 70••]. One 

of the key challenges is there can be relatively high subjectiv-
ity when locating the self-thinning boundary, and particularly 
for complex, multi-cohort stands [9, 71]; see the section on 
statistical analysis for further details. Another potential issue 
involves the representation of QMD in multi-aged or even-aged 
mixed-species stands with highly irregular diameter distribu-
tions. To address this, different approaches to calculating aver-
age size have been proposed [72], and more recently, additive 
forms of SDI (ASDI) have been used that include information 
about individual trees’ DBH. The summation method or ASDI 
has been successfully used in national-scale assessments [54•] 
and this is how FVS estimates SDI. Thus, various representa-
tions of SDI have been developed and used in different studies 
depending on the specific questions being addressed and the 
forest conditions being examined (Table 1).

The use of the summation method reduces aggregation bias 
for large trees, and it applies to a wide variety of stand condi-
tions [73], including even-aged stands. In most stand types, 
DBH distributions are non-Gaussian and SDI should be deter-
mined for each sample tree DBH and then summed to arrive 
at SDI for the whole stand. However, issues can arise when 
using counts per DBH class, depending on the width of and 
variability within each DBH class [74]. Employing the sum-
mation method avoids the potential bias of using stand QMD 
and more accurately apportions the growing stock between the 
size classes [35, 50••]. ASDI is a logical option for irregular 
and multi-cohort stands [11] because it is more sensitive to 
the stand’s structure [27]. Due to its mathematical formula-
tion, ASDI will always be less than or equal to traditional SDI 
based on QMD. In fact, the ratio between ASDI and SDI can 
be used as a measure of stand structural complexity [8]. How-
ever, using a ratio to measure structural complexity across 
stands is only valid if similar inventory methods were used 
since ASDI is sensitive to the range of diameters sampled 
and the potential resulting truncation bias. Finally, ASDI is 
also a logical choice for applications that rely on commonly 
used variable-radius sampling methods given the inverse rela-
tionship between tree size and its implied expansion factor. 
It is possible to estimate ASDI for mixed-species stands in 
the field based on a simple count using an ordinary prism by 
“pushing or pulling the point” [75].

Another important consideration in complex stands is 
the determination of the slope used to compute either 
ASDI or SDI. Often, the standard Reineke [39••] slope of 
−1.605 is used, whereas some current evidence suggests 
the value is potentially much used (−1.605), but lower 
(−1.797 [76]) values have been found and might be used 
in certain applications. Specifically, the use of an alterna-
tive slope in complex stand structures has been suggested, 
which more properly proportions SDI between large and 
small diameter trees [77]. However, different slope val-
ues may be necessary in certain stand structures such as 
reverse J-shaped diameter distributions with more small 
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trees than large ones [77]. There is often a strong rela-
tionship between ASDI estimates derived using different 
slope values (Fig. 2), which suggests that the traditional 
fixed slope of −1.605 can generally be applied across a 
broad range of stand types.

Necessary Data and Statistical Methods 
for Estimating the Self‑Thinning Boundary 
Line

A common assumption between the approaches of Yoda 
et al. [40] and Reineke [39••] involves a constant slope 
between the logarithm of average size and N that held 
across species in fully stocked stands [3]. Nonetheless, 
subsequent work has shown that the determination of the 

MSDR depends heavily on the (1) statistical methods 
employed; (2) specific model formulation; and (3) type, 
spatial extent, and source of data [3, 78]. Most histori-
cal methods for estimating the boundary line rely on the 
subjective selection of data points that exhibit density-
dependent mortality and are thus close to the upper bound-
ary line [79]. Another potential bias comes from the sub-
jective elimination of data points, often from populations 
that have not yet reached the density-dependent mortality 
stage [79].

Similarly, including plots that are experiencing mortality 
caused by factors other than competition (e.g., insects, wind) 
can also bias the slope estimate. Hence, researchers have 
sought to develop more objective approaches for removing 
or otherwise discounting information from plots that are 
either not experiencing density-dependent mortality or have 

Fig. 1  The development, modification, and application of Reineke’s 
[39••] stand density index (SDI) through time with the specific sta-
tistical methods and type of forest stands examined. Authors who 
applied and modified SDI have been cited. Key abbreviations are 
OLS, ordinary least squares; RE, reciprocal equations; LE, linear 

equations; RMA, reduced major axis; QR, quantile regression; DMD, 
density management diagram; LQMM, linear quantile mixed models; 
SFA, stochastic frontier analysis; SDI, stand density index; ASDI, 
additive stand density index; RD, relative density;  SDIMAX, maximum 
stand density index
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excessive mortality attributable to other factors. The lack 
of a fully objective method has led to a view that it may be 
impossible to validate the self-thinning rule using empirical 
data [80, 81]. Even estimating the boundary parameters with 
principal component analysis (PCA) involves subjectivity in 
selecting density-dependent mortality data [82].

Several statistical methods have been used to deter-
mine the self-thinning line [43•]. Historically, a dominant 
approach involved fitting a log-log model using ordinary 
least squares (OLS) regression and determining the upper 
threshold from the 95% confidence interval [78, 83]. Before 
that, the most common methods for quantifying MSDR 
involved manually hand fitting a line on the upper boundary 

of the data points [29•, 39••, 40, 84]. Other statistical 
methods used during this early era included corrected OLS, 
reduced major axis, and nonlinear models. More recently, 
linear mixed-effects model (LME), stochastic frontier analy-
sis (SFA), quantile regression (QR), linear quantile mixed 
model (LQMM), deterministic frontier analysis (DFA), and 
hierarchical Bayesian models have been used. There is still 
no strong consensus on the best statistical methods for fitting 
these types of relationships, but they can produce varying 
outcomes [3, 26, 31, 43, 78] (Table 2). However, the past 
evolution and current trends in preferred methodologies 
have led to more objective and robust estimates of MSDRs. 

Fig. 2  Relationship between stand density index (SDI; top) and rela-
tive density (RD; bottom) derived using the traditional slope value 
of −1.605 from Reineke [39••] and −1.797 based on a more recent 

analysis from Woodall and Weiskittel [76]. The red line is a 1:1 line, 
while the blue line is based on a simple linear regression between the 
two estimates
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Nevertheless, the MSDRs can still vary significantly depend-
ing on the statistical methods used [26].

A few general observations about fitting the MSDR are 
noteworthy. First, slope estimates can vary widely by region, 
as relationships can be species- or even stand-specific. In 
some cases, even though the same statistical methods were 
used on the same species, the  SDIMAX estimates can be dif-
ferent, with the variation being attributed to the sample size 
used to fit the model, inventory plot size and type, species 
composition, climate, and topography (Table 3). Figure 3 
shows the distribution of  SDIMAX estimates for the same for-
est type calculated using LQMM by Woodall and Weiskittel, 
[76] yet the estimates varied widely across ecoregions. The 
ecoregions have distinct climates, topography, and relatively 
coarse vegetation assemblages that influence the structure 
and composition of forests, which leads to variability in SDI 
and ultimately the estimates of  SDIMAX.

Limitations of specific statistical techniques have been 
documented when determining the boundary line of self-thin-
ning for a given species [9]. For example, Zhang et al. [43•] 
compared six modeling approaches to determine the maxi-
mum size-density slopes using data from an even-aged white 
pine (Pinus strobus L.) stand. They found that methods such 
as OLS, corrected OLS, and reduced major axis had impor-
tant shortcomings in producing realistic slopes due to the 
high sensitivity to data used when fitting the models, which 
may suggest the need for larger datasets to apply them reli-
ably [43•]. Using a range of statistical methods and available 
data, Salas-Eljatib and Weiskittel [78] evaluated the influence 
of seven different model fitting methods and found statisti-
cally distinct differences among them, with an over 1.8-fold 
difference between the lowest and largest mean estimate of 
the  SDIMAX [30]. Some methods have also been criticized for 
failing to account for the asymptotic and limiting nature of 
the maximum size-density line, which can lead to improper 
estimation of the model coefficients [9, 43•, 55, 99].

Another potential shortcoming of methods based on linear 
statistics is the high sensitivity to the inclusion of data points 
from stands that have not initiated self-thinning, which can 
lead to a flattening of the slope from −1.605 (QMD) or −1.5 
(biomass) towards −1 [43•, 100]. Historically, most of the 
statistical methods used for determining self-thinning did 
not allow the influence of various additional site and stand 
factors to be directly assessed [9, 43•]. In contrast, quantile 
regression, deterministic frontier analysis, and stochastic 
frontier analysis all produce an upper limit boundary for the 
maximum size boundary without subjectively selecting the 
data points, while also allowing for the inclusion of addi-
tional model covariates [35, 43•].

Recently, Bayesian estimation methods, quantile regres-
sion, and linear quantile mixed models have outperformed 
stochastic frontier analysis, especially in explaining site-
related trends, when estimating the parameters of the 

self-thinning line [96, 101]. Importantly, Bayesian estima-
tion methods enable the description of the uncertainty of 
self-thinning line parameters at multiple scales [92••, 101]. 
Another key advantage of this methodology is the ability to 
incorporate information from previous analyses or expert 
opinions, i.e., “priors.” LQMM, like other hierarchical 
approaches, has the advantage of including random plot 
effects that account for differences in their developmental 
history that are otherwise unaccounted for.

The prevailing consensus regarding the constancy of 
the maximum size-density boundary line for a given spe-
cies (i.e., independent of site quality and stand age) may be 
attributed to the limited rigorous testing of this relationship, 
rather than any compelling evidence supporting it [30]. Pre-
dictably, using contrasting statistical methods for different 
species and/or subjectively selected data is likely to lead to 
fits that are different, which complicates the evaluation of 
how slopes may differ from the theoretical −1.605 value for 
SDI (or −1.5 for N vs total or mean biomass). Differences 
also exist related to the definition of the boundary lines of 
self-thinning, which include (1) species-specific [80]; (2) 
population-level for plants of a specific plant form [102]; 
and (3) environmental boundary lines [102]. Ultimately, the 
determination of the boundary condition is guided by the 
available data, general model form, and specific statistical 
methods of estimating the associated parameters [90], in 
addition to the research objectives. Even in situations where 
 SDIMAX is being derived for the same species, widely differ-
ent estimates can be produced and attributed to differences 
in statistical modelling techniques and the breadth of avail-
able datasets [67]. Using the nine common methods outlined 
above, we found that the ranges of slopes and intercepts of 
the self-thinning line for white pine in the northeastern USA 
differed substantially according to the method of estimation 
(Fig. 4). Based on the 95% confidence intervals, the eight 
methods produced slopes the majority of which were sig-
nificantly different from Reineke’s original value of −1.605 
(Table 4).

Another important factor influencing the MSDR is the 
type and breadth of available data. As noted in Table 3, stud-
ies have used both fixed- and variable-radius plots as they 
both provide unbiased estimates of QMD and N. In addition, 
Hann [90] highlights four types of data that can be used to 
determine the MSDR, which can include the following: (1) 
yield tables; (2) cross-sectional studies with single measure-
ments from several plots to model species boundary line; (3) 
time series data that includes many measurements from a 
single plot or all plots at a study installation; and (4) pooled 
cross-section and time series data based on many measure-
ments on numerous plots for the purposes of modelling 
species and population boundary lines. Each source has its 
own unique advantages and disadvantages, which are briefly 
highlighted below.
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Although yield tables can be a convenient source of 
data, their use may bias the density-size relationship due to 
apparent and unapparent decisions made by their developers 
[5••]. For example, Zeide [103] documented that data from 
Douglas-fir yield tables did not conform to the −1.5 law as 
the Curtis’ [18] RD upper limit is usually reached at 80% 
of the maximum. This is consistent with the development 
of stocking guides and their representation of full stocking, 
also commonly established using yield tables [5••]. With 
other types of data, fitting the maximum line is sometimes 
done using all the available observations without regard to 
self-thinning behavior. However, subjectivity is included by 
using data assumed to be on the maximum line in the mod-
elling process. This type of data can be observed from the 
use of national inventory data for the estimation of the self-
thinning line across different forest types and in contrasting 
countries [1, 12, 26, 54•, 56, 67, 76, 83, 95, 104–107]. Cur-
rent approaches taken to this research suggest that pooled 
data from regional or national inventories can be used to 
model self-thinning lines including the derivation of species-
specific boundaries objectively [12, 26, 67, 76].

The availability of large datasets and improved com-
putational capabilities have led to the emergence of new 

statistical methods, reduced processing time, and thus 
estimation of more objective and presumably robust 
slope and intercept parameters. For example, Woodall 
and Weiskittel [76] using LQMM with 1,257,773 sub-
plot observations representing a wide range of stand con-
ditions across the entire coterminous USA and found a 
mean slope of −1.797 ± 0.106 (mean ± SD; Table 3). 
LQMM has demonstrated the ability to produce robust, 
biologically relevant, and logical predictions of  SDIMAX 
making use of all the available national inventory plot 
data in the USA [58, 78]. The use of large data sets, such 
as national inventories, reduces the need for subjective 
data selection when modeling the self-thinning line, and 
specifying quantiles associated with the upper boundary 
of the data, i.e., τ=95 or 99%, minimizes the influence of 
plots not undergoing self-thinning.

Although large national inventories can alleviate some of 
the data challenges highlighted before, they may not resolve 
all of the underlying issues involved in determining the true 
self-thinning relationship. It is possible that the uncertainty 
in or even measurement error of SD metrics could be used 
during the modeling process. Another key challenge is often 
the lack of replication or additional information about the 

Fig. 3  Comparison of the distributions of  SDIMAX estimates for white 
oak (Quercus alba L.) / red oak (Quercus rubra L.) / hickory (Carya 
spp.) forest type across Bailey [98] ecoregions of 221 (Eastern Broad-
leaf Forest, Oceanic), 223 (Eastern Broadleaf Forest, Continental), 
and 231 (Southeastern Mixed Forest) generated using US Forest 
Service, Forest Inventory & Analysis (FIA) data. The red dotted line 

shows the 25th percentile (N = 903), solid black shows the median 
value (N = 1,104), and the dotted green line shows the 75th percentile 
(N = 1,316) of  SDIMAX estimates for a subset of the white oak/red 
oak/hickory forest type across Bailey [98] ecoregions. The solid yel-
low line shows the overall median value N = 1,055 for white oak / red 
oak / hickory forest type from the whole FIA dataset
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inventories used to determine the SD metrics, which might 
result in misleading confidence limits, assuming these inter-
vals can be determined. Thus, these issues will likely con-
tinue to represent challenges without proper statistical meth-
ods applied to large and comprehensive datasets capable of 
objectively estimating the self-thinning line [79].

Salas-Eljatib and Weiskittel [78] also categorized data 
used for the development of size-density relationships as 
either (1) static or (2) dynamic. Static data (analogous to 
Hann’s [90] cross-sectional data) is mainly used because 
it is easy to collect and easily assessed over many condi-
tions [78]. A limitation of using static data involves the 

Fig. 4  Examples of self-thinning lines obtained using the different 
statistical methods on a logarithmic scale for a common dataset for 
eastern white pine (Pinus strobus L.) in the northeastern USA (5672 
observations from Weiskittel and Kuehne [56]). LMM, linear mixed 

models; LQMM, linear quantile mixed models; MA, major axis; 
OLS, ordinary least squares; QR, quantile regression; RMA, reduced 
major axis; SFF, stochastic frontier function; HBM, hierarchical 
Bayesian model; and SMA, standard major axis

Table 4  Estimates of the slope and intercept parameters and their confidence intervals for the methods used to construct Fig. 4

*Estimates for implied maximum SDI for QR and HBM were extreme due to small sample size (5,672 observations) and lack of repeated meas-
ures to properly derive hierarchical or random effects

Method Intercept Slope Implied maximum SDI

Mean (SE) 95% Confidence interval Mean (SE) 95% Confidence interval

OLS 11.344 (0.055) (11.237–11.452) −1.470 (0.017) (−1.502–1.437) 726.8
RMA 12.930 (12.790–13.740) −1.952 (−1.995–1.909) 746.8
SFA 11.578 (0.055) (11.470–11.685 −1.462 (0.016) (−1.494–1.429) 942.7
QR 11.828 (0.107) (11.619–12.038) −1.459 (0.032) (−1.522–1.395) 1,222.9*
LMM 11.633 (0.056) (11.521–11.745) −1.568 (0.017) (−1.602–1.534) 706.9
LQMM 11.476 (0.074) (11.368–11.583) −1.435 (0.024) (−1.460–1.402) 929.0
MA 14.036 (13.873–14.206) −2.289 (−2.340–2.238) 758.7
SMA 12.855 (12.748–12.962) −1.929 (−1.961–1.896) 746.3
HBM 11.55 (0.05) (11.44–11.65) −1.43 (0.02) (−1. 460–1.40) 1,016.7*
Overall Mean (SE) 12.136 (0.295) (11.6862–12.8679) −1.666 (0.021) (−1.8828–1.4818) 866.3 (1.86)
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absence of repeated measurements, limited measurement 
of the full range of conditions, especially sites with high 
densities, and an appropriate statistical model for estimat-
ing the self-thinning relationship [78]. In contrast, dynamic 
data corresponds to a site with the availability of repeated 
measurements obtained from permanent plots, which has 
been useful for illustrating that otherwise similar stands may 
start to self-thin at different levels of stand density. How-
ever, there is still no consensus about the phenomena actu-
ally driving variability of the self-thinning process [108]. In 
addition, both dynamic and static data generally have a hier-
archical structure, which can bias and limit the inferences of 
the model parameters if not properly accounted for during 
the analysis [78]. In general, using all the available data, 
whether static or dynamic, can effectively limit subjectivity 
in data selection [104, 109]. In their analysis, Salas-Eljatib 
and Weiskittel [78] found LQMM to produce an estimate 
nearest to the overall mean with site-level carrying capac-
ity determined by tree species diversity and climate using a 
population-level static approach.

Influence of Ancillary Data on Determination 
of the Self‑Thinning Boundary in Complex 
and Adaptive Forests

Globally, there has been greater attention towards the 
management of mixed-species stands, and increasingly, 
the dynamics of these stands are being quantified through 
applications of SDI [65]. Due to this increased attention, 
foresters may need improved quantitative tools to guide the 
management of mixed-species stands [110]. These types 
of stands can be quite complicated, for example, they may 
include rare species of a relatively large size with dispropor-
tionate influence on SD leading to inappropriate ecological 
interpretation and management decisions [64]. It follows 
that with greater interest in natural climate solutions, adap-
tive silviculture, and increased societal demands on forests, 
there is a concurrent need for more robust SD measures that 
can reflect novel species combinations, unique stand struc-
tures, and ultimately reliably be used to help evaluate overall 
climate change resiliency. Therefore, numerous stand-level 
measures have been put in place to keep compositional, 
functional, and structural complexity to increase adaptive 
capacity due to disturbances and global change [111, 112].

More recently, an increasing range of ancillary variables 
have been used in conjunction with traditional SD variables 
to help explain differences in the behavior of self-thinning 
in complex forest stands. The intercept and slope of the self-
thinning line may be affected by factors such as topography, 
climate, soils, and other site-specific variables [12] (Table 3). 
Current trends in modeling have included both species- and 
site-specific covariates to determine the influence of bio-
logical and environmental variables on the determination 

of the self-thinning line [12]. Following this approach, the 
self-thinning line reflects the  SDIMAX for any size-density 
combination under optimum site conditions and a boundary 
lower than the self-thinning line for stands growing under 
sub-optimal site conditions [12]. Further refinements of the 
self-thinning theory have shown that this process can initiate 
before the stand reaches the zone of imminent competition 
mortality, and that the rate of self-thinning stabilizes when 
maximum stand density is reached [23, 80].

A key example involves the relationship between the 
wood density or specific gravity (SG) of species and a 
stand’s  SDIMAX [54•]. Generally, low SG species have a lim-
ited amount of branch and foliage mass that needs to be sup-
ported by individual stems, while the converse is often true 
for species with a higher SG [54•]. Consequently, individu-
als of low SG species have a limited amount of foliage to 
support but are expected to have a high stem density per unit 
area to achieve full site occupancy [54•]. In contrast, higher 
SG trees put greater amounts of foliage per tree, effectively 
reducing the number of stems per unit area [54•]. Therefore, 
there is often an inverse relationship between tree species SG 
and  SDIMAX, which can be leveraged to estimate  SDIMAX 
of mixed-species stands. For example, Woodall, Miles, and 
Vissage [54•] used the mean specific gravity  (SGm) of each 
plot across all of the US national inventory to derive more 
accurate estimates of  SDIMAX for compositionally diverse 
stands.

While using SG to estimate maximum density has proven 
an effective approach, it does not encompass all the poten-
tial attributes influencing the carrying capacity of mixed-
species stands [64]. For example, including climate variables 
that potentially modify stress tolerance has allowed for the 
improved explanation of site occupancy across complex forest 
types and over large regions [64]. Given improved estimates 
of site productivity, there is a current need to better understand 
how  SDIMAX for specific tree species varies across site condi-
tions [59]. Long-term and regionally distributed observations 
are needed for better quantification of  SDIMAX, especially for 
mixed-species stands. For example, Ducey et al. [64] found 
that SG interacted with precipitation, and shade tolerance 
interacted with temperature, and that both relationships were 
needed to explain regional variation in  SDIMAX.

Functional traits such as drought and shade tolerance play 
important roles in the development of forest stands through 
their influence on mortality and growth rates [64, 104, 113]. 
Species’ SG along with shade and drought tolerance have 
helped provide an improved mechanistic explanation for site 
occupancy [64, 104]. More specifically, species tolerance to 
stress leads to a reduction in the number of species capable 
of fully utilizing the available resources, which feeds back 
to species distributions and composition of stands. In land-
scapes with limited moisture, species drought tolerance is 
crucial, resulting in lower estimates of  SDIMAX owing to 
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site conditions [64]. Using functional traits instead of more 
species-specific attributes allows for the development of a 
SDI model that accommodates common and relatively rare 
species [64]. A current issue working with species func-
tional traits involves deriving consistent and meaningful 
estimates, despite the existence of a global database such 
as TRY (https:// www. try- db. org/) due to high variation in 
some traits, and inconsistent sampling methods employed 
across species.

Application of Relative Density 
as an Integrative Measure of Competition

Relative density (RD) is the proportion of absolute N 
observed in a stand relative to the value based on the empiri-
cally derived MSDR [29•, 50••, 54•, 74, 114, 115].  SDIMAX 
(carrying capacity) refers specifically to the maximum N 
with a diameter of ≈25 cm per unit area in a self-thinning 
environment [20, 42, 56, 57]. Quantification of  SDIMAX for 
species and forest types is critical for regulation of silvicul-
tural operations, evaluation of site productivity potential, 
and prediction of stand development dynamics over time 
[51]. A straightforward way of expressing RD is the ratio 
between a stand’s current SDI and a maximum SDI (RD 
= SDI/SDIMAX). Due to its generality and high interpret-
ability, RD calculated in this way offers a strong potential 
to anticipate current or future competition, which can be 
leveraged to guide management decisions [116]. Therefore, 
the observed value of RD is relevant for anticipating growth 
and mortality rates in stands and is capable of normalizing 
the interpretation of  SDIMAX across broad spatial scales [59, 
110, 115, 117].

Management following RD can be tailored to the forest 
owners’ specific objectives for example habitat diversity or 
optimal timber yield which can be prioritized, values for 
which should be fairly consistent within forest types when 
expressed in these terms. Understanding the relationship 
between stand dynamics and RD is central to developing 
generalized yet effective silvicultural prescriptions [118]. 
The changes in absolute measures of SD when at maximum 
density vary according to the developmental stage and spe-
cies composition of a given stand, complicating their inter-
pretation. Further, RD allows for the comparison of crowd-
ing effects between pure- and mixed-species stands using a 
single and generalized metric of SD [19]. Species-specific 
and regionally variable values of  SDIMAX provide the means 
for determining RD when making forest management deci-
sions [20] and calibration of the initiation of density-depend-
ent mortality behavior in national growth models such as 
the FVS [119].

Carbon sequestration is affected by the processes of mor-
tality, which can substantially influence the future develop-
ment of carbon pools [120]. Density-dependent mortality 
resulting from self-thinning plays a crucial role in the forma-
tion of snags and down woody material (DWM) and devel-
opment of related ecological benefits. Therefore, metrics 
that quantify size-density relationships, like SDI and similar 
indices, also have the potential to contribute to an improved 
understanding of deadwood dynamics. Given the increasing 
emphasis on the greenhouse gas (GHG) implications of for-
est management operations, the application of SDI and RD 
may usefully be extended to focus on deadwood dynamics. 
By using the size-density relationship of live trees as a foun-
dation, we can forecast the dynamics of deadwood, which is 
vital for accurate GHG accounting [121]. Assessing a stand’s 
proximity to the self-thinning line can serve as an indicator 
of the quantity and extent of mortality in unmanaged stands, 
representing a lateral carbon transfer that eventually leads to 
emissions into the atmosphere over time. SDI and RD aid 
in evaluating the growth dynamics of live trees and can be 
applied to gain a better understanding of the transfer of a 
proportion of carbon to deadwood pools and potentially their 
long-term persistence. Considering that smaller deadwood 
often has a shorter residency time [122], one approach to 
reducing carbon emissions into the atmosphere and poten-
tially enhancing structural diversity is to promote the accu-
mulation of large deadwood as carbon reservoirs and biologi-
cal legacies. On the other hand, the development of larger 
future deadwood inputs could be accelerated by thinning 
prior to the onset of mortality as a way to concentrate site 
resources on not only crop trees, but also future biological 
legacies [123].

The relationship between average size-density along 
with RD provides the basis for the development of density 
management diagrams (DMDs), which are used to plan out 
specific forest management objectives [30, 44•, 124–127]. 
DMDs are primarily based on the strong linkages between 
SD and growing space requirements of the average tree in 
a stand at a given stage of stand development [3, 5••, 54•, 
104, 128, 129]. DMDs are premised on the MSDRs discussed 
previously, and portray the dynamic nature of site occupancy, 
self-thinning, and competition. DMDs are especially useful 
for determining the post-thinning SD to guide the next sil-
vicultural prescription, while simultaneously facilitating the 
comparison of alternative prescriptions [99]. Thus, DMDs 
incorporate important unifying ecological concepts such 
as allometric relationships, and the general nature of size-
density relationships that express the potential of core SD 
metrics like SDI and RD to track stand development across 
a broad range of forest types and stand conditions [30, 61•].

RD can be used to guide forest management decisions in 
the context of DMDs [29•]. DMDs are useful for estimating 

https://www.try-db.org/TryWeb/Home.php


146 Current Forestry Reports (2024) 10:133–152

the effect of the changes in stand density on tree size and 
anticipate competition within stands based on  SDIMAX. 
Viewed more broadly, size-density management charts 
(SDMC) can take multiple forms (Fig. 5a and b) and be used 
to assess SD for planning purposes in the face of threats such 
as wildfires, forest health, and environmental stress [132]. 
Effectively, stand-level SDI is compared to the  SDIMAX 
appropriate to the species in the stand used to construct 
the DMD, which can take multiple forms (Fig. 5a). Lines 
of constant RD are represented on the DMD, also derived 
from  SDIMAX. DMDs represent some of the most important 
quantitative tools available to forest managers [133] given 
the established relationships between RD across several key 
stages of stand development, effectively characterizing site 
occupancy and levels of competition [29•, 30]. Figure 5b 
illustrates a linkage between RD and forest productivity rep-
resented as BA, which provides a unifying link to other com-
monly used SDMCs like structural stocking guides [132].

Future Opportunities and Challenges

Although the estimation of RD as SDI/SDIMAX provides an 
objective measure of the size-density relationships in forests, 
there are still some relatively subjective biological interpreta-
tions involved [76]. Broad RD classes are often presented based 
on potentially biological or management-orientated thresholds 
to overcome this, e.g., RD 0.35–0.55 as in Fig. 5b. Conse-
quently, there is still a strong need to improve the objectivity of 
the ecological interpretation of RD and the ability to generalize 
across key stages of stand development, which could vary by 
forest type, stand history, and environmental conditions. Cur-
rently, generally accepted RD threshold values for critical stand 
developmental stages are available, namely crown closure (RD 
= 0.15), the lower bound of the density management zone (RD 
= 0.30), the onset of imminent competition mortality (RD = 
0.55), and maximum size-density (RD = 1) [29•].

Over time, the “Langsaeter hypothesis” has been used to 
understand density-growth relationships, although represen-
tation has been limited to primarily theoretical illustrations 

Fig. 5  Example of a contrasting regional size-density management 
chart (SDMC) used in the USA. a Density management diagram 
(DMD) based on quadratic mean and stem density, b Gingrich [5••] 
style DMD that relates total basal area and stem density. Both graphs 
have a user-defined  SDIMAX value of 1353 for spruce-fir (Picea-

Abies) based on estimates from Woodall and Weiskittel [76] and 
constructed using the “standview” R package Ritche [130] and Jang 
[131]. Grey indicates the management zone set at 35% and 55% of 
 SDIMAX, and red lines indicate SDI values
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[118, 134]. The main idea forwarded by this hypothesis holds 
that stand growth remains relatively constant across a wide 
range of SDs, bounded by the minimum density needed to 
achieve full site occupancy and the onset of substantial den-
sity-dependent mortality. That assumed relationship forms 
the basis for “full stocking” as portrayed on structural stock-
ing guides, i.e., the area between the B- and A-lines, respec-
tively [5••]. Consequently, Zeide [134] suggested the need 
for better quantitative models to represent the relationship. 
However, the continual contradictions and debates about the 
quantitative determination of the growth-density relation-
ships have been attributed to data inadequacies, site quality 
differences, and even a lack of consensus on the concep-
tual definition of growth and density [118, 135]. Currently, 
there is an important need to develop robust and nationally 
consistent RD estimates that are reliably predictive of stand 

growth and mortality and are applicable across forest types 
and species compositions. There may also be opportunities 
to develop more complex models that account for functional 
traits such as SG and environmental tolerance characteris-
tics [69, 136]. Incorporation of functional traits and environ-
mental variables could be especially important for informing 
density management under global change given their poten-
tial influence on DMDs (e.g.,  CO2 enrichment and climate 
change [137]). By objectively establishing key boundaries for 
RD, we can test and improve our understanding of density-
growth relationships and formulation of silvicultural pre-
scriptions. We anticipate this will be an iterative process, 
but we now have the requisite data and statistical tools for 
the undertaking (Fig. 6). Figure 6 shows the diversity of the 
relationships between RD and stand-level growth metrics 
which need further refinement and development.

Fig. 6  Relative distribution of observed annual gross and net volume 
growth  (m3  ha−1  year−1) over relative density classes across key forest 
type groups in the USA based on USDA Forest Service Forest Inven-

tory and Analysis plots. Forest type groups are HW, hardwood; MW, 
Mixedwood; and SW, softwood
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Going forward, the increased availability of high-reso-
lution remotely sensed data potentially paves the way for 
improved resolution and regular monitoring of SD metrics 
when coupled with conventional forest inventory datasets. 
Remote sensing can be a valuable tool in estimating RD 
in forestry, providing valuable information about the spa-
tial arrangement and density of trees in a forest stand. For 
example, light detection and ranging (LIDAR) and radar 
technologies have resulted in precise forest inventories. 
Airborne laser scanning (ALS) can monitor forest metrics 
such as density and size [138]. Other new remote sensing 
platforms such as NASA’s Global Ecosystem Dynamics 
Investigation (GEDI) extend these opportunities to national 
or even global applications. These emerging technologies 
offer unprecedented opportunities to quantify and validate 
ground-based forest dynamics at spatial and temporal reso-
lutions that would be difficult to achieve using traditional 
approaches.

Conclusion

Almost 90 years since the original development of SDI by 
Reineke [39••] have passed, and it remains a highly relevant 
and widely used SD metric. Although several limitations 
have been identified in the original formulation of Reineke 
[39••], numerous effective modifications highlighted in 
this synthesis have been developed, helping reinforce the 
general robustness of the original concept. These improve-
ments include key refinements in the statistical estimation 
of the size-density relationships across complex stand types 
including pure and mixed-species compositions as well as 
even- or multi-cohort stands. Further refinements to SDI and 
 SDIMAX are made possible by the inclusion of ancillary vari-
ables such as specific gravity, shade and drought tolerance, 
climate, and site productivity [11, 54•, 64, 107].

Over time, key shifts have occurred from single to mixed-
species composition, from temporary to permanent plots, 
and from local to regional and now national assessments 
using large datasets. The regional and national estimates of 
SD and SDI can lead to the inclusion of additional plant 
functional traits such as drought tolerance, shade tolerance, 
specific gravity, and leaf longevity in relation to climate in 
order to be able to generalize underlying relationships poten-
tially applicable to uncommon conditions, an application 
recently illustrated for tree-level foliage biomass estimation 
[139].

Reliable and predictive SD metrics are central to the 
effective management of forest stands. In fact, the foundation 
and evolution of quantitative silviculture are highly depend-
ent on the availability of robust SD metrics that can function 
across varied stand conditions and forest types. SDI, ASDI, 
and RD represent key synthetic SD measures with a proven 

track record of effective use in forestry. The SDI concept 
relies on the idea of it being consistent in a specific context 
such as a forest type in an ecoregion to determine the behav-
ior of density-dependent mortality. Although these concepts 
have been widely used for growth and yield modeling and 
the construction of DMDs, the broad space between the par-
allel lines of RD should be critically reexamined [140]. In 
particular, a better understanding of the generality of optimal 
stand density management zones across contrasting objec-
tives, climatic conditions, and forest types is needed.

Forest managers have a long history of using density-
dependent management tools such as DMDs and stocking 
charts [132]. The aforementioned tools are often based on 
century-old sample data [135] that reflect past environmental 
conditions and other biases of questionable relevance for 
informing silvicultural decisions under current and future 
climate change scenarios and in the context of contempo-
rary forest stand structures [141]. Even today, commonly 
used stocking charts and DMDs are still derived using esti-
mates of SDI made in the 1930s, and there are decadal gaps 
between the data used to influence present management 
guidelines and stand conditions [142]. Therefore, it is rec-
ommended that updated estimates of SDI and RD be used to 
inform decision-making around density management.

From this synthesis, the recent application of robust sta-
tistical techniques, such as hierarchical Bayesian method, 
quantile regression, and linear quantile mixed modeling, 
emerge as the most suitable methods and should increasingly 
be used for establishing the maximum size-density boundary 
[76, 78, 92••, 101]. To help solve different ecological prob-
lems, there is an increased reliance on data from national 
forest inventories [143], which have large samples, repeated 
measurements, and broad availability. Using national inven-
tories enable statistical methods to make appropriate use of 
highly influential observations, instead of eliminating them. 
We believe that the hierarchical Bayesian method represents 
the state of the art for establishing the impact of the site, 
stand, and forest type on the self-thinning line, where suit-
ably extensive datasets are accessible [117].
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